VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 33935

Last change on this file since 33935 was 33725, checked in by vboxsync, 14 years ago

More stats for large page allocation

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 198.3 KB
Line 
1/* $Id: PGM.cpp 33725 2010-11-03 13:31:24Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred to
30 * as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successful this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery associated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attempted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the other way around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
484 * however on 32-bit darwin the ring-0 code is running in a different memory
485 * context and therefore needs a separate cache. In raw-mode context we also
486 * need a separate cache. The 32-bit darwin mapping cache and the one for
487 * raw-mode context share a lot of code, see PGMRZDYNMAP.
488 *
489 *
490 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
491 *
492 * We've considered implementing the ring-3 mapping cache page based but found
493 * that this was bother some when one had to take into account TLBs+SMP and
494 * portability (missing the necessary APIs on several platforms). There were
495 * also some performance concerns with this approach which hadn't quite been
496 * worked out.
497 *
498 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
499 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
500 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
501 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
502 * costly than a single page, although how much more costly is uncertain. We'll
503 * try address this by using a very big cache, preferably bigger than the actual
504 * VM RAM size if possible. The current VM RAM sizes should give some idea for
505 * 32-bit boxes, while on 64-bit we can probably get away with employing an
506 * unlimited cache.
507 *
508 * The cache have to parts, as already indicated, the ring-3 side and the
509 * ring-0 side.
510 *
511 * The ring-0 will be tied to the page allocator since it will operate on the
512 * memory objects it contains. It will therefore require the first ring-0 mutex
513 * discussed in @ref subsec_pgmPhys_Serializing. We
514 * some double house keeping wrt to who has mapped what I think, since both
515 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
516 *
517 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
518 * require anyone that desires to do changes to the mapping cache to do that
519 * from within this critsect. Alternatively, we could employ a separate critsect
520 * for serializing changes to the mapping cache as this would reduce potential
521 * contention with other threads accessing mappings unrelated to the changes
522 * that are in process. We can see about this later, contention will show
523 * up in the statistics anyway, so it'll be simple to tell.
524 *
525 * The organization of the ring-3 part will be very much like how the allocation
526 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
527 * having to walk the tree all the time, we'll have a couple of lookaside entries
528 * like in we do for I/O ports and MMIO in IOM.
529 *
530 * The simplified flow of a PGMPhysRead/Write function:
531 * -# Enter the PGM critsect.
532 * -# Lookup GCPhys in the ram ranges and get the Page ID.
533 * -# Calc the Allocation Chunk ID from the Page ID.
534 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
535 * If not found in cache:
536 * -# Call ring-0 and request it to be mapped and supply
537 * a chunk to be unmapped if the cache is maxed out already.
538 * -# Insert the new mapping into the AVL tree (id + R3 address).
539 * -# Update the relevant lookaside entry and return the mapping address.
540 * -# Do the read/write according to monitoring flags and everything.
541 * -# Leave the critsect.
542 *
543 *
544 * @section sec_pgmPhys_Fallback Fallback
545 *
546 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
547 * API and thus require a fallback.
548 *
549 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
550 * will return to the ring-3 caller (and later ring-0) and asking it to seed
551 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
552 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
553 * "SeededAllocPages" call to ring-0.
554 *
555 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
556 * all page sharing (zero page detection will continue). It will also force
557 * all allocations to come from the VM which seeded the page. Both these
558 * measures are taken to make sure that there will never be any need for
559 * mapping anything into ring-3 - everything will be mapped already.
560 *
561 * Whether we'll continue to use the current MM locked memory management
562 * for this I don't quite know (I'd prefer not to and just ditch that all
563 * together), we'll see what's simplest to do.
564 *
565 *
566 *
567 * @section sec_pgmPhys_Changes Changes
568 *
569 * Breakdown of the changes involved?
570 */
571
572/*******************************************************************************
573* Header Files *
574*******************************************************************************/
575#define LOG_GROUP LOG_GROUP_PGM
576#include <VBox/dbgf.h>
577#include <VBox/pgm.h>
578#include <VBox/cpum.h>
579#include <VBox/iom.h>
580#include <VBox/sup.h>
581#include <VBox/mm.h>
582#include <VBox/em.h>
583#include <VBox/stam.h>
584#include <VBox/rem.h>
585#include <VBox/selm.h>
586#include <VBox/ssm.h>
587#include <VBox/hwaccm.h>
588#include "PGMInternal.h"
589#include <VBox/vm.h>
590#include "PGMInline.h"
591
592#include <VBox/dbg.h>
593#include <VBox/param.h>
594#include <VBox/err.h>
595
596#include <iprt/asm.h>
597#include <iprt/asm-amd64-x86.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static int pgmR3InitStats(PVM pVM);
611static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
617#ifdef VBOX_STRICT
618static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
619#endif
620static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
621static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
622static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
623
624#ifdef VBOX_WITH_DEBUGGER
625/** @todo Convert the first two commands to 'info' items. */
626static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
627static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
629static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630# ifdef VBOX_STRICT
631static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632# endif
633static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634#endif
635
636
637/*******************************************************************************
638* Global Variables *
639*******************************************************************************/
640#ifdef VBOX_WITH_DEBUGGER
641/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
642static const DBGCVARDESC g_aPgmErrorArgs[] =
643{
644 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
645 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
646};
647
648static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
649{
650 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
651 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
652 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
653};
654
655# ifdef DEBUG_sandervl
656static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
657{
658 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
659 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
660 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
661};
662# endif
663
664/** Command descriptors. */
665static const DBGCCMD g_aCmds[] =
666{
667 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
668 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
669 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
670 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
671 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
672# ifdef VBOX_STRICT
673 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
674# if HC_ARCH_BITS == 64
675 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
676 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
677# endif
678# endif
679 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
680 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
681};
682#endif
683
684
685
686
687/*
688 * Shadow - 32-bit mode
689 */
690#define PGM_SHW_TYPE PGM_TYPE_32BIT
691#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
692#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
693#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
694#include "PGMShw.h"
695
696/* Guest - real mode */
697#define PGM_GST_TYPE PGM_TYPE_REAL
698#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
699#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
700#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
701#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
702#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
703#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
704#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
705#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
706#include "PGMBth.h"
707#include "PGMGstDefs.h"
708#include "PGMGst.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef BTH_PGMPOOLKIND_ROOT
711#undef PGM_BTH_NAME
712#undef PGM_BTH_NAME_RC_STR
713#undef PGM_BTH_NAME_R0_STR
714#undef PGM_GST_TYPE
715#undef PGM_GST_NAME
716#undef PGM_GST_NAME_RC_STR
717#undef PGM_GST_NAME_R0_STR
718
719/* Guest - protected mode */
720#define PGM_GST_TYPE PGM_TYPE_PROT
721#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
722#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
723#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
724#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
725#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
726#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
727#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
728#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
729#include "PGMBth.h"
730#include "PGMGstDefs.h"
731#include "PGMGst.h"
732#undef BTH_PGMPOOLKIND_PT_FOR_PT
733#undef BTH_PGMPOOLKIND_ROOT
734#undef PGM_BTH_NAME
735#undef PGM_BTH_NAME_RC_STR
736#undef PGM_BTH_NAME_R0_STR
737#undef PGM_GST_TYPE
738#undef PGM_GST_NAME
739#undef PGM_GST_NAME_RC_STR
740#undef PGM_GST_NAME_R0_STR
741
742/* Guest - 32-bit mode */
743#define PGM_GST_TYPE PGM_TYPE_32BIT
744#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
745#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
746#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
747#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
748#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
749#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
750#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
751#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
752#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
753#include "PGMBth.h"
754#include "PGMGstDefs.h"
755#include "PGMGst.h"
756#undef BTH_PGMPOOLKIND_PT_FOR_BIG
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef BTH_PGMPOOLKIND_ROOT
759#undef PGM_BTH_NAME
760#undef PGM_BTH_NAME_RC_STR
761#undef PGM_BTH_NAME_R0_STR
762#undef PGM_GST_TYPE
763#undef PGM_GST_NAME
764#undef PGM_GST_NAME_RC_STR
765#undef PGM_GST_NAME_R0_STR
766
767#undef PGM_SHW_TYPE
768#undef PGM_SHW_NAME
769#undef PGM_SHW_NAME_RC_STR
770#undef PGM_SHW_NAME_R0_STR
771
772
773/*
774 * Shadow - PAE mode
775 */
776#define PGM_SHW_TYPE PGM_TYPE_PAE
777#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
778#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
779#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
781#include "PGMShw.h"
782
783/* Guest - real mode */
784#define PGM_GST_TYPE PGM_TYPE_REAL
785#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
792#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
793#include "PGMGstDefs.h"
794#include "PGMBth.h"
795#undef BTH_PGMPOOLKIND_PT_FOR_PT
796#undef BTH_PGMPOOLKIND_ROOT
797#undef PGM_BTH_NAME
798#undef PGM_BTH_NAME_RC_STR
799#undef PGM_BTH_NAME_R0_STR
800#undef PGM_GST_TYPE
801#undef PGM_GST_NAME
802#undef PGM_GST_NAME_RC_STR
803#undef PGM_GST_NAME_R0_STR
804
805/* Guest - protected mode */
806#define PGM_GST_TYPE PGM_TYPE_PROT
807#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
808#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
809#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
810#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
811#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
812#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
813#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
814#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
815#include "PGMGstDefs.h"
816#include "PGMBth.h"
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827/* Guest - 32-bit mode */
828#define PGM_GST_TYPE PGM_TYPE_32BIT
829#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
830#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
831#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
832#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
833#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
834#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
835#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
836#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
837#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
838#include "PGMGstDefs.h"
839#include "PGMBth.h"
840#undef BTH_PGMPOOLKIND_PT_FOR_BIG
841#undef BTH_PGMPOOLKIND_PT_FOR_PT
842#undef BTH_PGMPOOLKIND_ROOT
843#undef PGM_BTH_NAME
844#undef PGM_BTH_NAME_RC_STR
845#undef PGM_BTH_NAME_R0_STR
846#undef PGM_GST_TYPE
847#undef PGM_GST_NAME
848#undef PGM_GST_NAME_RC_STR
849#undef PGM_GST_NAME_R0_STR
850
851/* Guest - PAE mode */
852#define PGM_GST_TYPE PGM_TYPE_PAE
853#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
854#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
855#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
856#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
857#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
858#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
859#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
860#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
861#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
862#include "PGMBth.h"
863#include "PGMGstDefs.h"
864#include "PGMGst.h"
865#undef BTH_PGMPOOLKIND_PT_FOR_BIG
866#undef BTH_PGMPOOLKIND_PT_FOR_PT
867#undef BTH_PGMPOOLKIND_ROOT
868#undef PGM_BTH_NAME
869#undef PGM_BTH_NAME_RC_STR
870#undef PGM_BTH_NAME_R0_STR
871#undef PGM_GST_TYPE
872#undef PGM_GST_NAME
873#undef PGM_GST_NAME_RC_STR
874#undef PGM_GST_NAME_R0_STR
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - AMD64 mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_AMD64
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
889#include "PGMShw.h"
890
891#ifdef VBOX_WITH_64_BITS_GUESTS
892/* Guest - AMD64 mode */
893# define PGM_GST_TYPE PGM_TYPE_AMD64
894# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
895# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
896# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
897# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
898# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
899# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
900# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
903# include "PGMBth.h"
904# include "PGMGstDefs.h"
905# include "PGMGst.h"
906# undef BTH_PGMPOOLKIND_PT_FOR_BIG
907# undef BTH_PGMPOOLKIND_PT_FOR_PT
908# undef BTH_PGMPOOLKIND_ROOT
909# undef PGM_BTH_NAME
910# undef PGM_BTH_NAME_RC_STR
911# undef PGM_BTH_NAME_R0_STR
912# undef PGM_GST_TYPE
913# undef PGM_GST_NAME
914# undef PGM_GST_NAME_RC_STR
915# undef PGM_GST_NAME_R0_STR
916#endif /* VBOX_WITH_64_BITS_GUESTS */
917
918#undef PGM_SHW_TYPE
919#undef PGM_SHW_NAME
920#undef PGM_SHW_NAME_RC_STR
921#undef PGM_SHW_NAME_R0_STR
922
923
924/*
925 * Shadow - Nested paging mode
926 */
927#define PGM_SHW_TYPE PGM_TYPE_NESTED
928#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
929#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
930#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
931#include "PGMShw.h"
932
933/* Guest - real mode */
934#define PGM_GST_TYPE PGM_TYPE_REAL
935#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
936#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
937#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
938#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
939#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
940#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
941#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
942#include "PGMGstDefs.h"
943#include "PGMBth.h"
944#undef BTH_PGMPOOLKIND_PT_FOR_PT
945#undef PGM_BTH_NAME
946#undef PGM_BTH_NAME_RC_STR
947#undef PGM_BTH_NAME_R0_STR
948#undef PGM_GST_TYPE
949#undef PGM_GST_NAME
950#undef PGM_GST_NAME_RC_STR
951#undef PGM_GST_NAME_R0_STR
952
953/* Guest - protected mode */
954#define PGM_GST_TYPE PGM_TYPE_PROT
955#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
956#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
957#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
958#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
959#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
960#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
961#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
962#include "PGMGstDefs.h"
963#include "PGMBth.h"
964#undef BTH_PGMPOOLKIND_PT_FOR_PT
965#undef PGM_BTH_NAME
966#undef PGM_BTH_NAME_RC_STR
967#undef PGM_BTH_NAME_R0_STR
968#undef PGM_GST_TYPE
969#undef PGM_GST_NAME
970#undef PGM_GST_NAME_RC_STR
971#undef PGM_GST_NAME_R0_STR
972
973/* Guest - 32-bit mode */
974#define PGM_GST_TYPE PGM_TYPE_32BIT
975#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
976#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
977#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
978#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
979#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
980#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
981#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
982#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_BIG
986#undef BTH_PGMPOOLKIND_PT_FOR_PT
987#undef PGM_BTH_NAME
988#undef PGM_BTH_NAME_RC_STR
989#undef PGM_BTH_NAME_R0_STR
990#undef PGM_GST_TYPE
991#undef PGM_GST_NAME
992#undef PGM_GST_NAME_RC_STR
993#undef PGM_GST_NAME_R0_STR
994
995/* Guest - PAE mode */
996#define PGM_GST_TYPE PGM_TYPE_PAE
997#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
998#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
999#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1000#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1001#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1002#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1003#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1004#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1005#include "PGMGstDefs.h"
1006#include "PGMBth.h"
1007#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1008#undef BTH_PGMPOOLKIND_PT_FOR_PT
1009#undef PGM_BTH_NAME
1010#undef PGM_BTH_NAME_RC_STR
1011#undef PGM_BTH_NAME_R0_STR
1012#undef PGM_GST_TYPE
1013#undef PGM_GST_NAME
1014#undef PGM_GST_NAME_RC_STR
1015#undef PGM_GST_NAME_R0_STR
1016
1017#ifdef VBOX_WITH_64_BITS_GUESTS
1018/* Guest - AMD64 mode */
1019# define PGM_GST_TYPE PGM_TYPE_AMD64
1020# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1021# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1022# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1023# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1024# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1025# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1026# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1027# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1028# include "PGMGstDefs.h"
1029# include "PGMBth.h"
1030# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1031# undef BTH_PGMPOOLKIND_PT_FOR_PT
1032# undef PGM_BTH_NAME
1033# undef PGM_BTH_NAME_RC_STR
1034# undef PGM_BTH_NAME_R0_STR
1035# undef PGM_GST_TYPE
1036# undef PGM_GST_NAME
1037# undef PGM_GST_NAME_RC_STR
1038# undef PGM_GST_NAME_R0_STR
1039#endif /* VBOX_WITH_64_BITS_GUESTS */
1040
1041#undef PGM_SHW_TYPE
1042#undef PGM_SHW_NAME
1043#undef PGM_SHW_NAME_RC_STR
1044#undef PGM_SHW_NAME_R0_STR
1045
1046
1047/*
1048 * Shadow - EPT
1049 */
1050#define PGM_SHW_TYPE PGM_TYPE_EPT
1051#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1052#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1053#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1054#include "PGMShw.h"
1055
1056/* Guest - real mode */
1057#define PGM_GST_TYPE PGM_TYPE_REAL
1058#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1059#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1060#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1061#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1062#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1063#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1064#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1065#include "PGMGstDefs.h"
1066#include "PGMBth.h"
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_RC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_RC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076/* Guest - protected mode */
1077#define PGM_GST_TYPE PGM_TYPE_PROT
1078#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1079#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1080#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1081#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1082#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1083#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1084#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1085#include "PGMGstDefs.h"
1086#include "PGMBth.h"
1087#undef BTH_PGMPOOLKIND_PT_FOR_PT
1088#undef PGM_BTH_NAME
1089#undef PGM_BTH_NAME_RC_STR
1090#undef PGM_BTH_NAME_R0_STR
1091#undef PGM_GST_TYPE
1092#undef PGM_GST_NAME
1093#undef PGM_GST_NAME_RC_STR
1094#undef PGM_GST_NAME_R0_STR
1095
1096/* Guest - 32-bit mode */
1097#define PGM_GST_TYPE PGM_TYPE_32BIT
1098#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1099#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1100#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1101#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1102#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1103#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1104#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1105#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1109#undef BTH_PGMPOOLKIND_PT_FOR_PT
1110#undef PGM_BTH_NAME
1111#undef PGM_BTH_NAME_RC_STR
1112#undef PGM_BTH_NAME_R0_STR
1113#undef PGM_GST_TYPE
1114#undef PGM_GST_NAME
1115#undef PGM_GST_NAME_RC_STR
1116#undef PGM_GST_NAME_R0_STR
1117
1118/* Guest - PAE mode */
1119#define PGM_GST_TYPE PGM_TYPE_PAE
1120#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1121#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1122#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1123#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1124#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1125#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1126#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1127#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1128#include "PGMGstDefs.h"
1129#include "PGMBth.h"
1130#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1131#undef BTH_PGMPOOLKIND_PT_FOR_PT
1132#undef PGM_BTH_NAME
1133#undef PGM_BTH_NAME_RC_STR
1134#undef PGM_BTH_NAME_R0_STR
1135#undef PGM_GST_TYPE
1136#undef PGM_GST_NAME
1137#undef PGM_GST_NAME_RC_STR
1138#undef PGM_GST_NAME_R0_STR
1139
1140#ifdef VBOX_WITH_64_BITS_GUESTS
1141/* Guest - AMD64 mode */
1142# define PGM_GST_TYPE PGM_TYPE_AMD64
1143# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1144# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1145# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1146# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1147# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1148# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1149# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1150# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1151# include "PGMGstDefs.h"
1152# include "PGMBth.h"
1153# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1154# undef BTH_PGMPOOLKIND_PT_FOR_PT
1155# undef PGM_BTH_NAME
1156# undef PGM_BTH_NAME_RC_STR
1157# undef PGM_BTH_NAME_R0_STR
1158# undef PGM_GST_TYPE
1159# undef PGM_GST_NAME
1160# undef PGM_GST_NAME_RC_STR
1161# undef PGM_GST_NAME_R0_STR
1162#endif /* VBOX_WITH_64_BITS_GUESTS */
1163
1164#undef PGM_SHW_TYPE
1165#undef PGM_SHW_NAME
1166#undef PGM_SHW_NAME_RC_STR
1167#undef PGM_SHW_NAME_R0_STR
1168
1169
1170
1171/**
1172 * Initiates the paging of VM.
1173 *
1174 * @returns VBox status code.
1175 * @param pVM Pointer to VM structure.
1176 */
1177VMMR3DECL(int) PGMR3Init(PVM pVM)
1178{
1179 LogFlow(("PGMR3Init:\n"));
1180 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1181 int rc;
1182
1183 /*
1184 * Assert alignment and sizes.
1185 */
1186 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1187 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1188 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1189
1190 /*
1191 * Init the structure.
1192 */
1193#ifdef PGM_WITHOUT_MAPPINGS
1194 pVM->pgm.s.fMappingsDisabled = true;
1195#endif
1196 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1197 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1198
1199 /* Init the per-CPU part. */
1200 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1201 {
1202 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1203 PPGMCPU pPGM = &pVCpu->pgm.s;
1204
1205 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1206 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1207 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1208
1209 pPGM->enmShadowMode = PGMMODE_INVALID;
1210 pPGM->enmGuestMode = PGMMODE_INVALID;
1211
1212 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1213
1214 pPGM->pGst32BitPdR3 = NULL;
1215 pPGM->pGstPaePdptR3 = NULL;
1216 pPGM->pGstAmd64Pml4R3 = NULL;
1217#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1218 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1219 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1220 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1221#endif
1222 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1223 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1224 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1225 {
1226 pPGM->apGstPaePDsR3[i] = NULL;
1227#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1228 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1229#endif
1230 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1231 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1232 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1233 }
1234
1235 pPGM->fA20Enabled = true;
1236 }
1237
1238 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1239 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1240 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1241
1242 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1243#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1244 true
1245#else
1246 false
1247#endif
1248 );
1249 AssertLogRelRCReturn(rc, rc);
1250
1251#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1252 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1253#else
1254 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1255#endif
1256 AssertLogRelRCReturn(rc, rc);
1257 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1258 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1259
1260 /*
1261 * Get the configured RAM size - to estimate saved state size.
1262 */
1263 uint64_t cbRam;
1264 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1265 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1266 cbRam = 0;
1267 else if (RT_SUCCESS(rc))
1268 {
1269 if (cbRam < PAGE_SIZE)
1270 cbRam = 0;
1271 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1272 }
1273 else
1274 {
1275 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1276 return rc;
1277 }
1278
1279#ifdef VBOX_WITH_STATISTICS
1280 /*
1281 * Allocate memory for the statistics before someone tries to use them.
1282 */
1283 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1284 void *pv;
1285 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1286 AssertRCReturn(rc, rc);
1287
1288 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1289 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1290 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1291 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1292
1293 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1294 {
1295 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1296 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1297 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1298
1299 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1300 }
1301#endif /* VBOX_WITH_STATISTICS */
1302
1303 /*
1304 * Register callbacks, string formatters and the saved state data unit.
1305 */
1306#ifdef VBOX_STRICT
1307 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1308#endif
1309 PGMRegisterStringFormatTypes();
1310
1311 rc = pgmR3InitSavedState(pVM, cbRam);
1312 if (RT_FAILURE(rc))
1313 return rc;
1314
1315 /*
1316 * Initialize the PGM critical section and flush the phys TLBs
1317 */
1318 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1319 AssertRCReturn(rc, rc);
1320
1321 PGMR3PhysChunkInvalidateTLB(pVM);
1322 PGMPhysInvalidatePageMapTLB(pVM);
1323
1324 /*
1325 * For the time being we sport a full set of handy pages in addition to the base
1326 * memory to simplify things.
1327 */
1328 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1329 AssertRCReturn(rc, rc);
1330
1331 /*
1332 * Trees
1333 */
1334 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1335 if (RT_SUCCESS(rc))
1336 {
1337 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1338 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1339
1340 /*
1341 * Allocate the zero page.
1342 */
1343 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1344 }
1345 if (RT_SUCCESS(rc))
1346 {
1347 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1348 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1349 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1350 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1351
1352 /*
1353 * Allocate the invalid MMIO page.
1354 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1355 */
1356 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1357 }
1358 if (RT_SUCCESS(rc))
1359 {
1360 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1361 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1362 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1363 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1364
1365 /*
1366 * Init the paging.
1367 */
1368 rc = pgmR3InitPaging(pVM);
1369 }
1370 if (RT_SUCCESS(rc))
1371 {
1372 /*
1373 * Init the page pool.
1374 */
1375 rc = pgmR3PoolInit(pVM);
1376 }
1377 if (RT_SUCCESS(rc))
1378 {
1379 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1380 {
1381 PVMCPU pVCpu = &pVM->aCpus[i];
1382 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1383 if (RT_FAILURE(rc))
1384 break;
1385 }
1386 }
1387
1388 if (RT_SUCCESS(rc))
1389 {
1390 /*
1391 * Info & statistics
1392 */
1393 DBGFR3InfoRegisterInternal(pVM, "mode",
1394 "Shows the current paging mode. "
1395 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1396 pgmR3InfoMode);
1397 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1398 "Dumps all the entries in the top level paging table. No arguments.",
1399 pgmR3InfoCr3);
1400 DBGFR3InfoRegisterInternal(pVM, "phys",
1401 "Dumps all the physical address ranges. No arguments.",
1402 pgmR3PhysInfo);
1403 DBGFR3InfoRegisterInternal(pVM, "handlers",
1404 "Dumps physical, virtual and hyper virtual handlers. "
1405 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1406 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1407 pgmR3InfoHandlers);
1408 DBGFR3InfoRegisterInternal(pVM, "mappings",
1409 "Dumps guest mappings.",
1410 pgmR3MapInfo);
1411
1412 pgmR3InitStats(pVM);
1413
1414#ifdef VBOX_WITH_DEBUGGER
1415 /*
1416 * Debugger commands.
1417 */
1418 static bool s_fRegisteredCmds = false;
1419 if (!s_fRegisteredCmds)
1420 {
1421 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1422 if (RT_SUCCESS(rc2))
1423 s_fRegisteredCmds = true;
1424 }
1425#endif
1426 return VINF_SUCCESS;
1427 }
1428
1429 /* Almost no cleanup necessary, MM frees all memory. */
1430 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1431
1432 return rc;
1433}
1434
1435
1436/**
1437 * Initializes the per-VCPU PGM.
1438 *
1439 * @returns VBox status code.
1440 * @param pVM The VM to operate on.
1441 */
1442VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1443{
1444 LogFlow(("PGMR3InitCPU\n"));
1445 return VINF_SUCCESS;
1446}
1447
1448
1449/**
1450 * Init paging.
1451 *
1452 * Since we need to check what mode the host is operating in before we can choose
1453 * the right paging functions for the host we have to delay this until R0 has
1454 * been initialized.
1455 *
1456 * @returns VBox status code.
1457 * @param pVM VM handle.
1458 */
1459static int pgmR3InitPaging(PVM pVM)
1460{
1461 /*
1462 * Force a recalculation of modes and switcher so everyone gets notified.
1463 */
1464 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1465 {
1466 PVMCPU pVCpu = &pVM->aCpus[i];
1467
1468 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1469 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1470 }
1471
1472 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1473
1474 /*
1475 * Allocate static mapping space for whatever the cr3 register
1476 * points to and in the case of PAE mode to the 4 PDs.
1477 */
1478 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1479 if (RT_FAILURE(rc))
1480 {
1481 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1482 return rc;
1483 }
1484 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1485
1486 /*
1487 * Allocate pages for the three possible intermediate contexts
1488 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1489 * for the sake of simplicity. The AMD64 uses the PAE for the
1490 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1491 *
1492 * We assume that two page tables will be enought for the core code
1493 * mappings (HC virtual and identity).
1494 */
1495 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1496 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1497 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1498 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1499 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1500 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1501 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1502 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1503 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1504 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1505 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1506 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1507
1508 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1509 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1510 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1511 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1512 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1513 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1514
1515 /*
1516 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1517 */
1518 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1519 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1520 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1521
1522 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1523 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1524
1525 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1526 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1527 {
1528 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1529 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1530 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1531 }
1532
1533 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1534 {
1535 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1536 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1537 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1538 }
1539
1540 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1541 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1542 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1543 | HCPhysInterPaePDPT64;
1544
1545 /*
1546 * Initialize paging workers and mode from current host mode
1547 * and the guest running in real mode.
1548 */
1549 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1550 switch (pVM->pgm.s.enmHostMode)
1551 {
1552 case SUPPAGINGMODE_32_BIT:
1553 case SUPPAGINGMODE_32_BIT_GLOBAL:
1554 case SUPPAGINGMODE_PAE:
1555 case SUPPAGINGMODE_PAE_GLOBAL:
1556 case SUPPAGINGMODE_PAE_NX:
1557 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1558 break;
1559
1560 case SUPPAGINGMODE_AMD64:
1561 case SUPPAGINGMODE_AMD64_GLOBAL:
1562 case SUPPAGINGMODE_AMD64_NX:
1563 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1564#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1565 if (ARCH_BITS != 64)
1566 {
1567 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1568 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1569 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1570 }
1571#endif
1572 break;
1573 default:
1574 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1575 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1576 }
1577 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1578 if (RT_SUCCESS(rc))
1579 {
1580 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1581#if HC_ARCH_BITS == 64
1582 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1583 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1584 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1585 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1586 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1587 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1588 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1589#endif
1590 return VINF_SUCCESS;
1591 }
1592
1593 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1594 return rc;
1595}
1596
1597
1598/**
1599 * Init statistics
1600 * @returns VBox status code.
1601 */
1602static int pgmR3InitStats(PVM pVM)
1603{
1604 PPGM pPGM = &pVM->pgm.s;
1605 int rc;
1606
1607 /*
1608 * Release statistics.
1609 */
1610 /* Common - misc variables */
1611 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1612 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1613 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1614 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1615 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1616 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1617 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1618 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1619 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1620 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1621 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1622 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1623 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1624 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1625 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1626 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1627 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1628
1629 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1630 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1631 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1632 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1633
1634 /* Live save */
1635 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1636 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1637 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1638 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1639 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1640 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1641 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1642 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1643 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1644 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1645 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1646 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1647 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1648 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1649 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1650 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1651 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1652 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1653
1654#ifdef VBOX_WITH_STATISTICS
1655
1656# define PGM_REG_COUNTER(a, b, c) \
1657 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1658 AssertRC(rc);
1659
1660# define PGM_REG_COUNTER_BYTES(a, b, c) \
1661 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1662 AssertRC(rc);
1663
1664# define PGM_REG_PROFILE(a, b, c) \
1665 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1666 AssertRC(rc);
1667
1668 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1669
1670 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1671 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1672 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1673 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1674 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1675
1676 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1677 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1678 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1679 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1680 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1681 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1682 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1683 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1684 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1685 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1686
1687 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1688 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1689 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1690 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1691 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1692 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1693
1694 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1695 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1696 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1697 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1698 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1699 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1700 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1701 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1702
1703 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1704 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1705 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1706 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1707
1708 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1709 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1710 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1711 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1712 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1713 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1714 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1715 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1716
1717 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1718 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1719/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1720 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1721 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1722/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1723
1724 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1725 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1726 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1727 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1728 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1729 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1730 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1731 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1732
1733 /* GC only: */
1734 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1735 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1736
1737 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1738 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1739 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1740 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1741 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1742 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1743 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1744 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1745
1746 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1747 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1748 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1749 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1750 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1751 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1752 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1753
1754# undef PGM_REG_COUNTER
1755# undef PGM_REG_PROFILE
1756#endif
1757
1758 /*
1759 * Note! The layout below matches the member layout exactly!
1760 */
1761
1762 /*
1763 * Common - stats
1764 */
1765 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1766 {
1767 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1768
1769#define PGM_REG_COUNTER(a, b, c) \
1770 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1771 AssertRC(rc);
1772#define PGM_REG_PROFILE(a, b, c) \
1773 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1774 AssertRC(rc);
1775
1776 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1777
1778#ifdef VBOX_WITH_STATISTICS
1779 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1780
1781# if 0 /* rarely useful; leave for debugging. */
1782 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1783 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1784 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1785 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1786 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1787 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1788# endif
1789 /* R0 only: */
1790 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1791 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1792
1793 /* RZ only: */
1794 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1795 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1796 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1797 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1798 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1799 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1800 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1801 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1802 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1803 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1804 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1805 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1806 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1807 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1808 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1809 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1810 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1811 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1812 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1813 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1814 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1815 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1816 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1817 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1818 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1819 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1820 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1821 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1822 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1823 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1824 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1825 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1826 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1827 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1828 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1829 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1830 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1831 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1832 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1833 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1834 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1835 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1836 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1837 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1838#if 0 /* rarely useful; leave for debugging. */
1839 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1840 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1841 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1842#endif
1843 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1844 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1845 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1846 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1847 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1848
1849 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1850 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1851 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1852 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1853 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1854 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1855 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1856 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1858 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1859 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1860 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1861 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1862 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1863 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1864 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1865 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1866 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1867 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1868 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1869 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1870 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1871 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1872 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1873 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1874 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1875 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1876 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1877 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1878 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1879 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1880 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1881 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1882 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1883 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1884 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1885
1886 /* HC only: */
1887
1888 /* RZ & R3: */
1889 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1890 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1891 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1899 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1906 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1915 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1922 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1923 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1924 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1925 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1926 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1929 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1930 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1931 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1932 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1935 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1936
1937 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1938 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1939 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1940 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1941 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1942 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1943 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1944 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1945 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1946 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1947 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1948 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1949 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1950 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1951 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1952 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1953 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1954 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1955 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1956 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1957 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1958 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1959 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1960 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1961 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1962 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1963 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1964 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1965 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1966 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1967 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1968 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1969 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1970 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1971 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1972 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1973 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1974 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1975 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1976 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1977 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1978 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1979 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1980 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1981#endif /* VBOX_WITH_STATISTICS */
1982
1983#undef PGM_REG_PROFILE
1984#undef PGM_REG_COUNTER
1985
1986 }
1987
1988 return VINF_SUCCESS;
1989}
1990
1991
1992/**
1993 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1994 *
1995 * The dynamic mapping area will also be allocated and initialized at this
1996 * time. We could allocate it during PGMR3Init of course, but the mapping
1997 * wouldn't be allocated at that time preventing us from setting up the
1998 * page table entries with the dummy page.
1999 *
2000 * @returns VBox status code.
2001 * @param pVM VM handle.
2002 */
2003VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2004{
2005 RTGCPTR GCPtr;
2006 int rc;
2007
2008 /*
2009 * Reserve space for the dynamic mappings.
2010 */
2011 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2012 if (RT_SUCCESS(rc))
2013 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2014
2015 if ( RT_SUCCESS(rc)
2016 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2017 {
2018 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2019 if (RT_SUCCESS(rc))
2020 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2021 }
2022 if (RT_SUCCESS(rc))
2023 {
2024 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2025 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2026 }
2027 return rc;
2028}
2029
2030
2031/**
2032 * Ring-3 init finalizing.
2033 *
2034 * @returns VBox status code.
2035 * @param pVM The VM handle.
2036 */
2037VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2038{
2039 int rc;
2040
2041 /*
2042 * Reserve space for the dynamic mappings.
2043 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2044 */
2045 /* get the pointer to the page table entries. */
2046 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2047 AssertRelease(pMapping);
2048 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2049 const unsigned iPT = off >> X86_PD_SHIFT;
2050 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2051 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2052 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2053
2054 /* init cache area */
2055 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2056 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2057 {
2058 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2059 AssertRCReturn(rc, rc);
2060 }
2061
2062 /*
2063 * Determine the max physical address width (MAXPHYADDR) and apply it to
2064 * all the mask members and stuff.
2065 */
2066 uint32_t cMaxPhysAddrWidth;
2067 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2068 if ( uMaxExtLeaf >= 0x80000008
2069 && uMaxExtLeaf <= 0x80000fff)
2070 {
2071 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2072 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2073 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2074 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2075 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2076 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2077 }
2078 else
2079 {
2080 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2081 cMaxPhysAddrWidth = 48;
2082 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2083 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2084 }
2085
2086 pVM->pgm.s.GCPhysInvAddrMask = 0;
2087 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2088 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2089
2090 /*
2091 * Initialize the invalid paging entry masks, assuming NX is disabled.
2092 */
2093 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2094 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2095 {
2096 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2097
2098 /** @todo The manuals are not entirely clear whether the physical
2099 * address width is relevant. See table 5-9 in the intel
2100 * manual vs the PDE4M descriptions. Write testcase (NP). */
2101 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2102 | X86_PDE4M_MBZ_MASK;
2103
2104 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2105 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2106 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2107 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2108
2109 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2110 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2111 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2112 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2113 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2114 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2115
2116 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2117 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2118 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2119 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2120 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2121 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2122 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2123 }
2124
2125 /*
2126 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2127 * Intel only goes up to 36 bits, so we stick to 36 as well.
2128 * Update: More recent intel manuals specifies 40 bits just like AMD.
2129 */
2130 uint32_t u32Dummy, u32Features;
2131 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2132 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2133 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2134 else
2135 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2136
2137 /*
2138 * Allocate memory if we're supposed to do that.
2139 */
2140 if (pVM->pgm.s.fRamPreAlloc)
2141 rc = pgmR3PhysRamPreAllocate(pVM);
2142
2143 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2144 return rc;
2145}
2146
2147
2148/**
2149 * Applies relocations to data and code managed by this component.
2150 *
2151 * This function will be called at init and whenever the VMM need to relocate it
2152 * self inside the GC.
2153 *
2154 * @param pVM The VM.
2155 * @param offDelta Relocation delta relative to old location.
2156 */
2157VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2158{
2159 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2160
2161 /*
2162 * Paging stuff.
2163 */
2164 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2165
2166 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2167
2168 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2169 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2170 {
2171 PVMCPU pVCpu = &pVM->aCpus[i];
2172
2173 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2174
2175 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2176 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2177 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2178 }
2179
2180 /*
2181 * Trees.
2182 */
2183 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2184
2185 /*
2186 * Ram ranges.
2187 */
2188 if (pVM->pgm.s.pRamRangesR3)
2189 {
2190 /* Update the pSelfRC pointers and relink them. */
2191 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2192 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2193 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2194 pgmR3PhysRelinkRamRanges(pVM);
2195 }
2196
2197 /*
2198 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2199 * be mapped and thus not included in the above exercise.
2200 */
2201 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2202 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2203 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2204
2205 /*
2206 * Update the two page directories with all page table mappings.
2207 * (One or more of them have changed, that's why we're here.)
2208 */
2209 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2210 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2211 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2212
2213 /* Relocate GC addresses of Page Tables. */
2214 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2215 {
2216 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2217 {
2218 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2219 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2220 }
2221 }
2222
2223 /*
2224 * Dynamic page mapping area.
2225 */
2226 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2227 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2228 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2229
2230 if (pVM->pgm.s.pRCDynMap)
2231 {
2232 pVM->pgm.s.pRCDynMap += offDelta;
2233 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2234
2235 pDynMap->paPages += offDelta;
2236 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2237
2238 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2239 {
2240 paPages[iPage].pvPage += offDelta;
2241 paPages[iPage].uPte.pv += offDelta;
2242 }
2243 }
2244
2245 /*
2246 * The Zero page.
2247 */
2248 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2249#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2250 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2251#else
2252 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2253#endif
2254
2255 /*
2256 * Physical and virtual handlers.
2257 */
2258 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2259 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2260 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2261 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2262
2263 /*
2264 * The page pool.
2265 */
2266 pgmR3PoolRelocate(pVM);
2267
2268#ifdef VBOX_WITH_STATISTICS
2269 /*
2270 * Statistics.
2271 */
2272 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2273 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2274 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2275#endif
2276}
2277
2278
2279/**
2280 * Callback function for relocating a physical access handler.
2281 *
2282 * @returns 0 (continue enum)
2283 * @param pNode Pointer to a PGMPHYSHANDLER node.
2284 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2285 * not certain the delta will fit in a void pointer for all possible configs.
2286 */
2287static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2288{
2289 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2290 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2291 if (pHandler->pfnHandlerRC)
2292 pHandler->pfnHandlerRC += offDelta;
2293 if (pHandler->pvUserRC >= 0x10000)
2294 pHandler->pvUserRC += offDelta;
2295 return 0;
2296}
2297
2298
2299/**
2300 * Callback function for relocating a virtual access handler.
2301 *
2302 * @returns 0 (continue enum)
2303 * @param pNode Pointer to a PGMVIRTHANDLER node.
2304 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2305 * not certain the delta will fit in a void pointer for all possible configs.
2306 */
2307static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2308{
2309 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2310 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2311 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2312 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2313 Assert(pHandler->pfnHandlerRC);
2314 pHandler->pfnHandlerRC += offDelta;
2315 return 0;
2316}
2317
2318
2319/**
2320 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2321 *
2322 * @returns 0 (continue enum)
2323 * @param pNode Pointer to a PGMVIRTHANDLER node.
2324 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2325 * not certain the delta will fit in a void pointer for all possible configs.
2326 */
2327static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2328{
2329 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2330 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2331 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2332 Assert(pHandler->pfnHandlerRC);
2333 pHandler->pfnHandlerRC += offDelta;
2334 return 0;
2335}
2336
2337
2338/**
2339 * Resets a virtual CPU when unplugged.
2340 *
2341 * @param pVM The VM handle.
2342 * @param pVCpu The virtual CPU handle.
2343 */
2344VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2345{
2346 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2347 AssertRC(rc);
2348
2349 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2350 AssertRC(rc);
2351
2352 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2353
2354 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2355
2356 /*
2357 * Re-init other members.
2358 */
2359 pVCpu->pgm.s.fA20Enabled = true;
2360
2361 /*
2362 * Clear the FFs PGM owns.
2363 */
2364 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2365 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2366}
2367
2368
2369/**
2370 * The VM is being reset.
2371 *
2372 * For the PGM component this means that any PD write monitors
2373 * needs to be removed.
2374 *
2375 * @param pVM VM handle.
2376 */
2377VMMR3DECL(void) PGMR3Reset(PVM pVM)
2378{
2379 int rc;
2380
2381 LogFlow(("PGMR3Reset:\n"));
2382 VM_ASSERT_EMT(pVM);
2383
2384 pgmLock(pVM);
2385
2386 /*
2387 * Unfix any fixed mappings and disable CR3 monitoring.
2388 */
2389 pVM->pgm.s.fMappingsFixed = false;
2390 pVM->pgm.s.fMappingsFixedRestored = false;
2391 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2392 pVM->pgm.s.cbMappingFixed = 0;
2393
2394 /*
2395 * Exit the guest paging mode before the pgm pool gets reset.
2396 * Important to clean up the amd64 case.
2397 */
2398 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2399 {
2400 PVMCPU pVCpu = &pVM->aCpus[i];
2401 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2402 AssertRC(rc);
2403 }
2404
2405#ifdef DEBUG
2406 DBGFR3InfoLog(pVM, "mappings", NULL);
2407 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2408#endif
2409
2410 /*
2411 * Switch mode back to real mode. (before resetting the pgm pool!)
2412 */
2413 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2414 {
2415 PVMCPU pVCpu = &pVM->aCpus[i];
2416
2417 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2418 AssertRC(rc);
2419
2420 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2421 }
2422
2423 /*
2424 * Reset the shadow page pool.
2425 */
2426 pgmR3PoolReset(pVM);
2427
2428 /*
2429 * Re-init various other members and clear the FFs that PGM owns.
2430 */
2431 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2432 {
2433 PVMCPU pVCpu = &pVM->aCpus[i];
2434
2435 pVCpu->pgm.s.fA20Enabled = true;
2436 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2437 PGMNotifyNxeChanged(pVCpu, false);
2438
2439 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2440 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2441 }
2442
2443 /*
2444 * Reset (zero) RAM and shadow ROM pages.
2445 */
2446 rc = pgmR3PhysRamReset(pVM);
2447 if (RT_SUCCESS(rc))
2448 rc = pgmR3PhysRomReset(pVM);
2449
2450
2451 pgmUnlock(pVM);
2452 AssertReleaseRC(rc);
2453}
2454
2455
2456#ifdef VBOX_STRICT
2457/**
2458 * VM state change callback for clearing fNoMorePhysWrites after
2459 * a snapshot has been created.
2460 */
2461static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2462{
2463 if ( enmState == VMSTATE_RUNNING
2464 || enmState == VMSTATE_RESUMING)
2465 pVM->pgm.s.fNoMorePhysWrites = false;
2466}
2467#endif
2468
2469/**
2470 * Private API to reset fNoMorePhysWrites.
2471 */
2472VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2473{
2474 pVM->pgm.s.fNoMorePhysWrites = false;
2475}
2476
2477/**
2478 * Terminates the PGM.
2479 *
2480 * @returns VBox status code.
2481 * @param pVM Pointer to VM structure.
2482 */
2483VMMR3DECL(int) PGMR3Term(PVM pVM)
2484{
2485 /* Must free shared pages here. */
2486 pgmLock(pVM);
2487 pgmR3PhysRamTerm(pVM);
2488 pgmR3PhysRomTerm(pVM);
2489 pgmUnlock(pVM);
2490
2491 PGMDeregisterStringFormatTypes();
2492 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2493}
2494
2495
2496/**
2497 * Terminates the per-VCPU PGM.
2498 *
2499 * Termination means cleaning up and freeing all resources,
2500 * the VM it self is at this point powered off or suspended.
2501 *
2502 * @returns VBox status code.
2503 * @param pVM The VM to operate on.
2504 */
2505VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2506{
2507 return 0;
2508}
2509
2510
2511/**
2512 * Show paging mode.
2513 *
2514 * @param pVM VM Handle.
2515 * @param pHlp The info helpers.
2516 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2517 */
2518static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2519{
2520 /* digest argument. */
2521 bool fGuest, fShadow, fHost;
2522 if (pszArgs)
2523 pszArgs = RTStrStripL(pszArgs);
2524 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2525 fShadow = fHost = fGuest = true;
2526 else
2527 {
2528 fShadow = fHost = fGuest = false;
2529 if (strstr(pszArgs, "guest"))
2530 fGuest = true;
2531 if (strstr(pszArgs, "shadow"))
2532 fShadow = true;
2533 if (strstr(pszArgs, "host"))
2534 fHost = true;
2535 }
2536
2537 /** @todo SMP support! */
2538 /* print info. */
2539 if (fGuest)
2540 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2541 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2542 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2543 if (fShadow)
2544 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2545 if (fHost)
2546 {
2547 const char *psz;
2548 switch (pVM->pgm.s.enmHostMode)
2549 {
2550 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2551 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2552 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2553 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2554 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2555 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2556 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2557 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2558 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2559 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2560 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2561 default: psz = "unknown"; break;
2562 }
2563 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2564 }
2565}
2566
2567
2568/**
2569 * Dump registered MMIO ranges to the log.
2570 *
2571 * @param pVM VM Handle.
2572 * @param pHlp The info helpers.
2573 * @param pszArgs Arguments, ignored.
2574 */
2575static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2576{
2577 NOREF(pszArgs);
2578 pHlp->pfnPrintf(pHlp,
2579 "RAM ranges (pVM=%p)\n"
2580 "%.*s %.*s\n",
2581 pVM,
2582 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2583 sizeof(RTHCPTR) * 2, "pvHC ");
2584
2585 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2586 pHlp->pfnPrintf(pHlp,
2587 "%RGp-%RGp %RHv %s\n",
2588 pCur->GCPhys,
2589 pCur->GCPhysLast,
2590 pCur->pvR3,
2591 pCur->pszDesc);
2592}
2593
2594/**
2595 * Dump the page directory to the log.
2596 *
2597 * @param pVM VM Handle.
2598 * @param pHlp The info helpers.
2599 * @param pszArgs Arguments, ignored.
2600 */
2601static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2602{
2603 /** @todo SMP support!! */
2604 PVMCPU pVCpu = &pVM->aCpus[0];
2605
2606/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2607 /* Big pages supported? */
2608 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2609
2610 /* Global pages supported? */
2611 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2612
2613 NOREF(pszArgs);
2614
2615 /*
2616 * Get page directory addresses.
2617 */
2618 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2619 Assert(pPDSrc);
2620 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2621
2622 /*
2623 * Iterate the page directory.
2624 */
2625 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2626 {
2627 X86PDE PdeSrc = pPDSrc->a[iPD];
2628 if (PdeSrc.n.u1Present)
2629 {
2630 if (PdeSrc.b.u1Size && fPSE)
2631 pHlp->pfnPrintf(pHlp,
2632 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2633 iPD,
2634 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2635 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2636 else
2637 pHlp->pfnPrintf(pHlp,
2638 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2639 iPD,
2640 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2641 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2642 }
2643 }
2644}
2645
2646
2647/**
2648 * Service a VMMCALLRING3_PGM_LOCK call.
2649 *
2650 * @returns VBox status code.
2651 * @param pVM The VM handle.
2652 */
2653VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2654{
2655 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2656 AssertRC(rc);
2657 return rc;
2658}
2659
2660
2661/**
2662 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2663 *
2664 * @returns PGM_TYPE_*.
2665 * @param pgmMode The mode value to convert.
2666 */
2667DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2668{
2669 switch (pgmMode)
2670 {
2671 case PGMMODE_REAL: return PGM_TYPE_REAL;
2672 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2673 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2674 case PGMMODE_PAE:
2675 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2676 case PGMMODE_AMD64:
2677 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2678 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2679 case PGMMODE_EPT: return PGM_TYPE_EPT;
2680 default:
2681 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2682 }
2683}
2684
2685
2686/**
2687 * Gets the index into the paging mode data array of a SHW+GST mode.
2688 *
2689 * @returns PGM::paPagingData index.
2690 * @param uShwType The shadow paging mode type.
2691 * @param uGstType The guest paging mode type.
2692 */
2693DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2694{
2695 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2696 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2697 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2698 + (uGstType - PGM_TYPE_REAL);
2699}
2700
2701
2702/**
2703 * Gets the index into the paging mode data array of a SHW+GST mode.
2704 *
2705 * @returns PGM::paPagingData index.
2706 * @param enmShw The shadow paging mode.
2707 * @param enmGst The guest paging mode.
2708 */
2709DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2710{
2711 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2712 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2713 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2714}
2715
2716
2717/**
2718 * Calculates the max data index.
2719 * @returns The number of entries in the paging data array.
2720 */
2721DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2722{
2723 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2724}
2725
2726
2727/**
2728 * Initializes the paging mode data kept in PGM::paModeData.
2729 *
2730 * @param pVM The VM handle.
2731 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2732 * This is used early in the init process to avoid trouble with PDM
2733 * not being initialized yet.
2734 */
2735static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2736{
2737 PPGMMODEDATA pModeData;
2738 int rc;
2739
2740 /*
2741 * Allocate the array on the first call.
2742 */
2743 if (!pVM->pgm.s.paModeData)
2744 {
2745 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2746 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2747 }
2748
2749 /*
2750 * Initialize the array entries.
2751 */
2752 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2753 pModeData->uShwType = PGM_TYPE_32BIT;
2754 pModeData->uGstType = PGM_TYPE_REAL;
2755 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758
2759 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2760 pModeData->uShwType = PGM_TYPE_32BIT;
2761 pModeData->uGstType = PGM_TYPE_PROT;
2762 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765
2766 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2767 pModeData->uShwType = PGM_TYPE_32BIT;
2768 pModeData->uGstType = PGM_TYPE_32BIT;
2769 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2770 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772
2773 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2774 pModeData->uShwType = PGM_TYPE_PAE;
2775 pModeData->uGstType = PGM_TYPE_REAL;
2776 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779
2780 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2781 pModeData->uShwType = PGM_TYPE_PAE;
2782 pModeData->uGstType = PGM_TYPE_PROT;
2783 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2786
2787 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2788 pModeData->uShwType = PGM_TYPE_PAE;
2789 pModeData->uGstType = PGM_TYPE_32BIT;
2790 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2791 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2792 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2793
2794 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2795 pModeData->uShwType = PGM_TYPE_PAE;
2796 pModeData->uGstType = PGM_TYPE_PAE;
2797 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2799 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2800
2801#ifdef VBOX_WITH_64_BITS_GUESTS
2802 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2803 pModeData->uShwType = PGM_TYPE_AMD64;
2804 pModeData->uGstType = PGM_TYPE_AMD64;
2805 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2806 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2807 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2808#endif
2809
2810 /* The nested paging mode. */
2811 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2812 pModeData->uShwType = PGM_TYPE_NESTED;
2813 pModeData->uGstType = PGM_TYPE_REAL;
2814 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2816
2817 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2818 pModeData->uShwType = PGM_TYPE_NESTED;
2819 pModeData->uGstType = PGM_TYPE_PROT;
2820 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2822
2823 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2824 pModeData->uShwType = PGM_TYPE_NESTED;
2825 pModeData->uGstType = PGM_TYPE_32BIT;
2826 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2828
2829 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2830 pModeData->uShwType = PGM_TYPE_NESTED;
2831 pModeData->uGstType = PGM_TYPE_PAE;
2832 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2834
2835#ifdef VBOX_WITH_64_BITS_GUESTS
2836 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2837 pModeData->uShwType = PGM_TYPE_NESTED;
2838 pModeData->uGstType = PGM_TYPE_AMD64;
2839 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2841#endif
2842
2843 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2844 switch (pVM->pgm.s.enmHostMode)
2845 {
2846#if HC_ARCH_BITS == 32
2847 case SUPPAGINGMODE_32_BIT:
2848 case SUPPAGINGMODE_32_BIT_GLOBAL:
2849 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2850 {
2851 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2852 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853 }
2854# ifdef VBOX_WITH_64_BITS_GUESTS
2855 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2856 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857# endif
2858 break;
2859
2860 case SUPPAGINGMODE_PAE:
2861 case SUPPAGINGMODE_PAE_NX:
2862 case SUPPAGINGMODE_PAE_GLOBAL:
2863 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2864 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2865 {
2866 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2867 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2868 }
2869# ifdef VBOX_WITH_64_BITS_GUESTS
2870 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2871 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2872# endif
2873 break;
2874#endif /* HC_ARCH_BITS == 32 */
2875
2876#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2877 case SUPPAGINGMODE_AMD64:
2878 case SUPPAGINGMODE_AMD64_GLOBAL:
2879 case SUPPAGINGMODE_AMD64_NX:
2880 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2881# ifdef VBOX_WITH_64_BITS_GUESTS
2882 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2883# else
2884 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2885# endif
2886 {
2887 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2888 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889 }
2890 break;
2891#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2892
2893 default:
2894 AssertFailed();
2895 break;
2896 }
2897
2898 /* Extended paging (EPT) / Intel VT-x */
2899 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2900 pModeData->uShwType = PGM_TYPE_EPT;
2901 pModeData->uGstType = PGM_TYPE_REAL;
2902 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905
2906 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2907 pModeData->uShwType = PGM_TYPE_EPT;
2908 pModeData->uGstType = PGM_TYPE_PROT;
2909 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2912
2913 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2914 pModeData->uShwType = PGM_TYPE_EPT;
2915 pModeData->uGstType = PGM_TYPE_32BIT;
2916 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2919
2920 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2921 pModeData->uShwType = PGM_TYPE_EPT;
2922 pModeData->uGstType = PGM_TYPE_PAE;
2923 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926
2927#ifdef VBOX_WITH_64_BITS_GUESTS
2928 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2929 pModeData->uShwType = PGM_TYPE_EPT;
2930 pModeData->uGstType = PGM_TYPE_AMD64;
2931 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2933 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2934#endif
2935 return VINF_SUCCESS;
2936}
2937
2938
2939/**
2940 * Switch to different (or relocated in the relocate case) mode data.
2941 *
2942 * @param pVM The VM handle.
2943 * @param pVCpu The VMCPU to operate on.
2944 * @param enmShw The the shadow paging mode.
2945 * @param enmGst The the guest paging mode.
2946 */
2947static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2948{
2949 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2950
2951 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2952 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2953
2954 /* shadow */
2955 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2956 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2957 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2958 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2959 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2960
2961 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2962 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2963
2964 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2965 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2966
2967
2968 /* guest */
2969 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2970 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2971 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2972 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2973 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2974 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2975 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2976 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2977 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2978 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2979 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2980 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2981
2982 /* both */
2983 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2984 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2985 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2986 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2987 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2988 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2989#ifdef VBOX_STRICT
2990 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2991#endif
2992 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2993 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2994
2995 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2996 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2997 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2998 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2999 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3000#ifdef VBOX_STRICT
3001 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3002#endif
3003 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3004 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3005
3006 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3007 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3008 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3009 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3010 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3011#ifdef VBOX_STRICT
3012 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3013#endif
3014 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3015 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3016}
3017
3018
3019/**
3020 * Calculates the shadow paging mode.
3021 *
3022 * @returns The shadow paging mode.
3023 * @param pVM VM handle.
3024 * @param enmGuestMode The guest mode.
3025 * @param enmHostMode The host mode.
3026 * @param enmShadowMode The current shadow mode.
3027 * @param penmSwitcher Where to store the switcher to use.
3028 * VMMSWITCHER_INVALID means no change.
3029 */
3030static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3031{
3032 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3033 switch (enmGuestMode)
3034 {
3035 /*
3036 * When switching to real or protected mode we don't change
3037 * anything since it's likely that we'll switch back pretty soon.
3038 *
3039 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3040 * and is supposed to determine which shadow paging and switcher to
3041 * use during init.
3042 */
3043 case PGMMODE_REAL:
3044 case PGMMODE_PROTECTED:
3045 if ( enmShadowMode != PGMMODE_INVALID
3046 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3047 break; /* (no change) */
3048
3049 switch (enmHostMode)
3050 {
3051 case SUPPAGINGMODE_32_BIT:
3052 case SUPPAGINGMODE_32_BIT_GLOBAL:
3053 enmShadowMode = PGMMODE_32_BIT;
3054 enmSwitcher = VMMSWITCHER_32_TO_32;
3055 break;
3056
3057 case SUPPAGINGMODE_PAE:
3058 case SUPPAGINGMODE_PAE_NX:
3059 case SUPPAGINGMODE_PAE_GLOBAL:
3060 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3061 enmShadowMode = PGMMODE_PAE;
3062 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3063#ifdef DEBUG_bird
3064 if (RTEnvExist("VBOX_32BIT"))
3065 {
3066 enmShadowMode = PGMMODE_32_BIT;
3067 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3068 }
3069#endif
3070 break;
3071
3072 case SUPPAGINGMODE_AMD64:
3073 case SUPPAGINGMODE_AMD64_GLOBAL:
3074 case SUPPAGINGMODE_AMD64_NX:
3075 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3076 enmShadowMode = PGMMODE_PAE;
3077 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3078#ifdef DEBUG_bird
3079 if (RTEnvExist("VBOX_32BIT"))
3080 {
3081 enmShadowMode = PGMMODE_32_BIT;
3082 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3083 }
3084#endif
3085 break;
3086
3087 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3088 }
3089 break;
3090
3091 case PGMMODE_32_BIT:
3092 switch (enmHostMode)
3093 {
3094 case SUPPAGINGMODE_32_BIT:
3095 case SUPPAGINGMODE_32_BIT_GLOBAL:
3096 enmShadowMode = PGMMODE_32_BIT;
3097 enmSwitcher = VMMSWITCHER_32_TO_32;
3098 break;
3099
3100 case SUPPAGINGMODE_PAE:
3101 case SUPPAGINGMODE_PAE_NX:
3102 case SUPPAGINGMODE_PAE_GLOBAL:
3103 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3104 enmShadowMode = PGMMODE_PAE;
3105 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3106#ifdef DEBUG_bird
3107 if (RTEnvExist("VBOX_32BIT"))
3108 {
3109 enmShadowMode = PGMMODE_32_BIT;
3110 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3111 }
3112#endif
3113 break;
3114
3115 case SUPPAGINGMODE_AMD64:
3116 case SUPPAGINGMODE_AMD64_GLOBAL:
3117 case SUPPAGINGMODE_AMD64_NX:
3118 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3119 enmShadowMode = PGMMODE_PAE;
3120 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3121#ifdef DEBUG_bird
3122 if (RTEnvExist("VBOX_32BIT"))
3123 {
3124 enmShadowMode = PGMMODE_32_BIT;
3125 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3126 }
3127#endif
3128 break;
3129
3130 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3131 }
3132 break;
3133
3134 case PGMMODE_PAE:
3135 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3136 switch (enmHostMode)
3137 {
3138 case SUPPAGINGMODE_32_BIT:
3139 case SUPPAGINGMODE_32_BIT_GLOBAL:
3140 enmShadowMode = PGMMODE_PAE;
3141 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3142 break;
3143
3144 case SUPPAGINGMODE_PAE:
3145 case SUPPAGINGMODE_PAE_NX:
3146 case SUPPAGINGMODE_PAE_GLOBAL:
3147 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3148 enmShadowMode = PGMMODE_PAE;
3149 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3150 break;
3151
3152 case SUPPAGINGMODE_AMD64:
3153 case SUPPAGINGMODE_AMD64_GLOBAL:
3154 case SUPPAGINGMODE_AMD64_NX:
3155 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3156 enmShadowMode = PGMMODE_PAE;
3157 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3158 break;
3159
3160 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3161 }
3162 break;
3163
3164 case PGMMODE_AMD64:
3165 case PGMMODE_AMD64_NX:
3166 switch (enmHostMode)
3167 {
3168 case SUPPAGINGMODE_32_BIT:
3169 case SUPPAGINGMODE_32_BIT_GLOBAL:
3170 enmShadowMode = PGMMODE_AMD64;
3171 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3172 break;
3173
3174 case SUPPAGINGMODE_PAE:
3175 case SUPPAGINGMODE_PAE_NX:
3176 case SUPPAGINGMODE_PAE_GLOBAL:
3177 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3178 enmShadowMode = PGMMODE_AMD64;
3179 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3180 break;
3181
3182 case SUPPAGINGMODE_AMD64:
3183 case SUPPAGINGMODE_AMD64_GLOBAL:
3184 case SUPPAGINGMODE_AMD64_NX:
3185 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3186 enmShadowMode = PGMMODE_AMD64;
3187 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3188 break;
3189
3190 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3191 }
3192 break;
3193
3194
3195 default:
3196 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3197 *penmSwitcher = VMMSWITCHER_INVALID;
3198 return PGMMODE_INVALID;
3199 }
3200 /* Override the shadow mode is nested paging is active. */
3201 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3202 if (pVM->pgm.s.fNestedPaging)
3203 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3204
3205 *penmSwitcher = enmSwitcher;
3206 return enmShadowMode;
3207}
3208
3209
3210/**
3211 * Performs the actual mode change.
3212 * This is called by PGMChangeMode and pgmR3InitPaging().
3213 *
3214 * @returns VBox status code. May suspend or power off the VM on error, but this
3215 * will trigger using FFs and not status codes.
3216 *
3217 * @param pVM VM handle.
3218 * @param pVCpu The VMCPU to operate on.
3219 * @param enmGuestMode The new guest mode. This is assumed to be different from
3220 * the current mode.
3221 */
3222VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3223{
3224 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3225 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3226
3227 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3228 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3229
3230 /*
3231 * Calc the shadow mode and switcher.
3232 */
3233 VMMSWITCHER enmSwitcher;
3234 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3235
3236#ifdef VBOX_WITH_RAW_MODE
3237 if (enmSwitcher != VMMSWITCHER_INVALID)
3238 {
3239 /*
3240 * Select new switcher.
3241 */
3242 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3243 if (RT_FAILURE(rc))
3244 {
3245 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3246 return rc;
3247 }
3248 }
3249#endif
3250
3251 /*
3252 * Exit old mode(s).
3253 */
3254#if HC_ARCH_BITS == 32
3255 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3256 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3257 && enmShadowMode == PGMMODE_NESTED);
3258#else
3259 const bool fForceShwEnterExit = false;
3260#endif
3261 /* shadow */
3262 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3263 || fForceShwEnterExit)
3264 {
3265 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3266 if (PGM_SHW_PFN(Exit, pVCpu))
3267 {
3268 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3269 if (RT_FAILURE(rc))
3270 {
3271 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3272 return rc;
3273 }
3274 }
3275
3276 }
3277 else
3278 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3279
3280 /* guest */
3281 if (PGM_GST_PFN(Exit, pVCpu))
3282 {
3283 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3284 if (RT_FAILURE(rc))
3285 {
3286 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3287 return rc;
3288 }
3289 }
3290
3291 /*
3292 * Load new paging mode data.
3293 */
3294 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3295
3296 /*
3297 * Enter new shadow mode (if changed).
3298 */
3299 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3300 || fForceShwEnterExit)
3301 {
3302 int rc;
3303 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3304 switch (enmShadowMode)
3305 {
3306 case PGMMODE_32_BIT:
3307 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3308 break;
3309 case PGMMODE_PAE:
3310 case PGMMODE_PAE_NX:
3311 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3312 break;
3313 case PGMMODE_AMD64:
3314 case PGMMODE_AMD64_NX:
3315 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3316 break;
3317 case PGMMODE_NESTED:
3318 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3319 break;
3320 case PGMMODE_EPT:
3321 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3322 break;
3323 case PGMMODE_REAL:
3324 case PGMMODE_PROTECTED:
3325 default:
3326 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3327 return VERR_INTERNAL_ERROR;
3328 }
3329 if (RT_FAILURE(rc))
3330 {
3331 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3332 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3333 return rc;
3334 }
3335 }
3336
3337 /*
3338 * Always flag the necessary updates
3339 */
3340 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3341
3342 /*
3343 * Enter the new guest and shadow+guest modes.
3344 */
3345 int rc = -1;
3346 int rc2 = -1;
3347 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3348 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3349 switch (enmGuestMode)
3350 {
3351 case PGMMODE_REAL:
3352 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3353 switch (pVCpu->pgm.s.enmShadowMode)
3354 {
3355 case PGMMODE_32_BIT:
3356 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3357 break;
3358 case PGMMODE_PAE:
3359 case PGMMODE_PAE_NX:
3360 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3361 break;
3362 case PGMMODE_NESTED:
3363 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3364 break;
3365 case PGMMODE_EPT:
3366 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3367 break;
3368 case PGMMODE_AMD64:
3369 case PGMMODE_AMD64_NX:
3370 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3371 default: AssertFailed(); break;
3372 }
3373 break;
3374
3375 case PGMMODE_PROTECTED:
3376 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3377 switch (pVCpu->pgm.s.enmShadowMode)
3378 {
3379 case PGMMODE_32_BIT:
3380 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3381 break;
3382 case PGMMODE_PAE:
3383 case PGMMODE_PAE_NX:
3384 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3385 break;
3386 case PGMMODE_NESTED:
3387 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3388 break;
3389 case PGMMODE_EPT:
3390 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3391 break;
3392 case PGMMODE_AMD64:
3393 case PGMMODE_AMD64_NX:
3394 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3395 default: AssertFailed(); break;
3396 }
3397 break;
3398
3399 case PGMMODE_32_BIT:
3400 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3401 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3402 switch (pVCpu->pgm.s.enmShadowMode)
3403 {
3404 case PGMMODE_32_BIT:
3405 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3406 break;
3407 case PGMMODE_PAE:
3408 case PGMMODE_PAE_NX:
3409 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3410 break;
3411 case PGMMODE_NESTED:
3412 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3413 break;
3414 case PGMMODE_EPT:
3415 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3416 break;
3417 case PGMMODE_AMD64:
3418 case PGMMODE_AMD64_NX:
3419 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3420 default: AssertFailed(); break;
3421 }
3422 break;
3423
3424 case PGMMODE_PAE_NX:
3425 case PGMMODE_PAE:
3426 {
3427 uint32_t u32Dummy, u32Features;
3428
3429 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3430 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3431 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3432 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3433
3434 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3435 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3436 switch (pVCpu->pgm.s.enmShadowMode)
3437 {
3438 case PGMMODE_PAE:
3439 case PGMMODE_PAE_NX:
3440 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3441 break;
3442 case PGMMODE_NESTED:
3443 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3444 break;
3445 case PGMMODE_EPT:
3446 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3447 break;
3448 case PGMMODE_32_BIT:
3449 case PGMMODE_AMD64:
3450 case PGMMODE_AMD64_NX:
3451 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3452 default: AssertFailed(); break;
3453 }
3454 break;
3455 }
3456
3457#ifdef VBOX_WITH_64_BITS_GUESTS
3458 case PGMMODE_AMD64_NX:
3459 case PGMMODE_AMD64:
3460 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3461 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3462 switch (pVCpu->pgm.s.enmShadowMode)
3463 {
3464 case PGMMODE_AMD64:
3465 case PGMMODE_AMD64_NX:
3466 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3467 break;
3468 case PGMMODE_NESTED:
3469 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3470 break;
3471 case PGMMODE_EPT:
3472 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3473 break;
3474 case PGMMODE_32_BIT:
3475 case PGMMODE_PAE:
3476 case PGMMODE_PAE_NX:
3477 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3478 default: AssertFailed(); break;
3479 }
3480 break;
3481#endif
3482
3483 default:
3484 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3485 rc = VERR_NOT_IMPLEMENTED;
3486 break;
3487 }
3488
3489 /* status codes. */
3490 AssertRC(rc);
3491 AssertRC(rc2);
3492 if (RT_SUCCESS(rc))
3493 {
3494 rc = rc2;
3495 if (RT_SUCCESS(rc)) /* no informational status codes. */
3496 rc = VINF_SUCCESS;
3497 }
3498
3499 /* Notify HWACCM as well. */
3500 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3501 return rc;
3502}
3503
3504
3505/**
3506 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3507 *
3508 * @returns VBox status code, fully asserted.
3509 * @param pVM The VM handle.
3510 * @param pVCpu The VMCPU to operate on.
3511 */
3512int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3513{
3514 /* Unmap the old CR3 value before flushing everything. */
3515 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3516 AssertRC(rc);
3517
3518 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3519 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3520 AssertRC(rc);
3521 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3522 return rc;
3523}
3524
3525
3526/**
3527 * Called by pgmPoolFlushAllInt after flushing the pool.
3528 *
3529 * @returns VBox status code, fully asserted.
3530 * @param pVM The VM handle.
3531 * @param pVCpu The VMCPU to operate on.
3532 */
3533int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3534{
3535 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3536 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3537 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3538 AssertRCReturn(rc, rc);
3539 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3540
3541 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3542 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3543 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3544 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3545 return rc;
3546}
3547
3548#ifdef VBOX_WITH_DEBUGGER
3549
3550/**
3551 * The '.pgmram' command.
3552 *
3553 * @returns VBox status.
3554 * @param pCmd Pointer to the command descriptor (as registered).
3555 * @param pCmdHlp Pointer to command helper functions.
3556 * @param pVM Pointer to the current VM (if any).
3557 * @param paArgs Pointer to (readonly) array of arguments.
3558 * @param cArgs Number of arguments in the array.
3559 */
3560static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3561{
3562 /*
3563 * Validate input.
3564 */
3565 if (!pVM)
3566 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3567 if (!pVM->pgm.s.pRamRangesRC)
3568 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3569
3570 /*
3571 * Dump the ranges.
3572 */
3573 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3574 PPGMRAMRANGE pRam;
3575 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3576 {
3577 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3578 "%RGp - %RGp %p\n",
3579 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
3580 if (RT_FAILURE(rc))
3581 return rc;
3582 }
3583
3584 return VINF_SUCCESS;
3585}
3586
3587
3588/**
3589 * The '.pgmerror' and '.pgmerroroff' commands.
3590 *
3591 * @returns VBox status.
3592 * @param pCmd Pointer to the command descriptor (as registered).
3593 * @param pCmdHlp Pointer to command helper functions.
3594 * @param pVM Pointer to the current VM (if any).
3595 * @param paArgs Pointer to (readonly) array of arguments.
3596 * @param cArgs Number of arguments in the array.
3597 */
3598static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3599{
3600 /*
3601 * Validate input.
3602 */
3603 if (!pVM)
3604 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3605 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
3606 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
3607
3608 if (!cArgs)
3609 {
3610 /*
3611 * Print the list of error injection locations with status.
3612 */
3613 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
3614 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3615 }
3616 else
3617 {
3618
3619 /*
3620 * String switch on where to inject the error.
3621 */
3622 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3623 const char *pszWhere = paArgs[0].u.pszString;
3624 if (!strcmp(pszWhere, "handy"))
3625 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3626 else
3627 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
3628 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
3629 }
3630 return VINF_SUCCESS;
3631}
3632
3633
3634/**
3635 * The '.pgmsync' command.
3636 *
3637 * @returns VBox status.
3638 * @param pCmd Pointer to the command descriptor (as registered).
3639 * @param pCmdHlp Pointer to command helper functions.
3640 * @param pVM Pointer to the current VM (if any).
3641 * @param paArgs Pointer to (readonly) array of arguments.
3642 * @param cArgs Number of arguments in the array.
3643 */
3644static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3645{
3646 /** @todo SMP support */
3647 PVMCPU pVCpu = &pVM->aCpus[0];
3648
3649 /*
3650 * Validate input.
3651 */
3652 if (!pVM)
3653 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3654
3655 /*
3656 * Force page directory sync.
3657 */
3658 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3659
3660 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3661 if (RT_FAILURE(rc))
3662 return rc;
3663
3664 return VINF_SUCCESS;
3665}
3666
3667
3668#ifdef VBOX_STRICT
3669/**
3670 * The '.pgmassertcr3' command.
3671 *
3672 * @returns VBox status.
3673 * @param pCmd Pointer to the command descriptor (as registered).
3674 * @param pCmdHlp Pointer to command helper functions.
3675 * @param pVM Pointer to the current VM (if any).
3676 * @param paArgs Pointer to (readonly) array of arguments.
3677 * @param cArgs Number of arguments in the array.
3678 */
3679static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3680{
3681 /** @todo SMP support!! */
3682 PVMCPU pVCpu = &pVM->aCpus[0];
3683
3684 /*
3685 * Validate input.
3686 */
3687 if (!pVM)
3688 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3689
3690 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
3691 if (RT_FAILURE(rc))
3692 return rc;
3693
3694 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3695
3696 return VINF_SUCCESS;
3697}
3698#endif /* VBOX_STRICT */
3699
3700
3701/**
3702 * The '.pgmsyncalways' command.
3703 *
3704 * @returns VBox status.
3705 * @param pCmd Pointer to the command descriptor (as registered).
3706 * @param pCmdHlp Pointer to command helper functions.
3707 * @param pVM Pointer to the current VM (if any).
3708 * @param paArgs Pointer to (readonly) array of arguments.
3709 * @param cArgs Number of arguments in the array.
3710 */
3711static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3712{
3713 /** @todo SMP support!! */
3714 PVMCPU pVCpu = &pVM->aCpus[0];
3715
3716 /*
3717 * Validate input.
3718 */
3719 if (!pVM)
3720 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3721
3722 /*
3723 * Force page directory sync.
3724 */
3725 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3726 {
3727 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3728 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3729 }
3730 else
3731 {
3732 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3733 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3734 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3735 }
3736}
3737
3738
3739/**
3740 * The '.pgmphystofile' command.
3741 *
3742 * @returns VBox status.
3743 * @param pCmd Pointer to the command descriptor (as registered).
3744 * @param pCmdHlp Pointer to command helper functions.
3745 * @param pVM Pointer to the current VM (if any).
3746 * @param paArgs Pointer to (readonly) array of arguments.
3747 * @param cArgs Number of arguments in the array.
3748 */
3749static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3750{
3751 /*
3752 * Validate input.
3753 */
3754 if (!pVM)
3755 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3756 if ( cArgs < 1
3757 || cArgs > 2
3758 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
3759 || ( cArgs > 1
3760 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
3761 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
3762 if ( cArgs >= 2
3763 && strcmp(paArgs[1].u.pszString, "nozero"))
3764 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3765 bool fIncZeroPgs = cArgs < 2;
3766
3767 /*
3768 * Open the output file and get the ram parameters.
3769 */
3770 RTFILE hFile;
3771 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3772 if (RT_FAILURE(rc))
3773 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3774
3775 uint32_t cbRamHole = 0;
3776 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3777 uint64_t cbRam = 0;
3778 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
3779 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3780
3781 /*
3782 * Dump the physical memory, page by page.
3783 */
3784 RTGCPHYS GCPhys = 0;
3785 char abZeroPg[PAGE_SIZE];
3786 RT_ZERO(abZeroPg);
3787
3788 pgmLock(pVM);
3789 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3790 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3791 pRam = pRam->pNextR3)
3792 {
3793 /* fill the gap */
3794 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3795 {
3796 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3797 {
3798 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3799 GCPhys += PAGE_SIZE;
3800 }
3801 }
3802
3803 PCPGMPAGE pPage = &pRam->aPages[0];
3804 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3805 {
3806 if ( PGM_PAGE_IS_ZERO(pPage)
3807 || PGM_PAGE_IS_BALLOONED(pPage))
3808 {
3809 if (fIncZeroPgs)
3810 {
3811 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3812 if (RT_FAILURE(rc))
3813 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3814 }
3815 }
3816 else
3817 {
3818 switch (PGM_PAGE_GET_TYPE(pPage))
3819 {
3820 case PGMPAGETYPE_RAM:
3821 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3822 case PGMPAGETYPE_ROM:
3823 case PGMPAGETYPE_MMIO2:
3824 {
3825 void const *pvPage;
3826 PGMPAGEMAPLOCK Lock;
3827 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3828 if (RT_SUCCESS(rc))
3829 {
3830 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3831 PGMPhysReleasePageMappingLock(pVM, &Lock);
3832 if (RT_FAILURE(rc))
3833 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3834 }
3835 else
3836 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3837 break;
3838 }
3839
3840 default:
3841 AssertFailed();
3842 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3843 case PGMPAGETYPE_MMIO:
3844 if (fIncZeroPgs)
3845 {
3846 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3847 if (RT_FAILURE(rc))
3848 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3849 }
3850 break;
3851 }
3852 }
3853
3854
3855 /* advance */
3856 GCPhys += PAGE_SIZE;
3857 pPage++;
3858 }
3859 }
3860 pgmUnlock(pVM);
3861
3862 RTFileClose(hFile);
3863 if (RT_SUCCESS(rc))
3864 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3865 return VINF_SUCCESS;
3866}
3867
3868#endif /* VBOX_WITH_DEBUGGER */
3869
3870/**
3871 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3872 */
3873typedef struct PGMCHECKINTARGS
3874{
3875 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3876 PPGMPHYSHANDLER pPrevPhys;
3877 PPGMVIRTHANDLER pPrevVirt;
3878 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3879 PVM pVM;
3880} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3881
3882/**
3883 * Validate a node in the physical handler tree.
3884 *
3885 * @returns 0 on if ok, other wise 1.
3886 * @param pNode The handler node.
3887 * @param pvUser pVM.
3888 */
3889static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3890{
3891 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3892 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3893 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3894 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3895 AssertReleaseMsg( !pArgs->pPrevPhys
3896 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3897 ("pPrevPhys=%p %RGp-%RGp %s\n"
3898 " pCur=%p %RGp-%RGp %s\n",
3899 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3900 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3901 pArgs->pPrevPhys = pCur;
3902 return 0;
3903}
3904
3905
3906/**
3907 * Validate a node in the virtual handler tree.
3908 *
3909 * @returns 0 on if ok, other wise 1.
3910 * @param pNode The handler node.
3911 * @param pvUser pVM.
3912 */
3913static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
3914{
3915 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3916 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
3917 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3918 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3919 AssertReleaseMsg( !pArgs->pPrevVirt
3920 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
3921 ("pPrevVirt=%p %RGv-%RGv %s\n"
3922 " pCur=%p %RGv-%RGv %s\n",
3923 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
3924 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3925 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
3926 {
3927 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
3928 ("pCur=%p %RGv-%RGv %s\n"
3929 "iPage=%d offVirtHandle=%#x expected %#x\n",
3930 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
3931 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
3932 }
3933 pArgs->pPrevVirt = pCur;
3934 return 0;
3935}
3936
3937
3938/**
3939 * Validate a node in the virtual handler tree.
3940 *
3941 * @returns 0 on if ok, other wise 1.
3942 * @param pNode The handler node.
3943 * @param pvUser pVM.
3944 */
3945static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3946{
3947 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3948 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
3949 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
3950 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
3951 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
3952 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3953 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3954 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
3955 " pCur=%p %RGp-%RGp\n",
3956 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3957 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3958 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3959 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3960 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
3961 " pCur=%p %RGp-%RGp\n",
3962 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3963 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3964 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
3965 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3966 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3967 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3968 {
3969 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
3970 for (;;)
3971 {
3972 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3973 AssertReleaseMsg(pCur2 != pCur,
3974 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3975 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3976 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
3977 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3978 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3979 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3980 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3981 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
3982 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3983 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3984 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3985 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3986 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
3987 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3988 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3989 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3990 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3991 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3992 break;
3993 }
3994 }
3995
3996 pArgs->pPrevPhys2Virt = pCur;
3997 return 0;
3998}
3999
4000
4001/**
4002 * Perform an integrity check on the PGM component.
4003 *
4004 * @returns VINF_SUCCESS if everything is fine.
4005 * @returns VBox error status after asserting on integrity breach.
4006 * @param pVM The VM handle.
4007 */
4008VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4009{
4010 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4011
4012 /*
4013 * Check the trees.
4014 */
4015 int cErrors = 0;
4016 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4017 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4018 PGMCHECKINTARGS Args = s_LeftToRight;
4019 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4020 Args = s_RightToLeft;
4021 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4022 Args = s_LeftToRight;
4023 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4024 Args = s_RightToLeft;
4025 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4026 Args = s_LeftToRight;
4027 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4028 Args = s_RightToLeft;
4029 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4030 Args = s_LeftToRight;
4031 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4032 Args = s_RightToLeft;
4033 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4034
4035 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4036}
4037
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette