VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 30863

Last change on this file since 30863 was 30845, checked in by vboxsync, 14 years ago

Forgot this one

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 219.7 KB
Line 
1/* $Id: PGM.cpp 30845 2010-07-14 14:33:10Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be refered to
30 * as "host paging", and GC refered to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570/*******************************************************************************
571* Header Files *
572*******************************************************************************/
573#define LOG_GROUP LOG_GROUP_PGM
574#include <VBox/dbgf.h>
575#include <VBox/pgm.h>
576#include <VBox/cpum.h>
577#include <VBox/iom.h>
578#include <VBox/sup.h>
579#include <VBox/mm.h>
580#include <VBox/em.h>
581#include <VBox/stam.h>
582#include <VBox/rem.h>
583#include <VBox/selm.h>
584#include <VBox/ssm.h>
585#include <VBox/hwaccm.h>
586#include "PGMInternal.h"
587#include <VBox/vm.h>
588#include "PGMInline.h"
589
590#include <VBox/dbg.h>
591#include <VBox/param.h>
592#include <VBox/err.h>
593
594#include <iprt/asm.h>
595#include <iprt/assert.h>
596#include <iprt/env.h>
597#include <iprt/mem.h>
598#include <iprt/file.h>
599#include <iprt/string.h>
600#include <iprt/thread.h>
601
602
603/*******************************************************************************
604* Defined Constants And Macros *
605*******************************************************************************/
606/** Saved state data unit version for 2.5.x and later. */
607#define PGM_SAVED_STATE_VERSION 9
608/** Saved state data unit version for 2.2.2 and later. */
609#define PGM_SAVED_STATE_VERSION_2_2_2 8
610/** Saved state data unit version for 2.2.0. */
611#define PGM_SAVED_STATE_VERSION_RR_DESC 7
612/** Saved state data unit version. */
613#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
614
615
616/*******************************************************************************
617* Internal Functions *
618*******************************************************************************/
619static int pgmR3InitPaging(PVM pVM);
620static void pgmR3InitStats(PVM pVM);
621static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
622static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
623static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
624static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
625static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
626static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
627#ifdef VBOX_STRICT
628static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
629#endif
630static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
631static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
632static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
633
634#ifdef VBOX_WITH_DEBUGGER
635/** @todo Convert the first two commands to 'info' items. */
636static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# ifdef VBOX_STRICT
641static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# endif
643static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644#endif
645
646
647/*******************************************************************************
648* Global Variables *
649*******************************************************************************/
650#ifdef VBOX_WITH_DEBUGGER
651/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
652static const DBGCVARDESC g_aPgmErrorArgs[] =
653{
654 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
655 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
656};
657
658static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
659{
660 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
661 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
662 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
663};
664
665/** Command descriptors. */
666static const DBGCCMD g_aCmds[] =
667{
668 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
669 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
670 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
671 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
672 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
673#ifdef VBOX_STRICT
674 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
675#endif
676#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
677 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
678 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
679#endif
680 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
681 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
682};
683#endif
684
685
686
687
688/*
689 * Shadow - 32-bit mode
690 */
691#define PGM_SHW_TYPE PGM_TYPE_32BIT
692#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
693#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
694#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
695#include "PGMShw.h"
696
697/* Guest - real mode */
698#define PGM_GST_TYPE PGM_TYPE_REAL
699#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
700#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
701#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
702#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
703#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
704#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
705#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
706#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
707#include "PGMBth.h"
708#include "PGMGstDefs.h"
709#include "PGMGst.h"
710#undef BTH_PGMPOOLKIND_PT_FOR_PT
711#undef BTH_PGMPOOLKIND_ROOT
712#undef PGM_BTH_NAME
713#undef PGM_BTH_NAME_RC_STR
714#undef PGM_BTH_NAME_R0_STR
715#undef PGM_GST_TYPE
716#undef PGM_GST_NAME
717#undef PGM_GST_NAME_RC_STR
718#undef PGM_GST_NAME_R0_STR
719
720/* Guest - protected mode */
721#define PGM_GST_TYPE PGM_TYPE_PROT
722#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
723#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
724#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
725#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
726#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
727#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
728#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
729#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
730#include "PGMBth.h"
731#include "PGMGstDefs.h"
732#include "PGMGst.h"
733#undef BTH_PGMPOOLKIND_PT_FOR_PT
734#undef BTH_PGMPOOLKIND_ROOT
735#undef PGM_BTH_NAME
736#undef PGM_BTH_NAME_RC_STR
737#undef PGM_BTH_NAME_R0_STR
738#undef PGM_GST_TYPE
739#undef PGM_GST_NAME
740#undef PGM_GST_NAME_RC_STR
741#undef PGM_GST_NAME_R0_STR
742
743/* Guest - 32-bit mode */
744#define PGM_GST_TYPE PGM_TYPE_32BIT
745#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
746#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
747#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
748#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
749#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
750#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
751#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
752#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
753#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
754#include "PGMBth.h"
755#include "PGMGstDefs.h"
756#include "PGMGst.h"
757#undef BTH_PGMPOOLKIND_PT_FOR_BIG
758#undef BTH_PGMPOOLKIND_PT_FOR_PT
759#undef BTH_PGMPOOLKIND_ROOT
760#undef PGM_BTH_NAME
761#undef PGM_BTH_NAME_RC_STR
762#undef PGM_BTH_NAME_R0_STR
763#undef PGM_GST_TYPE
764#undef PGM_GST_NAME
765#undef PGM_GST_NAME_RC_STR
766#undef PGM_GST_NAME_R0_STR
767
768#undef PGM_SHW_TYPE
769#undef PGM_SHW_NAME
770#undef PGM_SHW_NAME_RC_STR
771#undef PGM_SHW_NAME_R0_STR
772
773
774/*
775 * Shadow - PAE mode
776 */
777#define PGM_SHW_TYPE PGM_TYPE_PAE
778#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
779#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
780#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
781#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
782#include "PGMShw.h"
783
784/* Guest - real mode */
785#define PGM_GST_TYPE PGM_TYPE_REAL
786#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
787#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
788#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
789#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
790#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
791#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
792#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
793#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
794#include "PGMGstDefs.h"
795#include "PGMBth.h"
796#undef BTH_PGMPOOLKIND_PT_FOR_PT
797#undef BTH_PGMPOOLKIND_ROOT
798#undef PGM_BTH_NAME
799#undef PGM_BTH_NAME_RC_STR
800#undef PGM_BTH_NAME_R0_STR
801#undef PGM_GST_TYPE
802#undef PGM_GST_NAME
803#undef PGM_GST_NAME_RC_STR
804#undef PGM_GST_NAME_R0_STR
805
806/* Guest - protected mode */
807#define PGM_GST_TYPE PGM_TYPE_PROT
808#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
809#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
810#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
811#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
812#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
813#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
814#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
815#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
816#include "PGMGstDefs.h"
817#include "PGMBth.h"
818#undef BTH_PGMPOOLKIND_PT_FOR_PT
819#undef BTH_PGMPOOLKIND_ROOT
820#undef PGM_BTH_NAME
821#undef PGM_BTH_NAME_RC_STR
822#undef PGM_BTH_NAME_R0_STR
823#undef PGM_GST_TYPE
824#undef PGM_GST_NAME
825#undef PGM_GST_NAME_RC_STR
826#undef PGM_GST_NAME_R0_STR
827
828/* Guest - 32-bit mode */
829#define PGM_GST_TYPE PGM_TYPE_32BIT
830#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
831#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
832#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
833#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
834#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
835#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
836#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
837#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
838#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
839#include "PGMGstDefs.h"
840#include "PGMBth.h"
841#undef BTH_PGMPOOLKIND_PT_FOR_BIG
842#undef BTH_PGMPOOLKIND_PT_FOR_PT
843#undef BTH_PGMPOOLKIND_ROOT
844#undef PGM_BTH_NAME
845#undef PGM_BTH_NAME_RC_STR
846#undef PGM_BTH_NAME_R0_STR
847#undef PGM_GST_TYPE
848#undef PGM_GST_NAME
849#undef PGM_GST_NAME_RC_STR
850#undef PGM_GST_NAME_R0_STR
851
852/* Guest - PAE mode */
853#define PGM_GST_TYPE PGM_TYPE_PAE
854#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
855#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
856#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
857#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
858#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
859#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
860#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
861#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
862#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
863#include "PGMBth.h"
864#include "PGMGstDefs.h"
865#include "PGMGst.h"
866#undef BTH_PGMPOOLKIND_PT_FOR_BIG
867#undef BTH_PGMPOOLKIND_PT_FOR_PT
868#undef BTH_PGMPOOLKIND_ROOT
869#undef PGM_BTH_NAME
870#undef PGM_BTH_NAME_RC_STR
871#undef PGM_BTH_NAME_R0_STR
872#undef PGM_GST_TYPE
873#undef PGM_GST_NAME
874#undef PGM_GST_NAME_RC_STR
875#undef PGM_GST_NAME_R0_STR
876
877#undef PGM_SHW_TYPE
878#undef PGM_SHW_NAME
879#undef PGM_SHW_NAME_RC_STR
880#undef PGM_SHW_NAME_R0_STR
881
882
883/*
884 * Shadow - AMD64 mode
885 */
886#define PGM_SHW_TYPE PGM_TYPE_AMD64
887#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
888#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
889#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
890#include "PGMShw.h"
891
892#ifdef VBOX_WITH_64_BITS_GUESTS
893/* Guest - AMD64 mode */
894# define PGM_GST_TYPE PGM_TYPE_AMD64
895# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
896# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
897# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
898# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
899# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
900# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
901# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
902# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
903# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
904# include "PGMBth.h"
905# include "PGMGstDefs.h"
906# include "PGMGst.h"
907# undef BTH_PGMPOOLKIND_PT_FOR_BIG
908# undef BTH_PGMPOOLKIND_PT_FOR_PT
909# undef BTH_PGMPOOLKIND_ROOT
910# undef PGM_BTH_NAME
911# undef PGM_BTH_NAME_RC_STR
912# undef PGM_BTH_NAME_R0_STR
913# undef PGM_GST_TYPE
914# undef PGM_GST_NAME
915# undef PGM_GST_NAME_RC_STR
916# undef PGM_GST_NAME_R0_STR
917#endif /* VBOX_WITH_64_BITS_GUESTS */
918
919#undef PGM_SHW_TYPE
920#undef PGM_SHW_NAME
921#undef PGM_SHW_NAME_RC_STR
922#undef PGM_SHW_NAME_R0_STR
923
924
925/*
926 * Shadow - Nested paging mode
927 */
928#define PGM_SHW_TYPE PGM_TYPE_NESTED
929#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
930#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
931#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
932#include "PGMShw.h"
933
934/* Guest - real mode */
935#define PGM_GST_TYPE PGM_TYPE_REAL
936#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
937#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
938#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
939#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
940#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
941#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
942#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
943#include "PGMGstDefs.h"
944#include "PGMBth.h"
945#undef BTH_PGMPOOLKIND_PT_FOR_PT
946#undef PGM_BTH_NAME
947#undef PGM_BTH_NAME_RC_STR
948#undef PGM_BTH_NAME_R0_STR
949#undef PGM_GST_TYPE
950#undef PGM_GST_NAME
951#undef PGM_GST_NAME_RC_STR
952#undef PGM_GST_NAME_R0_STR
953
954/* Guest - protected mode */
955#define PGM_GST_TYPE PGM_TYPE_PROT
956#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
957#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
958#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
959#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
960#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
961#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
962#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
963#include "PGMGstDefs.h"
964#include "PGMBth.h"
965#undef BTH_PGMPOOLKIND_PT_FOR_PT
966#undef PGM_BTH_NAME
967#undef PGM_BTH_NAME_RC_STR
968#undef PGM_BTH_NAME_R0_STR
969#undef PGM_GST_TYPE
970#undef PGM_GST_NAME
971#undef PGM_GST_NAME_RC_STR
972#undef PGM_GST_NAME_R0_STR
973
974/* Guest - 32-bit mode */
975#define PGM_GST_TYPE PGM_TYPE_32BIT
976#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
977#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
978#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
979#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
980#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
981#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
982#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
983#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
984#include "PGMGstDefs.h"
985#include "PGMBth.h"
986#undef BTH_PGMPOOLKIND_PT_FOR_BIG
987#undef BTH_PGMPOOLKIND_PT_FOR_PT
988#undef PGM_BTH_NAME
989#undef PGM_BTH_NAME_RC_STR
990#undef PGM_BTH_NAME_R0_STR
991#undef PGM_GST_TYPE
992#undef PGM_GST_NAME
993#undef PGM_GST_NAME_RC_STR
994#undef PGM_GST_NAME_R0_STR
995
996/* Guest - PAE mode */
997#define PGM_GST_TYPE PGM_TYPE_PAE
998#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
999#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1000#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1001#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1002#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1003#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1004#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1005#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1006#include "PGMGstDefs.h"
1007#include "PGMBth.h"
1008#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1009#undef BTH_PGMPOOLKIND_PT_FOR_PT
1010#undef PGM_BTH_NAME
1011#undef PGM_BTH_NAME_RC_STR
1012#undef PGM_BTH_NAME_R0_STR
1013#undef PGM_GST_TYPE
1014#undef PGM_GST_NAME
1015#undef PGM_GST_NAME_RC_STR
1016#undef PGM_GST_NAME_R0_STR
1017
1018#ifdef VBOX_WITH_64_BITS_GUESTS
1019/* Guest - AMD64 mode */
1020# define PGM_GST_TYPE PGM_TYPE_AMD64
1021# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1022# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1023# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1024# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1025# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1026# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1027# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1028# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1029# include "PGMGstDefs.h"
1030# include "PGMBth.h"
1031# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1032# undef BTH_PGMPOOLKIND_PT_FOR_PT
1033# undef PGM_BTH_NAME
1034# undef PGM_BTH_NAME_RC_STR
1035# undef PGM_BTH_NAME_R0_STR
1036# undef PGM_GST_TYPE
1037# undef PGM_GST_NAME
1038# undef PGM_GST_NAME_RC_STR
1039# undef PGM_GST_NAME_R0_STR
1040#endif /* VBOX_WITH_64_BITS_GUESTS */
1041
1042#undef PGM_SHW_TYPE
1043#undef PGM_SHW_NAME
1044#undef PGM_SHW_NAME_RC_STR
1045#undef PGM_SHW_NAME_R0_STR
1046
1047
1048/*
1049 * Shadow - EPT
1050 */
1051#define PGM_SHW_TYPE PGM_TYPE_EPT
1052#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1053#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1054#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1055#include "PGMShw.h"
1056
1057/* Guest - real mode */
1058#define PGM_GST_TYPE PGM_TYPE_REAL
1059#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1060#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1061#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1062#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1063#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1064#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1065#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1066#include "PGMGstDefs.h"
1067#include "PGMBth.h"
1068#undef BTH_PGMPOOLKIND_PT_FOR_PT
1069#undef PGM_BTH_NAME
1070#undef PGM_BTH_NAME_RC_STR
1071#undef PGM_BTH_NAME_R0_STR
1072#undef PGM_GST_TYPE
1073#undef PGM_GST_NAME
1074#undef PGM_GST_NAME_RC_STR
1075#undef PGM_GST_NAME_R0_STR
1076
1077/* Guest - protected mode */
1078#define PGM_GST_TYPE PGM_TYPE_PROT
1079#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1080#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1081#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1082#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1083#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1084#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1085#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1086#include "PGMGstDefs.h"
1087#include "PGMBth.h"
1088#undef BTH_PGMPOOLKIND_PT_FOR_PT
1089#undef PGM_BTH_NAME
1090#undef PGM_BTH_NAME_RC_STR
1091#undef PGM_BTH_NAME_R0_STR
1092#undef PGM_GST_TYPE
1093#undef PGM_GST_NAME
1094#undef PGM_GST_NAME_RC_STR
1095#undef PGM_GST_NAME_R0_STR
1096
1097/* Guest - 32-bit mode */
1098#define PGM_GST_TYPE PGM_TYPE_32BIT
1099#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1100#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1101#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1102#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1103#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1104#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1105#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1106#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1107#include "PGMGstDefs.h"
1108#include "PGMBth.h"
1109#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1110#undef BTH_PGMPOOLKIND_PT_FOR_PT
1111#undef PGM_BTH_NAME
1112#undef PGM_BTH_NAME_RC_STR
1113#undef PGM_BTH_NAME_R0_STR
1114#undef PGM_GST_TYPE
1115#undef PGM_GST_NAME
1116#undef PGM_GST_NAME_RC_STR
1117#undef PGM_GST_NAME_R0_STR
1118
1119/* Guest - PAE mode */
1120#define PGM_GST_TYPE PGM_TYPE_PAE
1121#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1122#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1123#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1124#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1125#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1126#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1127#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1128#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1129#include "PGMGstDefs.h"
1130#include "PGMBth.h"
1131#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1132#undef BTH_PGMPOOLKIND_PT_FOR_PT
1133#undef PGM_BTH_NAME
1134#undef PGM_BTH_NAME_RC_STR
1135#undef PGM_BTH_NAME_R0_STR
1136#undef PGM_GST_TYPE
1137#undef PGM_GST_NAME
1138#undef PGM_GST_NAME_RC_STR
1139#undef PGM_GST_NAME_R0_STR
1140
1141#ifdef VBOX_WITH_64_BITS_GUESTS
1142/* Guest - AMD64 mode */
1143# define PGM_GST_TYPE PGM_TYPE_AMD64
1144# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1145# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1146# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1147# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1148# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1149# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1150# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1151# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1152# include "PGMGstDefs.h"
1153# include "PGMBth.h"
1154# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1155# undef BTH_PGMPOOLKIND_PT_FOR_PT
1156# undef PGM_BTH_NAME
1157# undef PGM_BTH_NAME_RC_STR
1158# undef PGM_BTH_NAME_R0_STR
1159# undef PGM_GST_TYPE
1160# undef PGM_GST_NAME
1161# undef PGM_GST_NAME_RC_STR
1162# undef PGM_GST_NAME_R0_STR
1163#endif /* VBOX_WITH_64_BITS_GUESTS */
1164
1165#undef PGM_SHW_TYPE
1166#undef PGM_SHW_NAME
1167#undef PGM_SHW_NAME_RC_STR
1168#undef PGM_SHW_NAME_R0_STR
1169
1170
1171
1172/**
1173 * Initiates the paging of VM.
1174 *
1175 * @returns VBox status code.
1176 * @param pVM Pointer to VM structure.
1177 */
1178VMMR3DECL(int) PGMR3Init(PVM pVM)
1179{
1180 LogFlow(("PGMR3Init:\n"));
1181 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1182 int rc;
1183
1184 /*
1185 * Assert alignment and sizes.
1186 */
1187 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1188 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1189 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1190
1191 /*
1192 * Init the structure.
1193 */
1194#ifdef PGM_WITHOUT_MAPPINGS
1195 pVM->pgm.s.fMappingsDisabled = true;
1196#endif
1197 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1198 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1199
1200 /* Init the per-CPU part. */
1201 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1202 {
1203 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1204 PPGMCPU pPGM = &pVCpu->pgm.s;
1205
1206 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1207 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1208 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1209
1210 pPGM->enmShadowMode = PGMMODE_INVALID;
1211 pPGM->enmGuestMode = PGMMODE_INVALID;
1212
1213 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1214
1215 pPGM->pGst32BitPdR3 = NULL;
1216 pPGM->pGstPaePdptR3 = NULL;
1217 pPGM->pGstAmd64Pml4R3 = NULL;
1218#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1219 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1220 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1221 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1222#endif
1223 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1224 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1225 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1226 {
1227 pPGM->apGstPaePDsR3[i] = NULL;
1228#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1229 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1230#endif
1231 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1232 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1233 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1234 }
1235
1236 pPGM->fA20Enabled = true;
1237 }
1238
1239 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1240 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1241 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1242
1243 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1244#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1245 true
1246#else
1247 false
1248#endif
1249 );
1250 AssertLogRelRCReturn(rc, rc);
1251
1252#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1253 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1254#else
1255 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1256#endif
1257 AssertLogRelRCReturn(rc, rc);
1258 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1259 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1260
1261 /*
1262 * Get the configured RAM size - to estimate saved state size.
1263 */
1264 uint64_t cbRam;
1265 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1266 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1267 cbRam = 0;
1268 else if (RT_SUCCESS(rc))
1269 {
1270 if (cbRam < PAGE_SIZE)
1271 cbRam = 0;
1272 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1273 }
1274 else
1275 {
1276 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1277 return rc;
1278 }
1279
1280 /*
1281 * Register callbacks, string formatters and the saved state data unit.
1282 */
1283#ifdef VBOX_STRICT
1284 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1285#endif
1286 PGMRegisterStringFormatTypes();
1287
1288 rc = pgmR3InitSavedState(pVM, cbRam);
1289 if (RT_FAILURE(rc))
1290 return rc;
1291
1292 /*
1293 * Initialize the PGM critical section and flush the phys TLBs
1294 */
1295 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1296 AssertRCReturn(rc, rc);
1297
1298 PGMR3PhysChunkInvalidateTLB(pVM);
1299 PGMPhysInvalidatePageMapTLB(pVM);
1300
1301 /*
1302 * For the time being we sport a full set of handy pages in addition to the base
1303 * memory to simplify things.
1304 */
1305 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1306 AssertRCReturn(rc, rc);
1307
1308 /*
1309 * Trees
1310 */
1311 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1312 if (RT_SUCCESS(rc))
1313 {
1314 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1315 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1316
1317 /*
1318 * Alocate the zero page.
1319 */
1320 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1321 }
1322 if (RT_SUCCESS(rc))
1323 {
1324 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1325 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1326 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1327 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1328
1329 /*
1330 * Init the paging.
1331 */
1332 rc = pgmR3InitPaging(pVM);
1333 }
1334 if (RT_SUCCESS(rc))
1335 {
1336 /*
1337 * Init the page pool.
1338 */
1339 rc = pgmR3PoolInit(pVM);
1340 }
1341 if (RT_SUCCESS(rc))
1342 {
1343 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1344 {
1345 PVMCPU pVCpu = &pVM->aCpus[i];
1346 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1347 if (RT_FAILURE(rc))
1348 break;
1349 }
1350 }
1351
1352 if (RT_SUCCESS(rc))
1353 {
1354 /*
1355 * Info & statistics
1356 */
1357 DBGFR3InfoRegisterInternal(pVM, "mode",
1358 "Shows the current paging mode. "
1359 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1360 pgmR3InfoMode);
1361 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1362 "Dumps all the entries in the top level paging table. No arguments.",
1363 pgmR3InfoCr3);
1364 DBGFR3InfoRegisterInternal(pVM, "phys",
1365 "Dumps all the physical address ranges. No arguments.",
1366 pgmR3PhysInfo);
1367 DBGFR3InfoRegisterInternal(pVM, "handlers",
1368 "Dumps physical, virtual and hyper virtual handlers. "
1369 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1370 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1371 pgmR3InfoHandlers);
1372 DBGFR3InfoRegisterInternal(pVM, "mappings",
1373 "Dumps guest mappings.",
1374 pgmR3MapInfo);
1375
1376 pgmR3InitStats(pVM);
1377
1378#ifdef VBOX_WITH_DEBUGGER
1379 /*
1380 * Debugger commands.
1381 */
1382 static bool s_fRegisteredCmds = false;
1383 if (!s_fRegisteredCmds)
1384 {
1385 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1386 if (RT_SUCCESS(rc2))
1387 s_fRegisteredCmds = true;
1388 }
1389#endif
1390 return VINF_SUCCESS;
1391 }
1392
1393 /* Almost no cleanup necessary, MM frees all memory. */
1394 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1395
1396 return rc;
1397}
1398
1399
1400/**
1401 * Initializes the per-VCPU PGM.
1402 *
1403 * @returns VBox status code.
1404 * @param pVM The VM to operate on.
1405 */
1406VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1407{
1408 LogFlow(("PGMR3InitCPU\n"));
1409 return VINF_SUCCESS;
1410}
1411
1412
1413/**
1414 * Init paging.
1415 *
1416 * Since we need to check what mode the host is operating in before we can choose
1417 * the right paging functions for the host we have to delay this until R0 has
1418 * been initialized.
1419 *
1420 * @returns VBox status code.
1421 * @param pVM VM handle.
1422 */
1423static int pgmR3InitPaging(PVM pVM)
1424{
1425 /*
1426 * Force a recalculation of modes and switcher so everyone gets notified.
1427 */
1428 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1429 {
1430 PVMCPU pVCpu = &pVM->aCpus[i];
1431
1432 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1433 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1434 }
1435
1436 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1437
1438 /*
1439 * Allocate static mapping space for whatever the cr3 register
1440 * points to and in the case of PAE mode to the 4 PDs.
1441 */
1442 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1443 if (RT_FAILURE(rc))
1444 {
1445 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1446 return rc;
1447 }
1448 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1449
1450 /*
1451 * Allocate pages for the three possible intermediate contexts
1452 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1453 * for the sake of simplicity. The AMD64 uses the PAE for the
1454 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1455 *
1456 * We assume that two page tables will be enought for the core code
1457 * mappings (HC virtual and identity).
1458 */
1459 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1470 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1471
1472 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1473 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1474 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1475 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1476 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1477 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1478
1479 /*
1480 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1481 */
1482 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1483 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1484 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1485
1486 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1487 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1488
1489 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1490 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1491 {
1492 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1493 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1494 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1495 }
1496
1497 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1498 {
1499 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1500 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1501 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1502 }
1503
1504 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1505 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1506 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1507 | HCPhysInterPaePDPT64;
1508
1509 /*
1510 * Initialize paging workers and mode from current host mode
1511 * and the guest running in real mode.
1512 */
1513 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1514 switch (pVM->pgm.s.enmHostMode)
1515 {
1516 case SUPPAGINGMODE_32_BIT:
1517 case SUPPAGINGMODE_32_BIT_GLOBAL:
1518 case SUPPAGINGMODE_PAE:
1519 case SUPPAGINGMODE_PAE_GLOBAL:
1520 case SUPPAGINGMODE_PAE_NX:
1521 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1522 break;
1523
1524 case SUPPAGINGMODE_AMD64:
1525 case SUPPAGINGMODE_AMD64_GLOBAL:
1526 case SUPPAGINGMODE_AMD64_NX:
1527 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1528#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1529 if (ARCH_BITS != 64)
1530 {
1531 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1532 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1533 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1534 }
1535#endif
1536 break;
1537 default:
1538 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1539 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1540 }
1541 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1542 if (RT_SUCCESS(rc))
1543 {
1544 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1545#if HC_ARCH_BITS == 64
1546 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1547 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1548 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1549 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1550 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1551 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1552 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1553#endif
1554
1555 return VINF_SUCCESS;
1556 }
1557
1558 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1559 return rc;
1560}
1561
1562
1563/**
1564 * Init statistics
1565 */
1566static void pgmR3InitStats(PVM pVM)
1567{
1568 PPGM pPGM = &pVM->pgm.s;
1569 int rc;
1570
1571 /* Common - misc variables */
1572 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1573 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1574 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1575 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1576 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1577 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1578 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1579 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1580 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1581 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1582 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1583 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1584 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1585 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1586 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1587 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1588 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1589
1590 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1591 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1592 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1593 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1594
1595 /* Live save */
1596 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1597 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1598 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1599 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1600 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1601 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1602 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1603 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1604 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1605 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1606 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1607 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1608 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1609 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1610 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1611 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1612 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1613 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1614
1615#ifdef VBOX_WITH_STATISTICS
1616
1617# define PGM_REG_COUNTER(a, b, c) \
1618 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1619 AssertRC(rc);
1620
1621# define PGM_REG_COUNTER_BYTES(a, b, c) \
1622 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1623 AssertRC(rc);
1624
1625# define PGM_REG_PROFILE(a, b, c) \
1626 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1627 AssertRC(rc);
1628
1629 PGM_REG_PROFILE(&pPGM->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1630 PGM_REG_PROFILE(&pPGM->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1631 PGM_REG_PROFILE(&pPGM->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1632 PGM_REG_PROFILE(&pPGM->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1633
1634 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1635 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1636 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1637 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1638 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1639 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1640 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1641 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1642 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1643 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1644
1645 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1646 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1647 PGM_REG_PROFILE(&pPGM->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1648 PGM_REG_PROFILE(&pPGM->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1649 PGM_REG_PROFILE(&pPGM->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1650 PGM_REG_PROFILE(&pPGM->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1651
1652 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1653 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1654 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1655 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1656 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1657 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1658 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1659 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1660
1661 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1662 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1663 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1664 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1665
1666 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1667 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1668 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1669 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1670
1671 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1672 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1673/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1674 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1675 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1676/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1677
1678 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1679 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1680 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1681 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1682 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1683 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1684 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1685 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1686
1687 /* GC only: */
1688 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1689 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1690 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1691 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1692
1693 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1694 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1695 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1696 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1697 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1698 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1699 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1700 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1701
1702 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1703 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1704 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1705 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1706 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1707 PGM_REG_COUNTER(&pPGM->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1708 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1709
1710# undef PGM_REG_COUNTER
1711# undef PGM_REG_PROFILE
1712#endif
1713
1714 /*
1715 * Note! The layout below matches the member layout exactly!
1716 */
1717
1718 /*
1719 * Common - stats
1720 */
1721 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1722 {
1723 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1724
1725#define PGM_REG_COUNTER(a, b, c) \
1726 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1727 AssertRC(rc);
1728#define PGM_REG_PROFILE(a, b, c) \
1729 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1730 AssertRC(rc);
1731
1732 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1733
1734#ifdef VBOX_WITH_STATISTICS
1735
1736# if 0 /* rarely useful; leave for debugging. */
1737 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1738 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1739 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1740 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPagePD); j++)
1741 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1742 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1743# endif
1744 /* R0 only: */
1745 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1746 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1747 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1748 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1749 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1750 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1751 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1752 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1753 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1754 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1755 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1756 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1757 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1758 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1759 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1760 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1761 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1762 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1763 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1764 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1765 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1766 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1767 //PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1768 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1769 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1770 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1771 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1772 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1773 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1774 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1775 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1776 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1777 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1778 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1779 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1780 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1781
1782 /* RZ only: */
1783 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1784 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%u/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1785 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeSyncPT, "/PGM/CPU%u/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1786 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeMapping, "/PGM/CPU%u/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1787 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1788 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeHandlers, "/PGM/CPU%u/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1789 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1790 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1791 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1792 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1793 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1794 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1795 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1796 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1797 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1798 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1799 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1800 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1801 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1802 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1803 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1804 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1805 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1806 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1807 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1808 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1809 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1810 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1811 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1812 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1813 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1814 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1815 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1816 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1817 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1818 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1819 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1820 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1821 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1822 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFUnh, "/PGM/CPU%u/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1823 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1824 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1825 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1826#if 0 /* rarely useful; leave for debugging. */
1827 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatRZTrap0ePD); j++)
1828 STAMR3RegisterF(pVM, &pPgmCpu->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1829 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1830#endif
1831 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1832 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1833 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1834 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1835 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1836
1837 /* HC only: */
1838
1839 /* RZ & R3: */
1840 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1841 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1842 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1843 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1844 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1845 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1846 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1847 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1848 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1849 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1850 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1851 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1852 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1853 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1854 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1855 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1856 PGM_REG_COUNTER(&pPgmCpu->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1857 PGM_REG_PROFILE(&pPgmCpu->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1858 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1859 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1860 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1861 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1862 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1863 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1864 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1865 PGM_REG_COUNTER(&pPgmCpu->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1866 PGM_REG_PROFILE(&pPgmCpu->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1867 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1868 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1869 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1870 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1871 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1872 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1873 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1874 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1875 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1876 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1877 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1878 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1879 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1880 PGM_REG_PROFILE(&pPgmCpu->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1881 PGM_REG_PROFILE(&pPgmCpu->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1882 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1883 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1884 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1885 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1886 PGM_REG_PROFILE(&pPgmCpu->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1887
1888 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1889 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1890 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1891 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1892 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1893 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1894 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1895 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1896 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1897 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1898 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1899 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1900 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1901 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1902 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1903 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1904 PGM_REG_COUNTER(&pPgmCpu->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1905 PGM_REG_PROFILE(&pPgmCpu->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1906 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1907 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1908 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1909 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1910 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1911 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1912 PGM_REG_COUNTER(&pPgmCpu->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1913 PGM_REG_PROFILE(&pPgmCpu->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1914 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1915 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1916 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1917 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1918 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1919 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1920 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1921 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1922 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1923 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1924 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1925 PGM_REG_PROFILE(&pPgmCpu->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1926 PGM_REG_PROFILE(&pPgmCpu->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1927 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1928 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1929 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1930 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1931 PGM_REG_PROFILE(&pPgmCpu->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1932#endif /* VBOX_WITH_STATISTICS */
1933
1934#undef PGM_REG_PROFILE
1935#undef PGM_REG_COUNTER
1936
1937 }
1938}
1939
1940
1941/**
1942 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1943 *
1944 * The dynamic mapping area will also be allocated and initialized at this
1945 * time. We could allocate it during PGMR3Init of course, but the mapping
1946 * wouldn't be allocated at that time preventing us from setting up the
1947 * page table entries with the dummy page.
1948 *
1949 * @returns VBox status code.
1950 * @param pVM VM handle.
1951 */
1952VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1953{
1954 RTGCPTR GCPtr;
1955 int rc;
1956
1957 /*
1958 * Reserve space for the dynamic mappings.
1959 */
1960 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1961 if (RT_SUCCESS(rc))
1962 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1963
1964 if ( RT_SUCCESS(rc)
1965 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1966 {
1967 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1968 if (RT_SUCCESS(rc))
1969 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1970 }
1971 if (RT_SUCCESS(rc))
1972 {
1973 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1974 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1975 }
1976 return rc;
1977}
1978
1979
1980/**
1981 * Ring-3 init finalizing.
1982 *
1983 * @returns VBox status code.
1984 * @param pVM The VM handle.
1985 */
1986VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1987{
1988 int rc;
1989
1990 /*
1991 * Reserve space for the dynamic mappings.
1992 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1993 */
1994 /* get the pointer to the page table entries. */
1995 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1996 AssertRelease(pMapping);
1997 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1998 const unsigned iPT = off >> X86_PD_SHIFT;
1999 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2000 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2001 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2002
2003 /* init cache */
2004 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2005 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
2006 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
2007
2008 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
2009 {
2010 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
2011 AssertRCReturn(rc, rc);
2012 }
2013
2014 /*
2015 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2016 * Intel only goes up to 36 bits, so we stick to 36 as well.
2017 */
2018 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
2019 uint32_t u32Dummy, u32Features;
2020 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2021
2022 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2023 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
2024 else
2025 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2026
2027 /*
2028 * Allocate memory if we're supposed to do that.
2029 */
2030 if (pVM->pgm.s.fRamPreAlloc)
2031 rc = pgmR3PhysRamPreAllocate(pVM);
2032
2033 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2034 return rc;
2035}
2036
2037
2038/**
2039 * Applies relocations to data and code managed by this component.
2040 *
2041 * This function will be called at init and whenever the VMM need to relocate it
2042 * self inside the GC.
2043 *
2044 * @param pVM The VM.
2045 * @param offDelta Relocation delta relative to old location.
2046 */
2047VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2048{
2049 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2050
2051 /*
2052 * Paging stuff.
2053 */
2054 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2055
2056 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2057
2058 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2059 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2060 {
2061 PVMCPU pVCpu = &pVM->aCpus[i];
2062
2063 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2064
2065 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2066 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2067 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2068 }
2069
2070 /*
2071 * Trees.
2072 */
2073 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2074
2075 /*
2076 * Ram ranges.
2077 */
2078 if (pVM->pgm.s.pRamRangesR3)
2079 {
2080 /* Update the pSelfRC pointers and relink them. */
2081 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2082 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2083 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2084 pgmR3PhysRelinkRamRanges(pVM);
2085 }
2086
2087 /*
2088 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2089 * be mapped and thus not included in the above exercise.
2090 */
2091 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2092 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2093 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2094
2095 /*
2096 * Update the two page directories with all page table mappings.
2097 * (One or more of them have changed, that's why we're here.)
2098 */
2099 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2100 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2101 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2102
2103 /* Relocate GC addresses of Page Tables. */
2104 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2105 {
2106 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2107 {
2108 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2109 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2110 }
2111 }
2112
2113 /*
2114 * Dynamic page mapping area.
2115 */
2116 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2117 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2118 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2119
2120 /*
2121 * The Zero page.
2122 */
2123 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2124#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2125 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2126#else
2127 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2128#endif
2129
2130 /*
2131 * Physical and virtual handlers.
2132 */
2133 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2134 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2135 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2136
2137 /*
2138 * The page pool.
2139 */
2140 pgmR3PoolRelocate(pVM);
2141}
2142
2143
2144/**
2145 * Callback function for relocating a physical access handler.
2146 *
2147 * @returns 0 (continue enum)
2148 * @param pNode Pointer to a PGMPHYSHANDLER node.
2149 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2150 * not certain the delta will fit in a void pointer for all possible configs.
2151 */
2152static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2153{
2154 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2155 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2156 if (pHandler->pfnHandlerRC)
2157 pHandler->pfnHandlerRC += offDelta;
2158 if (pHandler->pvUserRC >= 0x10000)
2159 pHandler->pvUserRC += offDelta;
2160 return 0;
2161}
2162
2163
2164/**
2165 * Callback function for relocating a virtual access handler.
2166 *
2167 * @returns 0 (continue enum)
2168 * @param pNode Pointer to a PGMVIRTHANDLER node.
2169 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2170 * not certain the delta will fit in a void pointer for all possible configs.
2171 */
2172static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2173{
2174 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2175 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2176 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2177 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2178 Assert(pHandler->pfnHandlerRC);
2179 pHandler->pfnHandlerRC += offDelta;
2180 return 0;
2181}
2182
2183
2184/**
2185 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2186 *
2187 * @returns 0 (continue enum)
2188 * @param pNode Pointer to a PGMVIRTHANDLER node.
2189 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2190 * not certain the delta will fit in a void pointer for all possible configs.
2191 */
2192static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2193{
2194 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2195 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2196 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2197 Assert(pHandler->pfnHandlerRC);
2198 pHandler->pfnHandlerRC += offDelta;
2199 return 0;
2200}
2201
2202
2203/**
2204 * Resets a virtual CPU when unplugged.
2205 *
2206 * @param pVM The VM handle.
2207 * @param pVCpu The virtual CPU handle.
2208 */
2209VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2210{
2211 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2212 AssertRC(rc);
2213
2214 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2215 AssertRC(rc);
2216
2217 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2218
2219 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2220
2221 /*
2222 * Re-init other members.
2223 */
2224 pVCpu->pgm.s.fA20Enabled = true;
2225
2226 /*
2227 * Clear the FFs PGM owns.
2228 */
2229 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2230 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2231}
2232
2233
2234/**
2235 * The VM is being reset.
2236 *
2237 * For the PGM component this means that any PD write monitors
2238 * needs to be removed.
2239 *
2240 * @param pVM VM handle.
2241 */
2242VMMR3DECL(void) PGMR3Reset(PVM pVM)
2243{
2244 int rc;
2245
2246 LogFlow(("PGMR3Reset:\n"));
2247 VM_ASSERT_EMT(pVM);
2248
2249 pgmLock(pVM);
2250
2251 /*
2252 * Unfix any fixed mappings and disable CR3 monitoring.
2253 */
2254 pVM->pgm.s.fMappingsFixed = false;
2255 pVM->pgm.s.fMappingsFixedRestored = false;
2256 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2257 pVM->pgm.s.cbMappingFixed = 0;
2258
2259 /*
2260 * Exit the guest paging mode before the pgm pool gets reset.
2261 * Important to clean up the amd64 case.
2262 */
2263 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2264 {
2265 PVMCPU pVCpu = &pVM->aCpus[i];
2266 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2267 AssertRC(rc);
2268 }
2269
2270#ifdef DEBUG
2271 DBGFR3InfoLog(pVM, "mappings", NULL);
2272 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2273#endif
2274
2275 /*
2276 * Switch mode back to real mode. (before resetting the pgm pool!)
2277 */
2278 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2279 {
2280 PVMCPU pVCpu = &pVM->aCpus[i];
2281
2282 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2283 AssertRC(rc);
2284
2285 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2286 }
2287
2288 /*
2289 * Reset the shadow page pool.
2290 */
2291 pgmR3PoolReset(pVM);
2292
2293 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2294 {
2295 PVMCPU pVCpu = &pVM->aCpus[i];
2296
2297 /*
2298 * Re-init other members.
2299 */
2300 pVCpu->pgm.s.fA20Enabled = true;
2301
2302 /*
2303 * Clear the FFs PGM owns.
2304 */
2305 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2306 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2307 }
2308
2309 /*
2310 * Reset (zero) RAM pages.
2311 */
2312 rc = pgmR3PhysRamReset(pVM);
2313 if (RT_SUCCESS(rc))
2314 {
2315 /*
2316 * Reset (zero) shadow ROM pages.
2317 */
2318 rc = pgmR3PhysRomReset(pVM);
2319 }
2320
2321 pgmUnlock(pVM);
2322 AssertReleaseRC(rc);
2323}
2324
2325
2326#ifdef VBOX_STRICT
2327/**
2328 * VM state change callback for clearing fNoMorePhysWrites after
2329 * a snapshot has been created.
2330 */
2331static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2332{
2333 if ( enmState == VMSTATE_RUNNING
2334 || enmState == VMSTATE_RESUMING)
2335 pVM->pgm.s.fNoMorePhysWrites = false;
2336}
2337#endif
2338
2339
2340/**
2341 * Terminates the PGM.
2342 *
2343 * @returns VBox status code.
2344 * @param pVM Pointer to VM structure.
2345 */
2346VMMR3DECL(int) PGMR3Term(PVM pVM)
2347{
2348 /* Must free shared pages here. */
2349 pgmLock(pVM);
2350 pgmR3PhysRamTerm(pVM);
2351 pgmUnlock(pVM);
2352
2353 PGMDeregisterStringFormatTypes();
2354 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2355}
2356
2357
2358/**
2359 * Terminates the per-VCPU PGM.
2360 *
2361 * Termination means cleaning up and freeing all resources,
2362 * the VM it self is at this point powered off or suspended.
2363 *
2364 * @returns VBox status code.
2365 * @param pVM The VM to operate on.
2366 */
2367VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2368{
2369 return 0;
2370}
2371
2372
2373/**
2374 * Show paging mode.
2375 *
2376 * @param pVM VM Handle.
2377 * @param pHlp The info helpers.
2378 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2379 */
2380static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2381{
2382 /* digest argument. */
2383 bool fGuest, fShadow, fHost;
2384 if (pszArgs)
2385 pszArgs = RTStrStripL(pszArgs);
2386 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2387 fShadow = fHost = fGuest = true;
2388 else
2389 {
2390 fShadow = fHost = fGuest = false;
2391 if (strstr(pszArgs, "guest"))
2392 fGuest = true;
2393 if (strstr(pszArgs, "shadow"))
2394 fShadow = true;
2395 if (strstr(pszArgs, "host"))
2396 fHost = true;
2397 }
2398
2399 /** @todo SMP support! */
2400 /* print info. */
2401 if (fGuest)
2402 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2403 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2404 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2405 if (fShadow)
2406 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2407 if (fHost)
2408 {
2409 const char *psz;
2410 switch (pVM->pgm.s.enmHostMode)
2411 {
2412 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2413 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2414 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2415 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2416 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2417 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2418 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2419 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2420 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2421 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2422 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2423 default: psz = "unknown"; break;
2424 }
2425 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2426 }
2427}
2428
2429
2430/**
2431 * Dump registered MMIO ranges to the log.
2432 *
2433 * @param pVM VM Handle.
2434 * @param pHlp The info helpers.
2435 * @param pszArgs Arguments, ignored.
2436 */
2437static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2438{
2439 NOREF(pszArgs);
2440 pHlp->pfnPrintf(pHlp,
2441 "RAM ranges (pVM=%p)\n"
2442 "%.*s %.*s\n",
2443 pVM,
2444 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2445 sizeof(RTHCPTR) * 2, "pvHC ");
2446
2447 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2448 pHlp->pfnPrintf(pHlp,
2449 "%RGp-%RGp %RHv %s\n",
2450 pCur->GCPhys,
2451 pCur->GCPhysLast,
2452 pCur->pvR3,
2453 pCur->pszDesc);
2454}
2455
2456/**
2457 * Dump the page directory to the log.
2458 *
2459 * @param pVM VM Handle.
2460 * @param pHlp The info helpers.
2461 * @param pszArgs Arguments, ignored.
2462 */
2463static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2464{
2465 /** @todo SMP support!! */
2466 PVMCPU pVCpu = &pVM->aCpus[0];
2467
2468/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2469 /* Big pages supported? */
2470 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2471
2472 /* Global pages supported? */
2473 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2474
2475 NOREF(pszArgs);
2476
2477 /*
2478 * Get page directory addresses.
2479 */
2480 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
2481 Assert(pPDSrc);
2482 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2483
2484 /*
2485 * Iterate the page directory.
2486 */
2487 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2488 {
2489 X86PDE PdeSrc = pPDSrc->a[iPD];
2490 if (PdeSrc.n.u1Present)
2491 {
2492 if (PdeSrc.b.u1Size && fPSE)
2493 pHlp->pfnPrintf(pHlp,
2494 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2495 iPD,
2496 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2497 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2498 else
2499 pHlp->pfnPrintf(pHlp,
2500 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2501 iPD,
2502 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2503 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2504 }
2505 }
2506}
2507
2508
2509/**
2510 * Service a VMMCALLRING3_PGM_LOCK call.
2511 *
2512 * @returns VBox status code.
2513 * @param pVM The VM handle.
2514 */
2515VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2516{
2517 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2518 AssertRC(rc);
2519 return rc;
2520}
2521
2522
2523/**
2524 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2525 *
2526 * @returns PGM_TYPE_*.
2527 * @param pgmMode The mode value to convert.
2528 */
2529DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2530{
2531 switch (pgmMode)
2532 {
2533 case PGMMODE_REAL: return PGM_TYPE_REAL;
2534 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2535 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2536 case PGMMODE_PAE:
2537 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2538 case PGMMODE_AMD64:
2539 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2540 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2541 case PGMMODE_EPT: return PGM_TYPE_EPT;
2542 default:
2543 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2544 }
2545}
2546
2547
2548/**
2549 * Gets the index into the paging mode data array of a SHW+GST mode.
2550 *
2551 * @returns PGM::paPagingData index.
2552 * @param uShwType The shadow paging mode type.
2553 * @param uGstType The guest paging mode type.
2554 */
2555DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2556{
2557 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2558 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2559 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2560 + (uGstType - PGM_TYPE_REAL);
2561}
2562
2563
2564/**
2565 * Gets the index into the paging mode data array of a SHW+GST mode.
2566 *
2567 * @returns PGM::paPagingData index.
2568 * @param enmShw The shadow paging mode.
2569 * @param enmGst The guest paging mode.
2570 */
2571DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2572{
2573 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2574 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2575 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2576}
2577
2578
2579/**
2580 * Calculates the max data index.
2581 * @returns The number of entries in the paging data array.
2582 */
2583DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2584{
2585 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2586}
2587
2588
2589/**
2590 * Initializes the paging mode data kept in PGM::paModeData.
2591 *
2592 * @param pVM The VM handle.
2593 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2594 * This is used early in the init process to avoid trouble with PDM
2595 * not being initialized yet.
2596 */
2597static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2598{
2599 PPGMMODEDATA pModeData;
2600 int rc;
2601
2602 /*
2603 * Allocate the array on the first call.
2604 */
2605 if (!pVM->pgm.s.paModeData)
2606 {
2607 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2608 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2609 }
2610
2611 /*
2612 * Initialize the array entries.
2613 */
2614 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2615 pModeData->uShwType = PGM_TYPE_32BIT;
2616 pModeData->uGstType = PGM_TYPE_REAL;
2617 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2618 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2619 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2620
2621 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2622 pModeData->uShwType = PGM_TYPE_32BIT;
2623 pModeData->uGstType = PGM_TYPE_PROT;
2624 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2625 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2626 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2627
2628 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2629 pModeData->uShwType = PGM_TYPE_32BIT;
2630 pModeData->uGstType = PGM_TYPE_32BIT;
2631 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2632 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2633 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2634
2635 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2636 pModeData->uShwType = PGM_TYPE_PAE;
2637 pModeData->uGstType = PGM_TYPE_REAL;
2638 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2639 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2640 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2641
2642 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2643 pModeData->uShwType = PGM_TYPE_PAE;
2644 pModeData->uGstType = PGM_TYPE_PROT;
2645 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2646 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2647 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2648
2649 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2650 pModeData->uShwType = PGM_TYPE_PAE;
2651 pModeData->uGstType = PGM_TYPE_32BIT;
2652 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2653 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2654 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2655
2656 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2657 pModeData->uShwType = PGM_TYPE_PAE;
2658 pModeData->uGstType = PGM_TYPE_PAE;
2659 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2660 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2661 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2662
2663#ifdef VBOX_WITH_64_BITS_GUESTS
2664 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2665 pModeData->uShwType = PGM_TYPE_AMD64;
2666 pModeData->uGstType = PGM_TYPE_AMD64;
2667 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2668 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2669 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2670#endif
2671
2672 /* The nested paging mode. */
2673 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2674 pModeData->uShwType = PGM_TYPE_NESTED;
2675 pModeData->uGstType = PGM_TYPE_REAL;
2676 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2677 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2678
2679 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2680 pModeData->uShwType = PGM_TYPE_NESTED;
2681 pModeData->uGstType = PGM_TYPE_PROT;
2682 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2683 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2684
2685 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2686 pModeData->uShwType = PGM_TYPE_NESTED;
2687 pModeData->uGstType = PGM_TYPE_32BIT;
2688 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2689 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2690
2691 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2692 pModeData->uShwType = PGM_TYPE_NESTED;
2693 pModeData->uGstType = PGM_TYPE_PAE;
2694 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2695 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2696
2697#ifdef VBOX_WITH_64_BITS_GUESTS
2698 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2699 pModeData->uShwType = PGM_TYPE_NESTED;
2700 pModeData->uGstType = PGM_TYPE_AMD64;
2701 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2702 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2703#endif
2704
2705 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2706 switch (pVM->pgm.s.enmHostMode)
2707 {
2708#if HC_ARCH_BITS == 32
2709 case SUPPAGINGMODE_32_BIT:
2710 case SUPPAGINGMODE_32_BIT_GLOBAL:
2711 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2712 {
2713 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2714 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2715 }
2716# ifdef VBOX_WITH_64_BITS_GUESTS
2717 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2718 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2719# endif
2720 break;
2721
2722 case SUPPAGINGMODE_PAE:
2723 case SUPPAGINGMODE_PAE_NX:
2724 case SUPPAGINGMODE_PAE_GLOBAL:
2725 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2726 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2727 {
2728 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2729 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2730 }
2731# ifdef VBOX_WITH_64_BITS_GUESTS
2732 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2733 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734# endif
2735 break;
2736#endif /* HC_ARCH_BITS == 32 */
2737
2738#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2739 case SUPPAGINGMODE_AMD64:
2740 case SUPPAGINGMODE_AMD64_GLOBAL:
2741 case SUPPAGINGMODE_AMD64_NX:
2742 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2743# ifdef VBOX_WITH_64_BITS_GUESTS
2744 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2745# else
2746 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2747# endif
2748 {
2749 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2750 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751 }
2752 break;
2753#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2754
2755 default:
2756 AssertFailed();
2757 break;
2758 }
2759
2760 /* Extended paging (EPT) / Intel VT-x */
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2762 pModeData->uShwType = PGM_TYPE_EPT;
2763 pModeData->uGstType = PGM_TYPE_REAL;
2764 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2767
2768 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2769 pModeData->uShwType = PGM_TYPE_EPT;
2770 pModeData->uGstType = PGM_TYPE_PROT;
2771 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2773 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2774
2775 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2776 pModeData->uShwType = PGM_TYPE_EPT;
2777 pModeData->uGstType = PGM_TYPE_32BIT;
2778 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2780 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2781
2782 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2783 pModeData->uShwType = PGM_TYPE_EPT;
2784 pModeData->uGstType = PGM_TYPE_PAE;
2785 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2786 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2787 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788
2789#ifdef VBOX_WITH_64_BITS_GUESTS
2790 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2791 pModeData->uShwType = PGM_TYPE_EPT;
2792 pModeData->uGstType = PGM_TYPE_AMD64;
2793 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2794 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2795 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796#endif
2797 return VINF_SUCCESS;
2798}
2799
2800
2801/**
2802 * Switch to different (or relocated in the relocate case) mode data.
2803 *
2804 * @param pVM The VM handle.
2805 * @param pVCpu The VMCPU to operate on.
2806 * @param enmShw The the shadow paging mode.
2807 * @param enmGst The the guest paging mode.
2808 */
2809static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2810{
2811 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2812
2813 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2814 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2815
2816 /* shadow */
2817 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2818 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2819 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2820 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2821 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2822
2823 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2824 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2825
2826 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2827 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2828
2829
2830 /* guest */
2831 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2832 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2833 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2834 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2835 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2836 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2837 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2838 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2839 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2840 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2841 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2842 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2843
2844 /* both */
2845 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2846 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2847 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2848 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2849 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2850 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2851 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2852#ifdef VBOX_STRICT
2853 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2854#endif
2855 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2856 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2857
2858 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2859 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2860 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2861 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2862 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2863 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2864#ifdef VBOX_STRICT
2865 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2866#endif
2867 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2868 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2869
2870 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2871 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2872 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2873 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2874 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2875 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2876#ifdef VBOX_STRICT
2877 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2878#endif
2879 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2880 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2881}
2882
2883
2884/**
2885 * Calculates the shadow paging mode.
2886 *
2887 * @returns The shadow paging mode.
2888 * @param pVM VM handle.
2889 * @param enmGuestMode The guest mode.
2890 * @param enmHostMode The host mode.
2891 * @param enmShadowMode The current shadow mode.
2892 * @param penmSwitcher Where to store the switcher to use.
2893 * VMMSWITCHER_INVALID means no change.
2894 */
2895static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2896{
2897 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2898 switch (enmGuestMode)
2899 {
2900 /*
2901 * When switching to real or protected mode we don't change
2902 * anything since it's likely that we'll switch back pretty soon.
2903 *
2904 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2905 * and is supposed to determine which shadow paging and switcher to
2906 * use during init.
2907 */
2908 case PGMMODE_REAL:
2909 case PGMMODE_PROTECTED:
2910 if ( enmShadowMode != PGMMODE_INVALID
2911 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2912 break; /* (no change) */
2913
2914 switch (enmHostMode)
2915 {
2916 case SUPPAGINGMODE_32_BIT:
2917 case SUPPAGINGMODE_32_BIT_GLOBAL:
2918 enmShadowMode = PGMMODE_32_BIT;
2919 enmSwitcher = VMMSWITCHER_32_TO_32;
2920 break;
2921
2922 case SUPPAGINGMODE_PAE:
2923 case SUPPAGINGMODE_PAE_NX:
2924 case SUPPAGINGMODE_PAE_GLOBAL:
2925 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2926 enmShadowMode = PGMMODE_PAE;
2927 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2928#ifdef DEBUG_bird
2929 if (RTEnvExist("VBOX_32BIT"))
2930 {
2931 enmShadowMode = PGMMODE_32_BIT;
2932 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2933 }
2934#endif
2935 break;
2936
2937 case SUPPAGINGMODE_AMD64:
2938 case SUPPAGINGMODE_AMD64_GLOBAL:
2939 case SUPPAGINGMODE_AMD64_NX:
2940 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2941 enmShadowMode = PGMMODE_PAE;
2942 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2943#ifdef DEBUG_bird
2944 if (RTEnvExist("VBOX_32BIT"))
2945 {
2946 enmShadowMode = PGMMODE_32_BIT;
2947 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2948 }
2949#endif
2950 break;
2951
2952 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2953 }
2954 break;
2955
2956 case PGMMODE_32_BIT:
2957 switch (enmHostMode)
2958 {
2959 case SUPPAGINGMODE_32_BIT:
2960 case SUPPAGINGMODE_32_BIT_GLOBAL:
2961 enmShadowMode = PGMMODE_32_BIT;
2962 enmSwitcher = VMMSWITCHER_32_TO_32;
2963 break;
2964
2965 case SUPPAGINGMODE_PAE:
2966 case SUPPAGINGMODE_PAE_NX:
2967 case SUPPAGINGMODE_PAE_GLOBAL:
2968 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2969 enmShadowMode = PGMMODE_PAE;
2970 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2971#ifdef DEBUG_bird
2972 if (RTEnvExist("VBOX_32BIT"))
2973 {
2974 enmShadowMode = PGMMODE_32_BIT;
2975 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2976 }
2977#endif
2978 break;
2979
2980 case SUPPAGINGMODE_AMD64:
2981 case SUPPAGINGMODE_AMD64_GLOBAL:
2982 case SUPPAGINGMODE_AMD64_NX:
2983 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2984 enmShadowMode = PGMMODE_PAE;
2985 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2986#ifdef DEBUG_bird
2987 if (RTEnvExist("VBOX_32BIT"))
2988 {
2989 enmShadowMode = PGMMODE_32_BIT;
2990 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2991 }
2992#endif
2993 break;
2994
2995 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2996 }
2997 break;
2998
2999 case PGMMODE_PAE:
3000 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3001 switch (enmHostMode)
3002 {
3003 case SUPPAGINGMODE_32_BIT:
3004 case SUPPAGINGMODE_32_BIT_GLOBAL:
3005 enmShadowMode = PGMMODE_PAE;
3006 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3007 break;
3008
3009 case SUPPAGINGMODE_PAE:
3010 case SUPPAGINGMODE_PAE_NX:
3011 case SUPPAGINGMODE_PAE_GLOBAL:
3012 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3013 enmShadowMode = PGMMODE_PAE;
3014 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3015 break;
3016
3017 case SUPPAGINGMODE_AMD64:
3018 case SUPPAGINGMODE_AMD64_GLOBAL:
3019 case SUPPAGINGMODE_AMD64_NX:
3020 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3021 enmShadowMode = PGMMODE_PAE;
3022 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3023 break;
3024
3025 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3026 }
3027 break;
3028
3029 case PGMMODE_AMD64:
3030 case PGMMODE_AMD64_NX:
3031 switch (enmHostMode)
3032 {
3033 case SUPPAGINGMODE_32_BIT:
3034 case SUPPAGINGMODE_32_BIT_GLOBAL:
3035 enmShadowMode = PGMMODE_AMD64;
3036 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3037 break;
3038
3039 case SUPPAGINGMODE_PAE:
3040 case SUPPAGINGMODE_PAE_NX:
3041 case SUPPAGINGMODE_PAE_GLOBAL:
3042 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3043 enmShadowMode = PGMMODE_AMD64;
3044 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3045 break;
3046
3047 case SUPPAGINGMODE_AMD64:
3048 case SUPPAGINGMODE_AMD64_GLOBAL:
3049 case SUPPAGINGMODE_AMD64_NX:
3050 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3051 enmShadowMode = PGMMODE_AMD64;
3052 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3053 break;
3054
3055 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3056 }
3057 break;
3058
3059
3060 default:
3061 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3062 *penmSwitcher = VMMSWITCHER_INVALID;
3063 return PGMMODE_INVALID;
3064 }
3065 /* Override the shadow mode is nested paging is active. */
3066 if (HWACCMIsNestedPagingActive(pVM))
3067 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3068
3069 *penmSwitcher = enmSwitcher;
3070 return enmShadowMode;
3071}
3072
3073
3074/**
3075 * Performs the actual mode change.
3076 * This is called by PGMChangeMode and pgmR3InitPaging().
3077 *
3078 * @returns VBox status code. May suspend or power off the VM on error, but this
3079 * will trigger using FFs and not status codes.
3080 *
3081 * @param pVM VM handle.
3082 * @param pVCpu The VMCPU to operate on.
3083 * @param enmGuestMode The new guest mode. This is assumed to be different from
3084 * the current mode.
3085 */
3086VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3087{
3088 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3089 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3090
3091 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3092 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3093
3094 /*
3095 * Calc the shadow mode and switcher.
3096 */
3097 VMMSWITCHER enmSwitcher;
3098 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3099
3100#ifdef VBOX_WITH_RAW_MODE
3101 if (enmSwitcher != VMMSWITCHER_INVALID)
3102 {
3103 /*
3104 * Select new switcher.
3105 */
3106 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3107 if (RT_FAILURE(rc))
3108 {
3109 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3110 return rc;
3111 }
3112 }
3113#endif
3114
3115 /*
3116 * Exit old mode(s).
3117 */
3118#if HC_ARCH_BITS == 32
3119 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3120 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3121 && enmShadowMode == PGMMODE_NESTED);
3122#else
3123 const bool fForceShwEnterExit = false;
3124#endif
3125 /* shadow */
3126 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3127 || fForceShwEnterExit)
3128 {
3129 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3130 if (PGM_SHW_PFN(Exit, pVCpu))
3131 {
3132 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3133 if (RT_FAILURE(rc))
3134 {
3135 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3136 return rc;
3137 }
3138 }
3139
3140 }
3141 else
3142 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3143
3144 /* guest */
3145 if (PGM_GST_PFN(Exit, pVCpu))
3146 {
3147 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3148 if (RT_FAILURE(rc))
3149 {
3150 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3151 return rc;
3152 }
3153 }
3154
3155 /*
3156 * Load new paging mode data.
3157 */
3158 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3159
3160 /*
3161 * Enter new shadow mode (if changed).
3162 */
3163 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3164 || fForceShwEnterExit)
3165 {
3166 int rc;
3167 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3168 switch (enmShadowMode)
3169 {
3170 case PGMMODE_32_BIT:
3171 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3172 break;
3173 case PGMMODE_PAE:
3174 case PGMMODE_PAE_NX:
3175 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3176 break;
3177 case PGMMODE_AMD64:
3178 case PGMMODE_AMD64_NX:
3179 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3180 break;
3181 case PGMMODE_NESTED:
3182 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3183 break;
3184 case PGMMODE_EPT:
3185 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3186 break;
3187 case PGMMODE_REAL:
3188 case PGMMODE_PROTECTED:
3189 default:
3190 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3191 return VERR_INTERNAL_ERROR;
3192 }
3193 if (RT_FAILURE(rc))
3194 {
3195 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3196 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3197 return rc;
3198 }
3199 }
3200
3201 /*
3202 * Always flag the necessary updates
3203 */
3204 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3205
3206 /*
3207 * Enter the new guest and shadow+guest modes.
3208 */
3209 int rc = -1;
3210 int rc2 = -1;
3211 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3212 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3213 switch (enmGuestMode)
3214 {
3215 case PGMMODE_REAL:
3216 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3217 switch (pVCpu->pgm.s.enmShadowMode)
3218 {
3219 case PGMMODE_32_BIT:
3220 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3221 break;
3222 case PGMMODE_PAE:
3223 case PGMMODE_PAE_NX:
3224 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3225 break;
3226 case PGMMODE_NESTED:
3227 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3228 break;
3229 case PGMMODE_EPT:
3230 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3231 break;
3232 case PGMMODE_AMD64:
3233 case PGMMODE_AMD64_NX:
3234 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3235 default: AssertFailed(); break;
3236 }
3237 break;
3238
3239 case PGMMODE_PROTECTED:
3240 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3241 switch (pVCpu->pgm.s.enmShadowMode)
3242 {
3243 case PGMMODE_32_BIT:
3244 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3245 break;
3246 case PGMMODE_PAE:
3247 case PGMMODE_PAE_NX:
3248 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3249 break;
3250 case PGMMODE_NESTED:
3251 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3252 break;
3253 case PGMMODE_EPT:
3254 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3255 break;
3256 case PGMMODE_AMD64:
3257 case PGMMODE_AMD64_NX:
3258 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3259 default: AssertFailed(); break;
3260 }
3261 break;
3262
3263 case PGMMODE_32_BIT:
3264 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3265 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3266 switch (pVCpu->pgm.s.enmShadowMode)
3267 {
3268 case PGMMODE_32_BIT:
3269 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3270 break;
3271 case PGMMODE_PAE:
3272 case PGMMODE_PAE_NX:
3273 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3274 break;
3275 case PGMMODE_NESTED:
3276 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3277 break;
3278 case PGMMODE_EPT:
3279 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3280 break;
3281 case PGMMODE_AMD64:
3282 case PGMMODE_AMD64_NX:
3283 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3284 default: AssertFailed(); break;
3285 }
3286 break;
3287
3288 case PGMMODE_PAE_NX:
3289 case PGMMODE_PAE:
3290 {
3291 uint32_t u32Dummy, u32Features;
3292
3293 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3294 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3295 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3296 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3297
3298 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3299 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3300 switch (pVCpu->pgm.s.enmShadowMode)
3301 {
3302 case PGMMODE_PAE:
3303 case PGMMODE_PAE_NX:
3304 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3305 break;
3306 case PGMMODE_NESTED:
3307 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3308 break;
3309 case PGMMODE_EPT:
3310 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3311 break;
3312 case PGMMODE_32_BIT:
3313 case PGMMODE_AMD64:
3314 case PGMMODE_AMD64_NX:
3315 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3316 default: AssertFailed(); break;
3317 }
3318 break;
3319 }
3320
3321#ifdef VBOX_WITH_64_BITS_GUESTS
3322 case PGMMODE_AMD64_NX:
3323 case PGMMODE_AMD64:
3324 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3325 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3326 switch (pVCpu->pgm.s.enmShadowMode)
3327 {
3328 case PGMMODE_AMD64:
3329 case PGMMODE_AMD64_NX:
3330 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3331 break;
3332 case PGMMODE_NESTED:
3333 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3334 break;
3335 case PGMMODE_EPT:
3336 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3337 break;
3338 case PGMMODE_32_BIT:
3339 case PGMMODE_PAE:
3340 case PGMMODE_PAE_NX:
3341 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3342 default: AssertFailed(); break;
3343 }
3344 break;
3345#endif
3346
3347 default:
3348 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3349 rc = VERR_NOT_IMPLEMENTED;
3350 break;
3351 }
3352
3353 /* status codes. */
3354 AssertRC(rc);
3355 AssertRC(rc2);
3356 if (RT_SUCCESS(rc))
3357 {
3358 rc = rc2;
3359 if (RT_SUCCESS(rc)) /* no informational status codes. */
3360 rc = VINF_SUCCESS;
3361 }
3362
3363 /* Notify HWACCM as well. */
3364 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3365 return rc;
3366}
3367
3368
3369/**
3370 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3371 *
3372 * @returns VBox status code, fully asserted.
3373 * @param pVM The VM handle.
3374 * @param pVCpu The VMCPU to operate on.
3375 */
3376int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3377{
3378 /* Unmap the old CR3 value before flushing everything. */
3379 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3380 AssertRC(rc);
3381
3382 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3383 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3384 AssertRC(rc);
3385 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3386 return rc;
3387}
3388
3389
3390/**
3391 * Called by pgmPoolFlushAllInt after flushing the pool.
3392 *
3393 * @returns VBox status code, fully asserted.
3394 * @param pVM The VM handle.
3395 * @param pVCpu The VMCPU to operate on.
3396 */
3397int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3398{
3399 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3400 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3401 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3402 AssertRCReturn(rc, rc);
3403 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3404
3405 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3406 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3407 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3408 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3409 return rc;
3410}
3411
3412
3413/**
3414 * Dumps a PAE shadow page table.
3415 *
3416 * @returns VBox status code (VINF_SUCCESS).
3417 * @param pVM The VM handle.
3418 * @param pPT Pointer to the page table.
3419 * @param u64Address The virtual address of the page table starts.
3420 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3421 * @param cMaxDepth The maxium depth.
3422 * @param pHlp Pointer to the output functions.
3423 */
3424static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3425{
3426 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3427 {
3428 X86PTEPAE Pte = pPT->a[i];
3429 if (Pte.n.u1Present)
3430 {
3431 pHlp->pfnPrintf(pHlp,
3432 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3433 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3434 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3435 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3436 Pte.n.u1Write ? 'W' : 'R',
3437 Pte.n.u1User ? 'U' : 'S',
3438 Pte.n.u1Accessed ? 'A' : '-',
3439 Pte.n.u1Dirty ? 'D' : '-',
3440 Pte.n.u1Global ? 'G' : '-',
3441 Pte.n.u1WriteThru ? "WT" : "--",
3442 Pte.n.u1CacheDisable? "CD" : "--",
3443 Pte.n.u1PAT ? "AT" : "--",
3444 Pte.n.u1NoExecute ? "NX" : "--",
3445 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3446 Pte.u & RT_BIT(10) ? '1' : '0',
3447 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3448 Pte.u & X86_PTE_PAE_PG_MASK);
3449 }
3450 }
3451 return VINF_SUCCESS;
3452}
3453
3454
3455/**
3456 * Dumps a PAE shadow page directory table.
3457 *
3458 * @returns VBox status code (VINF_SUCCESS).
3459 * @param pVM The VM handle.
3460 * @param HCPhys The physical address of the page directory table.
3461 * @param u64Address The virtual address of the page table starts.
3462 * @param cr4 The CR4, PSE is currently used.
3463 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3464 * @param cMaxDepth The maxium depth.
3465 * @param pHlp Pointer to the output functions.
3466 */
3467static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3468{
3469 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3470 if (!pPD)
3471 {
3472 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3473 fLongMode ? 16 : 8, u64Address, HCPhys);
3474 return VERR_INVALID_PARAMETER;
3475 }
3476 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3477
3478 int rc = VINF_SUCCESS;
3479 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3480 {
3481 X86PDEPAE Pde = pPD->a[i];
3482 if (Pde.n.u1Present)
3483 {
3484 if (fBigPagesSupported && Pde.b.u1Size)
3485 pHlp->pfnPrintf(pHlp,
3486 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3487 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3488 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3489 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3490 Pde.b.u1Write ? 'W' : 'R',
3491 Pde.b.u1User ? 'U' : 'S',
3492 Pde.b.u1Accessed ? 'A' : '-',
3493 Pde.b.u1Dirty ? 'D' : '-',
3494 Pde.b.u1Global ? 'G' : '-',
3495 Pde.b.u1WriteThru ? "WT" : "--",
3496 Pde.b.u1CacheDisable? "CD" : "--",
3497 Pde.b.u1PAT ? "AT" : "--",
3498 Pde.b.u1NoExecute ? "NX" : "--",
3499 Pde.u & RT_BIT_64(9) ? '1' : '0',
3500 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3501 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3502 Pde.u & X86_PDE_PAE_PG_MASK);
3503 else
3504 {
3505 pHlp->pfnPrintf(pHlp,
3506 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3507 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3508 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3509 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3510 Pde.n.u1Write ? 'W' : 'R',
3511 Pde.n.u1User ? 'U' : 'S',
3512 Pde.n.u1Accessed ? 'A' : '-',
3513 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3514 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3515 Pde.n.u1WriteThru ? "WT" : "--",
3516 Pde.n.u1CacheDisable? "CD" : "--",
3517 Pde.n.u1NoExecute ? "NX" : "--",
3518 Pde.u & RT_BIT_64(9) ? '1' : '0',
3519 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3520 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3521 Pde.u & X86_PDE_PAE_PG_MASK);
3522 if (cMaxDepth >= 1)
3523 {
3524 /** @todo what about using the page pool for mapping PTs? */
3525 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3526 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3527 PX86PTPAE pPT = NULL;
3528 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3529 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3530 else
3531 {
3532 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3533 {
3534 uint64_t off = u64AddressPT - pMap->GCPtr;
3535 if (off < pMap->cb)
3536 {
3537 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3538 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3539 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3540 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3541 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3542 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3543 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3544 }
3545 }
3546 }
3547 int rc2 = VERR_INVALID_PARAMETER;
3548 if (pPT)
3549 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3550 else
3551 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3552 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3553 if (rc2 < rc && RT_SUCCESS(rc))
3554 rc = rc2;
3555 }
3556 }
3557 }
3558 }
3559 return rc;
3560}
3561
3562
3563/**
3564 * Dumps a PAE shadow page directory pointer table.
3565 *
3566 * @returns VBox status code (VINF_SUCCESS).
3567 * @param pVM The VM handle.
3568 * @param HCPhys The physical address of the page directory pointer table.
3569 * @param u64Address The virtual address of the page table starts.
3570 * @param cr4 The CR4, PSE is currently used.
3571 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3572 * @param cMaxDepth The maxium depth.
3573 * @param pHlp Pointer to the output functions.
3574 */
3575static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3576{
3577 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3578 if (!pPDPT)
3579 {
3580 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3581 fLongMode ? 16 : 8, u64Address, HCPhys);
3582 return VERR_INVALID_PARAMETER;
3583 }
3584
3585 int rc = VINF_SUCCESS;
3586 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3587 for (unsigned i = 0; i < c; i++)
3588 {
3589 X86PDPE Pdpe = pPDPT->a[i];
3590 if (Pdpe.n.u1Present)
3591 {
3592 if (fLongMode)
3593 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3594 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3595 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3596 Pdpe.lm.u1Write ? 'W' : 'R',
3597 Pdpe.lm.u1User ? 'U' : 'S',
3598 Pdpe.lm.u1Accessed ? 'A' : '-',
3599 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3600 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3601 Pdpe.lm.u1WriteThru ? "WT" : "--",
3602 Pdpe.lm.u1CacheDisable? "CD" : "--",
3603 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3604 Pdpe.lm.u1NoExecute ? "NX" : "--",
3605 Pdpe.u & RT_BIT(9) ? '1' : '0',
3606 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3607 Pdpe.u & RT_BIT(11) ? '1' : '0',
3608 Pdpe.u & X86_PDPE_PG_MASK);
3609 else
3610 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3611 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3612 i << X86_PDPT_SHIFT,
3613 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3614 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3615 Pdpe.n.u1WriteThru ? "WT" : "--",
3616 Pdpe.n.u1CacheDisable? "CD" : "--",
3617 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3618 Pdpe.u & RT_BIT(9) ? '1' : '0',
3619 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3620 Pdpe.u & RT_BIT(11) ? '1' : '0',
3621 Pdpe.u & X86_PDPE_PG_MASK);
3622 if (cMaxDepth >= 1)
3623 {
3624 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3625 cr4, fLongMode, cMaxDepth - 1, pHlp);
3626 if (rc2 < rc && RT_SUCCESS(rc))
3627 rc = rc2;
3628 }
3629 }
3630 }
3631 return rc;
3632}
3633
3634
3635/**
3636 * Dumps a 32-bit shadow page table.
3637 *
3638 * @returns VBox status code (VINF_SUCCESS).
3639 * @param pVM The VM handle.
3640 * @param HCPhys The physical address of the table.
3641 * @param cr4 The CR4, PSE is currently used.
3642 * @param cMaxDepth The maxium depth.
3643 * @param pHlp Pointer to the output functions.
3644 */
3645static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3646{
3647 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3648 if (!pPML4)
3649 {
3650 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3651 return VERR_INVALID_PARAMETER;
3652 }
3653
3654 int rc = VINF_SUCCESS;
3655 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3656 {
3657 X86PML4E Pml4e = pPML4->a[i];
3658 if (Pml4e.n.u1Present)
3659 {
3660 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3661 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3662 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3663 u64Address,
3664 Pml4e.n.u1Write ? 'W' : 'R',
3665 Pml4e.n.u1User ? 'U' : 'S',
3666 Pml4e.n.u1Accessed ? 'A' : '-',
3667 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3668 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3669 Pml4e.n.u1WriteThru ? "WT" : "--",
3670 Pml4e.n.u1CacheDisable? "CD" : "--",
3671 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3672 Pml4e.n.u1NoExecute ? "NX" : "--",
3673 Pml4e.u & RT_BIT(9) ? '1' : '0',
3674 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3675 Pml4e.u & RT_BIT(11) ? '1' : '0',
3676 Pml4e.u & X86_PML4E_PG_MASK);
3677
3678 if (cMaxDepth >= 1)
3679 {
3680 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3681 if (rc2 < rc && RT_SUCCESS(rc))
3682 rc = rc2;
3683 }
3684 }
3685 }
3686 return rc;
3687}
3688
3689
3690/**
3691 * Dumps a 32-bit shadow page table.
3692 *
3693 * @returns VBox status code (VINF_SUCCESS).
3694 * @param pVM The VM handle.
3695 * @param pPT Pointer to the page table.
3696 * @param u32Address The virtual address this table starts at.
3697 * @param pHlp Pointer to the output functions.
3698 */
3699int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3700{
3701 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3702 {
3703 X86PTE Pte = pPT->a[i];
3704 if (Pte.n.u1Present)
3705 {
3706 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3707 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3708 u32Address + (i << X86_PT_SHIFT),
3709 Pte.n.u1Write ? 'W' : 'R',
3710 Pte.n.u1User ? 'U' : 'S',
3711 Pte.n.u1Accessed ? 'A' : '-',
3712 Pte.n.u1Dirty ? 'D' : '-',
3713 Pte.n.u1Global ? 'G' : '-',
3714 Pte.n.u1WriteThru ? "WT" : "--",
3715 Pte.n.u1CacheDisable? "CD" : "--",
3716 Pte.n.u1PAT ? "AT" : "--",
3717 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3718 Pte.u & RT_BIT(10) ? '1' : '0',
3719 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3720 Pte.u & X86_PDE_PG_MASK);
3721 }
3722 }
3723 return VINF_SUCCESS;
3724}
3725
3726
3727/**
3728 * Dumps a 32-bit shadow page directory and page tables.
3729 *
3730 * @returns VBox status code (VINF_SUCCESS).
3731 * @param pVM The VM handle.
3732 * @param cr3 The root of the hierarchy.
3733 * @param cr4 The CR4, PSE is currently used.
3734 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3735 * @param pHlp Pointer to the output functions.
3736 */
3737int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3738{
3739 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3740 if (!pPD)
3741 {
3742 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3743 return VERR_INVALID_PARAMETER;
3744 }
3745
3746 int rc = VINF_SUCCESS;
3747 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3748 {
3749 X86PDE Pde = pPD->a[i];
3750 if (Pde.n.u1Present)
3751 {
3752 const uint32_t u32Address = i << X86_PD_SHIFT;
3753 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3754 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3755 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3756 u32Address,
3757 Pde.b.u1Write ? 'W' : 'R',
3758 Pde.b.u1User ? 'U' : 'S',
3759 Pde.b.u1Accessed ? 'A' : '-',
3760 Pde.b.u1Dirty ? 'D' : '-',
3761 Pde.b.u1Global ? 'G' : '-',
3762 Pde.b.u1WriteThru ? "WT" : "--",
3763 Pde.b.u1CacheDisable? "CD" : "--",
3764 Pde.b.u1PAT ? "AT" : "--",
3765 Pde.u & RT_BIT_64(9) ? '1' : '0',
3766 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3767 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3768 Pde.u & X86_PDE4M_PG_MASK);
3769 else
3770 {
3771 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3772 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3773 u32Address,
3774 Pde.n.u1Write ? 'W' : 'R',
3775 Pde.n.u1User ? 'U' : 'S',
3776 Pde.n.u1Accessed ? 'A' : '-',
3777 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3778 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3779 Pde.n.u1WriteThru ? "WT" : "--",
3780 Pde.n.u1CacheDisable? "CD" : "--",
3781 Pde.u & RT_BIT_64(9) ? '1' : '0',
3782 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3783 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3784 Pde.u & X86_PDE_PG_MASK);
3785 if (cMaxDepth >= 1)
3786 {
3787 /** @todo what about using the page pool for mapping PTs? */
3788 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3789 PX86PT pPT = NULL;
3790 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3791 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3792 else
3793 {
3794 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3795 if (u32Address - pMap->GCPtr < pMap->cb)
3796 {
3797 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3798 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3799 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3800 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3801 pPT = pMap->aPTs[iPDE].pPTR3;
3802 }
3803 }
3804 int rc2 = VERR_INVALID_PARAMETER;
3805 if (pPT)
3806 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3807 else
3808 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3809 if (rc2 < rc && RT_SUCCESS(rc))
3810 rc = rc2;
3811 }
3812 }
3813 }
3814 }
3815
3816 return rc;
3817}
3818
3819
3820/**
3821 * Dumps a 32-bit shadow page table.
3822 *
3823 * @returns VBox status code (VINF_SUCCESS).
3824 * @param pVM The VM handle.
3825 * @param pPT Pointer to the page table.
3826 * @param u32Address The virtual address this table starts at.
3827 * @param PhysSearch Address to search for.
3828 */
3829int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3830{
3831 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3832 {
3833 X86PTE Pte = pPT->a[i];
3834 if (Pte.n.u1Present)
3835 {
3836 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3837 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3838 u32Address + (i << X86_PT_SHIFT),
3839 Pte.n.u1Write ? 'W' : 'R',
3840 Pte.n.u1User ? 'U' : 'S',
3841 Pte.n.u1Accessed ? 'A' : '-',
3842 Pte.n.u1Dirty ? 'D' : '-',
3843 Pte.n.u1Global ? 'G' : '-',
3844 Pte.n.u1WriteThru ? "WT" : "--",
3845 Pte.n.u1CacheDisable? "CD" : "--",
3846 Pte.n.u1PAT ? "AT" : "--",
3847 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3848 Pte.u & RT_BIT(10) ? '1' : '0',
3849 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3850 Pte.u & X86_PDE_PG_MASK));
3851
3852 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3853 {
3854 uint64_t fPageShw = 0;
3855 RTHCPHYS pPhysHC = 0;
3856
3857 /** @todo SMP support!! */
3858 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3859 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3860 }
3861 }
3862 }
3863 return VINF_SUCCESS;
3864}
3865
3866
3867/**
3868 * Dumps a 32-bit guest page directory and page tables.
3869 *
3870 * @returns VBox status code (VINF_SUCCESS).
3871 * @param pVM The VM handle.
3872 * @param cr3 The root of the hierarchy.
3873 * @param cr4 The CR4, PSE is currently used.
3874 * @param PhysSearch Address to search for.
3875 */
3876VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3877{
3878 bool fLongMode = false;
3879 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3880 PX86PD pPD = 0;
3881 PGMPAGEMAPLOCK LockCr3;
3882
3883 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, cr3 & X86_CR3_PAGE_MASK, (const void **)&pPD, &LockCr3);
3884 if ( RT_FAILURE(rc)
3885 || !pPD)
3886 {
3887 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3888 return VERR_INVALID_PARAMETER;
3889 }
3890
3891 Log(("cr3=%08x cr4=%08x%s\n"
3892 "%-*s P - Present\n"
3893 "%-*s | R/W - Read (0) / Write (1)\n"
3894 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3895 "%-*s | | | A - Accessed\n"
3896 "%-*s | | | | D - Dirty\n"
3897 "%-*s | | | | | G - Global\n"
3898 "%-*s | | | | | | WT - Write thru\n"
3899 "%-*s | | | | | | | CD - Cache disable\n"
3900 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3901 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3902 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3903 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3904 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3905 "%-*s Level | | | | | | | | | | | | Page\n"
3906 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3907 - W U - - - -- -- -- -- -- 010 */
3908 , cr3, cr4, fLongMode ? " Long Mode" : "",
3909 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3910 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3911
3912 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3913 {
3914 X86PDE Pde = pPD->a[i];
3915 if (Pde.n.u1Present)
3916 {
3917 const uint32_t u32Address = i << X86_PD_SHIFT;
3918
3919 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3920 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3921 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3922 u32Address,
3923 Pde.b.u1Write ? 'W' : 'R',
3924 Pde.b.u1User ? 'U' : 'S',
3925 Pde.b.u1Accessed ? 'A' : '-',
3926 Pde.b.u1Dirty ? 'D' : '-',
3927 Pde.b.u1Global ? 'G' : '-',
3928 Pde.b.u1WriteThru ? "WT" : "--",
3929 Pde.b.u1CacheDisable? "CD" : "--",
3930 Pde.b.u1PAT ? "AT" : "--",
3931 Pde.u & RT_BIT(9) ? '1' : '0',
3932 Pde.u & RT_BIT(10) ? '1' : '0',
3933 Pde.u & RT_BIT(11) ? '1' : '0',
3934 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3935 /** @todo PhysSearch */
3936 else
3937 {
3938 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3939 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3940 u32Address,
3941 Pde.n.u1Write ? 'W' : 'R',
3942 Pde.n.u1User ? 'U' : 'S',
3943 Pde.n.u1Accessed ? 'A' : '-',
3944 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3945 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3946 Pde.n.u1WriteThru ? "WT" : "--",
3947 Pde.n.u1CacheDisable? "CD" : "--",
3948 Pde.u & RT_BIT(9) ? '1' : '0',
3949 Pde.u & RT_BIT(10) ? '1' : '0',
3950 Pde.u & RT_BIT(11) ? '1' : '0',
3951 Pde.u & X86_PDE_PG_MASK));
3952 ////if (cMaxDepth >= 1)
3953 {
3954 /** @todo what about using the page pool for mapping PTs? */
3955 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3956 PX86PT pPT = NULL;
3957 PGMPAGEMAPLOCK LockPT;
3958
3959 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, (const void **)&pPT, &LockPT);
3960
3961 int rc2 = VERR_INVALID_PARAMETER;
3962 if (pPT)
3963 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3964 else
3965 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3966
3967 if (rc == VINF_SUCCESS)
3968 PGMPhysReleasePageMappingLock(pVM, &LockPT);
3969
3970 if (rc2 < rc && RT_SUCCESS(rc))
3971 rc = rc2;
3972 }
3973 }
3974 }
3975 }
3976 PGMPhysReleasePageMappingLock(pVM, &LockCr3);
3977 return rc;
3978}
3979
3980
3981/**
3982 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3983 *
3984 * @returns VBox status code (VINF_SUCCESS).
3985 * @param pVM The VM handle.
3986 * @param cr3 The root of the hierarchy.
3987 * @param cr4 The cr4, only PAE and PSE is currently used.
3988 * @param fLongMode Set if long mode, false if not long mode.
3989 * @param cMaxDepth Number of levels to dump.
3990 * @param pHlp Pointer to the output functions.
3991 */
3992VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3993{
3994 if (!pHlp)
3995 pHlp = DBGFR3InfoLogHlp();
3996 if (!cMaxDepth)
3997 return VINF_SUCCESS;
3998 const unsigned cch = fLongMode ? 16 : 8;
3999 pHlp->pfnPrintf(pHlp,
4000 "cr3=%08x cr4=%08x%s\n"
4001 "%-*s P - Present\n"
4002 "%-*s | R/W - Read (0) / Write (1)\n"
4003 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4004 "%-*s | | | A - Accessed\n"
4005 "%-*s | | | | D - Dirty\n"
4006 "%-*s | | | | | G - Global\n"
4007 "%-*s | | | | | | WT - Write thru\n"
4008 "%-*s | | | | | | | CD - Cache disable\n"
4009 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4010 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4011 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4012 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4013 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4014 "%-*s Level | | | | | | | | | | | | Page\n"
4015 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4016 - W U - - - -- -- -- -- -- 010 */
4017 , cr3, cr4, fLongMode ? " Long Mode" : "",
4018 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4019 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4020 if (cr4 & X86_CR4_PAE)
4021 {
4022 if (fLongMode)
4023 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4024 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4025 }
4026 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4027}
4028
4029#ifdef VBOX_WITH_DEBUGGER
4030
4031/**
4032 * The '.pgmram' command.
4033 *
4034 * @returns VBox status.
4035 * @param pCmd Pointer to the command descriptor (as registered).
4036 * @param pCmdHlp Pointer to command helper functions.
4037 * @param pVM Pointer to the current VM (if any).
4038 * @param paArgs Pointer to (readonly) array of arguments.
4039 * @param cArgs Number of arguments in the array.
4040 */
4041static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4042{
4043 /*
4044 * Validate input.
4045 */
4046 if (!pVM)
4047 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4048 if (!pVM->pgm.s.pRamRangesRC)
4049 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4050
4051 /*
4052 * Dump the ranges.
4053 */
4054 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4055 PPGMRAMRANGE pRam;
4056 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4057 {
4058 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4059 "%RGp - %RGp %p\n",
4060 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4061 if (RT_FAILURE(rc))
4062 return rc;
4063 }
4064
4065 return VINF_SUCCESS;
4066}
4067
4068
4069/**
4070 * The '.pgmerror' and '.pgmerroroff' commands.
4071 *
4072 * @returns VBox status.
4073 * @param pCmd Pointer to the command descriptor (as registered).
4074 * @param pCmdHlp Pointer to command helper functions.
4075 * @param pVM Pointer to the current VM (if any).
4076 * @param paArgs Pointer to (readonly) array of arguments.
4077 * @param cArgs Number of arguments in the array.
4078 */
4079static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4080{
4081 /*
4082 * Validate input.
4083 */
4084 if (!pVM)
4085 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4086 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4087 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4088
4089 if (!cArgs)
4090 {
4091 /*
4092 * Print the list of error injection locations with status.
4093 */
4094 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4095 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4096 }
4097 else
4098 {
4099
4100 /*
4101 * String switch on where to inject the error.
4102 */
4103 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4104 const char *pszWhere = paArgs[0].u.pszString;
4105 if (!strcmp(pszWhere, "handy"))
4106 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4107 else
4108 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4109 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4110 }
4111 return VINF_SUCCESS;
4112}
4113
4114
4115/**
4116 * The '.pgmsync' command.
4117 *
4118 * @returns VBox status.
4119 * @param pCmd Pointer to the command descriptor (as registered).
4120 * @param pCmdHlp Pointer to command helper functions.
4121 * @param pVM Pointer to the current VM (if any).
4122 * @param paArgs Pointer to (readonly) array of arguments.
4123 * @param cArgs Number of arguments in the array.
4124 */
4125static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4126{
4127 /** @todo SMP support */
4128 PVMCPU pVCpu = &pVM->aCpus[0];
4129
4130 /*
4131 * Validate input.
4132 */
4133 if (!pVM)
4134 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4135
4136 /*
4137 * Force page directory sync.
4138 */
4139 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4140
4141 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4142 if (RT_FAILURE(rc))
4143 return rc;
4144
4145 return VINF_SUCCESS;
4146}
4147
4148
4149#ifdef VBOX_STRICT
4150/**
4151 * The '.pgmassertcr3' command.
4152 *
4153 * @returns VBox status.
4154 * @param pCmd Pointer to the command descriptor (as registered).
4155 * @param pCmdHlp Pointer to command helper functions.
4156 * @param pVM Pointer to the current VM (if any).
4157 * @param paArgs Pointer to (readonly) array of arguments.
4158 * @param cArgs Number of arguments in the array.
4159 */
4160static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4161{
4162 /** @todo SMP support!! */
4163 PVMCPU pVCpu = &pVM->aCpus[0];
4164
4165 /*
4166 * Validate input.
4167 */
4168 if (!pVM)
4169 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4170
4171 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4172 if (RT_FAILURE(rc))
4173 return rc;
4174
4175 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4176
4177 return VINF_SUCCESS;
4178}
4179#endif /* VBOX_STRICT */
4180
4181
4182/**
4183 * The '.pgmsyncalways' command.
4184 *
4185 * @returns VBox status.
4186 * @param pCmd Pointer to the command descriptor (as registered).
4187 * @param pCmdHlp Pointer to command helper functions.
4188 * @param pVM Pointer to the current VM (if any).
4189 * @param paArgs Pointer to (readonly) array of arguments.
4190 * @param cArgs Number of arguments in the array.
4191 */
4192static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4193{
4194 /** @todo SMP support!! */
4195 PVMCPU pVCpu = &pVM->aCpus[0];
4196
4197 /*
4198 * Validate input.
4199 */
4200 if (!pVM)
4201 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4202
4203 /*
4204 * Force page directory sync.
4205 */
4206 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4207 {
4208 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4209 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4210 }
4211 else
4212 {
4213 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4214 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4215 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4216 }
4217}
4218
4219
4220/**
4221 * The '.pgmsyncalways' command.
4222 *
4223 * @returns VBox status.
4224 * @param pCmd Pointer to the command descriptor (as registered).
4225 * @param pCmdHlp Pointer to command helper functions.
4226 * @param pVM Pointer to the current VM (if any).
4227 * @param paArgs Pointer to (readonly) array of arguments.
4228 * @param cArgs Number of arguments in the array.
4229 */
4230static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4231{
4232 /*
4233 * Validate input.
4234 */
4235 if (!pVM)
4236 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4237 if ( cArgs < 1
4238 || cArgs > 2
4239 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4240 || ( cArgs > 1
4241 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4242 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4243 if ( cArgs >= 2
4244 && strcmp(paArgs[1].u.pszString, "nozero"))
4245 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4246 bool fIncZeroPgs = cArgs < 2;
4247
4248 /*
4249 * Open the output file and get the ram parameters.
4250 */
4251 RTFILE hFile;
4252 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4253 if (RT_FAILURE(rc))
4254 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4255
4256 uint32_t cbRamHole = 0;
4257 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4258 uint64_t cbRam = 0;
4259 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4260 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4261
4262 /*
4263 * Dump the physical memory, page by page.
4264 */
4265 RTGCPHYS GCPhys = 0;
4266 char abZeroPg[PAGE_SIZE];
4267 RT_ZERO(abZeroPg);
4268
4269 pgmLock(pVM);
4270 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4271 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4272 pRam = pRam->pNextR3)
4273 {
4274 /* fill the gap */
4275 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4276 {
4277 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4278 {
4279 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4280 GCPhys += PAGE_SIZE;
4281 }
4282 }
4283
4284 PCPGMPAGE pPage = &pRam->aPages[0];
4285 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4286 {
4287 if ( PGM_PAGE_IS_ZERO(pPage)
4288 || PGM_PAGE_IS_BALLOONED(pPage))
4289 {
4290 if (fIncZeroPgs)
4291 {
4292 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4293 if (RT_FAILURE(rc))
4294 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4295 }
4296 }
4297 else
4298 {
4299 switch (PGM_PAGE_GET_TYPE(pPage))
4300 {
4301 case PGMPAGETYPE_RAM:
4302 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4303 case PGMPAGETYPE_ROM:
4304 case PGMPAGETYPE_MMIO2:
4305 {
4306 void const *pvPage;
4307 PGMPAGEMAPLOCK Lock;
4308 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4309 if (RT_SUCCESS(rc))
4310 {
4311 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4312 PGMPhysReleasePageMappingLock(pVM, &Lock);
4313 if (RT_FAILURE(rc))
4314 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4315 }
4316 else
4317 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4318 break;
4319 }
4320
4321 default:
4322 AssertFailed();
4323 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4324 case PGMPAGETYPE_MMIO:
4325 if (fIncZeroPgs)
4326 {
4327 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4328 if (RT_FAILURE(rc))
4329 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4330 }
4331 break;
4332 }
4333 }
4334
4335
4336 /* advance */
4337 GCPhys += PAGE_SIZE;
4338 pPage++;
4339 }
4340 }
4341 pgmUnlock(pVM);
4342
4343 RTFileClose(hFile);
4344 if (RT_SUCCESS(rc))
4345 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4346 return VINF_SUCCESS;
4347}
4348
4349#endif /* VBOX_WITH_DEBUGGER */
4350
4351/**
4352 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4353 */
4354typedef struct PGMCHECKINTARGS
4355{
4356 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4357 PPGMPHYSHANDLER pPrevPhys;
4358 PPGMVIRTHANDLER pPrevVirt;
4359 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4360 PVM pVM;
4361} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4362
4363/**
4364 * Validate a node in the physical handler tree.
4365 *
4366 * @returns 0 on if ok, other wise 1.
4367 * @param pNode The handler node.
4368 * @param pvUser pVM.
4369 */
4370static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4371{
4372 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4373 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4374 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4375 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4376 AssertReleaseMsg( !pArgs->pPrevPhys
4377 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4378 ("pPrevPhys=%p %RGp-%RGp %s\n"
4379 " pCur=%p %RGp-%RGp %s\n",
4380 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4381 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4382 pArgs->pPrevPhys = pCur;
4383 return 0;
4384}
4385
4386
4387/**
4388 * Validate a node in the virtual handler tree.
4389 *
4390 * @returns 0 on if ok, other wise 1.
4391 * @param pNode The handler node.
4392 * @param pvUser pVM.
4393 */
4394static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4395{
4396 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4397 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4398 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4399 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4400 AssertReleaseMsg( !pArgs->pPrevVirt
4401 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4402 ("pPrevVirt=%p %RGv-%RGv %s\n"
4403 " pCur=%p %RGv-%RGv %s\n",
4404 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4405 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4406 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4407 {
4408 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4409 ("pCur=%p %RGv-%RGv %s\n"
4410 "iPage=%d offVirtHandle=%#x expected %#x\n",
4411 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4412 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4413 }
4414 pArgs->pPrevVirt = pCur;
4415 return 0;
4416}
4417
4418
4419/**
4420 * Validate a node in the virtual handler tree.
4421 *
4422 * @returns 0 on if ok, other wise 1.
4423 * @param pNode The handler node.
4424 * @param pvUser pVM.
4425 */
4426static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4427{
4428 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4429 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4430 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4431 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4432 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4433 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4434 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4435 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4436 " pCur=%p %RGp-%RGp\n",
4437 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4438 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4439 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4440 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4441 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4442 " pCur=%p %RGp-%RGp\n",
4443 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4444 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4445 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4446 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4447 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4448 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4449 {
4450 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4451 for (;;)
4452 {
4453 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4454 AssertReleaseMsg(pCur2 != pCur,
4455 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4456 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4457 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4458 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4459 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4460 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4461 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4462 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4463 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4464 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4465 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4466 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4467 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4468 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4469 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4470 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4471 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4472 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4473 break;
4474 }
4475 }
4476
4477 pArgs->pPrevPhys2Virt = pCur;
4478 return 0;
4479}
4480
4481
4482/**
4483 * Perform an integrity check on the PGM component.
4484 *
4485 * @returns VINF_SUCCESS if everything is fine.
4486 * @returns VBox error status after asserting on integrity breach.
4487 * @param pVM The VM handle.
4488 */
4489VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4490{
4491 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4492
4493 /*
4494 * Check the trees.
4495 */
4496 int cErrors = 0;
4497 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4498 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4499 PGMCHECKINTARGS Args = s_LeftToRight;
4500 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4501 Args = s_RightToLeft;
4502 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4503 Args = s_LeftToRight;
4504 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4505 Args = s_RightToLeft;
4506 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4507 Args = s_LeftToRight;
4508 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4509 Args = s_RightToLeft;
4510 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4511 Args = s_LeftToRight;
4512 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4513 Args = s_RightToLeft;
4514 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4515
4516 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4517}
4518
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette