VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 12681

Last change on this file since 12681 was 12681, checked in by vboxsync, 16 years ago

Updates for real and protected mode without paging shadow mode.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 203.8 KB
Line 
1/* $Id: PGM.cpp 12681 2008-09-24 11:51:10Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635# ifdef VBOX_STRICT
636static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637# endif
638#endif
639
640
641/*******************************************************************************
642* Global Variables *
643*******************************************************************************/
644#ifdef VBOX_WITH_DEBUGGER
645/** Command descriptors. */
646static const DBGCCMD g_aCmds[] =
647{
648 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
649 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
650 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
651 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
652#ifdef VBOX_STRICT
653 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
654#endif
655 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
656};
657#endif
658
659
660
661
662/*
663 * Shadow - 32-bit mode
664 */
665#define PGM_SHW_TYPE PGM_TYPE_32BIT
666#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
667#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
668#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
669#include "PGMShw.h"
670
671/* Guest - real mode */
672#define PGM_GST_TYPE PGM_TYPE_REAL
673#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
674#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
675#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
676#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
677#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
678#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
679#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
680#include "PGMGst.h"
681#include "PGMBth.h"
682#undef BTH_PGMPOOLKIND_PT_FOR_PT
683#undef PGM_BTH_NAME
684#undef PGM_BTH_NAME_GC_STR
685#undef PGM_BTH_NAME_R0_STR
686#undef PGM_GST_TYPE
687#undef PGM_GST_NAME
688#undef PGM_GST_NAME_GC_STR
689#undef PGM_GST_NAME_R0_STR
690
691/* Guest - protected mode */
692#define PGM_GST_TYPE PGM_TYPE_PROT
693#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
694#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
695#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
696#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
697#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
698#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
699#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
700#include "PGMGst.h"
701#include "PGMBth.h"
702#undef BTH_PGMPOOLKIND_PT_FOR_PT
703#undef PGM_BTH_NAME
704#undef PGM_BTH_NAME_GC_STR
705#undef PGM_BTH_NAME_R0_STR
706#undef PGM_GST_TYPE
707#undef PGM_GST_NAME
708#undef PGM_GST_NAME_GC_STR
709#undef PGM_GST_NAME_R0_STR
710
711/* Guest - 32-bit mode */
712#define PGM_GST_TYPE PGM_TYPE_32BIT
713#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
714#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
715#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
716#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
717#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
718#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
719#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
720#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
721#include "PGMGst.h"
722#include "PGMBth.h"
723#undef BTH_PGMPOOLKIND_PT_FOR_BIG
724#undef BTH_PGMPOOLKIND_PT_FOR_PT
725#undef PGM_BTH_NAME
726#undef PGM_BTH_NAME_GC_STR
727#undef PGM_BTH_NAME_R0_STR
728#undef PGM_GST_TYPE
729#undef PGM_GST_NAME
730#undef PGM_GST_NAME_GC_STR
731#undef PGM_GST_NAME_R0_STR
732
733#undef PGM_SHW_TYPE
734#undef PGM_SHW_NAME
735#undef PGM_SHW_NAME_GC_STR
736#undef PGM_SHW_NAME_R0_STR
737
738
739/*
740 * Shadow - PAE mode
741 */
742#define PGM_SHW_TYPE PGM_TYPE_PAE
743#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
744#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
745#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
746#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
747#include "PGMShw.h"
748
749/* Guest - real mode */
750#define PGM_GST_TYPE PGM_TYPE_REAL
751#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
752#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
753#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
754#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
755#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
756#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
757#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
758#include "PGMBth.h"
759#undef BTH_PGMPOOLKIND_PT_FOR_PT
760#undef PGM_BTH_NAME
761#undef PGM_BTH_NAME_GC_STR
762#undef PGM_BTH_NAME_R0_STR
763#undef PGM_GST_TYPE
764#undef PGM_GST_NAME
765#undef PGM_GST_NAME_GC_STR
766#undef PGM_GST_NAME_R0_STR
767
768/* Guest - protected mode */
769#define PGM_GST_TYPE PGM_TYPE_PROT
770#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
771#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
772#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
773#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
774#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
775#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
776#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
777#include "PGMBth.h"
778#undef BTH_PGMPOOLKIND_PT_FOR_PT
779#undef PGM_BTH_NAME
780#undef PGM_BTH_NAME_GC_STR
781#undef PGM_BTH_NAME_R0_STR
782#undef PGM_GST_TYPE
783#undef PGM_GST_NAME
784#undef PGM_GST_NAME_GC_STR
785#undef PGM_GST_NAME_R0_STR
786
787/* Guest - 32-bit mode */
788#define PGM_GST_TYPE PGM_TYPE_32BIT
789#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
790#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
791#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
792#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
793#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
794#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
795#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
796#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
797#include "PGMBth.h"
798#undef BTH_PGMPOOLKIND_PT_FOR_BIG
799#undef BTH_PGMPOOLKIND_PT_FOR_PT
800#undef PGM_BTH_NAME
801#undef PGM_BTH_NAME_GC_STR
802#undef PGM_BTH_NAME_R0_STR
803#undef PGM_GST_TYPE
804#undef PGM_GST_NAME
805#undef PGM_GST_NAME_GC_STR
806#undef PGM_GST_NAME_R0_STR
807
808/* Guest - PAE mode */
809#define PGM_GST_TYPE PGM_TYPE_PAE
810#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
811#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
812#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
813#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
814#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
815#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
816#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
817#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
818#include "PGMGst.h"
819#include "PGMBth.h"
820#undef BTH_PGMPOOLKIND_PT_FOR_BIG
821#undef BTH_PGMPOOLKIND_PT_FOR_PT
822#undef PGM_BTH_NAME
823#undef PGM_BTH_NAME_GC_STR
824#undef PGM_BTH_NAME_R0_STR
825#undef PGM_GST_TYPE
826#undef PGM_GST_NAME
827#undef PGM_GST_NAME_GC_STR
828#undef PGM_GST_NAME_R0_STR
829
830#undef PGM_SHW_TYPE
831#undef PGM_SHW_NAME
832#undef PGM_SHW_NAME_GC_STR
833#undef PGM_SHW_NAME_R0_STR
834
835
836/*
837 * Shadow - AMD64 mode
838 */
839#define PGM_SHW_TYPE PGM_TYPE_AMD64
840#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
841#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
842#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
843#include "PGMShw.h"
844
845/* Guest - AMD64 mode */
846#define PGM_GST_TYPE PGM_TYPE_AMD64
847#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
848#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
849#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
850#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
851#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
852#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
853#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
854#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
855#include "PGMGst.h"
856#include "PGMBth.h"
857#undef BTH_PGMPOOLKIND_PT_FOR_BIG
858#undef BTH_PGMPOOLKIND_PT_FOR_PT
859#undef PGM_BTH_NAME
860#undef PGM_BTH_NAME_GC_STR
861#undef PGM_BTH_NAME_R0_STR
862#undef PGM_GST_TYPE
863#undef PGM_GST_NAME
864#undef PGM_GST_NAME_GC_STR
865#undef PGM_GST_NAME_R0_STR
866
867#undef PGM_SHW_TYPE
868#undef PGM_SHW_NAME
869#undef PGM_SHW_NAME_GC_STR
870#undef PGM_SHW_NAME_R0_STR
871
872/*
873 * Shadow - Nested paging mode
874 */
875#define PGM_SHW_TYPE PGM_TYPE_NESTED
876#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
877#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
878#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
879#include "PGMShw.h"
880
881/* Guest - real mode */
882#define PGM_GST_TYPE PGM_TYPE_REAL
883#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
884#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
885#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
886#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
887#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
888#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
889#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
890#include "PGMBth.h"
891#undef BTH_PGMPOOLKIND_PT_FOR_PT
892#undef PGM_BTH_NAME
893#undef PGM_BTH_NAME_GC_STR
894#undef PGM_BTH_NAME_R0_STR
895#undef PGM_GST_TYPE
896#undef PGM_GST_NAME
897#undef PGM_GST_NAME_GC_STR
898#undef PGM_GST_NAME_R0_STR
899
900/* Guest - protected mode */
901#define PGM_GST_TYPE PGM_TYPE_PROT
902#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
903#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
904#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
905#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
906#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
907#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
908#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
909#include "PGMBth.h"
910#undef BTH_PGMPOOLKIND_PT_FOR_PT
911#undef PGM_BTH_NAME
912#undef PGM_BTH_NAME_GC_STR
913#undef PGM_BTH_NAME_R0_STR
914#undef PGM_GST_TYPE
915#undef PGM_GST_NAME
916#undef PGM_GST_NAME_GC_STR
917#undef PGM_GST_NAME_R0_STR
918
919/* Guest - 32-bit mode */
920#define PGM_GST_TYPE PGM_TYPE_32BIT
921#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
922#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
923#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
924#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
925#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
926#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
927#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
928#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
929#include "PGMBth.h"
930#undef BTH_PGMPOOLKIND_PT_FOR_BIG
931#undef BTH_PGMPOOLKIND_PT_FOR_PT
932#undef PGM_BTH_NAME
933#undef PGM_BTH_NAME_GC_STR
934#undef PGM_BTH_NAME_R0_STR
935#undef PGM_GST_TYPE
936#undef PGM_GST_NAME
937#undef PGM_GST_NAME_GC_STR
938#undef PGM_GST_NAME_R0_STR
939
940/* Guest - PAE mode */
941#define PGM_GST_TYPE PGM_TYPE_PAE
942#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
943#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
944#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
945#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
946#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
947#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
948#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
949#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
950#include "PGMBth.h"
951#undef BTH_PGMPOOLKIND_PT_FOR_BIG
952#undef BTH_PGMPOOLKIND_PT_FOR_PT
953#undef PGM_BTH_NAME
954#undef PGM_BTH_NAME_GC_STR
955#undef PGM_BTH_NAME_R0_STR
956#undef PGM_GST_TYPE
957#undef PGM_GST_NAME
958#undef PGM_GST_NAME_GC_STR
959#undef PGM_GST_NAME_R0_STR
960
961/* Guest - AMD64 mode */
962#define PGM_GST_TYPE PGM_TYPE_AMD64
963#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
964#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
965#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
966#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
967#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
968#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
969#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
970#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
971#include "PGMBth.h"
972#undef BTH_PGMPOOLKIND_PT_FOR_BIG
973#undef BTH_PGMPOOLKIND_PT_FOR_PT
974#undef PGM_BTH_NAME
975#undef PGM_BTH_NAME_GC_STR
976#undef PGM_BTH_NAME_R0_STR
977#undef PGM_GST_TYPE
978#undef PGM_GST_NAME
979#undef PGM_GST_NAME_GC_STR
980#undef PGM_GST_NAME_R0_STR
981
982#undef PGM_SHW_TYPE
983#undef PGM_SHW_NAME
984#undef PGM_SHW_NAME_GC_STR
985#undef PGM_SHW_NAME_R0_STR
986
987
988#ifdef PGM_WITH_EPT
989/*
990 * Shadow - EPT
991 */
992#define PGM_SHW_TYPE PGM_TYPE_EPT
993#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
994#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_EPT_STR(name)
995#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
996#include "PGMShw.h"
997
998/* Guest - real mode */
999#define PGM_GST_TYPE PGM_TYPE_REAL
1000#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1001#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
1002#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1003#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1004#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_REAL_STR(name)
1005#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1006#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1007#include "PGMBth.h"
1008#undef BTH_PGMPOOLKIND_PT_FOR_PT
1009#undef PGM_BTH_NAME
1010#undef PGM_BTH_NAME_GC_STR
1011#undef PGM_BTH_NAME_R0_STR
1012#undef PGM_GST_TYPE
1013#undef PGM_GST_NAME
1014#undef PGM_GST_NAME_GC_STR
1015#undef PGM_GST_NAME_R0_STR
1016
1017/* Guest - protected mode */
1018#define PGM_GST_TYPE PGM_TYPE_PROT
1019#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1020#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
1021#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1022#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1023#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PROT_STR(name)
1024#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1025#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1026#include "PGMBth.h"
1027#undef BTH_PGMPOOLKIND_PT_FOR_PT
1028#undef PGM_BTH_NAME
1029#undef PGM_BTH_NAME_GC_STR
1030#undef PGM_BTH_NAME_R0_STR
1031#undef PGM_GST_TYPE
1032#undef PGM_GST_NAME
1033#undef PGM_GST_NAME_GC_STR
1034#undef PGM_GST_NAME_R0_STR
1035
1036/* Guest - 32-bit mode */
1037#define PGM_GST_TYPE PGM_TYPE_32BIT
1038#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1039#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
1040#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1041#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1042#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_32BIT_STR(name)
1043#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1044#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1045#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1046#include "PGMBth.h"
1047#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1048#undef BTH_PGMPOOLKIND_PT_FOR_PT
1049#undef PGM_BTH_NAME
1050#undef PGM_BTH_NAME_GC_STR
1051#undef PGM_BTH_NAME_R0_STR
1052#undef PGM_GST_TYPE
1053#undef PGM_GST_NAME
1054#undef PGM_GST_NAME_GC_STR
1055#undef PGM_GST_NAME_R0_STR
1056
1057/* Guest - PAE mode */
1058#define PGM_GST_TYPE PGM_TYPE_PAE
1059#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1060#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
1061#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1062#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1063#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PAE_STR(name)
1064#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1065#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1066#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1067#include "PGMBth.h"
1068#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1069#undef BTH_PGMPOOLKIND_PT_FOR_PT
1070#undef PGM_BTH_NAME
1071#undef PGM_BTH_NAME_GC_STR
1072#undef PGM_BTH_NAME_R0_STR
1073#undef PGM_GST_TYPE
1074#undef PGM_GST_NAME
1075#undef PGM_GST_NAME_GC_STR
1076#undef PGM_GST_NAME_R0_STR
1077
1078/* Guest - AMD64 mode */
1079#define PGM_GST_TYPE PGM_TYPE_AMD64
1080#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1081#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
1082#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1083#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1084#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_AMD64_STR(name)
1085#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1086#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1087#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1088#include "PGMBth.h"
1089#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1090#undef BTH_PGMPOOLKIND_PT_FOR_PT
1091#undef PGM_BTH_NAME
1092#undef PGM_BTH_NAME_GC_STR
1093#undef PGM_BTH_NAME_R0_STR
1094#undef PGM_GST_TYPE
1095#undef PGM_GST_NAME
1096#undef PGM_GST_NAME_GC_STR
1097#undef PGM_GST_NAME_R0_STR
1098
1099#undef PGM_SHW_TYPE
1100#undef PGM_SHW_NAME
1101#undef PGM_SHW_NAME_GC_STR
1102#undef PGM_SHW_NAME_R0_STR
1103#endif /* PGM_WITH_EPT */
1104
1105/**
1106 * Initiates the paging of VM.
1107 *
1108 * @returns VBox status code.
1109 * @param pVM Pointer to VM structure.
1110 */
1111PGMR3DECL(int) PGMR3Init(PVM pVM)
1112{
1113 LogFlow(("PGMR3Init:\n"));
1114
1115 /*
1116 * Assert alignment and sizes.
1117 */
1118 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1119
1120 /*
1121 * Init the structure.
1122 */
1123 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1124 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1125 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1126 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1127 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1128 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1129 pVM->pgm.s.fA20Enabled = true;
1130 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1131 pVM->pgm.s.pGstPaePDPTHC = NULL;
1132 pVM->pgm.s.pGstPaePDPTGC = 0;
1133 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1134 {
1135 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1136 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1137 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1138 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1139 }
1140
1141#ifdef VBOX_STRICT
1142 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1143#endif
1144
1145 /*
1146 * Get the configured RAM size - to estimate saved state size.
1147 */
1148 uint64_t cbRam;
1149 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1150 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1151 cbRam = pVM->pgm.s.cbRamSize = 0;
1152 else if (VBOX_SUCCESS(rc))
1153 {
1154 if (cbRam < PAGE_SIZE)
1155 cbRam = 0;
1156 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1157 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1158 }
1159 else
1160 {
1161 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1162 return rc;
1163 }
1164
1165 /*
1166 * Register saved state data unit.
1167 */
1168 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1169 NULL, pgmR3Save, NULL,
1170 NULL, pgmR3Load, NULL);
1171 if (VBOX_FAILURE(rc))
1172 return rc;
1173
1174 /*
1175 * Initialize the PGM critical section and flush the phys TLBs
1176 */
1177 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1178 AssertRCReturn(rc, rc);
1179
1180 PGMR3PhysChunkInvalidateTLB(pVM);
1181 PGMPhysInvalidatePageR3MapTLB(pVM);
1182 PGMPhysInvalidatePageR0MapTLB(pVM);
1183 PGMPhysInvalidatePageGCMapTLB(pVM);
1184
1185 /*
1186 * Trees
1187 */
1188 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1189 if (VBOX_SUCCESS(rc))
1190 {
1191 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1192
1193 /*
1194 * Alocate the zero page.
1195 */
1196 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1197 }
1198 if (VBOX_SUCCESS(rc))
1199 {
1200 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1201 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1202 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1203 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1204 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1205
1206 /*
1207 * Init the paging.
1208 */
1209 rc = pgmR3InitPaging(pVM);
1210 }
1211 if (VBOX_SUCCESS(rc))
1212 {
1213 /*
1214 * Init the page pool.
1215 */
1216 rc = pgmR3PoolInit(pVM);
1217 }
1218 if (VBOX_SUCCESS(rc))
1219 {
1220 /*
1221 * Info & statistics
1222 */
1223 DBGFR3InfoRegisterInternal(pVM, "mode",
1224 "Shows the current paging mode. "
1225 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1226 pgmR3InfoMode);
1227 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1228 "Dumps all the entries in the top level paging table. No arguments.",
1229 pgmR3InfoCr3);
1230 DBGFR3InfoRegisterInternal(pVM, "phys",
1231 "Dumps all the physical address ranges. No arguments.",
1232 pgmR3PhysInfo);
1233 DBGFR3InfoRegisterInternal(pVM, "handlers",
1234 "Dumps physical, virtual and hyper virtual handlers. "
1235 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1236 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1237 pgmR3InfoHandlers);
1238 DBGFR3InfoRegisterInternal(pVM, "mappings",
1239 "Dumps guest mappings.",
1240 pgmR3MapInfo);
1241
1242 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1243#ifdef VBOX_WITH_STATISTICS
1244 pgmR3InitStats(pVM);
1245#endif
1246#ifdef VBOX_WITH_DEBUGGER
1247 /*
1248 * Debugger commands.
1249 */
1250 static bool fRegisteredCmds = false;
1251 if (!fRegisteredCmds)
1252 {
1253 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1254 if (VBOX_SUCCESS(rc))
1255 fRegisteredCmds = true;
1256 }
1257#endif
1258 return VINF_SUCCESS;
1259 }
1260
1261 /* Almost no cleanup necessary, MM frees all memory. */
1262 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1263
1264 return rc;
1265}
1266
1267
1268/**
1269 * Init paging.
1270 *
1271 * Since we need to check what mode the host is operating in before we can choose
1272 * the right paging functions for the host we have to delay this until R0 has
1273 * been initialized.
1274 *
1275 * @returns VBox status code.
1276 * @param pVM VM handle.
1277 */
1278static int pgmR3InitPaging(PVM pVM)
1279{
1280 /*
1281 * Force a recalculation of modes and switcher so everyone gets notified.
1282 */
1283 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1284 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1285 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1286
1287 /*
1288 * Allocate static mapping space for whatever the cr3 register
1289 * points to and in the case of PAE mode to the 4 PDs.
1290 */
1291 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1292 if (VBOX_FAILURE(rc))
1293 {
1294 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1295 return rc;
1296 }
1297 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1298
1299 /*
1300 * Allocate pages for the three possible intermediate contexts
1301 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1302 * for the sake of simplicity. The AMD64 uses the PAE for the
1303 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1304 *
1305 * We assume that two page tables will be enought for the core code
1306 * mappings (HC virtual and identity).
1307 */
1308 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1309 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1310 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1311 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1312 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1313 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1314 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1315 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1316 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1317 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1318 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1319 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1320 if ( !pVM->pgm.s.pInterPD
1321 || !pVM->pgm.s.apInterPTs[0]
1322 || !pVM->pgm.s.apInterPTs[1]
1323 || !pVM->pgm.s.apInterPaePTs[0]
1324 || !pVM->pgm.s.apInterPaePTs[1]
1325 || !pVM->pgm.s.apInterPaePDs[0]
1326 || !pVM->pgm.s.apInterPaePDs[1]
1327 || !pVM->pgm.s.apInterPaePDs[2]
1328 || !pVM->pgm.s.apInterPaePDs[3]
1329 || !pVM->pgm.s.pInterPaePDPT
1330 || !pVM->pgm.s.pInterPaePDPT64
1331 || !pVM->pgm.s.pInterPaePML4)
1332 {
1333 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1334 return VERR_NO_PAGE_MEMORY;
1335 }
1336
1337 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1338 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1339 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1340 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1341 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1342 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1343
1344 /*
1345 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1346 */
1347 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1348 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1349 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1350
1351 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1352 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1353
1354 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1355 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1356 {
1357 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1358 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1359 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1360 }
1361
1362 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1363 {
1364 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1365 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1366 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1367 }
1368
1369 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1370 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1371 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1372 | HCPhysInterPaePDPT64;
1373
1374 /*
1375 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1376 * We allocate pages for all three posibilities to in order to simplify mappings and
1377 * avoid resource failure during mode switches. So, we need to cover all levels of the
1378 * of the first 4GB down to PD level.
1379 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1380 */
1381 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1382 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1383 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1384 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1385 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1386 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1387 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1388 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1389 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1390 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1391 pVM->pgm.s.pHCNoPaging32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1392
1393 if ( !pVM->pgm.s.pHC32BitPD
1394 || !pVM->pgm.s.apHCPaePDs[0]
1395 || !pVM->pgm.s.apHCPaePDs[1]
1396 || !pVM->pgm.s.apHCPaePDs[2]
1397 || !pVM->pgm.s.apHCPaePDs[3]
1398 || !pVM->pgm.s.pHCPaePDPT
1399 || !pVM->pgm.s.pHCNestedRoot
1400 || !pVM->pgm.s.pHCNoPaging32BitPD)
1401 {
1402 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1403 return VERR_NO_PAGE_MEMORY;
1404 }
1405
1406 /* get physical addresses. */
1407 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1408 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1409 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1410 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1411 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1412 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1413 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1414 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1415 pVM->pgm.s.HCPhysNoPaging32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHCNoPaging32BitPD);
1416
1417 /*
1418 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1419 */
1420 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1421 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1422 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1423 ASMMemZero32(pVM->pgm.s.pHCNoPaging32BitPD, PAGE_SIZE);
1424 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1425 {
1426 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1427 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1428 /* The flags will be corrected when entering and leaving long mode. */
1429 }
1430
1431 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1432
1433 /*
1434 * Initialize paging workers and mode from current host mode
1435 * and the guest running in real mode.
1436 */
1437 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1438 switch (pVM->pgm.s.enmHostMode)
1439 {
1440 case SUPPAGINGMODE_32_BIT:
1441 case SUPPAGINGMODE_32_BIT_GLOBAL:
1442 case SUPPAGINGMODE_PAE:
1443 case SUPPAGINGMODE_PAE_GLOBAL:
1444 case SUPPAGINGMODE_PAE_NX:
1445 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1446 break;
1447
1448 case SUPPAGINGMODE_AMD64:
1449 case SUPPAGINGMODE_AMD64_GLOBAL:
1450 case SUPPAGINGMODE_AMD64_NX:
1451 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1452#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1453 if (ARCH_BITS != 64)
1454 {
1455 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1456 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1457 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1458 }
1459#endif
1460 break;
1461 default:
1462 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1463 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1464 }
1465 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1466 if (VBOX_SUCCESS(rc))
1467 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1468 if (VBOX_SUCCESS(rc))
1469 {
1470 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1471#if HC_ARCH_BITS == 64
1472 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1473 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1474 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1475 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1476 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1477 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1478 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1479 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1480 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1481 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1482#endif
1483
1484 return VINF_SUCCESS;
1485 }
1486
1487 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1488 return rc;
1489}
1490
1491
1492#ifdef VBOX_WITH_STATISTICS
1493/**
1494 * Init statistics
1495 */
1496static void pgmR3InitStats(PVM pVM)
1497{
1498 PPGM pPGM = &pVM->pgm.s;
1499 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1500 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1501 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1502 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1503 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1504 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1505 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1506 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1507 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1508 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1509 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1510 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1511 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1512 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1513 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1514 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1515 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1516 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1517 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1518 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1519 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1520 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1521
1522 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1523 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1524 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1525 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1526 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1527 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1528 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1529 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1530 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1531 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1532 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1533 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1534 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1535 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1536 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1537 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1538 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1539 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1540 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1541
1542 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1543 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1544 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1545 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1546 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1547 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1548 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1549 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1550
1551 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1552 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1553 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1554 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1555 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1556 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1557 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1558
1559 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1560 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1561 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1562 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1563 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1564 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1565 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1566
1567 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1568 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1569
1570 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1571 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1572 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1573
1574 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1575 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1576
1577 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1578 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1579
1580 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1581 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1582
1583 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1584 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1585 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1586
1587 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1588 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1589 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1590 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1591 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1592 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1593 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1594 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1595 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1596 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1597 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1598
1599 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1600 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1601 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1602 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1603 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1604 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1605 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1606
1607 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1608 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1609 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1610 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1611
1612 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1613 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1614 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1615 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1616 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1617
1618 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1619 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1620 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1621 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1622 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1623 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1624 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1625 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1626 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1627 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1628 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1629 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1630
1631 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1632 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1633 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1634 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1635 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1636 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1637 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1638 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1639 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1640 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1641 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1642 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1643
1644 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1645 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1646 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1647
1648 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1649 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1650
1651 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1652 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1653 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1654 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1655
1656 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1657 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1658
1659 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1660 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1661 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1662 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1663 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1664 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1665 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1666 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1667 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1668 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1669 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1670 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1671 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1672
1673#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1674 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1675 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1676 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1677 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1678 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1679 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1680#endif
1681
1682 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1683 {
1684 /** @todo r=bird: We need a STAMR3RegisterF()! */
1685 char szName[32];
1686
1687 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1688 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1689 AssertRC(rc);
1690
1691 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1692 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1693 AssertRC(rc);
1694
1695 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1696 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1697 AssertRC(rc);
1698 }
1699}
1700#endif /* VBOX_WITH_STATISTICS */
1701
1702/**
1703 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1704 *
1705 * The dynamic mapping area will also be allocated and initialized at this
1706 * time. We could allocate it during PGMR3Init of course, but the mapping
1707 * wouldn't be allocated at that time preventing us from setting up the
1708 * page table entries with the dummy page.
1709 *
1710 * @returns VBox status code.
1711 * @param pVM VM handle.
1712 */
1713PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1714{
1715 RTGCPTR GCPtr;
1716 /*
1717 * Reserve space for mapping the paging pages into guest context.
1718 */
1719 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1720 AssertRCReturn(rc, rc);
1721 pVM->pgm.s.pGC32BitPD = GCPtr;
1722 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1723
1724 /*
1725 * Reserve space for the dynamic mappings.
1726 */
1727 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1728 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1729 if (VBOX_SUCCESS(rc))
1730 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1731
1732 if ( VBOX_SUCCESS(rc)
1733 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1734 {
1735 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1736 if (VBOX_SUCCESS(rc))
1737 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1738 }
1739 if (VBOX_SUCCESS(rc))
1740 {
1741 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1742 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1743 }
1744 return rc;
1745}
1746
1747
1748/**
1749 * Ring-3 init finalizing.
1750 *
1751 * @returns VBox status code.
1752 * @param pVM The VM handle.
1753 */
1754PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1755{
1756 /*
1757 * Map the paging pages into the guest context.
1758 */
1759 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1760 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1761
1762 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1763 AssertRCReturn(rc, rc);
1764 pVM->pgm.s.pGC32BitPD = GCPtr;
1765 GCPtr += PAGE_SIZE;
1766 GCPtr += PAGE_SIZE; /* reserved page */
1767
1768 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1769 {
1770 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1771 AssertRCReturn(rc, rc);
1772 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1773 GCPtr += PAGE_SIZE;
1774 }
1775 /* A bit of paranoia is justified. */
1776 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1777 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1778 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1779 GCPtr += PAGE_SIZE; /* reserved page */
1780
1781 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1782 AssertRCReturn(rc, rc);
1783 pVM->pgm.s.pGCPaePDPT = GCPtr;
1784 GCPtr += PAGE_SIZE;
1785 GCPtr += PAGE_SIZE; /* reserved page */
1786
1787
1788 /*
1789 * Reserve space for the dynamic mappings.
1790 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1791 */
1792 /* get the pointer to the page table entries. */
1793 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1794 AssertRelease(pMapping);
1795 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1796 const unsigned iPT = off >> X86_PD_SHIFT;
1797 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1798 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1799 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1800
1801 /* init cache */
1802 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1803 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1804 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1805
1806 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1807 {
1808 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1809 AssertRCReturn(rc, rc);
1810 }
1811
1812 /* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); Intel only goes up to 36 bits, so
1813 * we stick to 36 as well.
1814 *
1815 * @todo How to test for the 40 bits support? Long mode seems to be the test criterium.
1816 */
1817 uint32_t u32Dummy, u32Features;
1818 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1819
1820 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1821 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1822 else
1823 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1824
1825 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %VGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1826
1827 return rc;
1828}
1829
1830
1831/**
1832 * Applies relocations to data and code managed by this
1833 * component. This function will be called at init and
1834 * whenever the VMM need to relocate it self inside the GC.
1835 *
1836 * @param pVM The VM.
1837 * @param offDelta Relocation delta relative to old location.
1838 */
1839PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1840{
1841 LogFlow(("PGMR3Relocate\n"));
1842
1843 /*
1844 * Paging stuff.
1845 */
1846 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1847 /** @todo move this into shadow and guest specific relocation functions. */
1848 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1849 pVM->pgm.s.pGC32BitPD += offDelta;
1850 pVM->pgm.s.pGuestPDGC += offDelta;
1851 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1852 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1853 {
1854 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1855 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1856 }
1857 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1858 pVM->pgm.s.pGCPaePDPT += offDelta;
1859
1860 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1861 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1862
1863 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1864 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1865 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1866
1867 /*
1868 * Trees.
1869 */
1870 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1871
1872 /*
1873 * Ram ranges.
1874 */
1875 if (pVM->pgm.s.pRamRangesR3)
1876 {
1877 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1878 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1879#ifdef VBOX_WITH_NEW_PHYS_CODE
1880 pCur->pNextGC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1881#else
1882 {
1883 pCur->pNextGC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1884 if (pCur->pavHCChunkGC)
1885 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1886 }
1887#endif
1888 }
1889
1890 /*
1891 * Update the two page directories with all page table mappings.
1892 * (One or more of them have changed, that's why we're here.)
1893 */
1894 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1895 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1896 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1897
1898 /* Relocate GC addresses of Page Tables. */
1899 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1900 {
1901 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1902 {
1903 pCur->aPTs[i].pPTGC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1904 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1905 }
1906 }
1907
1908 /*
1909 * Dynamic page mapping area.
1910 */
1911 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1912 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1913 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1914
1915 /*
1916 * The Zero page.
1917 */
1918 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1919 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1920
1921 /*
1922 * Physical and virtual handlers.
1923 */
1924 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1925 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1926 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1927
1928 /*
1929 * The page pool.
1930 */
1931 pgmR3PoolRelocate(pVM);
1932}
1933
1934
1935/**
1936 * Callback function for relocating a physical access handler.
1937 *
1938 * @returns 0 (continue enum)
1939 * @param pNode Pointer to a PGMPHYSHANDLER node.
1940 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1941 * not certain the delta will fit in a void pointer for all possible configs.
1942 */
1943static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1944{
1945 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1946 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1947 if (pHandler->pfnHandlerGC)
1948 pHandler->pfnHandlerGC += offDelta;
1949 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1950 pHandler->pvUserGC += offDelta;
1951 return 0;
1952}
1953
1954
1955/**
1956 * Callback function for relocating a virtual access handler.
1957 *
1958 * @returns 0 (continue enum)
1959 * @param pNode Pointer to a PGMVIRTHANDLER node.
1960 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1961 * not certain the delta will fit in a void pointer for all possible configs.
1962 */
1963static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1964{
1965 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1966 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1967 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1968 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1969 Assert(pHandler->pfnHandlerGC);
1970 pHandler->pfnHandlerGC += offDelta;
1971 return 0;
1972}
1973
1974
1975/**
1976 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1977 *
1978 * @returns 0 (continue enum)
1979 * @param pNode Pointer to a PGMVIRTHANDLER node.
1980 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1981 * not certain the delta will fit in a void pointer for all possible configs.
1982 */
1983static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1984{
1985 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1986 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1987 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1988 Assert(pHandler->pfnHandlerGC);
1989 pHandler->pfnHandlerGC += offDelta;
1990 return 0;
1991}
1992
1993
1994/**
1995 * The VM is being reset.
1996 *
1997 * For the PGM component this means that any PD write monitors
1998 * needs to be removed.
1999 *
2000 * @param pVM VM handle.
2001 */
2002PGMR3DECL(void) PGMR3Reset(PVM pVM)
2003{
2004 LogFlow(("PGMR3Reset:\n"));
2005 VM_ASSERT_EMT(pVM);
2006
2007 pgmLock(pVM);
2008
2009 /*
2010 * Unfix any fixed mappings and disable CR3 monitoring.
2011 */
2012 pVM->pgm.s.fMappingsFixed = false;
2013 pVM->pgm.s.GCPtrMappingFixed = 0;
2014 pVM->pgm.s.cbMappingFixed = 0;
2015
2016 /* Exit the guest paging mode before the pgm pool gets reset.
2017 * Important to clean up the amd64 case.
2018 */
2019 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2020 AssertRC(rc);
2021#ifdef DEBUG
2022 DBGFR3InfoLog(pVM, "mappings", NULL);
2023 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2024#endif
2025
2026 /*
2027 * Reset the shadow page pool.
2028 */
2029 pgmR3PoolReset(pVM);
2030
2031 /*
2032 * Re-init other members.
2033 */
2034 pVM->pgm.s.fA20Enabled = true;
2035
2036 /*
2037 * Clear the FFs PGM owns.
2038 */
2039 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2040 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2041
2042 /*
2043 * Reset (zero) RAM pages.
2044 */
2045 rc = pgmR3PhysRamReset(pVM);
2046 if (RT_SUCCESS(rc))
2047 {
2048#ifdef VBOX_WITH_NEW_PHYS_CODE
2049 /*
2050 * Reset (zero) shadow ROM pages.
2051 */
2052 rc = pgmR3PhysRomReset(pVM);
2053#endif
2054 if (RT_SUCCESS(rc))
2055 {
2056 /*
2057 * Switch mode back to real mode.
2058 */
2059 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2060 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2061 }
2062 }
2063
2064 pgmUnlock(pVM);
2065 //return rc;
2066 AssertReleaseRC(rc);
2067}
2068
2069
2070#ifdef VBOX_STRICT
2071/**
2072 * VM state change callback for clearing fNoMorePhysWrites after
2073 * a snapshot has been created.
2074 */
2075static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2076{
2077 if (enmState == VMSTATE_RUNNING)
2078 pVM->pgm.s.fNoMorePhysWrites = false;
2079}
2080#endif
2081
2082
2083/**
2084 * Terminates the PGM.
2085 *
2086 * @returns VBox status code.
2087 * @param pVM Pointer to VM structure.
2088 */
2089PGMR3DECL(int) PGMR3Term(PVM pVM)
2090{
2091 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2092}
2093
2094
2095/**
2096 * Execute state save operation.
2097 *
2098 * @returns VBox status code.
2099 * @param pVM VM Handle.
2100 * @param pSSM SSM operation handle.
2101 */
2102static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2103{
2104 PPGM pPGM = &pVM->pgm.s;
2105
2106 /* No more writes to physical memory after this point! */
2107 pVM->pgm.s.fNoMorePhysWrites = true;
2108
2109 /*
2110 * Save basic data (required / unaffected by relocation).
2111 */
2112#if 1
2113 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2114#else
2115 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2116#endif
2117 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2118 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2119 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2120 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2121 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2122 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2123 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2124 SSMR3PutU32(pSSM, ~0); /* Separator. */
2125
2126 /*
2127 * The guest mappings.
2128 */
2129 uint32_t i = 0;
2130 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2131 {
2132 SSMR3PutU32(pSSM, i);
2133 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2134 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2135 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2136 /* flags are done by the mapping owners! */
2137 }
2138 SSMR3PutU32(pSSM, ~0); /* terminator. */
2139
2140 /*
2141 * Ram range flags and bits.
2142 */
2143 i = 0;
2144 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2145 {
2146 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2147
2148 SSMR3PutU32(pSSM, i);
2149 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2150 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2151 SSMR3PutGCPhys(pSSM, pRam->cb);
2152 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
2153
2154 /* Flags. */
2155 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2156 for (unsigned iPage = 0; iPage < cPages; iPage++)
2157 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2158
2159 /* any memory associated with the range. */
2160 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2161 {
2162 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2163 {
2164 if (pRam->pavHCChunkHC[iChunk])
2165 {
2166 SSMR3PutU8(pSSM, 1); /* chunk present */
2167 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2168 }
2169 else
2170 SSMR3PutU8(pSSM, 0); /* no chunk present */
2171 }
2172 }
2173 else if (pRam->pvHC)
2174 {
2175 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
2176 if (VBOX_FAILURE(rc))
2177 {
2178 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2179 return rc;
2180 }
2181 }
2182 }
2183 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2184}
2185
2186
2187/**
2188 * Execute state load operation.
2189 *
2190 * @returns VBox status code.
2191 * @param pVM VM Handle.
2192 * @param pSSM SSM operation handle.
2193 * @param u32Version Data layout version.
2194 */
2195static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2196{
2197 /*
2198 * Validate version.
2199 */
2200 if (u32Version != PGM_SAVED_STATE_VERSION)
2201 {
2202 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2203 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2204 }
2205
2206 /*
2207 * Call the reset function to make sure all the memory is cleared.
2208 */
2209 PGMR3Reset(pVM);
2210
2211 /*
2212 * Load basic data (required / unaffected by relocation).
2213 */
2214 PPGM pPGM = &pVM->pgm.s;
2215#if 1
2216 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2217#else
2218 uint32_t u;
2219 SSMR3GetU32(pSSM, &u);
2220 pPGM->fMappingsFixed = u;
2221#endif
2222 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2223 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2224
2225 RTUINT cbRamSize;
2226 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2227 if (VBOX_FAILURE(rc))
2228 return rc;
2229 if (cbRamSize != pPGM->cbRamSize)
2230 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2231 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2232 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2233 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2234 RTUINT uGuestMode;
2235 SSMR3GetUInt(pSSM, &uGuestMode);
2236 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2237
2238 /* check separator. */
2239 uint32_t u32Sep;
2240 SSMR3GetU32(pSSM, &u32Sep);
2241 if (VBOX_FAILURE(rc))
2242 return rc;
2243 if (u32Sep != (uint32_t)~0)
2244 {
2245 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2246 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2247 }
2248
2249 /*
2250 * The guest mappings.
2251 */
2252 uint32_t i = 0;
2253 for (;; i++)
2254 {
2255 /* Check the seqence number / separator. */
2256 rc = SSMR3GetU32(pSSM, &u32Sep);
2257 if (VBOX_FAILURE(rc))
2258 return rc;
2259 if (u32Sep == ~0U)
2260 break;
2261 if (u32Sep != i)
2262 {
2263 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2264 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2265 }
2266
2267 /* get the mapping details. */
2268 char szDesc[256];
2269 szDesc[0] = '\0';
2270 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2271 if (VBOX_FAILURE(rc))
2272 return rc;
2273 RTGCPTR GCPtr;
2274 SSMR3GetGCPtr(pSSM, &GCPtr);
2275 RTGCUINTPTR cPTs;
2276 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2277 if (VBOX_FAILURE(rc))
2278 return rc;
2279
2280 /* find matching range. */
2281 PPGMMAPPING pMapping;
2282 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2283 if ( pMapping->cPTs == cPTs
2284 && !strcmp(pMapping->pszDesc, szDesc))
2285 break;
2286 if (!pMapping)
2287 {
2288 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2289 cPTs, szDesc, GCPtr));
2290 AssertFailed();
2291 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2292 }
2293
2294 /* relocate it. */
2295 if (pMapping->GCPtr != GCPtr)
2296 {
2297 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2298#if HC_ARCH_BITS == 64
2299LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2300#endif
2301 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2302 }
2303 else
2304 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2305 }
2306
2307 /*
2308 * Ram range flags and bits.
2309 */
2310 i = 0;
2311 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2312 {
2313 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2314 /* Check the seqence number / separator. */
2315 rc = SSMR3GetU32(pSSM, &u32Sep);
2316 if (VBOX_FAILURE(rc))
2317 return rc;
2318 if (u32Sep == ~0U)
2319 break;
2320 if (u32Sep != i)
2321 {
2322 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2323 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2324 }
2325
2326 /* Get the range details. */
2327 RTGCPHYS GCPhys;
2328 SSMR3GetGCPhys(pSSM, &GCPhys);
2329 RTGCPHYS GCPhysLast;
2330 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2331 RTGCPHYS cb;
2332 SSMR3GetGCPhys(pSSM, &cb);
2333 uint8_t fHaveBits;
2334 rc = SSMR3GetU8(pSSM, &fHaveBits);
2335 if (VBOX_FAILURE(rc))
2336 return rc;
2337 if (fHaveBits & ~1)
2338 {
2339 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2340 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2341 }
2342
2343 /* Match it up with the current range. */
2344 if ( GCPhys != pRam->GCPhys
2345 || GCPhysLast != pRam->GCPhysLast
2346 || cb != pRam->cb
2347 || fHaveBits != !!pRam->pvHC)
2348 {
2349 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2350 "State : %VGp-%VGp %VGp bytes %s\n",
2351 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2352 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2353 /*
2354 * If we're loading a state for debugging purpose, don't make a fuss if
2355 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2356 */
2357 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2358 || GCPhys < 8 * _1M)
2359 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2360
2361 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2362 while (cPages-- > 0)
2363 {
2364 uint16_t u16Ignore;
2365 SSMR3GetU16(pSSM, &u16Ignore);
2366 }
2367 continue;
2368 }
2369
2370 /* Flags. */
2371 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2372 for (unsigned iPage = 0; iPage < cPages; iPage++)
2373 {
2374 uint16_t u16 = 0;
2375 SSMR3GetU16(pSSM, &u16);
2376 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2377 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2378 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2379 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2380 }
2381
2382 /* any memory associated with the range. */
2383 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2384 {
2385 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2386 {
2387 uint8_t fValidChunk;
2388
2389 rc = SSMR3GetU8(pSSM, &fValidChunk);
2390 if (VBOX_FAILURE(rc))
2391 return rc;
2392 if (fValidChunk > 1)
2393 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2394
2395 if (fValidChunk)
2396 {
2397 if (!pRam->pavHCChunkHC[iChunk])
2398 {
2399 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2400 if (VBOX_FAILURE(rc))
2401 return rc;
2402 }
2403 Assert(pRam->pavHCChunkHC[iChunk]);
2404
2405 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2406 }
2407 /* else nothing to do */
2408 }
2409 }
2410 else if (pRam->pvHC)
2411 {
2412 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2413 if (VBOX_FAILURE(rc))
2414 {
2415 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2416 return rc;
2417 }
2418 }
2419 }
2420
2421 /*
2422 * We require a full resync now.
2423 */
2424 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2425 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2426 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2427 pPGM->fPhysCacheFlushPending = true;
2428 pgmR3HandlerPhysicalUpdateAll(pVM);
2429
2430 /*
2431 * Change the paging mode.
2432 */
2433 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2434
2435 /* Restore pVM->pgm.s.GCPhysCR3. */
2436 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2437 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2438 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2439 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2440 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2441 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2442 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2443 else
2444 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2445 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2446
2447 return rc;
2448}
2449
2450
2451/**
2452 * Show paging mode.
2453 *
2454 * @param pVM VM Handle.
2455 * @param pHlp The info helpers.
2456 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2457 */
2458static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2459{
2460 /* digest argument. */
2461 bool fGuest, fShadow, fHost;
2462 if (pszArgs)
2463 pszArgs = RTStrStripL(pszArgs);
2464 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2465 fShadow = fHost = fGuest = true;
2466 else
2467 {
2468 fShadow = fHost = fGuest = false;
2469 if (strstr(pszArgs, "guest"))
2470 fGuest = true;
2471 if (strstr(pszArgs, "shadow"))
2472 fShadow = true;
2473 if (strstr(pszArgs, "host"))
2474 fHost = true;
2475 }
2476
2477 /* print info. */
2478 if (fGuest)
2479 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2480 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2481 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2482 if (fShadow)
2483 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2484 if (fHost)
2485 {
2486 const char *psz;
2487 switch (pVM->pgm.s.enmHostMode)
2488 {
2489 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2490 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2491 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2492 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2493 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2494 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2495 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2496 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2497 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2498 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2499 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2500 default: psz = "unknown"; break;
2501 }
2502 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2503 }
2504}
2505
2506
2507/**
2508 * Dump registered MMIO ranges to the log.
2509 *
2510 * @param pVM VM Handle.
2511 * @param pHlp The info helpers.
2512 * @param pszArgs Arguments, ignored.
2513 */
2514static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2515{
2516 NOREF(pszArgs);
2517 pHlp->pfnPrintf(pHlp,
2518 "RAM ranges (pVM=%p)\n"
2519 "%.*s %.*s\n",
2520 pVM,
2521 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2522 sizeof(RTHCPTR) * 2, "pvHC ");
2523
2524 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2525 pHlp->pfnPrintf(pHlp,
2526 "%RGp-%RGp %RHv %s\n",
2527 pCur->GCPhys,
2528 pCur->GCPhysLast,
2529 pCur->pvHC,
2530 pCur->pszDesc);
2531}
2532
2533/**
2534 * Dump the page directory to the log.
2535 *
2536 * @param pVM VM Handle.
2537 * @param pHlp The info helpers.
2538 * @param pszArgs Arguments, ignored.
2539 */
2540static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2541{
2542/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2543 /* Big pages supported? */
2544 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2545
2546 /* Global pages supported? */
2547 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2548
2549 NOREF(pszArgs);
2550
2551 /*
2552 * Get page directory addresses.
2553 */
2554 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2555 Assert(pPDSrc);
2556 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2557
2558 /*
2559 * Iterate the page directory.
2560 */
2561 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2562 {
2563 X86PDE PdeSrc = pPDSrc->a[iPD];
2564 if (PdeSrc.n.u1Present)
2565 {
2566 if (PdeSrc.b.u1Size && fPSE)
2567 {
2568 pHlp->pfnPrintf(pHlp,
2569 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2570 iPD,
2571 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2572 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2573 }
2574 else
2575 {
2576 pHlp->pfnPrintf(pHlp,
2577 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2578 iPD,
2579 PdeSrc.u & X86_PDE_PG_MASK,
2580 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2581 }
2582 }
2583 }
2584}
2585
2586
2587/**
2588 * Serivce a VMMCALLHOST_PGM_LOCK call.
2589 *
2590 * @returns VBox status code.
2591 * @param pVM The VM handle.
2592 */
2593PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2594{
2595 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2596 AssertRC(rc);
2597 return rc;
2598}
2599
2600
2601/**
2602 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2603 *
2604 * @returns PGM_TYPE_*.
2605 * @param pgmMode The mode value to convert.
2606 */
2607DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2608{
2609 switch (pgmMode)
2610 {
2611 case PGMMODE_REAL: return PGM_TYPE_REAL;
2612 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2613 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2614 case PGMMODE_PAE:
2615 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2616 case PGMMODE_AMD64:
2617 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2618 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2619 case PGMMODE_EPT: return PGM_TYPE_EPT;
2620 default:
2621 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2622 }
2623}
2624
2625
2626/**
2627 * Gets the index into the paging mode data array of a SHW+GST mode.
2628 *
2629 * @returns PGM::paPagingData index.
2630 * @param uShwType The shadow paging mode type.
2631 * @param uGstType The guest paging mode type.
2632 */
2633DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2634{
2635 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_NESTED);
2636 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2637 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2638 + (uGstType - PGM_TYPE_REAL);
2639}
2640
2641
2642/**
2643 * Gets the index into the paging mode data array of a SHW+GST mode.
2644 *
2645 * @returns PGM::paPagingData index.
2646 * @param enmShw The shadow paging mode.
2647 * @param enmGst The guest paging mode.
2648 */
2649DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2650{
2651 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2652 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2653 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2654}
2655
2656
2657/**
2658 * Calculates the max data index.
2659 * @returns The number of entries in the paging data array.
2660 */
2661DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2662{
2663 return pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64) + 1;
2664}
2665
2666
2667/**
2668 * Initializes the paging mode data kept in PGM::paModeData.
2669 *
2670 * @param pVM The VM handle.
2671 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2672 * This is used early in the init process to avoid trouble with PDM
2673 * not being initialized yet.
2674 */
2675static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2676{
2677 PPGMMODEDATA pModeData;
2678 int rc;
2679
2680 /*
2681 * Allocate the array on the first call.
2682 */
2683 if (!pVM->pgm.s.paModeData)
2684 {
2685 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2686 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2687 }
2688
2689 /*
2690 * Initialize the array entries.
2691 */
2692 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2693 pModeData->uShwType = PGM_TYPE_32BIT;
2694 pModeData->uGstType = PGM_TYPE_REAL;
2695 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2696 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2697 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2698
2699 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2700 pModeData->uShwType = PGM_TYPE_32BIT;
2701 pModeData->uGstType = PGM_TYPE_PROT;
2702 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2703 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2704 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2705
2706 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2707 pModeData->uShwType = PGM_TYPE_32BIT;
2708 pModeData->uGstType = PGM_TYPE_32BIT;
2709 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2710 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2711 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2712
2713 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2714 pModeData->uShwType = PGM_TYPE_PAE;
2715 pModeData->uGstType = PGM_TYPE_REAL;
2716 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2717 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2718 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2719
2720 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2721 pModeData->uShwType = PGM_TYPE_PAE;
2722 pModeData->uGstType = PGM_TYPE_PROT;
2723 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2724 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2725 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2726
2727 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2728 pModeData->uShwType = PGM_TYPE_PAE;
2729 pModeData->uGstType = PGM_TYPE_32BIT;
2730 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2731 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733
2734 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2735 pModeData->uShwType = PGM_TYPE_PAE;
2736 pModeData->uGstType = PGM_TYPE_PAE;
2737 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2738 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2739 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2740
2741 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2742 pModeData->uShwType = PGM_TYPE_AMD64;
2743 pModeData->uGstType = PGM_TYPE_AMD64;
2744 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2745 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2747
2748 /* The nested paging mode. */
2749 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2750 pModeData->uShwType = PGM_TYPE_NESTED;
2751 pModeData->uGstType = PGM_TYPE_REAL;
2752 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754
2755 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2756 pModeData->uShwType = PGM_TYPE_NESTED;
2757 pModeData->uGstType = PGM_TYPE_PROT;
2758 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2759 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2760
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2762 pModeData->uShwType = PGM_TYPE_NESTED;
2763 pModeData->uGstType = PGM_TYPE_32BIT;
2764 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766
2767 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2768 pModeData->uShwType = PGM_TYPE_NESTED;
2769 pModeData->uGstType = PGM_TYPE_PAE;
2770 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772
2773 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2774 pModeData->uShwType = PGM_TYPE_NESTED;
2775 pModeData->uGstType = PGM_TYPE_AMD64;
2776 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778
2779 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2780 switch(pVM->pgm.s.enmHostMode)
2781 {
2782 case SUPPAGINGMODE_32_BIT:
2783 case SUPPAGINGMODE_32_BIT_GLOBAL:
2784 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2785 {
2786 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2787 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788 }
2789 break;
2790
2791 case SUPPAGINGMODE_PAE:
2792 case SUPPAGINGMODE_PAE_NX:
2793 case SUPPAGINGMODE_PAE_GLOBAL:
2794 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2795 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2796 {
2797 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2798 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2799 }
2800 break;
2801
2802 case SUPPAGINGMODE_AMD64:
2803 case SUPPAGINGMODE_AMD64_GLOBAL:
2804 case SUPPAGINGMODE_AMD64_NX:
2805 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2806 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2807 {
2808 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2809 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 }
2811 break;
2812 default:
2813 AssertFailed();
2814 break;
2815 }
2816
2817#ifdef PGM_WITH_EPT
2818 /* Extended paging (EPT) / Intel VT-x */
2819 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2820 pModeData->uShwType = PGM_TYPE_EPT;
2821 pModeData->uGstType = PGM_TYPE_REAL;
2822 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2823 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825
2826 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2827 pModeData->uShwType = PGM_TYPE_EPT;
2828 pModeData->uGstType = PGM_TYPE_PROT;
2829 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2830 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2832
2833 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2834 pModeData->uShwType = PGM_TYPE_EPT;
2835 pModeData->uGstType = PGM_TYPE_32BIT;
2836 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2837 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2839
2840 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2841 pModeData->uShwType = PGM_TYPE_EPT;
2842 pModeData->uGstType = PGM_TYPE_PAE;
2843 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2844 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2845 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2846
2847 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2848 pModeData->uShwType = PGM_TYPE_EPT;
2849 pModeData->uGstType = PGM_TYPE_AMD64;
2850 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2851 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853#endif /* PGM_WITH_EPT */
2854 return VINF_SUCCESS;
2855}
2856
2857
2858/**
2859 * Switch to different (or relocated in the relocate case) mode data.
2860 *
2861 * @param pVM The VM handle.
2862 * @param enmShw The the shadow paging mode.
2863 * @param enmGst The the guest paging mode.
2864 */
2865static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2866{
2867 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2868
2869 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2870 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2871
2872 /* shadow */
2873 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2874 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2875 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2876 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2877 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2878
2879 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2880 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2881
2882 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2883 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2884
2885
2886 /* guest */
2887 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2888 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2889 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2890 Assert(pVM->pgm.s.pfnR3GstGetPage);
2891 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2892 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2893 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2894 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2895 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2896 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2897 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2898 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2899 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2900 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2901
2902 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2903 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2904 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2905 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2906 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2907 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2908 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2909 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2910 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2911
2912 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2913 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2914 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2915 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2916 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2917 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2918 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2919 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2920 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2921
2922
2923 /* both */
2924 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2925 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2926 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2927 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2928 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2929 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2930 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2931 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2932#ifdef VBOX_STRICT
2933 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2934#endif
2935
2936 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2937 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2938 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2939 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2940 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2941 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2942#ifdef VBOX_STRICT
2943 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2944#endif
2945
2946 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2947 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2948 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2949 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2950 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2951 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2952#ifdef VBOX_STRICT
2953 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2954#endif
2955}
2956
2957
2958#ifdef DEBUG_bird
2959#include <stdlib.h> /* getenv() remove me! */
2960#endif
2961
2962/**
2963 * Calculates the shadow paging mode.
2964 *
2965 * @returns The shadow paging mode.
2966 * @param pVM VM handle.
2967 * @param enmGuestMode The guest mode.
2968 * @param enmHostMode The host mode.
2969 * @param enmShadowMode The current shadow mode.
2970 * @param penmSwitcher Where to store the switcher to use.
2971 * VMMSWITCHER_INVALID means no change.
2972 */
2973static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2974{
2975 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2976 switch (enmGuestMode)
2977 {
2978 /*
2979 * When switching to real or protected mode we don't change
2980 * anything since it's likely that we'll switch back pretty soon.
2981 *
2982 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2983 * and is supposed to determine which shadow paging and switcher to
2984 * use during init.
2985 */
2986 case PGMMODE_REAL:
2987 case PGMMODE_PROTECTED:
2988 if ( enmShadowMode != PGMMODE_INVALID
2989 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2990 break; /* (no change) */
2991
2992 /* Always use the 32 bits shadow mode for this case. We never execute real or protected mode without paging code
2993 * in raw mode.
2994 */
2995 enmShadowMode = PGMMODE_32_BIT;
2996 enmSwitcher = VMMSWITCHER_INVALID;
2997 break;
2998
2999 case PGMMODE_32_BIT:
3000 switch (enmHostMode)
3001 {
3002 case SUPPAGINGMODE_32_BIT:
3003 case SUPPAGINGMODE_32_BIT_GLOBAL:
3004 enmShadowMode = PGMMODE_32_BIT;
3005 enmSwitcher = VMMSWITCHER_32_TO_32;
3006 break;
3007
3008 case SUPPAGINGMODE_PAE:
3009 case SUPPAGINGMODE_PAE_NX:
3010 case SUPPAGINGMODE_PAE_GLOBAL:
3011 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3012 enmShadowMode = PGMMODE_PAE;
3013 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3014#ifdef DEBUG_bird
3015if (getenv("VBOX_32BIT"))
3016{
3017 enmShadowMode = PGMMODE_32_BIT;
3018 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3019}
3020#endif
3021 break;
3022
3023 case SUPPAGINGMODE_AMD64:
3024 case SUPPAGINGMODE_AMD64_GLOBAL:
3025 case SUPPAGINGMODE_AMD64_NX:
3026 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3027 enmShadowMode = PGMMODE_PAE;
3028 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3029 break;
3030
3031 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3032 }
3033 break;
3034
3035 case PGMMODE_PAE:
3036 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3037 switch (enmHostMode)
3038 {
3039 case SUPPAGINGMODE_32_BIT:
3040 case SUPPAGINGMODE_32_BIT_GLOBAL:
3041 enmShadowMode = PGMMODE_PAE;
3042 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3043 break;
3044
3045 case SUPPAGINGMODE_PAE:
3046 case SUPPAGINGMODE_PAE_NX:
3047 case SUPPAGINGMODE_PAE_GLOBAL:
3048 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3049 enmShadowMode = PGMMODE_PAE;
3050 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3051 break;
3052
3053 case SUPPAGINGMODE_AMD64:
3054 case SUPPAGINGMODE_AMD64_GLOBAL:
3055 case SUPPAGINGMODE_AMD64_NX:
3056 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3057 enmShadowMode = PGMMODE_PAE;
3058 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3059 break;
3060
3061 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3062 }
3063 break;
3064
3065 case PGMMODE_AMD64:
3066 case PGMMODE_AMD64_NX:
3067 switch (enmHostMode)
3068 {
3069 case SUPPAGINGMODE_32_BIT:
3070 case SUPPAGINGMODE_32_BIT_GLOBAL:
3071 enmShadowMode = PGMMODE_PAE;
3072 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3073 break;
3074
3075 case SUPPAGINGMODE_PAE:
3076 case SUPPAGINGMODE_PAE_NX:
3077 case SUPPAGINGMODE_PAE_GLOBAL:
3078 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3079 enmShadowMode = PGMMODE_PAE;
3080 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3081 break;
3082
3083 case SUPPAGINGMODE_AMD64:
3084 case SUPPAGINGMODE_AMD64_GLOBAL:
3085 case SUPPAGINGMODE_AMD64_NX:
3086 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3087 enmShadowMode = PGMMODE_AMD64;
3088 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3089 break;
3090
3091 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3092 }
3093 break;
3094
3095
3096 default:
3097 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3098 return PGMMODE_INVALID;
3099 }
3100 /* Override the shadow mode is nested paging is active. */
3101 if (HWACCMIsNestedPagingActive(pVM))
3102 enmShadowMode = HWACCMGetPagingMode(pVM);
3103
3104 *penmSwitcher = enmSwitcher;
3105 return enmShadowMode;
3106}
3107
3108/**
3109 * Performs the actual mode change.
3110 * This is called by PGMChangeMode and pgmR3InitPaging().
3111 *
3112 * @returns VBox status code.
3113 * @param pVM VM handle.
3114 * @param enmGuestMode The new guest mode. This is assumed to be different from
3115 * the current mode.
3116 */
3117PGMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3118{
3119 LogFlow(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3120 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3121
3122 /*
3123 * Calc the shadow mode and switcher.
3124 */
3125 VMMSWITCHER enmSwitcher;
3126 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3127 if (enmSwitcher != VMMSWITCHER_INVALID)
3128 {
3129 /*
3130 * Select new switcher.
3131 */
3132 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3133 if (VBOX_FAILURE(rc))
3134 {
3135 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3136 return rc;
3137 }
3138 }
3139
3140 /*
3141 * Exit old mode(s).
3142 */
3143 /* shadow */
3144 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3145 {
3146 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3147 if (PGM_SHW_PFN(Exit, pVM))
3148 {
3149 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3150 if (VBOX_FAILURE(rc))
3151 {
3152 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3153 return rc;
3154 }
3155 }
3156
3157 }
3158 else
3159 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3160
3161 /* guest */
3162 if (PGM_GST_PFN(Exit, pVM))
3163 {
3164 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3165 if (VBOX_FAILURE(rc))
3166 {
3167 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3168 return rc;
3169 }
3170 }
3171
3172 /*
3173 * Load new paging mode data.
3174 */
3175 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3176
3177 /*
3178 * Enter new shadow mode (if changed).
3179 */
3180 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3181 {
3182 int rc;
3183 pVM->pgm.s.enmShadowMode = enmShadowMode;
3184 switch (enmShadowMode)
3185 {
3186 case PGMMODE_32_BIT:
3187 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3188 break;
3189 case PGMMODE_PAE:
3190 case PGMMODE_PAE_NX:
3191 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3192 break;
3193 case PGMMODE_AMD64:
3194 case PGMMODE_AMD64_NX:
3195 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3196 break;
3197 case PGMMODE_NESTED:
3198 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3199 break;
3200#ifdef PGM_WITH_EPT
3201 case PGMMODE_EPT:
3202 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3203 break;
3204#endif
3205 case PGMMODE_REAL:
3206 case PGMMODE_PROTECTED:
3207 default:
3208 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3209 return VERR_INTERNAL_ERROR;
3210 }
3211 if (VBOX_FAILURE(rc))
3212 {
3213 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3214 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3215 return rc;
3216 }
3217 }
3218
3219 /* We must flush the PGM pool cache if the guest mode changes; we don't always
3220 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3221 * the shadow page tables.
3222 *
3223 * That only applies when switching between paging and non-paging modes.
3224 *
3225 * @todo A20 setting
3226 */
3227 if ( pVM->pgm.s.CTXSUFF(pPool)
3228 && !HWACCMIsNestedPagingActive(pVM)
3229 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3230 {
3231 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3232 pgmPoolFlushAll(pVM);
3233 }
3234
3235 /*
3236 * Enter the new guest and shadow+guest modes.
3237 */
3238 int rc = -1;
3239 int rc2 = -1;
3240 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3241 pVM->pgm.s.enmGuestMode = enmGuestMode;
3242 switch (enmGuestMode)
3243 {
3244 case PGMMODE_REAL:
3245 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3246 switch (pVM->pgm.s.enmShadowMode)
3247 {
3248 case PGMMODE_32_BIT:
3249 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3250 break;
3251 case PGMMODE_PAE:
3252 case PGMMODE_PAE_NX:
3253 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3254 break;
3255 case PGMMODE_NESTED:
3256 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3257 break;
3258#ifdef PGM_WITH_EPT
3259 case PGMMODE_EPT:
3260 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3261 break;
3262#endif
3263 case PGMMODE_AMD64:
3264 case PGMMODE_AMD64_NX:
3265 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3266 default: AssertFailed(); break;
3267 }
3268 break;
3269
3270 case PGMMODE_PROTECTED:
3271 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3272 switch (pVM->pgm.s.enmShadowMode)
3273 {
3274 case PGMMODE_32_BIT:
3275 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3276 break;
3277 case PGMMODE_PAE:
3278 case PGMMODE_PAE_NX:
3279 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3280 break;
3281 case PGMMODE_NESTED:
3282 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3283 break;
3284#ifdef PGM_WITH_EPT
3285 case PGMMODE_EPT:
3286 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3287 break;
3288#endif
3289 case PGMMODE_AMD64:
3290 case PGMMODE_AMD64_NX:
3291 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3292 default: AssertFailed(); break;
3293 }
3294 break;
3295
3296 case PGMMODE_32_BIT:
3297 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3298 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3299 switch (pVM->pgm.s.enmShadowMode)
3300 {
3301 case PGMMODE_32_BIT:
3302 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3303 break;
3304 case PGMMODE_PAE:
3305 case PGMMODE_PAE_NX:
3306 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3307 break;
3308 case PGMMODE_NESTED:
3309 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3310 break;
3311#ifdef PGM_WITH_EPT
3312 case PGMMODE_EPT:
3313 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3314 break;
3315#endif
3316 case PGMMODE_AMD64:
3317 case PGMMODE_AMD64_NX:
3318 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3319 default: AssertFailed(); break;
3320 }
3321 break;
3322
3323 case PGMMODE_PAE_NX:
3324 case PGMMODE_PAE:
3325 {
3326 uint32_t u32Dummy, u32Features;
3327
3328 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3329 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3330 {
3331 /* Pause first, then inform Main. */
3332 rc = VMR3SuspendNoSave(pVM);
3333 AssertRC(rc);
3334
3335 VMSetRuntimeError(pVM, true, "PAEmode",
3336 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3337 /* we must return TRUE here otherwise the recompiler will assert */
3338 return VINF_SUCCESS;
3339 }
3340 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3341 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3342 switch (pVM->pgm.s.enmShadowMode)
3343 {
3344 case PGMMODE_PAE:
3345 case PGMMODE_PAE_NX:
3346 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3347 break;
3348 case PGMMODE_NESTED:
3349 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3350 break;
3351#ifdef PGM_WITH_EPT
3352 case PGMMODE_EPT:
3353 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3354 break;
3355#endif
3356 case PGMMODE_32_BIT:
3357 case PGMMODE_AMD64:
3358 case PGMMODE_AMD64_NX:
3359 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3360 default: AssertFailed(); break;
3361 }
3362 break;
3363 }
3364
3365 case PGMMODE_AMD64_NX:
3366 case PGMMODE_AMD64:
3367 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3368 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3369 switch (pVM->pgm.s.enmShadowMode)
3370 {
3371 case PGMMODE_AMD64:
3372 case PGMMODE_AMD64_NX:
3373 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3374 break;
3375 case PGMMODE_NESTED:
3376 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3377 break;
3378#ifdef PGM_WITH_EPT
3379 case PGMMODE_EPT:
3380 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3381 break;
3382#endif
3383 case PGMMODE_32_BIT:
3384 case PGMMODE_PAE:
3385 case PGMMODE_PAE_NX:
3386 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3387 default: AssertFailed(); break;
3388 }
3389 break;
3390
3391 default:
3392 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3393 rc = VERR_NOT_IMPLEMENTED;
3394 break;
3395 }
3396
3397 /* status codes. */
3398 AssertRC(rc);
3399 AssertRC(rc2);
3400 if (VBOX_SUCCESS(rc))
3401 {
3402 rc = rc2;
3403 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3404 rc = VINF_SUCCESS;
3405 }
3406
3407 /*
3408 * Notify SELM so it can update the TSSes with correct CR3s.
3409 */
3410 SELMR3PagingModeChanged(pVM);
3411
3412 /* Notify HWACCM as well. */
3413 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3414 return rc;
3415}
3416
3417
3418/**
3419 * Dumps a PAE shadow page table.
3420 *
3421 * @returns VBox status code (VINF_SUCCESS).
3422 * @param pVM The VM handle.
3423 * @param pPT Pointer to the page table.
3424 * @param u64Address The virtual address of the page table starts.
3425 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3426 * @param cMaxDepth The maxium depth.
3427 * @param pHlp Pointer to the output functions.
3428 */
3429static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3430{
3431 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3432 {
3433 X86PTEPAE Pte = pPT->a[i];
3434 if (Pte.n.u1Present)
3435 {
3436 pHlp->pfnPrintf(pHlp,
3437 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3438 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3439 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3440 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3441 Pte.n.u1Write ? 'W' : 'R',
3442 Pte.n.u1User ? 'U' : 'S',
3443 Pte.n.u1Accessed ? 'A' : '-',
3444 Pte.n.u1Dirty ? 'D' : '-',
3445 Pte.n.u1Global ? 'G' : '-',
3446 Pte.n.u1WriteThru ? "WT" : "--",
3447 Pte.n.u1CacheDisable? "CD" : "--",
3448 Pte.n.u1PAT ? "AT" : "--",
3449 Pte.n.u1NoExecute ? "NX" : "--",
3450 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3451 Pte.u & RT_BIT(10) ? '1' : '0',
3452 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3453 Pte.u & X86_PTE_PAE_PG_MASK);
3454 }
3455 }
3456 return VINF_SUCCESS;
3457}
3458
3459
3460/**
3461 * Dumps a PAE shadow page directory table.
3462 *
3463 * @returns VBox status code (VINF_SUCCESS).
3464 * @param pVM The VM handle.
3465 * @param HCPhys The physical address of the page directory table.
3466 * @param u64Address The virtual address of the page table starts.
3467 * @param cr4 The CR4, PSE is currently used.
3468 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3469 * @param cMaxDepth The maxium depth.
3470 * @param pHlp Pointer to the output functions.
3471 */
3472static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3473{
3474 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3475 if (!pPD)
3476 {
3477 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3478 fLongMode ? 16 : 8, u64Address, HCPhys);
3479 return VERR_INVALID_PARAMETER;
3480 }
3481 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3482
3483 int rc = VINF_SUCCESS;
3484 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3485 {
3486 X86PDEPAE Pde = pPD->a[i];
3487 if (Pde.n.u1Present)
3488 {
3489 if (fBigPagesSupported && Pde.b.u1Size)
3490 pHlp->pfnPrintf(pHlp,
3491 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3492 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3493 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3494 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3495 Pde.b.u1Write ? 'W' : 'R',
3496 Pde.b.u1User ? 'U' : 'S',
3497 Pde.b.u1Accessed ? 'A' : '-',
3498 Pde.b.u1Dirty ? 'D' : '-',
3499 Pde.b.u1Global ? 'G' : '-',
3500 Pde.b.u1WriteThru ? "WT" : "--",
3501 Pde.b.u1CacheDisable? "CD" : "--",
3502 Pde.b.u1PAT ? "AT" : "--",
3503 Pde.b.u1NoExecute ? "NX" : "--",
3504 Pde.u & RT_BIT_64(9) ? '1' : '0',
3505 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3506 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3507 Pde.u & X86_PDE_PAE_PG_MASK);
3508 else
3509 {
3510 pHlp->pfnPrintf(pHlp,
3511 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3512 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3513 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3514 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3515 Pde.n.u1Write ? 'W' : 'R',
3516 Pde.n.u1User ? 'U' : 'S',
3517 Pde.n.u1Accessed ? 'A' : '-',
3518 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3519 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3520 Pde.n.u1WriteThru ? "WT" : "--",
3521 Pde.n.u1CacheDisable? "CD" : "--",
3522 Pde.n.u1NoExecute ? "NX" : "--",
3523 Pde.u & RT_BIT_64(9) ? '1' : '0',
3524 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3525 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3526 Pde.u & X86_PDE_PAE_PG_MASK);
3527 if (cMaxDepth >= 1)
3528 {
3529 /** @todo what about using the page pool for mapping PTs? */
3530 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3531 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3532 PX86PTPAE pPT = NULL;
3533 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3534 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3535 else
3536 {
3537 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3538 {
3539 uint64_t off = u64AddressPT - pMap->GCPtr;
3540 if (off < pMap->cb)
3541 {
3542 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3543 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3544 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3545 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3546 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3547 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3548 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3549 }
3550 }
3551 }
3552 int rc2 = VERR_INVALID_PARAMETER;
3553 if (pPT)
3554 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3555 else
3556 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3557 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3558 if (rc2 < rc && VBOX_SUCCESS(rc))
3559 rc = rc2;
3560 }
3561 }
3562 }
3563 }
3564 return rc;
3565}
3566
3567
3568/**
3569 * Dumps a PAE shadow page directory pointer table.
3570 *
3571 * @returns VBox status code (VINF_SUCCESS).
3572 * @param pVM The VM handle.
3573 * @param HCPhys The physical address of the page directory pointer table.
3574 * @param u64Address The virtual address of the page table starts.
3575 * @param cr4 The CR4, PSE is currently used.
3576 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3577 * @param cMaxDepth The maxium depth.
3578 * @param pHlp Pointer to the output functions.
3579 */
3580static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3581{
3582 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3583 if (!pPDPT)
3584 {
3585 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3586 fLongMode ? 16 : 8, u64Address, HCPhys);
3587 return VERR_INVALID_PARAMETER;
3588 }
3589
3590 int rc = VINF_SUCCESS;
3591 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3592 for (unsigned i = 0; i < c; i++)
3593 {
3594 X86PDPE Pdpe = pPDPT->a[i];
3595 if (Pdpe.n.u1Present)
3596 {
3597 if (fLongMode)
3598 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3599 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3600 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3601 Pdpe.lm.u1Write ? 'W' : 'R',
3602 Pdpe.lm.u1User ? 'U' : 'S',
3603 Pdpe.lm.u1Accessed ? 'A' : '-',
3604 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3605 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3606 Pdpe.lm.u1WriteThru ? "WT" : "--",
3607 Pdpe.lm.u1CacheDisable? "CD" : "--",
3608 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3609 Pdpe.lm.u1NoExecute ? "NX" : "--",
3610 Pdpe.u & RT_BIT(9) ? '1' : '0',
3611 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3612 Pdpe.u & RT_BIT(11) ? '1' : '0',
3613 Pdpe.u & X86_PDPE_PG_MASK);
3614 else
3615 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3616 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3617 i << X86_PDPT_SHIFT,
3618 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3619 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3620 Pdpe.n.u1WriteThru ? "WT" : "--",
3621 Pdpe.n.u1CacheDisable? "CD" : "--",
3622 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3623 Pdpe.u & RT_BIT(9) ? '1' : '0',
3624 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3625 Pdpe.u & RT_BIT(11) ? '1' : '0',
3626 Pdpe.u & X86_PDPE_PG_MASK);
3627 if (cMaxDepth >= 1)
3628 {
3629 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3630 cr4, fLongMode, cMaxDepth - 1, pHlp);
3631 if (rc2 < rc && VBOX_SUCCESS(rc))
3632 rc = rc2;
3633 }
3634 }
3635 }
3636 return rc;
3637}
3638
3639
3640/**
3641 * Dumps a 32-bit shadow page table.
3642 *
3643 * @returns VBox status code (VINF_SUCCESS).
3644 * @param pVM The VM handle.
3645 * @param HCPhys The physical address of the table.
3646 * @param cr4 The CR4, PSE is currently used.
3647 * @param cMaxDepth The maxium depth.
3648 * @param pHlp Pointer to the output functions.
3649 */
3650static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3651{
3652 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3653 if (!pPML4)
3654 {
3655 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3656 return VERR_INVALID_PARAMETER;
3657 }
3658
3659 int rc = VINF_SUCCESS;
3660 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3661 {
3662 X86PML4E Pml4e = pPML4->a[i];
3663 if (Pml4e.n.u1Present)
3664 {
3665 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3666 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3667 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3668 u64Address,
3669 Pml4e.n.u1Write ? 'W' : 'R',
3670 Pml4e.n.u1User ? 'U' : 'S',
3671 Pml4e.n.u1Accessed ? 'A' : '-',
3672 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3673 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3674 Pml4e.n.u1WriteThru ? "WT" : "--",
3675 Pml4e.n.u1CacheDisable? "CD" : "--",
3676 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3677 Pml4e.n.u1NoExecute ? "NX" : "--",
3678 Pml4e.u & RT_BIT(9) ? '1' : '0',
3679 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3680 Pml4e.u & RT_BIT(11) ? '1' : '0',
3681 Pml4e.u & X86_PML4E_PG_MASK);
3682
3683 if (cMaxDepth >= 1)
3684 {
3685 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3686 if (rc2 < rc && VBOX_SUCCESS(rc))
3687 rc = rc2;
3688 }
3689 }
3690 }
3691 return rc;
3692}
3693
3694
3695/**
3696 * Dumps a 32-bit shadow page table.
3697 *
3698 * @returns VBox status code (VINF_SUCCESS).
3699 * @param pVM The VM handle.
3700 * @param pPT Pointer to the page table.
3701 * @param u32Address The virtual address this table starts at.
3702 * @param pHlp Pointer to the output functions.
3703 */
3704int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3705{
3706 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3707 {
3708 X86PTE Pte = pPT->a[i];
3709 if (Pte.n.u1Present)
3710 {
3711 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3712 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3713 u32Address + (i << X86_PT_SHIFT),
3714 Pte.n.u1Write ? 'W' : 'R',
3715 Pte.n.u1User ? 'U' : 'S',
3716 Pte.n.u1Accessed ? 'A' : '-',
3717 Pte.n.u1Dirty ? 'D' : '-',
3718 Pte.n.u1Global ? 'G' : '-',
3719 Pte.n.u1WriteThru ? "WT" : "--",
3720 Pte.n.u1CacheDisable? "CD" : "--",
3721 Pte.n.u1PAT ? "AT" : "--",
3722 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3723 Pte.u & RT_BIT(10) ? '1' : '0',
3724 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3725 Pte.u & X86_PDE_PG_MASK);
3726 }
3727 }
3728 return VINF_SUCCESS;
3729}
3730
3731
3732/**
3733 * Dumps a 32-bit shadow page directory and page tables.
3734 *
3735 * @returns VBox status code (VINF_SUCCESS).
3736 * @param pVM The VM handle.
3737 * @param cr3 The root of the hierarchy.
3738 * @param cr4 The CR4, PSE is currently used.
3739 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3740 * @param pHlp Pointer to the output functions.
3741 */
3742int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3743{
3744 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3745 if (!pPD)
3746 {
3747 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3748 return VERR_INVALID_PARAMETER;
3749 }
3750
3751 int rc = VINF_SUCCESS;
3752 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3753 {
3754 X86PDE Pde = pPD->a[i];
3755 if (Pde.n.u1Present)
3756 {
3757 const uint32_t u32Address = i << X86_PD_SHIFT;
3758 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3759 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3760 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3761 u32Address,
3762 Pde.b.u1Write ? 'W' : 'R',
3763 Pde.b.u1User ? 'U' : 'S',
3764 Pde.b.u1Accessed ? 'A' : '-',
3765 Pde.b.u1Dirty ? 'D' : '-',
3766 Pde.b.u1Global ? 'G' : '-',
3767 Pde.b.u1WriteThru ? "WT" : "--",
3768 Pde.b.u1CacheDisable? "CD" : "--",
3769 Pde.b.u1PAT ? "AT" : "--",
3770 Pde.u & RT_BIT_64(9) ? '1' : '0',
3771 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3772 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3773 Pde.u & X86_PDE4M_PG_MASK);
3774 else
3775 {
3776 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3777 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3778 u32Address,
3779 Pde.n.u1Write ? 'W' : 'R',
3780 Pde.n.u1User ? 'U' : 'S',
3781 Pde.n.u1Accessed ? 'A' : '-',
3782 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3783 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3784 Pde.n.u1WriteThru ? "WT" : "--",
3785 Pde.n.u1CacheDisable? "CD" : "--",
3786 Pde.u & RT_BIT_64(9) ? '1' : '0',
3787 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3788 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3789 Pde.u & X86_PDE_PG_MASK);
3790 if (cMaxDepth >= 1)
3791 {
3792 /** @todo what about using the page pool for mapping PTs? */
3793 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3794 PX86PT pPT = NULL;
3795 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3796 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3797 else
3798 {
3799 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3800 if (u32Address - pMap->GCPtr < pMap->cb)
3801 {
3802 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3803 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3804 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3805 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3806 pPT = pMap->aPTs[iPDE].pPTR3;
3807 }
3808 }
3809 int rc2 = VERR_INVALID_PARAMETER;
3810 if (pPT)
3811 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3812 else
3813 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3814 if (rc2 < rc && VBOX_SUCCESS(rc))
3815 rc = rc2;
3816 }
3817 }
3818 }
3819 }
3820
3821 return rc;
3822}
3823
3824
3825/**
3826 * Dumps a 32-bit shadow page table.
3827 *
3828 * @returns VBox status code (VINF_SUCCESS).
3829 * @param pVM The VM handle.
3830 * @param pPT Pointer to the page table.
3831 * @param u32Address The virtual address this table starts at.
3832 * @param PhysSearch Address to search for.
3833 */
3834int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3835{
3836 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3837 {
3838 X86PTE Pte = pPT->a[i];
3839 if (Pte.n.u1Present)
3840 {
3841 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3842 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3843 u32Address + (i << X86_PT_SHIFT),
3844 Pte.n.u1Write ? 'W' : 'R',
3845 Pte.n.u1User ? 'U' : 'S',
3846 Pte.n.u1Accessed ? 'A' : '-',
3847 Pte.n.u1Dirty ? 'D' : '-',
3848 Pte.n.u1Global ? 'G' : '-',
3849 Pte.n.u1WriteThru ? "WT" : "--",
3850 Pte.n.u1CacheDisable? "CD" : "--",
3851 Pte.n.u1PAT ? "AT" : "--",
3852 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3853 Pte.u & RT_BIT(10) ? '1' : '0',
3854 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3855 Pte.u & X86_PDE_PG_MASK));
3856
3857 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3858 {
3859 uint64_t fPageShw = 0;
3860 RTHCPHYS pPhysHC = 0;
3861
3862 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3863 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3864 }
3865 }
3866 }
3867 return VINF_SUCCESS;
3868}
3869
3870
3871/**
3872 * Dumps a 32-bit guest page directory and page tables.
3873 *
3874 * @returns VBox status code (VINF_SUCCESS).
3875 * @param pVM The VM handle.
3876 * @param cr3 The root of the hierarchy.
3877 * @param cr4 The CR4, PSE is currently used.
3878 * @param PhysSearch Address to search for.
3879 */
3880PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3881{
3882 bool fLongMode = false;
3883 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3884 PX86PD pPD = 0;
3885
3886 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3887 if (VBOX_FAILURE(rc) || !pPD)
3888 {
3889 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3890 return VERR_INVALID_PARAMETER;
3891 }
3892
3893 Log(("cr3=%08x cr4=%08x%s\n"
3894 "%-*s P - Present\n"
3895 "%-*s | R/W - Read (0) / Write (1)\n"
3896 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3897 "%-*s | | | A - Accessed\n"
3898 "%-*s | | | | D - Dirty\n"
3899 "%-*s | | | | | G - Global\n"
3900 "%-*s | | | | | | WT - Write thru\n"
3901 "%-*s | | | | | | | CD - Cache disable\n"
3902 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3903 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3904 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3905 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3906 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3907 "%-*s Level | | | | | | | | | | | | Page\n"
3908 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3909 - W U - - - -- -- -- -- -- 010 */
3910 , cr3, cr4, fLongMode ? " Long Mode" : "",
3911 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3912 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3913
3914 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3915 {
3916 X86PDE Pde = pPD->a[i];
3917 if (Pde.n.u1Present)
3918 {
3919 const uint32_t u32Address = i << X86_PD_SHIFT;
3920
3921 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3922 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3923 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3924 u32Address,
3925 Pde.b.u1Write ? 'W' : 'R',
3926 Pde.b.u1User ? 'U' : 'S',
3927 Pde.b.u1Accessed ? 'A' : '-',
3928 Pde.b.u1Dirty ? 'D' : '-',
3929 Pde.b.u1Global ? 'G' : '-',
3930 Pde.b.u1WriteThru ? "WT" : "--",
3931 Pde.b.u1CacheDisable? "CD" : "--",
3932 Pde.b.u1PAT ? "AT" : "--",
3933 Pde.u & RT_BIT(9) ? '1' : '0',
3934 Pde.u & RT_BIT(10) ? '1' : '0',
3935 Pde.u & RT_BIT(11) ? '1' : '0',
3936 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3937 /** @todo PhysSearch */
3938 else
3939 {
3940 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3941 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3942 u32Address,
3943 Pde.n.u1Write ? 'W' : 'R',
3944 Pde.n.u1User ? 'U' : 'S',
3945 Pde.n.u1Accessed ? 'A' : '-',
3946 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3947 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3948 Pde.n.u1WriteThru ? "WT" : "--",
3949 Pde.n.u1CacheDisable? "CD" : "--",
3950 Pde.u & RT_BIT(9) ? '1' : '0',
3951 Pde.u & RT_BIT(10) ? '1' : '0',
3952 Pde.u & RT_BIT(11) ? '1' : '0',
3953 Pde.u & X86_PDE_PG_MASK));
3954 ////if (cMaxDepth >= 1)
3955 {
3956 /** @todo what about using the page pool for mapping PTs? */
3957 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3958 PX86PT pPT = NULL;
3959
3960 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3961
3962 int rc2 = VERR_INVALID_PARAMETER;
3963 if (pPT)
3964 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3965 else
3966 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3967 if (rc2 < rc && VBOX_SUCCESS(rc))
3968 rc = rc2;
3969 }
3970 }
3971 }
3972 }
3973
3974 return rc;
3975}
3976
3977
3978/**
3979 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3980 *
3981 * @returns VBox status code (VINF_SUCCESS).
3982 * @param pVM The VM handle.
3983 * @param cr3 The root of the hierarchy.
3984 * @param cr4 The cr4, only PAE and PSE is currently used.
3985 * @param fLongMode Set if long mode, false if not long mode.
3986 * @param cMaxDepth Number of levels to dump.
3987 * @param pHlp Pointer to the output functions.
3988 */
3989PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3990{
3991 if (!pHlp)
3992 pHlp = DBGFR3InfoLogHlp();
3993 if (!cMaxDepth)
3994 return VINF_SUCCESS;
3995 const unsigned cch = fLongMode ? 16 : 8;
3996 pHlp->pfnPrintf(pHlp,
3997 "cr3=%08x cr4=%08x%s\n"
3998 "%-*s P - Present\n"
3999 "%-*s | R/W - Read (0) / Write (1)\n"
4000 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4001 "%-*s | | | A - Accessed\n"
4002 "%-*s | | | | D - Dirty\n"
4003 "%-*s | | | | | G - Global\n"
4004 "%-*s | | | | | | WT - Write thru\n"
4005 "%-*s | | | | | | | CD - Cache disable\n"
4006 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4007 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4008 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4009 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4010 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4011 "%-*s Level | | | | | | | | | | | | Page\n"
4012 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4013 - W U - - - -- -- -- -- -- 010 */
4014 , cr3, cr4, fLongMode ? " Long Mode" : "",
4015 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4016 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4017 if (cr4 & X86_CR4_PAE)
4018 {
4019 if (fLongMode)
4020 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4021 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4022 }
4023 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4024}
4025
4026
4027
4028#ifdef VBOX_WITH_DEBUGGER
4029/**
4030 * The '.pgmram' command.
4031 *
4032 * @returns VBox status.
4033 * @param pCmd Pointer to the command descriptor (as registered).
4034 * @param pCmdHlp Pointer to command helper functions.
4035 * @param pVM Pointer to the current VM (if any).
4036 * @param paArgs Pointer to (readonly) array of arguments.
4037 * @param cArgs Number of arguments in the array.
4038 */
4039static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4040{
4041 /*
4042 * Validate input.
4043 */
4044 if (!pVM)
4045 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4046 if (!pVM->pgm.s.pRamRangesGC)
4047 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4048
4049 /*
4050 * Dump the ranges.
4051 */
4052 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4053 PPGMRAMRANGE pRam;
4054 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4055 {
4056 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4057 "%VGp - %VGp %p\n",
4058 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
4059 if (VBOX_FAILURE(rc))
4060 return rc;
4061 }
4062
4063 return VINF_SUCCESS;
4064}
4065
4066
4067/**
4068 * The '.pgmmap' command.
4069 *
4070 * @returns VBox status.
4071 * @param pCmd Pointer to the command descriptor (as registered).
4072 * @param pCmdHlp Pointer to command helper functions.
4073 * @param pVM Pointer to the current VM (if any).
4074 * @param paArgs Pointer to (readonly) array of arguments.
4075 * @param cArgs Number of arguments in the array.
4076 */
4077static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4078{
4079 /*
4080 * Validate input.
4081 */
4082 if (!pVM)
4083 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4084 if (!pVM->pgm.s.pMappingsR3)
4085 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4086
4087 /*
4088 * Print message about the fixedness of the mappings.
4089 */
4090 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4091 if (VBOX_FAILURE(rc))
4092 return rc;
4093
4094 /*
4095 * Dump the ranges.
4096 */
4097 PPGMMAPPING pCur;
4098 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4099 {
4100 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4101 "%08x - %08x %s\n",
4102 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4103 if (VBOX_FAILURE(rc))
4104 return rc;
4105 }
4106
4107 return VINF_SUCCESS;
4108}
4109
4110
4111/**
4112 * The '.pgmsync' command.
4113 *
4114 * @returns VBox status.
4115 * @param pCmd Pointer to the command descriptor (as registered).
4116 * @param pCmdHlp Pointer to command helper functions.
4117 * @param pVM Pointer to the current VM (if any).
4118 * @param paArgs Pointer to (readonly) array of arguments.
4119 * @param cArgs Number of arguments in the array.
4120 */
4121static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4122{
4123 /*
4124 * Validate input.
4125 */
4126 if (!pVM)
4127 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4128
4129 /*
4130 * Force page directory sync.
4131 */
4132 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4133
4134 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4135 if (VBOX_FAILURE(rc))
4136 return rc;
4137
4138 return VINF_SUCCESS;
4139}
4140
4141
4142#ifdef VBOX_STRICT
4143/**
4144 * The '.pgmassertcr3' command.
4145 *
4146 * @returns VBox status.
4147 * @param pCmd Pointer to the command descriptor (as registered).
4148 * @param pCmdHlp Pointer to command helper functions.
4149 * @param pVM Pointer to the current VM (if any).
4150 * @param paArgs Pointer to (readonly) array of arguments.
4151 * @param cArgs Number of arguments in the array.
4152 */
4153static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4154{
4155 /*
4156 * Validate input.
4157 */
4158 if (!pVM)
4159 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4160
4161 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4162 if (VBOX_FAILURE(rc))
4163 return rc;
4164
4165 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4166
4167 return VINF_SUCCESS;
4168}
4169#endif
4170
4171/**
4172 * The '.pgmsyncalways' command.
4173 *
4174 * @returns VBox status.
4175 * @param pCmd Pointer to the command descriptor (as registered).
4176 * @param pCmdHlp Pointer to command helper functions.
4177 * @param pVM Pointer to the current VM (if any).
4178 * @param paArgs Pointer to (readonly) array of arguments.
4179 * @param cArgs Number of arguments in the array.
4180 */
4181static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4182{
4183 /*
4184 * Validate input.
4185 */
4186 if (!pVM)
4187 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4188
4189 /*
4190 * Force page directory sync.
4191 */
4192 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4193 {
4194 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4195 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4196 }
4197 else
4198 {
4199 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4200 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4201 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4202 }
4203}
4204
4205#endif
4206
4207/**
4208 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4209 */
4210typedef struct PGMCHECKINTARGS
4211{
4212 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4213 PPGMPHYSHANDLER pPrevPhys;
4214 PPGMVIRTHANDLER pPrevVirt;
4215 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4216 PVM pVM;
4217} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4218
4219/**
4220 * Validate a node in the physical handler tree.
4221 *
4222 * @returns 0 on if ok, other wise 1.
4223 * @param pNode The handler node.
4224 * @param pvUser pVM.
4225 */
4226static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4227{
4228 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4229 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4230 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4231 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4232 AssertReleaseMsg( !pArgs->pPrevPhys
4233 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4234 ("pPrevPhys=%p %VGp-%VGp %s\n"
4235 " pCur=%p %VGp-%VGp %s\n",
4236 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4237 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4238 pArgs->pPrevPhys = pCur;
4239 return 0;
4240}
4241
4242
4243/**
4244 * Validate a node in the virtual handler tree.
4245 *
4246 * @returns 0 on if ok, other wise 1.
4247 * @param pNode The handler node.
4248 * @param pvUser pVM.
4249 */
4250static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4251{
4252 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4253 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4254 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4255 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4256 AssertReleaseMsg( !pArgs->pPrevVirt
4257 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4258 ("pPrevVirt=%p %VGv-%VGv %s\n"
4259 " pCur=%p %VGv-%VGv %s\n",
4260 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4261 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4262 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4263 {
4264 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4265 ("pCur=%p %VGv-%VGv %s\n"
4266 "iPage=%d offVirtHandle=%#x expected %#x\n",
4267 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4268 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4269 }
4270 pArgs->pPrevVirt = pCur;
4271 return 0;
4272}
4273
4274
4275/**
4276 * Validate a node in the virtual handler tree.
4277 *
4278 * @returns 0 on if ok, other wise 1.
4279 * @param pNode The handler node.
4280 * @param pvUser pVM.
4281 */
4282static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4283{
4284 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4285 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4286 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4287 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4288 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4289 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4290 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4291 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4292 " pCur=%p %VGp-%VGp\n",
4293 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4294 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4295 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4296 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4297 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4298 " pCur=%p %VGp-%VGp\n",
4299 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4300 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4301 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4302 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4303 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4304 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4305 {
4306 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4307 for (;;)
4308 {
4309 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4310 AssertReleaseMsg(pCur2 != pCur,
4311 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4312 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4313 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4314 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4315 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4316 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4317 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4318 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4319 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4320 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4321 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4322 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4323 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4324 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4325 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4326 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4327 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4328 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4329 break;
4330 }
4331 }
4332
4333 pArgs->pPrevPhys2Virt = pCur;
4334 return 0;
4335}
4336
4337
4338/**
4339 * Perform an integrity check on the PGM component.
4340 *
4341 * @returns VINF_SUCCESS if everything is fine.
4342 * @returns VBox error status after asserting on integrity breach.
4343 * @param pVM The VM handle.
4344 */
4345PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4346{
4347 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4348
4349 /*
4350 * Check the trees.
4351 */
4352 int cErrors = 0;
4353 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4354 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4355 PGMCHECKINTARGS Args = s_LeftToRight;
4356 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4357 Args = s_RightToLeft;
4358 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4359 Args = s_LeftToRight;
4360 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4361 Args = s_RightToLeft;
4362 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4363 Args = s_LeftToRight;
4364 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4365 Args = s_RightToLeft;
4366 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4367 Args = s_LeftToRight;
4368 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4369 Args = s_RightToLeft;
4370 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4371
4372 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4373}
4374
4375
4376/**
4377 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4378 *
4379 * @returns VBox status code.
4380 * @param pVM VM handle.
4381 * @param fEnable Enable or disable shadow mappings
4382 */
4383PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4384{
4385 pVM->pgm.s.fDisableMappings = !fEnable;
4386
4387 uint32_t cb;
4388 int rc = PGMR3MappingsSize(pVM, &cb);
4389 AssertRCReturn(rc, rc);
4390
4391 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4392 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4393 AssertRCReturn(rc, rc);
4394
4395 return VINF_SUCCESS;
4396}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette