VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 23097

Last change on this file since 23097 was 23097, checked in by vboxsync, 15 years ago

Distinguish between single page sync operations due to non-present or write faults.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 241.0 KB
Line 
1/* $Id: PGM.cpp 23097 2009-09-17 14:26:43Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/selm.h>
588#include <VBox/ssm.h>
589#include <VBox/hwaccm.h>
590#include "PGMInternal.h"
591#include <VBox/vm.h>
592
593#include <VBox/dbg.h>
594#include <VBox/param.h>
595#include <VBox/err.h>
596
597#include <iprt/asm.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Defined Constants And Macros *
608*******************************************************************************/
609/** Saved state data unit version for 2.5.x and later. */
610#define PGM_SAVED_STATE_VERSION 9
611/** Saved state data unit version for 2.2.2 and later. */
612#define PGM_SAVED_STATE_VERSION_2_2_2 8
613/** Saved state data unit version for 2.2.0. */
614#define PGM_SAVED_STATE_VERSION_RR_DESC 7
615/** Saved state data unit version. */
616#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
617
618
619/*******************************************************************************
620* Internal Functions *
621*******************************************************************************/
622static int pgmR3InitPaging(PVM pVM);
623static void pgmR3InitStats(PVM pVM);
624static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
625static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
628static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630#ifdef VBOX_STRICT
631static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
632#endif
633static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
634static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
635static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
636static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
637static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
638
639#ifdef VBOX_WITH_DEBUGGER
640/** @todo Convert the first two commands to 'info' items. */
641static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646# ifdef VBOX_STRICT
647static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# endif
649static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650#endif
651
652
653/*******************************************************************************
654* Global Variables *
655*******************************************************************************/
656#ifdef VBOX_WITH_DEBUGGER
657/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
658static const DBGCVARDESC g_aPgmErrorArgs[] =
659{
660 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
661 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
662};
663
664static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
665{
666 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
667 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
668 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
669};
670
671/** Command descriptors. */
672static const DBGCCMD g_aCmds[] =
673{
674 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
675 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
676 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
677 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
678 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
679 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
680#ifdef VBOX_STRICT
681 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
682#endif
683 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
684 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
685};
686#endif
687
688
689
690
691/*
692 * Shadow - 32-bit mode
693 */
694#define PGM_SHW_TYPE PGM_TYPE_32BIT
695#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
696#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
697#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
698#include "PGMShw.h"
699
700/* Guest - real mode */
701#define PGM_GST_TYPE PGM_TYPE_REAL
702#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
703#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
704#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
705#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
706#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
707#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
708#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
709#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
710#include "PGMBth.h"
711#include "PGMGstDefs.h"
712#include "PGMGst.h"
713#undef BTH_PGMPOOLKIND_PT_FOR_PT
714#undef BTH_PGMPOOLKIND_ROOT
715#undef PGM_BTH_NAME
716#undef PGM_BTH_NAME_RC_STR
717#undef PGM_BTH_NAME_R0_STR
718#undef PGM_GST_TYPE
719#undef PGM_GST_NAME
720#undef PGM_GST_NAME_RC_STR
721#undef PGM_GST_NAME_R0_STR
722
723/* Guest - protected mode */
724#define PGM_GST_TYPE PGM_TYPE_PROT
725#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
726#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
727#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
728#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
729#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
730#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
731#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
732#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
733#include "PGMBth.h"
734#include "PGMGstDefs.h"
735#include "PGMGst.h"
736#undef BTH_PGMPOOLKIND_PT_FOR_PT
737#undef BTH_PGMPOOLKIND_ROOT
738#undef PGM_BTH_NAME
739#undef PGM_BTH_NAME_RC_STR
740#undef PGM_BTH_NAME_R0_STR
741#undef PGM_GST_TYPE
742#undef PGM_GST_NAME
743#undef PGM_GST_NAME_RC_STR
744#undef PGM_GST_NAME_R0_STR
745
746/* Guest - 32-bit mode */
747#define PGM_GST_TYPE PGM_TYPE_32BIT
748#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
749#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
750#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
751#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
752#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
753#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
754#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
755#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
756#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
757#include "PGMBth.h"
758#include "PGMGstDefs.h"
759#include "PGMGst.h"
760#undef BTH_PGMPOOLKIND_PT_FOR_BIG
761#undef BTH_PGMPOOLKIND_PT_FOR_PT
762#undef BTH_PGMPOOLKIND_ROOT
763#undef PGM_BTH_NAME
764#undef PGM_BTH_NAME_RC_STR
765#undef PGM_BTH_NAME_R0_STR
766#undef PGM_GST_TYPE
767#undef PGM_GST_NAME
768#undef PGM_GST_NAME_RC_STR
769#undef PGM_GST_NAME_R0_STR
770
771#undef PGM_SHW_TYPE
772#undef PGM_SHW_NAME
773#undef PGM_SHW_NAME_RC_STR
774#undef PGM_SHW_NAME_R0_STR
775
776
777/*
778 * Shadow - PAE mode
779 */
780#define PGM_SHW_TYPE PGM_TYPE_PAE
781#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
782#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
783#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
784#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
785#include "PGMShw.h"
786
787/* Guest - real mode */
788#define PGM_GST_TYPE PGM_TYPE_REAL
789#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
790#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
791#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
792#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
793#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
794#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
795#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
796#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
797#include "PGMGstDefs.h"
798#include "PGMBth.h"
799#undef BTH_PGMPOOLKIND_PT_FOR_PT
800#undef BTH_PGMPOOLKIND_ROOT
801#undef PGM_BTH_NAME
802#undef PGM_BTH_NAME_RC_STR
803#undef PGM_BTH_NAME_R0_STR
804#undef PGM_GST_TYPE
805#undef PGM_GST_NAME
806#undef PGM_GST_NAME_RC_STR
807#undef PGM_GST_NAME_R0_STR
808
809/* Guest - protected mode */
810#define PGM_GST_TYPE PGM_TYPE_PROT
811#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
812#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
813#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
814#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
815#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
816#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
817#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
818#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
819#include "PGMGstDefs.h"
820#include "PGMBth.h"
821#undef BTH_PGMPOOLKIND_PT_FOR_PT
822#undef BTH_PGMPOOLKIND_ROOT
823#undef PGM_BTH_NAME
824#undef PGM_BTH_NAME_RC_STR
825#undef PGM_BTH_NAME_R0_STR
826#undef PGM_GST_TYPE
827#undef PGM_GST_NAME
828#undef PGM_GST_NAME_RC_STR
829#undef PGM_GST_NAME_R0_STR
830
831/* Guest - 32-bit mode */
832#define PGM_GST_TYPE PGM_TYPE_32BIT
833#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
834#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
835#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
836#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
837#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
838#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
839#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
840#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
841#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
842#include "PGMGstDefs.h"
843#include "PGMBth.h"
844#undef BTH_PGMPOOLKIND_PT_FOR_BIG
845#undef BTH_PGMPOOLKIND_PT_FOR_PT
846#undef BTH_PGMPOOLKIND_ROOT
847#undef PGM_BTH_NAME
848#undef PGM_BTH_NAME_RC_STR
849#undef PGM_BTH_NAME_R0_STR
850#undef PGM_GST_TYPE
851#undef PGM_GST_NAME
852#undef PGM_GST_NAME_RC_STR
853#undef PGM_GST_NAME_R0_STR
854
855/* Guest - PAE mode */
856#define PGM_GST_TYPE PGM_TYPE_PAE
857#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
858#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
859#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
860#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
861#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
862#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
863#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
864#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
865#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
866#include "PGMBth.h"
867#include "PGMGstDefs.h"
868#include "PGMGst.h"
869#undef BTH_PGMPOOLKIND_PT_FOR_BIG
870#undef BTH_PGMPOOLKIND_PT_FOR_PT
871#undef BTH_PGMPOOLKIND_ROOT
872#undef PGM_BTH_NAME
873#undef PGM_BTH_NAME_RC_STR
874#undef PGM_BTH_NAME_R0_STR
875#undef PGM_GST_TYPE
876#undef PGM_GST_NAME
877#undef PGM_GST_NAME_RC_STR
878#undef PGM_GST_NAME_R0_STR
879
880#undef PGM_SHW_TYPE
881#undef PGM_SHW_NAME
882#undef PGM_SHW_NAME_RC_STR
883#undef PGM_SHW_NAME_R0_STR
884
885
886/*
887 * Shadow - AMD64 mode
888 */
889#define PGM_SHW_TYPE PGM_TYPE_AMD64
890#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
891#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
892#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
893#include "PGMShw.h"
894
895#ifdef VBOX_WITH_64_BITS_GUESTS
896/* Guest - AMD64 mode */
897# define PGM_GST_TYPE PGM_TYPE_AMD64
898# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
899# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
900# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
901# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
902# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
903# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
904# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
905# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
906# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
907# include "PGMBth.h"
908# include "PGMGstDefs.h"
909# include "PGMGst.h"
910# undef BTH_PGMPOOLKIND_PT_FOR_BIG
911# undef BTH_PGMPOOLKIND_PT_FOR_PT
912# undef BTH_PGMPOOLKIND_ROOT
913# undef PGM_BTH_NAME
914# undef PGM_BTH_NAME_RC_STR
915# undef PGM_BTH_NAME_R0_STR
916# undef PGM_GST_TYPE
917# undef PGM_GST_NAME
918# undef PGM_GST_NAME_RC_STR
919# undef PGM_GST_NAME_R0_STR
920#endif /* VBOX_WITH_64_BITS_GUESTS */
921
922#undef PGM_SHW_TYPE
923#undef PGM_SHW_NAME
924#undef PGM_SHW_NAME_RC_STR
925#undef PGM_SHW_NAME_R0_STR
926
927
928/*
929 * Shadow - Nested paging mode
930 */
931#define PGM_SHW_TYPE PGM_TYPE_NESTED
932#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
933#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
934#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
935#include "PGMShw.h"
936
937/* Guest - real mode */
938#define PGM_GST_TYPE PGM_TYPE_REAL
939#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
940#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
941#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
942#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
943#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
944#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
945#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
946#include "PGMGstDefs.h"
947#include "PGMBth.h"
948#undef BTH_PGMPOOLKIND_PT_FOR_PT
949#undef PGM_BTH_NAME
950#undef PGM_BTH_NAME_RC_STR
951#undef PGM_BTH_NAME_R0_STR
952#undef PGM_GST_TYPE
953#undef PGM_GST_NAME
954#undef PGM_GST_NAME_RC_STR
955#undef PGM_GST_NAME_R0_STR
956
957/* Guest - protected mode */
958#define PGM_GST_TYPE PGM_TYPE_PROT
959#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
960#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
961#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
962#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
963#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
964#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
965#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
966#include "PGMGstDefs.h"
967#include "PGMBth.h"
968#undef BTH_PGMPOOLKIND_PT_FOR_PT
969#undef PGM_BTH_NAME
970#undef PGM_BTH_NAME_RC_STR
971#undef PGM_BTH_NAME_R0_STR
972#undef PGM_GST_TYPE
973#undef PGM_GST_NAME
974#undef PGM_GST_NAME_RC_STR
975#undef PGM_GST_NAME_R0_STR
976
977/* Guest - 32-bit mode */
978#define PGM_GST_TYPE PGM_TYPE_32BIT
979#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
980#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
981#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
982#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
983#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
984#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
985#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
986#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
987#include "PGMGstDefs.h"
988#include "PGMBth.h"
989#undef BTH_PGMPOOLKIND_PT_FOR_BIG
990#undef BTH_PGMPOOLKIND_PT_FOR_PT
991#undef PGM_BTH_NAME
992#undef PGM_BTH_NAME_RC_STR
993#undef PGM_BTH_NAME_R0_STR
994#undef PGM_GST_TYPE
995#undef PGM_GST_NAME
996#undef PGM_GST_NAME_RC_STR
997#undef PGM_GST_NAME_R0_STR
998
999/* Guest - PAE mode */
1000#define PGM_GST_TYPE PGM_TYPE_PAE
1001#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1002#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1003#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1004#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1005#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1006#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1007#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1008#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1009#include "PGMGstDefs.h"
1010#include "PGMBth.h"
1011#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1012#undef BTH_PGMPOOLKIND_PT_FOR_PT
1013#undef PGM_BTH_NAME
1014#undef PGM_BTH_NAME_RC_STR
1015#undef PGM_BTH_NAME_R0_STR
1016#undef PGM_GST_TYPE
1017#undef PGM_GST_NAME
1018#undef PGM_GST_NAME_RC_STR
1019#undef PGM_GST_NAME_R0_STR
1020
1021#ifdef VBOX_WITH_64_BITS_GUESTS
1022/* Guest - AMD64 mode */
1023# define PGM_GST_TYPE PGM_TYPE_AMD64
1024# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1025# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1026# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1027# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1028# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1029# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1030# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1031# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1032# include "PGMGstDefs.h"
1033# include "PGMBth.h"
1034# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1035# undef BTH_PGMPOOLKIND_PT_FOR_PT
1036# undef PGM_BTH_NAME
1037# undef PGM_BTH_NAME_RC_STR
1038# undef PGM_BTH_NAME_R0_STR
1039# undef PGM_GST_TYPE
1040# undef PGM_GST_NAME
1041# undef PGM_GST_NAME_RC_STR
1042# undef PGM_GST_NAME_R0_STR
1043#endif /* VBOX_WITH_64_BITS_GUESTS */
1044
1045#undef PGM_SHW_TYPE
1046#undef PGM_SHW_NAME
1047#undef PGM_SHW_NAME_RC_STR
1048#undef PGM_SHW_NAME_R0_STR
1049
1050
1051/*
1052 * Shadow - EPT
1053 */
1054#define PGM_SHW_TYPE PGM_TYPE_EPT
1055#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1056#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1057#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1058#include "PGMShw.h"
1059
1060/* Guest - real mode */
1061#define PGM_GST_TYPE PGM_TYPE_REAL
1062#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1063#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1064#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1065#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1066#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1067#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1068#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1069#include "PGMGstDefs.h"
1070#include "PGMBth.h"
1071#undef BTH_PGMPOOLKIND_PT_FOR_PT
1072#undef PGM_BTH_NAME
1073#undef PGM_BTH_NAME_RC_STR
1074#undef PGM_BTH_NAME_R0_STR
1075#undef PGM_GST_TYPE
1076#undef PGM_GST_NAME
1077#undef PGM_GST_NAME_RC_STR
1078#undef PGM_GST_NAME_R0_STR
1079
1080/* Guest - protected mode */
1081#define PGM_GST_TYPE PGM_TYPE_PROT
1082#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1083#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1084#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1085#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1086#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1087#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1088#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1089#include "PGMGstDefs.h"
1090#include "PGMBth.h"
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_RC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_RC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100/* Guest - 32-bit mode */
1101#define PGM_GST_TYPE PGM_TYPE_32BIT
1102#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1103#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1104#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1105#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1106#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1107#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1108#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1109#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1110#include "PGMGstDefs.h"
1111#include "PGMBth.h"
1112#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1113#undef BTH_PGMPOOLKIND_PT_FOR_PT
1114#undef PGM_BTH_NAME
1115#undef PGM_BTH_NAME_RC_STR
1116#undef PGM_BTH_NAME_R0_STR
1117#undef PGM_GST_TYPE
1118#undef PGM_GST_NAME
1119#undef PGM_GST_NAME_RC_STR
1120#undef PGM_GST_NAME_R0_STR
1121
1122/* Guest - PAE mode */
1123#define PGM_GST_TYPE PGM_TYPE_PAE
1124#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1125#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1126#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1127#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1128#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1129#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1130#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1131#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1132#include "PGMGstDefs.h"
1133#include "PGMBth.h"
1134#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1135#undef BTH_PGMPOOLKIND_PT_FOR_PT
1136#undef PGM_BTH_NAME
1137#undef PGM_BTH_NAME_RC_STR
1138#undef PGM_BTH_NAME_R0_STR
1139#undef PGM_GST_TYPE
1140#undef PGM_GST_NAME
1141#undef PGM_GST_NAME_RC_STR
1142#undef PGM_GST_NAME_R0_STR
1143
1144#ifdef VBOX_WITH_64_BITS_GUESTS
1145/* Guest - AMD64 mode */
1146# define PGM_GST_TYPE PGM_TYPE_AMD64
1147# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1148# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1149# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1150# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1151# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1152# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1153# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1154# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1155# include "PGMGstDefs.h"
1156# include "PGMBth.h"
1157# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1158# undef BTH_PGMPOOLKIND_PT_FOR_PT
1159# undef PGM_BTH_NAME
1160# undef PGM_BTH_NAME_RC_STR
1161# undef PGM_BTH_NAME_R0_STR
1162# undef PGM_GST_TYPE
1163# undef PGM_GST_NAME
1164# undef PGM_GST_NAME_RC_STR
1165# undef PGM_GST_NAME_R0_STR
1166#endif /* VBOX_WITH_64_BITS_GUESTS */
1167
1168#undef PGM_SHW_TYPE
1169#undef PGM_SHW_NAME
1170#undef PGM_SHW_NAME_RC_STR
1171#undef PGM_SHW_NAME_R0_STR
1172
1173
1174
1175/**
1176 * Initiates the paging of VM.
1177 *
1178 * @returns VBox status code.
1179 * @param pVM Pointer to VM structure.
1180 */
1181VMMR3DECL(int) PGMR3Init(PVM pVM)
1182{
1183 LogFlow(("PGMR3Init:\n"));
1184 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1185 int rc;
1186
1187 /*
1188 * Assert alignment and sizes.
1189 */
1190 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1191 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1192
1193 /*
1194 * Init the structure.
1195 */
1196 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1197 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1198
1199 /* Init the per-CPU part. */
1200 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1201 {
1202 PVMCPU pVCpu = &pVM->aCpus[i];
1203 PPGMCPU pPGM = &pVCpu->pgm.s;
1204
1205 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1206 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1207 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1208
1209 pPGM->enmShadowMode = PGMMODE_INVALID;
1210 pPGM->enmGuestMode = PGMMODE_INVALID;
1211
1212 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1213
1214 pPGM->pGstPaePdptR3 = NULL;
1215#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1216 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1217#endif
1218 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1219 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1220 {
1221 pPGM->apGstPaePDsR3[i] = NULL;
1222#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1223 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1224#endif
1225 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1226 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1227 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1228 }
1229
1230 pPGM->fA20Enabled = true;
1231 }
1232
1233 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1234 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1235 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1236
1237 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1238#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1239 true
1240#else
1241 false
1242#endif
1243 );
1244 AssertLogRelRCReturn(rc, rc);
1245
1246#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1247 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1248#else
1249 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1250#endif
1251 AssertLogRelRCReturn(rc, rc);
1252 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1253 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1254
1255 /*
1256 * Get the configured RAM size - to estimate saved state size.
1257 */
1258 uint64_t cbRam;
1259 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1260 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1261 cbRam = 0;
1262 else if (RT_SUCCESS(rc))
1263 {
1264 if (cbRam < PAGE_SIZE)
1265 cbRam = 0;
1266 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1267 }
1268 else
1269 {
1270 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1271 return rc;
1272 }
1273
1274 /*
1275 * Register callbacks, string formatters and the saved state data unit.
1276 */
1277#ifdef VBOX_STRICT
1278 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1279#endif
1280 PGMRegisterStringFormatTypes();
1281
1282 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1283 NULL, NULL, NULL,
1284 NULL, pgmR3Save, NULL,
1285 NULL, pgmR3Load, NULL);
1286 if (RT_FAILURE(rc))
1287 return rc;
1288
1289 /*
1290 * Initialize the PGM critical section and flush the phys TLBs
1291 */
1292 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1293 AssertRCReturn(rc, rc);
1294
1295 PGMR3PhysChunkInvalidateTLB(pVM);
1296 PGMPhysInvalidatePageR3MapTLB(pVM);
1297 PGMPhysInvalidatePageR0MapTLB(pVM);
1298 PGMPhysInvalidatePageGCMapTLB(pVM);
1299
1300 /*
1301 * For the time being we sport a full set of handy pages in addition to the base
1302 * memory to simplify things.
1303 */
1304 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1305 AssertRCReturn(rc, rc);
1306
1307 /*
1308 * Trees
1309 */
1310 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1311 if (RT_SUCCESS(rc))
1312 {
1313 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1314 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1315
1316 /*
1317 * Alocate the zero page.
1318 */
1319 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1320 }
1321 if (RT_SUCCESS(rc))
1322 {
1323 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1324 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1325 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1326 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1327
1328 /*
1329 * Init the paging.
1330 */
1331 rc = pgmR3InitPaging(pVM);
1332 }
1333 if (RT_SUCCESS(rc))
1334 {
1335 /*
1336 * Init the page pool.
1337 */
1338 rc = pgmR3PoolInit(pVM);
1339 }
1340 if (RT_SUCCESS(rc))
1341 {
1342 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1343 {
1344 PVMCPU pVCpu = &pVM->aCpus[i];
1345 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1346 if (RT_FAILURE(rc))
1347 break;
1348 }
1349 }
1350
1351 if (RT_SUCCESS(rc))
1352 {
1353 /*
1354 * Info & statistics
1355 */
1356 DBGFR3InfoRegisterInternal(pVM, "mode",
1357 "Shows the current paging mode. "
1358 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1359 pgmR3InfoMode);
1360 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1361 "Dumps all the entries in the top level paging table. No arguments.",
1362 pgmR3InfoCr3);
1363 DBGFR3InfoRegisterInternal(pVM, "phys",
1364 "Dumps all the physical address ranges. No arguments.",
1365 pgmR3PhysInfo);
1366 DBGFR3InfoRegisterInternal(pVM, "handlers",
1367 "Dumps physical, virtual and hyper virtual handlers. "
1368 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1369 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1370 pgmR3InfoHandlers);
1371 DBGFR3InfoRegisterInternal(pVM, "mappings",
1372 "Dumps guest mappings.",
1373 pgmR3MapInfo);
1374
1375 pgmR3InitStats(pVM);
1376
1377#ifdef VBOX_WITH_DEBUGGER
1378 /*
1379 * Debugger commands.
1380 */
1381 static bool s_fRegisteredCmds = false;
1382 if (!s_fRegisteredCmds)
1383 {
1384 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1385 if (RT_SUCCESS(rc))
1386 s_fRegisteredCmds = true;
1387 }
1388#endif
1389 return VINF_SUCCESS;
1390 }
1391
1392 /* Almost no cleanup necessary, MM frees all memory. */
1393 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1394
1395 return rc;
1396}
1397
1398
1399/**
1400 * Initializes the per-VCPU PGM.
1401 *
1402 * @returns VBox status code.
1403 * @param pVM The VM to operate on.
1404 */
1405VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1406{
1407 LogFlow(("PGMR3InitCPU\n"));
1408 return VINF_SUCCESS;
1409}
1410
1411
1412/**
1413 * Init paging.
1414 *
1415 * Since we need to check what mode the host is operating in before we can choose
1416 * the right paging functions for the host we have to delay this until R0 has
1417 * been initialized.
1418 *
1419 * @returns VBox status code.
1420 * @param pVM VM handle.
1421 */
1422static int pgmR3InitPaging(PVM pVM)
1423{
1424 /*
1425 * Force a recalculation of modes and switcher so everyone gets notified.
1426 */
1427 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1428 {
1429 PVMCPU pVCpu = &pVM->aCpus[i];
1430
1431 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1432 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1433 }
1434
1435 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1436
1437 /*
1438 * Allocate static mapping space for whatever the cr3 register
1439 * points to and in the case of PAE mode to the 4 PDs.
1440 */
1441 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1442 if (RT_FAILURE(rc))
1443 {
1444 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1445 return rc;
1446 }
1447 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1448
1449 /*
1450 * Allocate pages for the three possible intermediate contexts
1451 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1452 * for the sake of simplicity. The AMD64 uses the PAE for the
1453 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1454 *
1455 * We assume that two page tables will be enought for the core code
1456 * mappings (HC virtual and identity).
1457 */
1458 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1459 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1470
1471 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1472 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1473 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1474 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1475 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1476 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1477
1478 /*
1479 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1480 */
1481 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1482 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1483 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1484
1485 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1486 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1487
1488 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1489 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1490 {
1491 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1492 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1493 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1494 }
1495
1496 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1497 {
1498 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1499 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1500 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1501 }
1502
1503 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1504 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1505 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1506 | HCPhysInterPaePDPT64;
1507
1508 /*
1509 * Initialize paging workers and mode from current host mode
1510 * and the guest running in real mode.
1511 */
1512 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1513 switch (pVM->pgm.s.enmHostMode)
1514 {
1515 case SUPPAGINGMODE_32_BIT:
1516 case SUPPAGINGMODE_32_BIT_GLOBAL:
1517 case SUPPAGINGMODE_PAE:
1518 case SUPPAGINGMODE_PAE_GLOBAL:
1519 case SUPPAGINGMODE_PAE_NX:
1520 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1521 break;
1522
1523 case SUPPAGINGMODE_AMD64:
1524 case SUPPAGINGMODE_AMD64_GLOBAL:
1525 case SUPPAGINGMODE_AMD64_NX:
1526 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1527#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1528 if (ARCH_BITS != 64)
1529 {
1530 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1531 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1532 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1533 }
1534#endif
1535 break;
1536 default:
1537 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1538 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1539 }
1540 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1541 if (RT_SUCCESS(rc))
1542 {
1543 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1544#if HC_ARCH_BITS == 64
1545 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1546 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1547 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1548 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1549 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1550 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1551 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1552#endif
1553
1554 return VINF_SUCCESS;
1555 }
1556
1557 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1558 return rc;
1559}
1560
1561
1562/**
1563 * Init statistics
1564 */
1565static void pgmR3InitStats(PVM pVM)
1566{
1567 PPGM pPGM = &pVM->pgm.s;
1568 int rc;
1569
1570 /* Common - misc variables */
1571 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1572 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1573 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1574 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1575 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1576 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1577 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1578 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1579
1580#ifdef VBOX_WITH_STATISTICS
1581
1582# define PGM_REG_COUNTER(a, b, c) \
1583 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1584 AssertRC(rc);
1585
1586# define PGM_REG_COUNTER_BYTES(a, b, c) \
1587 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1588 AssertRC(rc);
1589
1590# define PGM_REG_PROFILE(a, b, c) \
1591 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1592 AssertRC(rc);
1593
1594 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1595 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1596 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1597 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1598 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1599 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1600 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1601 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1602 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1603 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1604
1605 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1606 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1607 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1608 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1609 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1610 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1611 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1612 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1613
1614 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1615 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1616 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1617 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1618
1619 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1620 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1621 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1622 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1623
1624 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1625 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1626/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1627 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1628 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1629/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1630
1631 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1632 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1633 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1634 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1635 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1636 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1637 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1638 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1639
1640 /* GC only: */
1641 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1642 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1643 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1644 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1645
1646 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1647 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1648 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1649 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1650 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1651 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1652 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1653 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1654
1655# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1656 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1657 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1658 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1659 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1660 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1661 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1662# endif
1663
1664# undef PGM_REG_COUNTER
1665# undef PGM_REG_PROFILE
1666#endif
1667
1668 /*
1669 * Note! The layout below matches the member layout exactly!
1670 */
1671
1672 /*
1673 * Common - stats
1674 */
1675 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1676 {
1677 PVMCPU pVCpu = &pVM->aCpus[i];
1678 PPGMCPU pPGM = &pVCpu->pgm.s;
1679
1680#define PGM_REG_COUNTER(a, b, c) \
1681 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1682 AssertRC(rc);
1683#define PGM_REG_PROFILE(a, b, c) \
1684 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1685 AssertRC(rc);
1686
1687 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1688
1689#ifdef VBOX_WITH_STATISTICS
1690
1691# if 0 /* rarely useful; leave for debugging. */
1692 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1693 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1694 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1695 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1696 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1697 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1698# endif
1699 /* R0 only: */
1700 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1701 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1702 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1703 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1704 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1705 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1706 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1707 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1708 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1709 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1710 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1711 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1712 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1713 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1714 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1715 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1716 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1717 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1718 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1719 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1720 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1721 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1722 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1723 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1724 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1725 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1726 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1727 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1728 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1729 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1730 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1731 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1732 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1733 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1734 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1735 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1736
1737 /* RZ only: */
1738 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1739 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1740 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1741 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1742 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1743 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1744 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1745 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1746 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1747 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1748 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1749 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1750 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1751 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1752 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1753 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1754 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1755 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1756 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1757 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1758 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1759 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1760 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1761 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1762 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1763 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1764 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1765 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1766 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1767 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1768 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1769 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1770 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1771 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1772 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1773 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1774 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1775 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1776 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1777 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1778 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1779 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1780 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1781#if 0 /* rarely useful; leave for debugging. */
1782 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1783 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1784 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1785#endif
1786 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1787 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1788 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1789 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1790 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1791
1792 /* HC only: */
1793
1794 /* RZ & R3: */
1795 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1796 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1797 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1798 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1799 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1800 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1801 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1802 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1803 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1804 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1805 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1806 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1807 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1808 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1809 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1810 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1811 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1812 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1813 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1814 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1815 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1816 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1817 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageStale, "/PGM/CPU%d/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1818 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1819 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1820 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1821 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1822 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1823 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1824 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1825 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1826 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1827 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1828 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1829 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1830 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1831 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1832 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%d/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1833 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%d/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1834 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1835 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1836 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1837 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1838 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1839 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1840 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1841
1842 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1843 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1844 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1845 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1846 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1847 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1848 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1849 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1850 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1851 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1852 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1853 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1854 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1855 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1856 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1857 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1858 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1859 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1860 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1861 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1862 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1863 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1864 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1865 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1866 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1867 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1868 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1869 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1870 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1871 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1872 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1873 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1874 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1875 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1876 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1877 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1878 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1879 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1880 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1881 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1882 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1883 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1884 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1885#endif /* VBOX_WITH_STATISTICS */
1886
1887#undef PGM_REG_PROFILE
1888#undef PGM_REG_COUNTER
1889
1890 }
1891}
1892
1893
1894/**
1895 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1896 *
1897 * The dynamic mapping area will also be allocated and initialized at this
1898 * time. We could allocate it during PGMR3Init of course, but the mapping
1899 * wouldn't be allocated at that time preventing us from setting up the
1900 * page table entries with the dummy page.
1901 *
1902 * @returns VBox status code.
1903 * @param pVM VM handle.
1904 */
1905VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1906{
1907 RTGCPTR GCPtr;
1908 int rc;
1909
1910 /*
1911 * Reserve space for the dynamic mappings.
1912 */
1913 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1914 if (RT_SUCCESS(rc))
1915 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1916
1917 if ( RT_SUCCESS(rc)
1918 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1919 {
1920 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1921 if (RT_SUCCESS(rc))
1922 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1923 }
1924 if (RT_SUCCESS(rc))
1925 {
1926 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1927 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1928 }
1929 return rc;
1930}
1931
1932
1933/**
1934 * Ring-3 init finalizing.
1935 *
1936 * @returns VBox status code.
1937 * @param pVM The VM handle.
1938 */
1939VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1940{
1941 int rc;
1942
1943 /*
1944 * Reserve space for the dynamic mappings.
1945 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1946 */
1947 /* get the pointer to the page table entries. */
1948 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1949 AssertRelease(pMapping);
1950 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1951 const unsigned iPT = off >> X86_PD_SHIFT;
1952 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1953 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1954 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1955
1956 /* init cache */
1957 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1958 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1959 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1960
1961 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1962 {
1963 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1964 AssertRCReturn(rc, rc);
1965 }
1966
1967 /*
1968 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1969 * Intel only goes up to 36 bits, so we stick to 36 as well.
1970 */
1971 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1972 uint32_t u32Dummy, u32Features;
1973 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1974
1975 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1976 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1977 else
1978 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1979
1980 /*
1981 * Allocate memory if we're supposed to do that.
1982 */
1983 if (pVM->pgm.s.fRamPreAlloc)
1984 rc = pgmR3PhysRamPreAllocate(pVM);
1985
1986 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1987 return rc;
1988}
1989
1990
1991/**
1992 * Applies relocations to data and code managed by this component.
1993 *
1994 * This function will be called at init and whenever the VMM need to relocate it
1995 * self inside the GC.
1996 *
1997 * @param pVM The VM.
1998 * @param offDelta Relocation delta relative to old location.
1999 */
2000VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2001{
2002 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2003
2004 /*
2005 * Paging stuff.
2006 */
2007 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2008
2009 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2010
2011 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2012 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2013 {
2014 PVMCPU pVCpu = &pVM->aCpus[i];
2015
2016 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2017
2018 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2019 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2020 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2021 }
2022
2023 /*
2024 * Trees.
2025 */
2026 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2027
2028 /*
2029 * Ram ranges.
2030 */
2031 if (pVM->pgm.s.pRamRangesR3)
2032 {
2033 /* Update the pSelfRC pointers and relink them. */
2034 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2035 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2036 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2037 pgmR3PhysRelinkRamRanges(pVM);
2038 }
2039
2040 /*
2041 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2042 * be mapped and thus not included in the above exercise.
2043 */
2044 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2045 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2046 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2047
2048 /*
2049 * Update the two page directories with all page table mappings.
2050 * (One or more of them have changed, that's why we're here.)
2051 */
2052 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2053 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2054 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2055
2056 /* Relocate GC addresses of Page Tables. */
2057 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2058 {
2059 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2060 {
2061 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2062 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2063 }
2064 }
2065
2066 /*
2067 * Dynamic page mapping area.
2068 */
2069 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2070 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2071 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2072
2073 /*
2074 * The Zero page.
2075 */
2076 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2077#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2078 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2079#else
2080 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2081#endif
2082
2083 /*
2084 * Physical and virtual handlers.
2085 */
2086 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2087 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2088 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2089
2090 /*
2091 * The page pool.
2092 */
2093 pgmR3PoolRelocate(pVM);
2094}
2095
2096
2097/**
2098 * Callback function for relocating a physical access handler.
2099 *
2100 * @returns 0 (continue enum)
2101 * @param pNode Pointer to a PGMPHYSHANDLER node.
2102 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2103 * not certain the delta will fit in a void pointer for all possible configs.
2104 */
2105static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2106{
2107 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2108 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2109 if (pHandler->pfnHandlerRC)
2110 pHandler->pfnHandlerRC += offDelta;
2111 if (pHandler->pvUserRC >= 0x10000)
2112 pHandler->pvUserRC += offDelta;
2113 return 0;
2114}
2115
2116
2117/**
2118 * Callback function for relocating a virtual access handler.
2119 *
2120 * @returns 0 (continue enum)
2121 * @param pNode Pointer to a PGMVIRTHANDLER node.
2122 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2123 * not certain the delta will fit in a void pointer for all possible configs.
2124 */
2125static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2126{
2127 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2128 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2129 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2130 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2131 Assert(pHandler->pfnHandlerRC);
2132 pHandler->pfnHandlerRC += offDelta;
2133 return 0;
2134}
2135
2136
2137/**
2138 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2139 *
2140 * @returns 0 (continue enum)
2141 * @param pNode Pointer to a PGMVIRTHANDLER node.
2142 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2143 * not certain the delta will fit in a void pointer for all possible configs.
2144 */
2145static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2146{
2147 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2148 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2149 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2150 Assert(pHandler->pfnHandlerRC);
2151 pHandler->pfnHandlerRC += offDelta;
2152 return 0;
2153}
2154
2155
2156/**
2157 * The VM is being reset.
2158 *
2159 * For the PGM component this means that any PD write monitors
2160 * needs to be removed.
2161 *
2162 * @param pVM VM handle.
2163 */
2164VMMR3DECL(void) PGMR3Reset(PVM pVM)
2165{
2166 int rc;
2167
2168 LogFlow(("PGMR3Reset:\n"));
2169 VM_ASSERT_EMT(pVM);
2170
2171 pgmLock(pVM);
2172
2173 /*
2174 * Unfix any fixed mappings and disable CR3 monitoring.
2175 */
2176 pVM->pgm.s.fMappingsFixed = false;
2177 pVM->pgm.s.GCPtrMappingFixed = 0;
2178 pVM->pgm.s.cbMappingFixed = 0;
2179
2180 /* Exit the guest paging mode before the pgm pool gets reset.
2181 * Important to clean up the amd64 case.
2182 */
2183 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2184 {
2185 PVMCPU pVCpu = &pVM->aCpus[i];
2186 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2187 AssertRC(rc);
2188 }
2189
2190#ifdef DEBUG
2191 DBGFR3InfoLog(pVM, "mappings", NULL);
2192 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2193#endif
2194
2195 /*
2196 * Switch mode back to real mode. (before resetting the pgm pool!)
2197 */
2198 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2199 {
2200 PVMCPU pVCpu = &pVM->aCpus[i];
2201
2202 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2203 AssertRC(rc);
2204
2205 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2206 }
2207
2208 /*
2209 * Reset the shadow page pool.
2210 */
2211 pgmR3PoolReset(pVM);
2212
2213 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2214 {
2215 PVMCPU pVCpu = &pVM->aCpus[i];
2216
2217 /*
2218 * Re-init other members.
2219 */
2220 pVCpu->pgm.s.fA20Enabled = true;
2221
2222 /*
2223 * Clear the FFs PGM owns.
2224 */
2225 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2226 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2227 }
2228
2229 /*
2230 * Reset (zero) RAM pages.
2231 */
2232 rc = pgmR3PhysRamReset(pVM);
2233 if (RT_SUCCESS(rc))
2234 {
2235 /*
2236 * Reset (zero) shadow ROM pages.
2237 */
2238 rc = pgmR3PhysRomReset(pVM);
2239 }
2240
2241 pgmUnlock(pVM);
2242 //return rc;
2243 AssertReleaseRC(rc);
2244}
2245
2246
2247#ifdef VBOX_STRICT
2248/**
2249 * VM state change callback for clearing fNoMorePhysWrites after
2250 * a snapshot has been created.
2251 */
2252static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2253{
2254 if (enmState == VMSTATE_RUNNING)
2255 pVM->pgm.s.fNoMorePhysWrites = false;
2256}
2257#endif
2258
2259
2260/**
2261 * Terminates the PGM.
2262 *
2263 * @returns VBox status code.
2264 * @param pVM Pointer to VM structure.
2265 */
2266VMMR3DECL(int) PGMR3Term(PVM pVM)
2267{
2268 PGMDeregisterStringFormatTypes();
2269 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2270}
2271
2272
2273/**
2274 * Terminates the per-VCPU PGM.
2275 *
2276 * Termination means cleaning up and freeing all resources,
2277 * the VM it self is at this point powered off or suspended.
2278 *
2279 * @returns VBox status code.
2280 * @param pVM The VM to operate on.
2281 */
2282VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2283{
2284 return 0;
2285}
2286
2287
2288/**
2289 * Find the ROM tracking structure for the given page.
2290 *
2291 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2292 * that it's a ROM page.
2293 * @param pVM The VM handle.
2294 * @param GCPhys The address of the ROM page.
2295 */
2296static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2297{
2298 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2299 pRomRange;
2300 pRomRange = pRomRange->CTX_SUFF(pNext))
2301 {
2302 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2303 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2304 return &pRomRange->aPages[off >> PAGE_SHIFT];
2305 }
2306 return NULL;
2307}
2308
2309
2310/**
2311 * Save zero indicator + bits for the specified page.
2312 *
2313 * @returns VBox status code, errors are logged/asserted before returning.
2314 * @param pVM The VM handle.
2315 * @param pSSH The saved state handle.
2316 * @param pPage The page to save.
2317 * @param GCPhys The address of the page.
2318 * @param pRam The ram range (for error logging).
2319 */
2320static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2321{
2322 int rc;
2323 if (PGM_PAGE_IS_ZERO(pPage))
2324 rc = SSMR3PutU8(pSSM, 0);
2325 else
2326 {
2327 void const *pvPage;
2328 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2329 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2330
2331 SSMR3PutU8(pSSM, 1);
2332 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2333 }
2334 return rc;
2335}
2336
2337
2338/**
2339 * Save a shadowed ROM page.
2340 *
2341 * Format: Type, protection, and two pages with zero indicators.
2342 *
2343 * @returns VBox status code, errors are logged/asserted before returning.
2344 * @param pVM The VM handle.
2345 * @param pSSH The saved state handle.
2346 * @param pPage The page to save.
2347 * @param GCPhys The address of the page.
2348 * @param pRam The ram range (for error logging).
2349 */
2350static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2351{
2352 /* Need to save both pages and the current state. */
2353 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2354 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2355
2356 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2357 SSMR3PutU8(pSSM, pRomPage->enmProt);
2358
2359 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2360 if (RT_SUCCESS(rc))
2361 {
2362 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2363 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2364 }
2365 return rc;
2366}
2367
2368/** PGM fields to save/load. */
2369static const SSMFIELD s_aPGMFields[] =
2370{
2371 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2372 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2373 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2374 SSMFIELD_ENTRY_TERM()
2375};
2376
2377static const SSMFIELD s_aPGMCpuFields[] =
2378{
2379 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2380 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2381 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2382 SSMFIELD_ENTRY_TERM()
2383};
2384
2385/* For loading old saved states. (pre-smp) */
2386typedef struct
2387{
2388 /** If set no conflict checks are required. (boolean) */
2389 bool fMappingsFixed;
2390 /** Size of fixed mapping */
2391 uint32_t cbMappingFixed;
2392 /** Base address (GC) of fixed mapping */
2393 RTGCPTR GCPtrMappingFixed;
2394 /** A20 gate mask.
2395 * Our current approach to A20 emulation is to let REM do it and don't bother
2396 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2397 * But whould need arrise, we'll subject physical addresses to this mask. */
2398 RTGCPHYS GCPhysA20Mask;
2399 /** A20 gate state - boolean! */
2400 bool fA20Enabled;
2401 /** The guest paging mode. */
2402 PGMMODE enmGuestMode;
2403} PGMOLD;
2404
2405static const SSMFIELD s_aPGMFields_Old[] =
2406{
2407 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2408 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2409 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2410 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2411 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2412 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2413 SSMFIELD_ENTRY_TERM()
2414};
2415
2416
2417/**
2418 * Execute state save operation.
2419 *
2420 * @returns VBox status code.
2421 * @param pVM VM Handle.
2422 * @param pSSM SSM operation handle.
2423 */
2424static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2425{
2426 int rc;
2427 unsigned i;
2428 PPGM pPGM = &pVM->pgm.s;
2429
2430 /*
2431 * Lock PGM and set the no-more-writes indicator.
2432 */
2433 pgmLock(pVM);
2434 pVM->pgm.s.fNoMorePhysWrites = true;
2435
2436 /*
2437 * Save basic data (required / unaffected by relocation).
2438 */
2439 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2440
2441 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2442 {
2443 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2444 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2445 }
2446
2447 /*
2448 * The guest mappings.
2449 */
2450 i = 0;
2451 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2452 {
2453 SSMR3PutU32( pSSM, i);
2454 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2455 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2456 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2457 }
2458 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2459
2460 /*
2461 * Ram ranges and the memory they describe.
2462 */
2463 i = 0;
2464 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2465 {
2466 /*
2467 * Save the ram range details.
2468 */
2469 SSMR3PutU32(pSSM, i);
2470 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2471 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2472 SSMR3PutGCPhys(pSSM, pRam->cb);
2473 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2474 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2475
2476 /*
2477 * Iterate the pages, only two special case.
2478 */
2479 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2480 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2481 {
2482 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2483 PPGMPAGE pPage = &pRam->aPages[iPage];
2484 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2485
2486 if (uType == PGMPAGETYPE_ROM_SHADOW)
2487 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2488 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2489 {
2490 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2491 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2492 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2493 }
2494 else
2495 {
2496 SSMR3PutU8(pSSM, uType);
2497 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2498 }
2499 if (RT_FAILURE(rc))
2500 break;
2501 }
2502 if (RT_FAILURE(rc))
2503 break;
2504 }
2505
2506 pgmUnlock(pVM);
2507 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2508}
2509
2510
2511/**
2512 * Load an ignored page.
2513 *
2514 * @returns VBox status code.
2515 * @param pSSM The saved state handle.
2516 */
2517static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2518{
2519 uint8_t abPage[PAGE_SIZE];
2520 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2521}
2522
2523
2524/**
2525 * Loads a page without any bits in the saved state, i.e. making sure it's
2526 * really zero.
2527 *
2528 * @returns VBox status code.
2529 * @param pVM The VM handle.
2530 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2531 * state).
2532 * @param pPage The guest page tracking structure.
2533 * @param GCPhys The page address.
2534 * @param pRam The ram range (logging).
2535 */
2536static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2537{
2538 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2539 && uType != PGMPAGETYPE_INVALID)
2540 return VERR_SSM_UNEXPECTED_DATA;
2541
2542 /* I think this should be sufficient. */
2543 if (!PGM_PAGE_IS_ZERO(pPage))
2544 return VERR_SSM_UNEXPECTED_DATA;
2545
2546 NOREF(pVM);
2547 NOREF(GCPhys);
2548 NOREF(pRam);
2549 return VINF_SUCCESS;
2550}
2551
2552
2553/**
2554 * Loads a page from the saved state.
2555 *
2556 * @returns VBox status code.
2557 * @param pVM The VM handle.
2558 * @param pSSM The SSM handle.
2559 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2560 * state).
2561 * @param pPage The guest page tracking structure.
2562 * @param GCPhys The page address.
2563 * @param pRam The ram range (logging).
2564 */
2565static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2566{
2567 int rc;
2568
2569 /*
2570 * Match up the type, dealing with MMIO2 aliases (dropped).
2571 */
2572 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2573 || uType == PGMPAGETYPE_INVALID,
2574 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2575 VERR_SSM_UNEXPECTED_DATA);
2576
2577 /*
2578 * Load the page.
2579 */
2580 void *pvPage;
2581 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2582 if (RT_SUCCESS(rc))
2583 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2584
2585 return rc;
2586}
2587
2588
2589/**
2590 * Loads a page (counter part to pgmR3SavePage).
2591 *
2592 * @returns VBox status code, fully bitched errors.
2593 * @param pVM The VM handle.
2594 * @param pSSM The SSM handle.
2595 * @param uType The page type.
2596 * @param pPage The page.
2597 * @param GCPhys The page address.
2598 * @param pRam The RAM range (for error messages).
2599 */
2600static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2601{
2602 uint8_t uState;
2603 int rc = SSMR3GetU8(pSSM, &uState);
2604 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2605 if (uState == 0 /* zero */)
2606 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2607 else if (uState == 1)
2608 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2609 else
2610 rc = VERR_INTERNAL_ERROR;
2611 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2612 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2613 rc);
2614 return VINF_SUCCESS;
2615}
2616
2617
2618/**
2619 * Loads a shadowed ROM page.
2620 *
2621 * @returns VBox status code, errors are fully bitched.
2622 * @param pVM The VM handle.
2623 * @param pSSM The saved state handle.
2624 * @param pPage The page.
2625 * @param GCPhys The page address.
2626 * @param pRam The RAM range (for error messages).
2627 */
2628static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2629{
2630 /*
2631 * Load and set the protection first, then load the two pages, the first
2632 * one is the active the other is the passive.
2633 */
2634 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2635 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2636
2637 uint8_t uProt;
2638 int rc = SSMR3GetU8(pSSM, &uProt);
2639 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2640 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2641 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2642 && enmProt < PGMROMPROT_END,
2643 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2644 VERR_SSM_UNEXPECTED_DATA);
2645
2646 if (pRomPage->enmProt != enmProt)
2647 {
2648 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2649 AssertLogRelRCReturn(rc, rc);
2650 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2651 }
2652
2653 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2654 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2655 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2656 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2657
2658 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2659 if (RT_SUCCESS(rc))
2660 {
2661 *pPageActive = *pPage;
2662 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2663 }
2664 return rc;
2665}
2666
2667
2668/**
2669 * Worker for pgmR3Load.
2670 *
2671 * @returns VBox status code.
2672 *
2673 * @param pVM The VM handle.
2674 * @param pSSM The SSM handle.
2675 * @param uVersion The saved state version.
2676 */
2677static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2678{
2679 PPGM pPGM = &pVM->pgm.s;
2680 int rc;
2681 uint32_t u32Sep;
2682
2683 /*
2684 * Load basic data (required / unaffected by relocation).
2685 */
2686 if (uVersion >= PGM_SAVED_STATE_VERSION)
2687 {
2688 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2689 AssertLogRelRCReturn(rc, rc);
2690
2691 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2692 {
2693 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2694 AssertLogRelRCReturn(rc, rc);
2695 }
2696 }
2697 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2698 {
2699 AssertRelease(pVM->cCpus == 1);
2700
2701 PGMOLD pgmOld;
2702 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2703 AssertLogRelRCReturn(rc, rc);
2704
2705 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2706 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2707 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2708
2709 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2710 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2711 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2712 }
2713 else
2714 {
2715 AssertRelease(pVM->cCpus == 1);
2716
2717 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2718 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2719 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2720
2721 uint32_t cbRamSizeIgnored;
2722 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2723 if (RT_FAILURE(rc))
2724 return rc;
2725 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2726
2727 uint32_t u32 = 0;
2728 SSMR3GetUInt(pSSM, &u32);
2729 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2730 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2731 RTUINT uGuestMode;
2732 SSMR3GetUInt(pSSM, &uGuestMode);
2733 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2734
2735 /* check separator. */
2736 SSMR3GetU32(pSSM, &u32Sep);
2737 if (RT_FAILURE(rc))
2738 return rc;
2739 if (u32Sep != (uint32_t)~0)
2740 {
2741 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2742 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2743 }
2744 }
2745
2746 /*
2747 * The guest mappings.
2748 */
2749 uint32_t i = 0;
2750 for (;; i++)
2751 {
2752 /* Check the seqence number / separator. */
2753 rc = SSMR3GetU32(pSSM, &u32Sep);
2754 if (RT_FAILURE(rc))
2755 return rc;
2756 if (u32Sep == ~0U)
2757 break;
2758 if (u32Sep != i)
2759 {
2760 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2761 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2762 }
2763
2764 /* get the mapping details. */
2765 char szDesc[256];
2766 szDesc[0] = '\0';
2767 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2768 if (RT_FAILURE(rc))
2769 return rc;
2770 RTGCPTR GCPtr;
2771 SSMR3GetGCPtr(pSSM, &GCPtr);
2772 RTGCPTR cPTs;
2773 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2774 if (RT_FAILURE(rc))
2775 return rc;
2776
2777 /* find matching range. */
2778 PPGMMAPPING pMapping;
2779 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2780 if ( pMapping->cPTs == cPTs
2781 && !strcmp(pMapping->pszDesc, szDesc))
2782 break;
2783 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2784 cPTs, szDesc, GCPtr),
2785 VERR_SSM_LOAD_CONFIG_MISMATCH);
2786
2787 /* relocate it. */
2788 if (pMapping->GCPtr != GCPtr)
2789 {
2790 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2791 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2792 }
2793 else
2794 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2795 }
2796
2797 /*
2798 * Ram range flags and bits.
2799 */
2800 i = 0;
2801 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2802 {
2803 /* Check the seqence number / separator. */
2804 rc = SSMR3GetU32(pSSM, &u32Sep);
2805 if (RT_FAILURE(rc))
2806 return rc;
2807 if (u32Sep == ~0U)
2808 break;
2809 if (u32Sep != i)
2810 {
2811 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2812 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2813 }
2814 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2815
2816 /* Get the range details. */
2817 RTGCPHYS GCPhys;
2818 SSMR3GetGCPhys(pSSM, &GCPhys);
2819 RTGCPHYS GCPhysLast;
2820 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2821 RTGCPHYS cb;
2822 SSMR3GetGCPhys(pSSM, &cb);
2823 uint8_t fHaveBits;
2824 rc = SSMR3GetU8(pSSM, &fHaveBits);
2825 if (RT_FAILURE(rc))
2826 return rc;
2827 if (fHaveBits & ~1)
2828 {
2829 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2830 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2831 }
2832 size_t cchDesc = 0;
2833 char szDesc[256];
2834 szDesc[0] = '\0';
2835 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2836 {
2837 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2838 if (RT_FAILURE(rc))
2839 return rc;
2840 /* Since we've modified the description strings in r45878, only compare
2841 them if the saved state is more recent. */
2842 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2843 cchDesc = strlen(szDesc);
2844 }
2845
2846 /*
2847 * Match it up with the current range.
2848 *
2849 * Note there is a hack for dealing with the high BIOS mapping
2850 * in the old saved state format, this means we might not have
2851 * a 1:1 match on success.
2852 */
2853 if ( ( GCPhys != pRam->GCPhys
2854 || GCPhysLast != pRam->GCPhysLast
2855 || cb != pRam->cb
2856 || ( cchDesc
2857 && strcmp(szDesc, pRam->pszDesc)) )
2858 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2859 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2860 || GCPhys != UINT32_C(0xfff80000)
2861 || GCPhysLast != UINT32_C(0xffffffff)
2862 || pRam->GCPhysLast != GCPhysLast
2863 || pRam->GCPhys < GCPhys
2864 || !fHaveBits)
2865 )
2866 {
2867 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2868 "State : %RGp-%RGp %RGp bytes %s %s\n",
2869 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2870 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2871 /*
2872 * If we're loading a state for debugging purpose, don't make a fuss if
2873 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2874 */
2875 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2876 || GCPhys < 8 * _1M)
2877 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2878
2879 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2880 continue;
2881 }
2882
2883 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2884 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2885 {
2886 /*
2887 * Load the pages one by one.
2888 */
2889 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2890 {
2891 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2892 PPGMPAGE pPage = &pRam->aPages[iPage];
2893 uint8_t uType;
2894 rc = SSMR3GetU8(pSSM, &uType);
2895 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2896 if (uType == PGMPAGETYPE_ROM_SHADOW)
2897 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2898 else
2899 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2900 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2901 }
2902 }
2903 else
2904 {
2905 /*
2906 * Old format.
2907 */
2908 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2909
2910 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2911 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2912 uint32_t fFlags = 0;
2913 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2914 {
2915 uint16_t u16Flags;
2916 rc = SSMR3GetU16(pSSM, &u16Flags);
2917 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2918 fFlags |= u16Flags;
2919 }
2920
2921 /* Load the bits */
2922 if ( !fHaveBits
2923 && GCPhysLast < UINT32_C(0xe0000000))
2924 {
2925 /*
2926 * Dynamic chunks.
2927 */
2928 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2929 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2930 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2931 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2932
2933 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2934 {
2935 uint8_t fPresent;
2936 rc = SSMR3GetU8(pSSM, &fPresent);
2937 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2938 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2939 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2940 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2941
2942 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2943 {
2944 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2945 PPGMPAGE pPage = &pRam->aPages[iPage];
2946 if (fPresent)
2947 {
2948 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2949 rc = pgmR3LoadPageToDevNull(pSSM);
2950 else
2951 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2952 }
2953 else
2954 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2955 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2956 }
2957 }
2958 }
2959 else if (pRam->pvR3)
2960 {
2961 /*
2962 * MMIO2.
2963 */
2964 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2965 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2966 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2967 AssertLogRelMsgReturn(pRam->pvR3,
2968 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2969 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2970
2971 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2972 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2973 }
2974 else if (GCPhysLast < UINT32_C(0xfff80000))
2975 {
2976 /*
2977 * PCI MMIO, no pages saved.
2978 */
2979 }
2980 else
2981 {
2982 /*
2983 * Load the 0xfff80000..0xffffffff BIOS range.
2984 * It starts with X reserved pages that we have to skip over since
2985 * the RAMRANGE create by the new code won't include those.
2986 */
2987 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2988 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2989 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2990 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2991 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2992 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2993 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2994
2995 /* Skip wasted reserved pages before the ROM. */
2996 while (GCPhys < pRam->GCPhys)
2997 {
2998 rc = pgmR3LoadPageToDevNull(pSSM);
2999 GCPhys += PAGE_SIZE;
3000 }
3001
3002 /* Load the bios pages. */
3003 cPages = pRam->cb >> PAGE_SHIFT;
3004 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3005 {
3006 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
3007 PPGMPAGE pPage = &pRam->aPages[iPage];
3008
3009 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
3010 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
3011 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3012 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
3013 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3014 }
3015 }
3016 }
3017 }
3018
3019 return rc;
3020}
3021
3022
3023/**
3024 * Execute state load operation.
3025 *
3026 * @returns VBox status code.
3027 * @param pVM VM Handle.
3028 * @param pSSM SSM operation handle.
3029 * @param uVersion Data layout version.
3030 * @param uPass The data pass.
3031 */
3032static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3033{
3034 int rc;
3035 PPGM pPGM = &pVM->pgm.s;
3036 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3037
3038 /*
3039 * Validate version.
3040 */
3041 if ( uVersion != PGM_SAVED_STATE_VERSION
3042 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3043 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3044 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3045 {
3046 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3047 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3048 }
3049
3050 /*
3051 * Call the reset function to make sure all the memory is cleared.
3052 */
3053 PGMR3Reset(pVM);
3054
3055 /*
3056 * Do the loading while owning the lock because a bunch of the functions
3057 * we're using requires this.
3058 */
3059 pgmLock(pVM);
3060 rc = pgmR3LoadLocked(pVM, pSSM, uVersion);
3061 pgmUnlock(pVM);
3062 if (RT_SUCCESS(rc))
3063 {
3064 /*
3065 * We require a full resync now.
3066 */
3067 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3068 {
3069 PVMCPU pVCpu = &pVM->aCpus[i];
3070 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3071 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3072
3073 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3074 }
3075
3076 pgmR3HandlerPhysicalUpdateAll(pVM);
3077
3078 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3079 {
3080 PVMCPU pVCpu = &pVM->aCpus[i];
3081
3082 /*
3083 * Change the paging mode.
3084 */
3085 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3086
3087 /* Restore pVM->pgm.s.GCPhysCR3. */
3088 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3089 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3090 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3091 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3092 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3093 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3094 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3095 else
3096 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3097 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3098 }
3099 }
3100
3101 return rc;
3102}
3103
3104
3105/**
3106 * Show paging mode.
3107 *
3108 * @param pVM VM Handle.
3109 * @param pHlp The info helpers.
3110 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3111 */
3112static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3113{
3114 /* digest argument. */
3115 bool fGuest, fShadow, fHost;
3116 if (pszArgs)
3117 pszArgs = RTStrStripL(pszArgs);
3118 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3119 fShadow = fHost = fGuest = true;
3120 else
3121 {
3122 fShadow = fHost = fGuest = false;
3123 if (strstr(pszArgs, "guest"))
3124 fGuest = true;
3125 if (strstr(pszArgs, "shadow"))
3126 fShadow = true;
3127 if (strstr(pszArgs, "host"))
3128 fHost = true;
3129 }
3130
3131 /** @todo SMP support! */
3132 /* print info. */
3133 if (fGuest)
3134 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3135 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3136 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3137 if (fShadow)
3138 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3139 if (fHost)
3140 {
3141 const char *psz;
3142 switch (pVM->pgm.s.enmHostMode)
3143 {
3144 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3145 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3146 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3147 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3148 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3149 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3150 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3151 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3152 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3153 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3154 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3155 default: psz = "unknown"; break;
3156 }
3157 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3158 }
3159}
3160
3161
3162/**
3163 * Dump registered MMIO ranges to the log.
3164 *
3165 * @param pVM VM Handle.
3166 * @param pHlp The info helpers.
3167 * @param pszArgs Arguments, ignored.
3168 */
3169static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3170{
3171 NOREF(pszArgs);
3172 pHlp->pfnPrintf(pHlp,
3173 "RAM ranges (pVM=%p)\n"
3174 "%.*s %.*s\n",
3175 pVM,
3176 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3177 sizeof(RTHCPTR) * 2, "pvHC ");
3178
3179 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3180 pHlp->pfnPrintf(pHlp,
3181 "%RGp-%RGp %RHv %s\n",
3182 pCur->GCPhys,
3183 pCur->GCPhysLast,
3184 pCur->pvR3,
3185 pCur->pszDesc);
3186}
3187
3188/**
3189 * Dump the page directory to the log.
3190 *
3191 * @param pVM VM Handle.
3192 * @param pHlp The info helpers.
3193 * @param pszArgs Arguments, ignored.
3194 */
3195static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3196{
3197 /** @todo SMP support!! */
3198 PVMCPU pVCpu = &pVM->aCpus[0];
3199
3200/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3201 /* Big pages supported? */
3202 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3203
3204 /* Global pages supported? */
3205 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3206
3207 NOREF(pszArgs);
3208
3209 /*
3210 * Get page directory addresses.
3211 */
3212 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3213 Assert(pPDSrc);
3214 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3215
3216 /*
3217 * Iterate the page directory.
3218 */
3219 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3220 {
3221 X86PDE PdeSrc = pPDSrc->a[iPD];
3222 if (PdeSrc.n.u1Present)
3223 {
3224 if (PdeSrc.b.u1Size && fPSE)
3225 pHlp->pfnPrintf(pHlp,
3226 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3227 iPD,
3228 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3229 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3230 else
3231 pHlp->pfnPrintf(pHlp,
3232 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3233 iPD,
3234 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3235 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3236 }
3237 }
3238}
3239
3240
3241/**
3242 * Service a VMMCALLRING3_PGM_LOCK call.
3243 *
3244 * @returns VBox status code.
3245 * @param pVM The VM handle.
3246 */
3247VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3248{
3249 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3250 AssertRC(rc);
3251 return rc;
3252}
3253
3254
3255/**
3256 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3257 *
3258 * @returns PGM_TYPE_*.
3259 * @param pgmMode The mode value to convert.
3260 */
3261DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3262{
3263 switch (pgmMode)
3264 {
3265 case PGMMODE_REAL: return PGM_TYPE_REAL;
3266 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3267 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3268 case PGMMODE_PAE:
3269 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3270 case PGMMODE_AMD64:
3271 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3272 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3273 case PGMMODE_EPT: return PGM_TYPE_EPT;
3274 default:
3275 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3276 }
3277}
3278
3279
3280/**
3281 * Gets the index into the paging mode data array of a SHW+GST mode.
3282 *
3283 * @returns PGM::paPagingData index.
3284 * @param uShwType The shadow paging mode type.
3285 * @param uGstType The guest paging mode type.
3286 */
3287DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3288{
3289 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3290 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3291 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3292 + (uGstType - PGM_TYPE_REAL);
3293}
3294
3295
3296/**
3297 * Gets the index into the paging mode data array of a SHW+GST mode.
3298 *
3299 * @returns PGM::paPagingData index.
3300 * @param enmShw The shadow paging mode.
3301 * @param enmGst The guest paging mode.
3302 */
3303DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3304{
3305 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3306 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3307 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3308}
3309
3310
3311/**
3312 * Calculates the max data index.
3313 * @returns The number of entries in the paging data array.
3314 */
3315DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3316{
3317 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3318}
3319
3320
3321/**
3322 * Initializes the paging mode data kept in PGM::paModeData.
3323 *
3324 * @param pVM The VM handle.
3325 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3326 * This is used early in the init process to avoid trouble with PDM
3327 * not being initialized yet.
3328 */
3329static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3330{
3331 PPGMMODEDATA pModeData;
3332 int rc;
3333
3334 /*
3335 * Allocate the array on the first call.
3336 */
3337 if (!pVM->pgm.s.paModeData)
3338 {
3339 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3340 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3341 }
3342
3343 /*
3344 * Initialize the array entries.
3345 */
3346 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3347 pModeData->uShwType = PGM_TYPE_32BIT;
3348 pModeData->uGstType = PGM_TYPE_REAL;
3349 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3350 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3351 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3352
3353 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3354 pModeData->uShwType = PGM_TYPE_32BIT;
3355 pModeData->uGstType = PGM_TYPE_PROT;
3356 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3357 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3358 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3359
3360 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3361 pModeData->uShwType = PGM_TYPE_32BIT;
3362 pModeData->uGstType = PGM_TYPE_32BIT;
3363 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3364 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3365 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3366
3367 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3368 pModeData->uShwType = PGM_TYPE_PAE;
3369 pModeData->uGstType = PGM_TYPE_REAL;
3370 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3371 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3372 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3373
3374 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3375 pModeData->uShwType = PGM_TYPE_PAE;
3376 pModeData->uGstType = PGM_TYPE_PROT;
3377 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3378 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3379 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3380
3381 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3382 pModeData->uShwType = PGM_TYPE_PAE;
3383 pModeData->uGstType = PGM_TYPE_32BIT;
3384 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3385 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3386 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3387
3388 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3389 pModeData->uShwType = PGM_TYPE_PAE;
3390 pModeData->uGstType = PGM_TYPE_PAE;
3391 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3392 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3393 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3394
3395#ifdef VBOX_WITH_64_BITS_GUESTS
3396 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3397 pModeData->uShwType = PGM_TYPE_AMD64;
3398 pModeData->uGstType = PGM_TYPE_AMD64;
3399 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3400 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3401 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3402#endif
3403
3404 /* The nested paging mode. */
3405 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3406 pModeData->uShwType = PGM_TYPE_NESTED;
3407 pModeData->uGstType = PGM_TYPE_REAL;
3408 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3409 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3410
3411 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3412 pModeData->uShwType = PGM_TYPE_NESTED;
3413 pModeData->uGstType = PGM_TYPE_PROT;
3414 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3415 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3416
3417 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3418 pModeData->uShwType = PGM_TYPE_NESTED;
3419 pModeData->uGstType = PGM_TYPE_32BIT;
3420 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3421 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3422
3423 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3424 pModeData->uShwType = PGM_TYPE_NESTED;
3425 pModeData->uGstType = PGM_TYPE_PAE;
3426 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3427 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3428
3429#ifdef VBOX_WITH_64_BITS_GUESTS
3430 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3431 pModeData->uShwType = PGM_TYPE_NESTED;
3432 pModeData->uGstType = PGM_TYPE_AMD64;
3433 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3434 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3435#endif
3436
3437 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3438 switch (pVM->pgm.s.enmHostMode)
3439 {
3440#if HC_ARCH_BITS == 32
3441 case SUPPAGINGMODE_32_BIT:
3442 case SUPPAGINGMODE_32_BIT_GLOBAL:
3443 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3444 {
3445 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3446 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3447 }
3448# ifdef VBOX_WITH_64_BITS_GUESTS
3449 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3450 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3451# endif
3452 break;
3453
3454 case SUPPAGINGMODE_PAE:
3455 case SUPPAGINGMODE_PAE_NX:
3456 case SUPPAGINGMODE_PAE_GLOBAL:
3457 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3458 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3459 {
3460 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3461 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3462 }
3463# ifdef VBOX_WITH_64_BITS_GUESTS
3464 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3465 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3466# endif
3467 break;
3468#endif /* HC_ARCH_BITS == 32 */
3469
3470#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3471 case SUPPAGINGMODE_AMD64:
3472 case SUPPAGINGMODE_AMD64_GLOBAL:
3473 case SUPPAGINGMODE_AMD64_NX:
3474 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3475# ifdef VBOX_WITH_64_BITS_GUESTS
3476 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3477# else
3478 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3479# endif
3480 {
3481 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3482 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3483 }
3484 break;
3485#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3486
3487 default:
3488 AssertFailed();
3489 break;
3490 }
3491
3492 /* Extended paging (EPT) / Intel VT-x */
3493 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3494 pModeData->uShwType = PGM_TYPE_EPT;
3495 pModeData->uGstType = PGM_TYPE_REAL;
3496 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3497 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3498 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3499
3500 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3501 pModeData->uShwType = PGM_TYPE_EPT;
3502 pModeData->uGstType = PGM_TYPE_PROT;
3503 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3504 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3505 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3506
3507 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3508 pModeData->uShwType = PGM_TYPE_EPT;
3509 pModeData->uGstType = PGM_TYPE_32BIT;
3510 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3511 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3512 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3513
3514 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3515 pModeData->uShwType = PGM_TYPE_EPT;
3516 pModeData->uGstType = PGM_TYPE_PAE;
3517 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3518 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3519 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3520
3521#ifdef VBOX_WITH_64_BITS_GUESTS
3522 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3523 pModeData->uShwType = PGM_TYPE_EPT;
3524 pModeData->uGstType = PGM_TYPE_AMD64;
3525 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3526 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3527 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3528#endif
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Switch to different (or relocated in the relocate case) mode data.
3535 *
3536 * @param pVM The VM handle.
3537 * @param pVCpu The VMCPU to operate on.
3538 * @param enmShw The the shadow paging mode.
3539 * @param enmGst The the guest paging mode.
3540 */
3541static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3542{
3543 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3544
3545 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3546 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3547
3548 /* shadow */
3549 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3550 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3551 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3552 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3553 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3554
3555 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3556 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3557
3558 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3559 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3560
3561
3562 /* guest */
3563 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3564 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3565 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3566 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3567 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3568 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3569 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3570 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3571 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3572 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3573 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3574 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3575
3576 /* both */
3577 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3578 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3579 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3580 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3581 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3582 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3583 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3584#ifdef VBOX_STRICT
3585 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3586#endif
3587 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3588 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3589
3590 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3591 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3592 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3593 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3594 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3595 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3596#ifdef VBOX_STRICT
3597 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3598#endif
3599 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3600 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3601
3602 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3603 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3604 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3605 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3606 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3607 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3608#ifdef VBOX_STRICT
3609 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3610#endif
3611 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3612 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3613}
3614
3615
3616/**
3617 * Calculates the shadow paging mode.
3618 *
3619 * @returns The shadow paging mode.
3620 * @param pVM VM handle.
3621 * @param enmGuestMode The guest mode.
3622 * @param enmHostMode The host mode.
3623 * @param enmShadowMode The current shadow mode.
3624 * @param penmSwitcher Where to store the switcher to use.
3625 * VMMSWITCHER_INVALID means no change.
3626 */
3627static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3628{
3629 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3630 switch (enmGuestMode)
3631 {
3632 /*
3633 * When switching to real or protected mode we don't change
3634 * anything since it's likely that we'll switch back pretty soon.
3635 *
3636 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3637 * and is supposed to determine which shadow paging and switcher to
3638 * use during init.
3639 */
3640 case PGMMODE_REAL:
3641 case PGMMODE_PROTECTED:
3642 if ( enmShadowMode != PGMMODE_INVALID
3643 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3644 break; /* (no change) */
3645
3646 switch (enmHostMode)
3647 {
3648 case SUPPAGINGMODE_32_BIT:
3649 case SUPPAGINGMODE_32_BIT_GLOBAL:
3650 enmShadowMode = PGMMODE_32_BIT;
3651 enmSwitcher = VMMSWITCHER_32_TO_32;
3652 break;
3653
3654 case SUPPAGINGMODE_PAE:
3655 case SUPPAGINGMODE_PAE_NX:
3656 case SUPPAGINGMODE_PAE_GLOBAL:
3657 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3658 enmShadowMode = PGMMODE_PAE;
3659 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3660#ifdef DEBUG_bird
3661 if (RTEnvExist("VBOX_32BIT"))
3662 {
3663 enmShadowMode = PGMMODE_32_BIT;
3664 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3665 }
3666#endif
3667 break;
3668
3669 case SUPPAGINGMODE_AMD64:
3670 case SUPPAGINGMODE_AMD64_GLOBAL:
3671 case SUPPAGINGMODE_AMD64_NX:
3672 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3673 enmShadowMode = PGMMODE_PAE;
3674 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3675#ifdef DEBUG_bird
3676 if (RTEnvExist("VBOX_32BIT"))
3677 {
3678 enmShadowMode = PGMMODE_32_BIT;
3679 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3680 }
3681#endif
3682 break;
3683
3684 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3685 }
3686 break;
3687
3688 case PGMMODE_32_BIT:
3689 switch (enmHostMode)
3690 {
3691 case SUPPAGINGMODE_32_BIT:
3692 case SUPPAGINGMODE_32_BIT_GLOBAL:
3693 enmShadowMode = PGMMODE_32_BIT;
3694 enmSwitcher = VMMSWITCHER_32_TO_32;
3695 break;
3696
3697 case SUPPAGINGMODE_PAE:
3698 case SUPPAGINGMODE_PAE_NX:
3699 case SUPPAGINGMODE_PAE_GLOBAL:
3700 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3701 enmShadowMode = PGMMODE_PAE;
3702 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3703#ifdef DEBUG_bird
3704 if (RTEnvExist("VBOX_32BIT"))
3705 {
3706 enmShadowMode = PGMMODE_32_BIT;
3707 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3708 }
3709#endif
3710 break;
3711
3712 case SUPPAGINGMODE_AMD64:
3713 case SUPPAGINGMODE_AMD64_GLOBAL:
3714 case SUPPAGINGMODE_AMD64_NX:
3715 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3716 enmShadowMode = PGMMODE_PAE;
3717 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3718#ifdef DEBUG_bird
3719 if (RTEnvExist("VBOX_32BIT"))
3720 {
3721 enmShadowMode = PGMMODE_32_BIT;
3722 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3723 }
3724#endif
3725 break;
3726
3727 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3728 }
3729 break;
3730
3731 case PGMMODE_PAE:
3732 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3733 switch (enmHostMode)
3734 {
3735 case SUPPAGINGMODE_32_BIT:
3736 case SUPPAGINGMODE_32_BIT_GLOBAL:
3737 enmShadowMode = PGMMODE_PAE;
3738 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3739 break;
3740
3741 case SUPPAGINGMODE_PAE:
3742 case SUPPAGINGMODE_PAE_NX:
3743 case SUPPAGINGMODE_PAE_GLOBAL:
3744 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3745 enmShadowMode = PGMMODE_PAE;
3746 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3747 break;
3748
3749 case SUPPAGINGMODE_AMD64:
3750 case SUPPAGINGMODE_AMD64_GLOBAL:
3751 case SUPPAGINGMODE_AMD64_NX:
3752 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3753 enmShadowMode = PGMMODE_PAE;
3754 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3755 break;
3756
3757 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3758 }
3759 break;
3760
3761 case PGMMODE_AMD64:
3762 case PGMMODE_AMD64_NX:
3763 switch (enmHostMode)
3764 {
3765 case SUPPAGINGMODE_32_BIT:
3766 case SUPPAGINGMODE_32_BIT_GLOBAL:
3767 enmShadowMode = PGMMODE_AMD64;
3768 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3769 break;
3770
3771 case SUPPAGINGMODE_PAE:
3772 case SUPPAGINGMODE_PAE_NX:
3773 case SUPPAGINGMODE_PAE_GLOBAL:
3774 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3775 enmShadowMode = PGMMODE_AMD64;
3776 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3777 break;
3778
3779 case SUPPAGINGMODE_AMD64:
3780 case SUPPAGINGMODE_AMD64_GLOBAL:
3781 case SUPPAGINGMODE_AMD64_NX:
3782 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3783 enmShadowMode = PGMMODE_AMD64;
3784 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3785 break;
3786
3787 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3788 }
3789 break;
3790
3791
3792 default:
3793 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3794 return PGMMODE_INVALID;
3795 }
3796 /* Override the shadow mode is nested paging is active. */
3797 if (HWACCMIsNestedPagingActive(pVM))
3798 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3799
3800 *penmSwitcher = enmSwitcher;
3801 return enmShadowMode;
3802}
3803
3804
3805/**
3806 * Performs the actual mode change.
3807 * This is called by PGMChangeMode and pgmR3InitPaging().
3808 *
3809 * @returns VBox status code. May suspend or power off the VM on error, but this
3810 * will trigger using FFs and not status codes.
3811 *
3812 * @param pVM VM handle.
3813 * @param pVCpu The VMCPU to operate on.
3814 * @param enmGuestMode The new guest mode. This is assumed to be different from
3815 * the current mode.
3816 */
3817VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3818{
3819 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3820 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3821
3822 /*
3823 * Calc the shadow mode and switcher.
3824 */
3825 VMMSWITCHER enmSwitcher;
3826 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3827 if (enmSwitcher != VMMSWITCHER_INVALID)
3828 {
3829 /*
3830 * Select new switcher.
3831 */
3832 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3833 if (RT_FAILURE(rc))
3834 {
3835 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3836 return rc;
3837 }
3838 }
3839
3840 /*
3841 * Exit old mode(s).
3842 */
3843 /* shadow */
3844 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3845 {
3846 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3847 if (PGM_SHW_PFN(Exit, pVCpu))
3848 {
3849 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3850 if (RT_FAILURE(rc))
3851 {
3852 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3853 return rc;
3854 }
3855 }
3856
3857 }
3858 else
3859 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3860
3861 /* guest */
3862 if (PGM_GST_PFN(Exit, pVCpu))
3863 {
3864 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3865 if (RT_FAILURE(rc))
3866 {
3867 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3868 return rc;
3869 }
3870 }
3871
3872 /*
3873 * Load new paging mode data.
3874 */
3875 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3876
3877 /*
3878 * Enter new shadow mode (if changed).
3879 */
3880 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3881 {
3882 int rc;
3883 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3884 switch (enmShadowMode)
3885 {
3886 case PGMMODE_32_BIT:
3887 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu);
3888 break;
3889 case PGMMODE_PAE:
3890 case PGMMODE_PAE_NX:
3891 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu);
3892 break;
3893 case PGMMODE_AMD64:
3894 case PGMMODE_AMD64_NX:
3895 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu);
3896 break;
3897 case PGMMODE_NESTED:
3898 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu);
3899 break;
3900 case PGMMODE_EPT:
3901 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu);
3902 break;
3903 case PGMMODE_REAL:
3904 case PGMMODE_PROTECTED:
3905 default:
3906 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3907 return VERR_INTERNAL_ERROR;
3908 }
3909 if (RT_FAILURE(rc))
3910 {
3911 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3912 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3913 return rc;
3914 }
3915 }
3916
3917 /*
3918 * Always flag the necessary updates
3919 */
3920 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3921
3922 /*
3923 * Enter the new guest and shadow+guest modes.
3924 */
3925 int rc = -1;
3926 int rc2 = -1;
3927 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3928 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3929 switch (enmGuestMode)
3930 {
3931 case PGMMODE_REAL:
3932 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3933 switch (pVCpu->pgm.s.enmShadowMode)
3934 {
3935 case PGMMODE_32_BIT:
3936 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3937 break;
3938 case PGMMODE_PAE:
3939 case PGMMODE_PAE_NX:
3940 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3941 break;
3942 case PGMMODE_NESTED:
3943 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3944 break;
3945 case PGMMODE_EPT:
3946 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3947 break;
3948 case PGMMODE_AMD64:
3949 case PGMMODE_AMD64_NX:
3950 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3951 default: AssertFailed(); break;
3952 }
3953 break;
3954
3955 case PGMMODE_PROTECTED:
3956 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3957 switch (pVCpu->pgm.s.enmShadowMode)
3958 {
3959 case PGMMODE_32_BIT:
3960 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3961 break;
3962 case PGMMODE_PAE:
3963 case PGMMODE_PAE_NX:
3964 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3965 break;
3966 case PGMMODE_NESTED:
3967 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3968 break;
3969 case PGMMODE_EPT:
3970 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3971 break;
3972 case PGMMODE_AMD64:
3973 case PGMMODE_AMD64_NX:
3974 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3975 default: AssertFailed(); break;
3976 }
3977 break;
3978
3979 case PGMMODE_32_BIT:
3980 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3981 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3982 switch (pVCpu->pgm.s.enmShadowMode)
3983 {
3984 case PGMMODE_32_BIT:
3985 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3986 break;
3987 case PGMMODE_PAE:
3988 case PGMMODE_PAE_NX:
3989 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3990 break;
3991 case PGMMODE_NESTED:
3992 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3993 break;
3994 case PGMMODE_EPT:
3995 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3996 break;
3997 case PGMMODE_AMD64:
3998 case PGMMODE_AMD64_NX:
3999 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4000 default: AssertFailed(); break;
4001 }
4002 break;
4003
4004 case PGMMODE_PAE_NX:
4005 case PGMMODE_PAE:
4006 {
4007 uint32_t u32Dummy, u32Features;
4008
4009 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
4010 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
4011 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
4012 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
4013
4014 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
4015 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
4016 switch (pVCpu->pgm.s.enmShadowMode)
4017 {
4018 case PGMMODE_PAE:
4019 case PGMMODE_PAE_NX:
4020 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
4021 break;
4022 case PGMMODE_NESTED:
4023 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
4024 break;
4025 case PGMMODE_EPT:
4026 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
4027 break;
4028 case PGMMODE_32_BIT:
4029 case PGMMODE_AMD64:
4030 case PGMMODE_AMD64_NX:
4031 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4032 default: AssertFailed(); break;
4033 }
4034 break;
4035 }
4036
4037#ifdef VBOX_WITH_64_BITS_GUESTS
4038 case PGMMODE_AMD64_NX:
4039 case PGMMODE_AMD64:
4040 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4041 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
4042 switch (pVCpu->pgm.s.enmShadowMode)
4043 {
4044 case PGMMODE_AMD64:
4045 case PGMMODE_AMD64_NX:
4046 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
4047 break;
4048 case PGMMODE_NESTED:
4049 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
4050 break;
4051 case PGMMODE_EPT:
4052 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
4053 break;
4054 case PGMMODE_32_BIT:
4055 case PGMMODE_PAE:
4056 case PGMMODE_PAE_NX:
4057 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4058 default: AssertFailed(); break;
4059 }
4060 break;
4061#endif
4062
4063 default:
4064 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4065 rc = VERR_NOT_IMPLEMENTED;
4066 break;
4067 }
4068
4069 /* status codes. */
4070 AssertRC(rc);
4071 AssertRC(rc2);
4072 if (RT_SUCCESS(rc))
4073 {
4074 rc = rc2;
4075 if (RT_SUCCESS(rc)) /* no informational status codes. */
4076 rc = VINF_SUCCESS;
4077 }
4078
4079 /* Notify HWACCM as well. */
4080 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4081 return rc;
4082}
4083
4084/**
4085 * Release the pgm lock if owned by the current VCPU
4086 *
4087 * @param pVM The VM to operate on.
4088 */
4089VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
4090{
4091 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
4092 PDMCritSectLeave(&pVM->pgm.s.CritSect);
4093}
4094
4095/**
4096 * Called by pgmPoolFlushAllInt prior to flushing the pool.
4097 *
4098 * @returns VBox status code, fully asserted.
4099 * @param pVM The VM handle.
4100 * @param pVCpu The VMCPU to operate on.
4101 */
4102int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
4103{
4104 /* Unmap the old CR3 value before flushing everything. */
4105 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
4106 AssertRC(rc);
4107
4108 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
4109 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4110 AssertRC(rc);
4111 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
4112 return rc;
4113}
4114
4115
4116/**
4117 * Called by pgmPoolFlushAllInt after flushing the pool.
4118 *
4119 * @returns VBox status code, fully asserted.
4120 * @param pVM The VM handle.
4121 * @param pVCpu The VMCPU to operate on.
4122 */
4123int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
4124{
4125 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4126 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
4127 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4128 AssertRCReturn(rc, rc);
4129 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
4130
4131 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
4132 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
4133 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
4134 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4135 return rc;
4136}
4137
4138
4139/**
4140 * Dumps a PAE shadow page table.
4141 *
4142 * @returns VBox status code (VINF_SUCCESS).
4143 * @param pVM The VM handle.
4144 * @param pPT Pointer to the page table.
4145 * @param u64Address The virtual address of the page table starts.
4146 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4147 * @param cMaxDepth The maxium depth.
4148 * @param pHlp Pointer to the output functions.
4149 */
4150static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4151{
4152 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4153 {
4154 X86PTEPAE Pte = pPT->a[i];
4155 if (Pte.n.u1Present)
4156 {
4157 pHlp->pfnPrintf(pHlp,
4158 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4159 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4160 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4161 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4162 Pte.n.u1Write ? 'W' : 'R',
4163 Pte.n.u1User ? 'U' : 'S',
4164 Pte.n.u1Accessed ? 'A' : '-',
4165 Pte.n.u1Dirty ? 'D' : '-',
4166 Pte.n.u1Global ? 'G' : '-',
4167 Pte.n.u1WriteThru ? "WT" : "--",
4168 Pte.n.u1CacheDisable? "CD" : "--",
4169 Pte.n.u1PAT ? "AT" : "--",
4170 Pte.n.u1NoExecute ? "NX" : "--",
4171 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4172 Pte.u & RT_BIT(10) ? '1' : '0',
4173 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4174 Pte.u & X86_PTE_PAE_PG_MASK);
4175 }
4176 }
4177 return VINF_SUCCESS;
4178}
4179
4180
4181/**
4182 * Dumps a PAE shadow page directory table.
4183 *
4184 * @returns VBox status code (VINF_SUCCESS).
4185 * @param pVM The VM handle.
4186 * @param HCPhys The physical address of the page directory table.
4187 * @param u64Address The virtual address of the page table starts.
4188 * @param cr4 The CR4, PSE is currently used.
4189 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4190 * @param cMaxDepth The maxium depth.
4191 * @param pHlp Pointer to the output functions.
4192 */
4193static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4194{
4195 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4196 if (!pPD)
4197 {
4198 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4199 fLongMode ? 16 : 8, u64Address, HCPhys);
4200 return VERR_INVALID_PARAMETER;
4201 }
4202 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4203
4204 int rc = VINF_SUCCESS;
4205 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4206 {
4207 X86PDEPAE Pde = pPD->a[i];
4208 if (Pde.n.u1Present)
4209 {
4210 if (fBigPagesSupported && Pde.b.u1Size)
4211 pHlp->pfnPrintf(pHlp,
4212 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4213 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4214 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4215 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4216 Pde.b.u1Write ? 'W' : 'R',
4217 Pde.b.u1User ? 'U' : 'S',
4218 Pde.b.u1Accessed ? 'A' : '-',
4219 Pde.b.u1Dirty ? 'D' : '-',
4220 Pde.b.u1Global ? 'G' : '-',
4221 Pde.b.u1WriteThru ? "WT" : "--",
4222 Pde.b.u1CacheDisable? "CD" : "--",
4223 Pde.b.u1PAT ? "AT" : "--",
4224 Pde.b.u1NoExecute ? "NX" : "--",
4225 Pde.u & RT_BIT_64(9) ? '1' : '0',
4226 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4227 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4228 Pde.u & X86_PDE_PAE_PG_MASK);
4229 else
4230 {
4231 pHlp->pfnPrintf(pHlp,
4232 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4233 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4234 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4235 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4236 Pde.n.u1Write ? 'W' : 'R',
4237 Pde.n.u1User ? 'U' : 'S',
4238 Pde.n.u1Accessed ? 'A' : '-',
4239 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4240 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4241 Pde.n.u1WriteThru ? "WT" : "--",
4242 Pde.n.u1CacheDisable? "CD" : "--",
4243 Pde.n.u1NoExecute ? "NX" : "--",
4244 Pde.u & RT_BIT_64(9) ? '1' : '0',
4245 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4246 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4247 Pde.u & X86_PDE_PAE_PG_MASK);
4248 if (cMaxDepth >= 1)
4249 {
4250 /** @todo what about using the page pool for mapping PTs? */
4251 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4252 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4253 PX86PTPAE pPT = NULL;
4254 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4255 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4256 else
4257 {
4258 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4259 {
4260 uint64_t off = u64AddressPT - pMap->GCPtr;
4261 if (off < pMap->cb)
4262 {
4263 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4264 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4265 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4266 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4267 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4268 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4269 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4270 }
4271 }
4272 }
4273 int rc2 = VERR_INVALID_PARAMETER;
4274 if (pPT)
4275 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4276 else
4277 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4278 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4279 if (rc2 < rc && RT_SUCCESS(rc))
4280 rc = rc2;
4281 }
4282 }
4283 }
4284 }
4285 return rc;
4286}
4287
4288
4289/**
4290 * Dumps a PAE shadow page directory pointer table.
4291 *
4292 * @returns VBox status code (VINF_SUCCESS).
4293 * @param pVM The VM handle.
4294 * @param HCPhys The physical address of the page directory pointer table.
4295 * @param u64Address The virtual address of the page table starts.
4296 * @param cr4 The CR4, PSE is currently used.
4297 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4298 * @param cMaxDepth The maxium depth.
4299 * @param pHlp Pointer to the output functions.
4300 */
4301static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4302{
4303 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4304 if (!pPDPT)
4305 {
4306 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4307 fLongMode ? 16 : 8, u64Address, HCPhys);
4308 return VERR_INVALID_PARAMETER;
4309 }
4310
4311 int rc = VINF_SUCCESS;
4312 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4313 for (unsigned i = 0; i < c; i++)
4314 {
4315 X86PDPE Pdpe = pPDPT->a[i];
4316 if (Pdpe.n.u1Present)
4317 {
4318 if (fLongMode)
4319 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4320 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4321 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4322 Pdpe.lm.u1Write ? 'W' : 'R',
4323 Pdpe.lm.u1User ? 'U' : 'S',
4324 Pdpe.lm.u1Accessed ? 'A' : '-',
4325 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4326 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4327 Pdpe.lm.u1WriteThru ? "WT" : "--",
4328 Pdpe.lm.u1CacheDisable? "CD" : "--",
4329 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4330 Pdpe.lm.u1NoExecute ? "NX" : "--",
4331 Pdpe.u & RT_BIT(9) ? '1' : '0',
4332 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4333 Pdpe.u & RT_BIT(11) ? '1' : '0',
4334 Pdpe.u & X86_PDPE_PG_MASK);
4335 else
4336 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4337 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4338 i << X86_PDPT_SHIFT,
4339 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4340 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4341 Pdpe.n.u1WriteThru ? "WT" : "--",
4342 Pdpe.n.u1CacheDisable? "CD" : "--",
4343 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4344 Pdpe.u & RT_BIT(9) ? '1' : '0',
4345 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4346 Pdpe.u & RT_BIT(11) ? '1' : '0',
4347 Pdpe.u & X86_PDPE_PG_MASK);
4348 if (cMaxDepth >= 1)
4349 {
4350 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4351 cr4, fLongMode, cMaxDepth - 1, pHlp);
4352 if (rc2 < rc && RT_SUCCESS(rc))
4353 rc = rc2;
4354 }
4355 }
4356 }
4357 return rc;
4358}
4359
4360
4361/**
4362 * Dumps a 32-bit shadow page table.
4363 *
4364 * @returns VBox status code (VINF_SUCCESS).
4365 * @param pVM The VM handle.
4366 * @param HCPhys The physical address of the table.
4367 * @param cr4 The CR4, PSE is currently used.
4368 * @param cMaxDepth The maxium depth.
4369 * @param pHlp Pointer to the output functions.
4370 */
4371static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4372{
4373 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4374 if (!pPML4)
4375 {
4376 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4377 return VERR_INVALID_PARAMETER;
4378 }
4379
4380 int rc = VINF_SUCCESS;
4381 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4382 {
4383 X86PML4E Pml4e = pPML4->a[i];
4384 if (Pml4e.n.u1Present)
4385 {
4386 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4387 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4388 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4389 u64Address,
4390 Pml4e.n.u1Write ? 'W' : 'R',
4391 Pml4e.n.u1User ? 'U' : 'S',
4392 Pml4e.n.u1Accessed ? 'A' : '-',
4393 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4394 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4395 Pml4e.n.u1WriteThru ? "WT" : "--",
4396 Pml4e.n.u1CacheDisable? "CD" : "--",
4397 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4398 Pml4e.n.u1NoExecute ? "NX" : "--",
4399 Pml4e.u & RT_BIT(9) ? '1' : '0',
4400 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4401 Pml4e.u & RT_BIT(11) ? '1' : '0',
4402 Pml4e.u & X86_PML4E_PG_MASK);
4403
4404 if (cMaxDepth >= 1)
4405 {
4406 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4407 if (rc2 < rc && RT_SUCCESS(rc))
4408 rc = rc2;
4409 }
4410 }
4411 }
4412 return rc;
4413}
4414
4415
4416/**
4417 * Dumps a 32-bit shadow page table.
4418 *
4419 * @returns VBox status code (VINF_SUCCESS).
4420 * @param pVM The VM handle.
4421 * @param pPT Pointer to the page table.
4422 * @param u32Address The virtual address this table starts at.
4423 * @param pHlp Pointer to the output functions.
4424 */
4425int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4426{
4427 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4428 {
4429 X86PTE Pte = pPT->a[i];
4430 if (Pte.n.u1Present)
4431 {
4432 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4433 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4434 u32Address + (i << X86_PT_SHIFT),
4435 Pte.n.u1Write ? 'W' : 'R',
4436 Pte.n.u1User ? 'U' : 'S',
4437 Pte.n.u1Accessed ? 'A' : '-',
4438 Pte.n.u1Dirty ? 'D' : '-',
4439 Pte.n.u1Global ? 'G' : '-',
4440 Pte.n.u1WriteThru ? "WT" : "--",
4441 Pte.n.u1CacheDisable? "CD" : "--",
4442 Pte.n.u1PAT ? "AT" : "--",
4443 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4444 Pte.u & RT_BIT(10) ? '1' : '0',
4445 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4446 Pte.u & X86_PDE_PG_MASK);
4447 }
4448 }
4449 return VINF_SUCCESS;
4450}
4451
4452
4453/**
4454 * Dumps a 32-bit shadow page directory and page tables.
4455 *
4456 * @returns VBox status code (VINF_SUCCESS).
4457 * @param pVM The VM handle.
4458 * @param cr3 The root of the hierarchy.
4459 * @param cr4 The CR4, PSE is currently used.
4460 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4461 * @param pHlp Pointer to the output functions.
4462 */
4463int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4464{
4465 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4466 if (!pPD)
4467 {
4468 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4469 return VERR_INVALID_PARAMETER;
4470 }
4471
4472 int rc = VINF_SUCCESS;
4473 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4474 {
4475 X86PDE Pde = pPD->a[i];
4476 if (Pde.n.u1Present)
4477 {
4478 const uint32_t u32Address = i << X86_PD_SHIFT;
4479 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4480 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4481 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4482 u32Address,
4483 Pde.b.u1Write ? 'W' : 'R',
4484 Pde.b.u1User ? 'U' : 'S',
4485 Pde.b.u1Accessed ? 'A' : '-',
4486 Pde.b.u1Dirty ? 'D' : '-',
4487 Pde.b.u1Global ? 'G' : '-',
4488 Pde.b.u1WriteThru ? "WT" : "--",
4489 Pde.b.u1CacheDisable? "CD" : "--",
4490 Pde.b.u1PAT ? "AT" : "--",
4491 Pde.u & RT_BIT_64(9) ? '1' : '0',
4492 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4493 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4494 Pde.u & X86_PDE4M_PG_MASK);
4495 else
4496 {
4497 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4498 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4499 u32Address,
4500 Pde.n.u1Write ? 'W' : 'R',
4501 Pde.n.u1User ? 'U' : 'S',
4502 Pde.n.u1Accessed ? 'A' : '-',
4503 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4504 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4505 Pde.n.u1WriteThru ? "WT" : "--",
4506 Pde.n.u1CacheDisable? "CD" : "--",
4507 Pde.u & RT_BIT_64(9) ? '1' : '0',
4508 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4509 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4510 Pde.u & X86_PDE_PG_MASK);
4511 if (cMaxDepth >= 1)
4512 {
4513 /** @todo what about using the page pool for mapping PTs? */
4514 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4515 PX86PT pPT = NULL;
4516 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4517 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4518 else
4519 {
4520 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4521 if (u32Address - pMap->GCPtr < pMap->cb)
4522 {
4523 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4524 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4525 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4526 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4527 pPT = pMap->aPTs[iPDE].pPTR3;
4528 }
4529 }
4530 int rc2 = VERR_INVALID_PARAMETER;
4531 if (pPT)
4532 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4533 else
4534 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4535 if (rc2 < rc && RT_SUCCESS(rc))
4536 rc = rc2;
4537 }
4538 }
4539 }
4540 }
4541
4542 return rc;
4543}
4544
4545
4546/**
4547 * Dumps a 32-bit shadow page table.
4548 *
4549 * @returns VBox status code (VINF_SUCCESS).
4550 * @param pVM The VM handle.
4551 * @param pPT Pointer to the page table.
4552 * @param u32Address The virtual address this table starts at.
4553 * @param PhysSearch Address to search for.
4554 */
4555int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4556{
4557 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4558 {
4559 X86PTE Pte = pPT->a[i];
4560 if (Pte.n.u1Present)
4561 {
4562 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4563 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4564 u32Address + (i << X86_PT_SHIFT),
4565 Pte.n.u1Write ? 'W' : 'R',
4566 Pte.n.u1User ? 'U' : 'S',
4567 Pte.n.u1Accessed ? 'A' : '-',
4568 Pte.n.u1Dirty ? 'D' : '-',
4569 Pte.n.u1Global ? 'G' : '-',
4570 Pte.n.u1WriteThru ? "WT" : "--",
4571 Pte.n.u1CacheDisable? "CD" : "--",
4572 Pte.n.u1PAT ? "AT" : "--",
4573 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4574 Pte.u & RT_BIT(10) ? '1' : '0',
4575 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4576 Pte.u & X86_PDE_PG_MASK));
4577
4578 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4579 {
4580 uint64_t fPageShw = 0;
4581 RTHCPHYS pPhysHC = 0;
4582
4583 /** @todo SMP support!! */
4584 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4585 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4586 }
4587 }
4588 }
4589 return VINF_SUCCESS;
4590}
4591
4592
4593/**
4594 * Dumps a 32-bit guest page directory and page tables.
4595 *
4596 * @returns VBox status code (VINF_SUCCESS).
4597 * @param pVM The VM handle.
4598 * @param cr3 The root of the hierarchy.
4599 * @param cr4 The CR4, PSE is currently used.
4600 * @param PhysSearch Address to search for.
4601 */
4602VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4603{
4604 bool fLongMode = false;
4605 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4606 PX86PD pPD = 0;
4607
4608 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4609 if (RT_FAILURE(rc) || !pPD)
4610 {
4611 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4612 return VERR_INVALID_PARAMETER;
4613 }
4614
4615 Log(("cr3=%08x cr4=%08x%s\n"
4616 "%-*s P - Present\n"
4617 "%-*s | R/W - Read (0) / Write (1)\n"
4618 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4619 "%-*s | | | A - Accessed\n"
4620 "%-*s | | | | D - Dirty\n"
4621 "%-*s | | | | | G - Global\n"
4622 "%-*s | | | | | | WT - Write thru\n"
4623 "%-*s | | | | | | | CD - Cache disable\n"
4624 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4625 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4626 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4627 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4628 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4629 "%-*s Level | | | | | | | | | | | | Page\n"
4630 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4631 - W U - - - -- -- -- -- -- 010 */
4632 , cr3, cr4, fLongMode ? " Long Mode" : "",
4633 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4634 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4635
4636 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4637 {
4638 X86PDE Pde = pPD->a[i];
4639 if (Pde.n.u1Present)
4640 {
4641 const uint32_t u32Address = i << X86_PD_SHIFT;
4642
4643 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4644 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4645 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4646 u32Address,
4647 Pde.b.u1Write ? 'W' : 'R',
4648 Pde.b.u1User ? 'U' : 'S',
4649 Pde.b.u1Accessed ? 'A' : '-',
4650 Pde.b.u1Dirty ? 'D' : '-',
4651 Pde.b.u1Global ? 'G' : '-',
4652 Pde.b.u1WriteThru ? "WT" : "--",
4653 Pde.b.u1CacheDisable? "CD" : "--",
4654 Pde.b.u1PAT ? "AT" : "--",
4655 Pde.u & RT_BIT(9) ? '1' : '0',
4656 Pde.u & RT_BIT(10) ? '1' : '0',
4657 Pde.u & RT_BIT(11) ? '1' : '0',
4658 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4659 /** @todo PhysSearch */
4660 else
4661 {
4662 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4663 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4664 u32Address,
4665 Pde.n.u1Write ? 'W' : 'R',
4666 Pde.n.u1User ? 'U' : 'S',
4667 Pde.n.u1Accessed ? 'A' : '-',
4668 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4669 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4670 Pde.n.u1WriteThru ? "WT" : "--",
4671 Pde.n.u1CacheDisable? "CD" : "--",
4672 Pde.u & RT_BIT(9) ? '1' : '0',
4673 Pde.u & RT_BIT(10) ? '1' : '0',
4674 Pde.u & RT_BIT(11) ? '1' : '0',
4675 Pde.u & X86_PDE_PG_MASK));
4676 ////if (cMaxDepth >= 1)
4677 {
4678 /** @todo what about using the page pool for mapping PTs? */
4679 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4680 PX86PT pPT = NULL;
4681
4682 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4683
4684 int rc2 = VERR_INVALID_PARAMETER;
4685 if (pPT)
4686 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4687 else
4688 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4689 if (rc2 < rc && RT_SUCCESS(rc))
4690 rc = rc2;
4691 }
4692 }
4693 }
4694 }
4695
4696 return rc;
4697}
4698
4699
4700/**
4701 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4702 *
4703 * @returns VBox status code (VINF_SUCCESS).
4704 * @param pVM The VM handle.
4705 * @param cr3 The root of the hierarchy.
4706 * @param cr4 The cr4, only PAE and PSE is currently used.
4707 * @param fLongMode Set if long mode, false if not long mode.
4708 * @param cMaxDepth Number of levels to dump.
4709 * @param pHlp Pointer to the output functions.
4710 */
4711VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4712{
4713 if (!pHlp)
4714 pHlp = DBGFR3InfoLogHlp();
4715 if (!cMaxDepth)
4716 return VINF_SUCCESS;
4717 const unsigned cch = fLongMode ? 16 : 8;
4718 pHlp->pfnPrintf(pHlp,
4719 "cr3=%08x cr4=%08x%s\n"
4720 "%-*s P - Present\n"
4721 "%-*s | R/W - Read (0) / Write (1)\n"
4722 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4723 "%-*s | | | A - Accessed\n"
4724 "%-*s | | | | D - Dirty\n"
4725 "%-*s | | | | | G - Global\n"
4726 "%-*s | | | | | | WT - Write thru\n"
4727 "%-*s | | | | | | | CD - Cache disable\n"
4728 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4729 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4730 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4731 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4732 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4733 "%-*s Level | | | | | | | | | | | | Page\n"
4734 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4735 - W U - - - -- -- -- -- -- 010 */
4736 , cr3, cr4, fLongMode ? " Long Mode" : "",
4737 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4738 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4739 if (cr4 & X86_CR4_PAE)
4740 {
4741 if (fLongMode)
4742 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4743 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4744 }
4745 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4746}
4747
4748#ifdef VBOX_WITH_DEBUGGER
4749
4750/**
4751 * The '.pgmram' command.
4752 *
4753 * @returns VBox status.
4754 * @param pCmd Pointer to the command descriptor (as registered).
4755 * @param pCmdHlp Pointer to command helper functions.
4756 * @param pVM Pointer to the current VM (if any).
4757 * @param paArgs Pointer to (readonly) array of arguments.
4758 * @param cArgs Number of arguments in the array.
4759 */
4760static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4761{
4762 /*
4763 * Validate input.
4764 */
4765 if (!pVM)
4766 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4767 if (!pVM->pgm.s.pRamRangesRC)
4768 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4769
4770 /*
4771 * Dump the ranges.
4772 */
4773 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4774 PPGMRAMRANGE pRam;
4775 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4776 {
4777 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4778 "%RGp - %RGp %p\n",
4779 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4780 if (RT_FAILURE(rc))
4781 return rc;
4782 }
4783
4784 return VINF_SUCCESS;
4785}
4786
4787
4788/**
4789 * The '.pgmmap' command.
4790 *
4791 * @returns VBox status.
4792 * @param pCmd Pointer to the command descriptor (as registered).
4793 * @param pCmdHlp Pointer to command helper functions.
4794 * @param pVM Pointer to the current VM (if any).
4795 * @param paArgs Pointer to (readonly) array of arguments.
4796 * @param cArgs Number of arguments in the array.
4797 */
4798static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4799{
4800 /*
4801 * Validate input.
4802 */
4803 if (!pVM)
4804 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4805 if (!pVM->pgm.s.pMappingsR3)
4806 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4807
4808 /*
4809 * Print message about the fixedness of the mappings.
4810 */
4811 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4812 if (RT_FAILURE(rc))
4813 return rc;
4814
4815 /*
4816 * Dump the ranges.
4817 */
4818 PPGMMAPPING pCur;
4819 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4820 {
4821 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4822 "%08x - %08x %s\n",
4823 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4824 if (RT_FAILURE(rc))
4825 return rc;
4826 }
4827
4828 return VINF_SUCCESS;
4829}
4830
4831
4832/**
4833 * The '.pgmerror' and '.pgmerroroff' commands.
4834 *
4835 * @returns VBox status.
4836 * @param pCmd Pointer to the command descriptor (as registered).
4837 * @param pCmdHlp Pointer to command helper functions.
4838 * @param pVM Pointer to the current VM (if any).
4839 * @param paArgs Pointer to (readonly) array of arguments.
4840 * @param cArgs Number of arguments in the array.
4841 */
4842static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4843{
4844 /*
4845 * Validate input.
4846 */
4847 if (!pVM)
4848 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4849 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4850 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4851
4852 if (!cArgs)
4853 {
4854 /*
4855 * Print the list of error injection locations with status.
4856 */
4857 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4858 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4859 }
4860 else
4861 {
4862
4863 /*
4864 * String switch on where to inject the error.
4865 */
4866 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4867 const char *pszWhere = paArgs[0].u.pszString;
4868 if (!strcmp(pszWhere, "handy"))
4869 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4870 else
4871 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4872 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4873 }
4874 return VINF_SUCCESS;
4875}
4876
4877
4878/**
4879 * The '.pgmsync' command.
4880 *
4881 * @returns VBox status.
4882 * @param pCmd Pointer to the command descriptor (as registered).
4883 * @param pCmdHlp Pointer to command helper functions.
4884 * @param pVM Pointer to the current VM (if any).
4885 * @param paArgs Pointer to (readonly) array of arguments.
4886 * @param cArgs Number of arguments in the array.
4887 */
4888static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4889{
4890 /** @todo SMP support */
4891 PVMCPU pVCpu = &pVM->aCpus[0];
4892
4893 /*
4894 * Validate input.
4895 */
4896 if (!pVM)
4897 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4898
4899 /*
4900 * Force page directory sync.
4901 */
4902 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4903
4904 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4905 if (RT_FAILURE(rc))
4906 return rc;
4907
4908 return VINF_SUCCESS;
4909}
4910
4911
4912#ifdef VBOX_STRICT
4913/**
4914 * The '.pgmassertcr3' command.
4915 *
4916 * @returns VBox status.
4917 * @param pCmd Pointer to the command descriptor (as registered).
4918 * @param pCmdHlp Pointer to command helper functions.
4919 * @param pVM Pointer to the current VM (if any).
4920 * @param paArgs Pointer to (readonly) array of arguments.
4921 * @param cArgs Number of arguments in the array.
4922 */
4923static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4924{
4925 /** @todo SMP support!! */
4926 PVMCPU pVCpu = &pVM->aCpus[0];
4927
4928 /*
4929 * Validate input.
4930 */
4931 if (!pVM)
4932 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4933
4934 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4935 if (RT_FAILURE(rc))
4936 return rc;
4937
4938 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4939
4940 return VINF_SUCCESS;
4941}
4942#endif /* VBOX_STRICT */
4943
4944
4945/**
4946 * The '.pgmsyncalways' command.
4947 *
4948 * @returns VBox status.
4949 * @param pCmd Pointer to the command descriptor (as registered).
4950 * @param pCmdHlp Pointer to command helper functions.
4951 * @param pVM Pointer to the current VM (if any).
4952 * @param paArgs Pointer to (readonly) array of arguments.
4953 * @param cArgs Number of arguments in the array.
4954 */
4955static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4956{
4957 /** @todo SMP support!! */
4958 PVMCPU pVCpu = &pVM->aCpus[0];
4959
4960 /*
4961 * Validate input.
4962 */
4963 if (!pVM)
4964 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4965
4966 /*
4967 * Force page directory sync.
4968 */
4969 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4970 {
4971 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4972 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4973 }
4974 else
4975 {
4976 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4977 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4978 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4979 }
4980}
4981
4982
4983/**
4984 * The '.pgmsyncalways' command.
4985 *
4986 * @returns VBox status.
4987 * @param pCmd Pointer to the command descriptor (as registered).
4988 * @param pCmdHlp Pointer to command helper functions.
4989 * @param pVM Pointer to the current VM (if any).
4990 * @param paArgs Pointer to (readonly) array of arguments.
4991 * @param cArgs Number of arguments in the array.
4992 */
4993static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4994{
4995 /*
4996 * Validate input.
4997 */
4998 if (!pVM)
4999 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5000 if ( cArgs < 1
5001 || cArgs > 2
5002 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
5003 || ( cArgs > 1
5004 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
5005 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
5006 if ( cArgs >= 2
5007 && strcmp(paArgs[1].u.pszString, "nozero"))
5008 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
5009 bool fIncZeroPgs = cArgs < 2;
5010
5011 /*
5012 * Open the output file and get the ram parameters.
5013 */
5014 RTFILE hFile;
5015 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
5016 if (RT_FAILURE(rc))
5017 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
5018
5019 uint32_t cbRamHole = 0;
5020 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
5021 uint64_t cbRam = 0;
5022 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
5023 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
5024
5025 /*
5026 * Dump the physical memory, page by page.
5027 */
5028 RTGCPHYS GCPhys = 0;
5029 char abZeroPg[PAGE_SIZE];
5030 RT_ZERO(abZeroPg);
5031
5032 pgmLock(pVM);
5033 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
5034 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
5035 pRam = pRam->pNextR3)
5036 {
5037 /* fill the gap */
5038 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
5039 {
5040 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
5041 {
5042 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5043 GCPhys += PAGE_SIZE;
5044 }
5045 }
5046
5047 PCPGMPAGE pPage = &pRam->aPages[0];
5048 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
5049 {
5050 if (PGM_PAGE_IS_ZERO(pPage))
5051 {
5052 if (fIncZeroPgs)
5053 {
5054 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5055 if (RT_FAILURE(rc))
5056 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5057 }
5058 }
5059 else
5060 {
5061 switch (PGM_PAGE_GET_TYPE(pPage))
5062 {
5063 case PGMPAGETYPE_RAM:
5064 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
5065 case PGMPAGETYPE_ROM:
5066 case PGMPAGETYPE_MMIO2:
5067 {
5068 void const *pvPage;
5069 PGMPAGEMAPLOCK Lock;
5070 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
5071 if (RT_SUCCESS(rc))
5072 {
5073 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
5074 PGMPhysReleasePageMappingLock(pVM, &Lock);
5075 if (RT_FAILURE(rc))
5076 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5077 }
5078 else
5079 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5080 break;
5081 }
5082
5083 default:
5084 AssertFailed();
5085 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
5086 case PGMPAGETYPE_MMIO:
5087 if (fIncZeroPgs)
5088 {
5089 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5090 if (RT_FAILURE(rc))
5091 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5092 }
5093 break;
5094 }
5095 }
5096
5097
5098 /* advance */
5099 GCPhys += PAGE_SIZE;
5100 pPage++;
5101 }
5102 }
5103 pgmUnlock(pVM);
5104
5105 RTFileClose(hFile);
5106 if (RT_SUCCESS(rc))
5107 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
5108 return VINF_SUCCESS;
5109}
5110
5111#endif /* VBOX_WITH_DEBUGGER */
5112
5113/**
5114 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
5115 */
5116typedef struct PGMCHECKINTARGS
5117{
5118 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
5119 PPGMPHYSHANDLER pPrevPhys;
5120 PPGMVIRTHANDLER pPrevVirt;
5121 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
5122 PVM pVM;
5123} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
5124
5125/**
5126 * Validate a node in the physical handler tree.
5127 *
5128 * @returns 0 on if ok, other wise 1.
5129 * @param pNode The handler node.
5130 * @param pvUser pVM.
5131 */
5132static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5133{
5134 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5135 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
5136 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5137 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5138 AssertReleaseMsg( !pArgs->pPrevPhys
5139 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
5140 ("pPrevPhys=%p %RGp-%RGp %s\n"
5141 " pCur=%p %RGp-%RGp %s\n",
5142 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
5143 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5144 pArgs->pPrevPhys = pCur;
5145 return 0;
5146}
5147
5148
5149/**
5150 * Validate a node in the virtual handler tree.
5151 *
5152 * @returns 0 on if ok, other wise 1.
5153 * @param pNode The handler node.
5154 * @param pvUser pVM.
5155 */
5156static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
5157{
5158 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5159 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
5160 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5161 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5162 AssertReleaseMsg( !pArgs->pPrevVirt
5163 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
5164 ("pPrevVirt=%p %RGv-%RGv %s\n"
5165 " pCur=%p %RGv-%RGv %s\n",
5166 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
5167 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5168 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
5169 {
5170 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
5171 ("pCur=%p %RGv-%RGv %s\n"
5172 "iPage=%d offVirtHandle=%#x expected %#x\n",
5173 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
5174 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
5175 }
5176 pArgs->pPrevVirt = pCur;
5177 return 0;
5178}
5179
5180
5181/**
5182 * Validate a node in the virtual handler tree.
5183 *
5184 * @returns 0 on if ok, other wise 1.
5185 * @param pNode The handler node.
5186 * @param pvUser pVM.
5187 */
5188static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5189{
5190 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5191 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
5192 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
5193 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
5194 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
5195 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5196 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5197 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5198 " pCur=%p %RGp-%RGp\n",
5199 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5200 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5201 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5202 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5203 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5204 " pCur=%p %RGp-%RGp\n",
5205 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5206 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5207 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
5208 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5209 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5210 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
5211 {
5212 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
5213 for (;;)
5214 {
5215 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
5216 AssertReleaseMsg(pCur2 != pCur,
5217 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5218 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5219 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5220 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5221 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5222 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5223 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5224 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5225 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5226 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5227 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5228 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5229 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5230 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5231 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5232 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5233 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5234 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5235 break;
5236 }
5237 }
5238
5239 pArgs->pPrevPhys2Virt = pCur;
5240 return 0;
5241}
5242
5243
5244/**
5245 * Perform an integrity check on the PGM component.
5246 *
5247 * @returns VINF_SUCCESS if everything is fine.
5248 * @returns VBox error status after asserting on integrity breach.
5249 * @param pVM The VM handle.
5250 */
5251VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5252{
5253 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5254
5255 /*
5256 * Check the trees.
5257 */
5258 int cErrors = 0;
5259 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5260 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5261 PGMCHECKINTARGS Args = s_LeftToRight;
5262 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5263 Args = s_RightToLeft;
5264 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5265 Args = s_LeftToRight;
5266 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5267 Args = s_RightToLeft;
5268 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5269 Args = s_LeftToRight;
5270 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5271 Args = s_RightToLeft;
5272 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5273 Args = s_LeftToRight;
5274 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5275 Args = s_RightToLeft;
5276 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5277
5278 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5279}
5280
5281
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette