VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 26600

Last change on this file since 26600 was 26535, checked in by vboxsync, 15 years ago

Cleaned up

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 216.1 KB
Line 
1/* $Id: PGM.cpp 26535 2010-02-15 12:56:24Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/selm.h>
588#include <VBox/ssm.h>
589#include <VBox/hwaccm.h>
590#include "PGMInternal.h"
591#include <VBox/vm.h>
592#include "PGMInline.h"
593
594#include <VBox/dbg.h>
595#include <VBox/param.h>
596#include <VBox/err.h>
597
598#include <iprt/asm.h>
599#include <iprt/assert.h>
600#include <iprt/env.h>
601#include <iprt/mem.h>
602#include <iprt/file.h>
603#include <iprt/string.h>
604#include <iprt/thread.h>
605
606
607/*******************************************************************************
608* Defined Constants And Macros *
609*******************************************************************************/
610/** Saved state data unit version for 2.5.x and later. */
611#define PGM_SAVED_STATE_VERSION 9
612/** Saved state data unit version for 2.2.2 and later. */
613#define PGM_SAVED_STATE_VERSION_2_2_2 8
614/** Saved state data unit version for 2.2.0. */
615#define PGM_SAVED_STATE_VERSION_RR_DESC 7
616/** Saved state data unit version. */
617#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
618
619
620/*******************************************************************************
621* Internal Functions *
622*******************************************************************************/
623static int pgmR3InitPaging(PVM pVM);
624static void pgmR3InitStats(PVM pVM);
625static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631#ifdef VBOX_STRICT
632static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
633#endif
634static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
635static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
636static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
637
638#ifdef VBOX_WITH_DEBUGGER
639/** @todo Convert the first two commands to 'info' items. */
640static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# ifdef VBOX_STRICT
645static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646# endif
647static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648#endif
649
650
651/*******************************************************************************
652* Global Variables *
653*******************************************************************************/
654#ifdef VBOX_WITH_DEBUGGER
655/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
656static const DBGCVARDESC g_aPgmErrorArgs[] =
657{
658 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
659 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
660};
661
662static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
663{
664 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
665 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
666 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
667};
668
669/** Command descriptors. */
670static const DBGCCMD g_aCmds[] =
671{
672 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
673 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
674 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
675 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
676 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
677#ifdef VBOX_STRICT
678 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
679#endif
680 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
681 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
682};
683#endif
684
685
686
687
688/*
689 * Shadow - 32-bit mode
690 */
691#define PGM_SHW_TYPE PGM_TYPE_32BIT
692#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
693#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
694#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
695#include "PGMShw.h"
696
697/* Guest - real mode */
698#define PGM_GST_TYPE PGM_TYPE_REAL
699#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
700#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
701#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
702#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
703#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
704#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
705#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
706#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
707#include "PGMBth.h"
708#include "PGMGstDefs.h"
709#include "PGMGst.h"
710#undef BTH_PGMPOOLKIND_PT_FOR_PT
711#undef BTH_PGMPOOLKIND_ROOT
712#undef PGM_BTH_NAME
713#undef PGM_BTH_NAME_RC_STR
714#undef PGM_BTH_NAME_R0_STR
715#undef PGM_GST_TYPE
716#undef PGM_GST_NAME
717#undef PGM_GST_NAME_RC_STR
718#undef PGM_GST_NAME_R0_STR
719
720/* Guest - protected mode */
721#define PGM_GST_TYPE PGM_TYPE_PROT
722#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
723#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
724#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
725#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
726#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
727#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
728#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
729#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
730#include "PGMBth.h"
731#include "PGMGstDefs.h"
732#include "PGMGst.h"
733#undef BTH_PGMPOOLKIND_PT_FOR_PT
734#undef BTH_PGMPOOLKIND_ROOT
735#undef PGM_BTH_NAME
736#undef PGM_BTH_NAME_RC_STR
737#undef PGM_BTH_NAME_R0_STR
738#undef PGM_GST_TYPE
739#undef PGM_GST_NAME
740#undef PGM_GST_NAME_RC_STR
741#undef PGM_GST_NAME_R0_STR
742
743/* Guest - 32-bit mode */
744#define PGM_GST_TYPE PGM_TYPE_32BIT
745#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
746#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
747#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
748#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
749#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
750#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
751#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
752#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
753#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
754#include "PGMBth.h"
755#include "PGMGstDefs.h"
756#include "PGMGst.h"
757#undef BTH_PGMPOOLKIND_PT_FOR_BIG
758#undef BTH_PGMPOOLKIND_PT_FOR_PT
759#undef BTH_PGMPOOLKIND_ROOT
760#undef PGM_BTH_NAME
761#undef PGM_BTH_NAME_RC_STR
762#undef PGM_BTH_NAME_R0_STR
763#undef PGM_GST_TYPE
764#undef PGM_GST_NAME
765#undef PGM_GST_NAME_RC_STR
766#undef PGM_GST_NAME_R0_STR
767
768#undef PGM_SHW_TYPE
769#undef PGM_SHW_NAME
770#undef PGM_SHW_NAME_RC_STR
771#undef PGM_SHW_NAME_R0_STR
772
773
774/*
775 * Shadow - PAE mode
776 */
777#define PGM_SHW_TYPE PGM_TYPE_PAE
778#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
779#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
780#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
781#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
782#include "PGMShw.h"
783
784/* Guest - real mode */
785#define PGM_GST_TYPE PGM_TYPE_REAL
786#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
787#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
788#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
789#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
790#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
791#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
792#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
793#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
794#include "PGMGstDefs.h"
795#include "PGMBth.h"
796#undef BTH_PGMPOOLKIND_PT_FOR_PT
797#undef BTH_PGMPOOLKIND_ROOT
798#undef PGM_BTH_NAME
799#undef PGM_BTH_NAME_RC_STR
800#undef PGM_BTH_NAME_R0_STR
801#undef PGM_GST_TYPE
802#undef PGM_GST_NAME
803#undef PGM_GST_NAME_RC_STR
804#undef PGM_GST_NAME_R0_STR
805
806/* Guest - protected mode */
807#define PGM_GST_TYPE PGM_TYPE_PROT
808#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
809#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
810#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
811#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
812#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
813#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
814#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
815#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
816#include "PGMGstDefs.h"
817#include "PGMBth.h"
818#undef BTH_PGMPOOLKIND_PT_FOR_PT
819#undef BTH_PGMPOOLKIND_ROOT
820#undef PGM_BTH_NAME
821#undef PGM_BTH_NAME_RC_STR
822#undef PGM_BTH_NAME_R0_STR
823#undef PGM_GST_TYPE
824#undef PGM_GST_NAME
825#undef PGM_GST_NAME_RC_STR
826#undef PGM_GST_NAME_R0_STR
827
828/* Guest - 32-bit mode */
829#define PGM_GST_TYPE PGM_TYPE_32BIT
830#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
831#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
832#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
833#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
834#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
835#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
836#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
837#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
838#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
839#include "PGMGstDefs.h"
840#include "PGMBth.h"
841#undef BTH_PGMPOOLKIND_PT_FOR_BIG
842#undef BTH_PGMPOOLKIND_PT_FOR_PT
843#undef BTH_PGMPOOLKIND_ROOT
844#undef PGM_BTH_NAME
845#undef PGM_BTH_NAME_RC_STR
846#undef PGM_BTH_NAME_R0_STR
847#undef PGM_GST_TYPE
848#undef PGM_GST_NAME
849#undef PGM_GST_NAME_RC_STR
850#undef PGM_GST_NAME_R0_STR
851
852/* Guest - PAE mode */
853#define PGM_GST_TYPE PGM_TYPE_PAE
854#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
855#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
856#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
857#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
858#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
859#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
860#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
861#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
862#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
863#include "PGMBth.h"
864#include "PGMGstDefs.h"
865#include "PGMGst.h"
866#undef BTH_PGMPOOLKIND_PT_FOR_BIG
867#undef BTH_PGMPOOLKIND_PT_FOR_PT
868#undef BTH_PGMPOOLKIND_ROOT
869#undef PGM_BTH_NAME
870#undef PGM_BTH_NAME_RC_STR
871#undef PGM_BTH_NAME_R0_STR
872#undef PGM_GST_TYPE
873#undef PGM_GST_NAME
874#undef PGM_GST_NAME_RC_STR
875#undef PGM_GST_NAME_R0_STR
876
877#undef PGM_SHW_TYPE
878#undef PGM_SHW_NAME
879#undef PGM_SHW_NAME_RC_STR
880#undef PGM_SHW_NAME_R0_STR
881
882
883/*
884 * Shadow - AMD64 mode
885 */
886#define PGM_SHW_TYPE PGM_TYPE_AMD64
887#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
888#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
889#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
890#include "PGMShw.h"
891
892#ifdef VBOX_WITH_64_BITS_GUESTS
893/* Guest - AMD64 mode */
894# define PGM_GST_TYPE PGM_TYPE_AMD64
895# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
896# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
897# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
898# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
899# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
900# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
901# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
902# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
903# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
904# include "PGMBth.h"
905# include "PGMGstDefs.h"
906# include "PGMGst.h"
907# undef BTH_PGMPOOLKIND_PT_FOR_BIG
908# undef BTH_PGMPOOLKIND_PT_FOR_PT
909# undef BTH_PGMPOOLKIND_ROOT
910# undef PGM_BTH_NAME
911# undef PGM_BTH_NAME_RC_STR
912# undef PGM_BTH_NAME_R0_STR
913# undef PGM_GST_TYPE
914# undef PGM_GST_NAME
915# undef PGM_GST_NAME_RC_STR
916# undef PGM_GST_NAME_R0_STR
917#endif /* VBOX_WITH_64_BITS_GUESTS */
918
919#undef PGM_SHW_TYPE
920#undef PGM_SHW_NAME
921#undef PGM_SHW_NAME_RC_STR
922#undef PGM_SHW_NAME_R0_STR
923
924
925/*
926 * Shadow - Nested paging mode
927 */
928#define PGM_SHW_TYPE PGM_TYPE_NESTED
929#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
930#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
931#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
932#include "PGMShw.h"
933
934/* Guest - real mode */
935#define PGM_GST_TYPE PGM_TYPE_REAL
936#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
937#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
938#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
939#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
940#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
941#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
942#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
943#include "PGMGstDefs.h"
944#include "PGMBth.h"
945#undef BTH_PGMPOOLKIND_PT_FOR_PT
946#undef PGM_BTH_NAME
947#undef PGM_BTH_NAME_RC_STR
948#undef PGM_BTH_NAME_R0_STR
949#undef PGM_GST_TYPE
950#undef PGM_GST_NAME
951#undef PGM_GST_NAME_RC_STR
952#undef PGM_GST_NAME_R0_STR
953
954/* Guest - protected mode */
955#define PGM_GST_TYPE PGM_TYPE_PROT
956#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
957#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
958#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
959#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
960#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
961#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
962#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
963#include "PGMGstDefs.h"
964#include "PGMBth.h"
965#undef BTH_PGMPOOLKIND_PT_FOR_PT
966#undef PGM_BTH_NAME
967#undef PGM_BTH_NAME_RC_STR
968#undef PGM_BTH_NAME_R0_STR
969#undef PGM_GST_TYPE
970#undef PGM_GST_NAME
971#undef PGM_GST_NAME_RC_STR
972#undef PGM_GST_NAME_R0_STR
973
974/* Guest - 32-bit mode */
975#define PGM_GST_TYPE PGM_TYPE_32BIT
976#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
977#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
978#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
979#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
980#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
981#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
982#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
983#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
984#include "PGMGstDefs.h"
985#include "PGMBth.h"
986#undef BTH_PGMPOOLKIND_PT_FOR_BIG
987#undef BTH_PGMPOOLKIND_PT_FOR_PT
988#undef PGM_BTH_NAME
989#undef PGM_BTH_NAME_RC_STR
990#undef PGM_BTH_NAME_R0_STR
991#undef PGM_GST_TYPE
992#undef PGM_GST_NAME
993#undef PGM_GST_NAME_RC_STR
994#undef PGM_GST_NAME_R0_STR
995
996/* Guest - PAE mode */
997#define PGM_GST_TYPE PGM_TYPE_PAE
998#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
999#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1000#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1001#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1002#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1003#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1004#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1005#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1006#include "PGMGstDefs.h"
1007#include "PGMBth.h"
1008#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1009#undef BTH_PGMPOOLKIND_PT_FOR_PT
1010#undef PGM_BTH_NAME
1011#undef PGM_BTH_NAME_RC_STR
1012#undef PGM_BTH_NAME_R0_STR
1013#undef PGM_GST_TYPE
1014#undef PGM_GST_NAME
1015#undef PGM_GST_NAME_RC_STR
1016#undef PGM_GST_NAME_R0_STR
1017
1018#ifdef VBOX_WITH_64_BITS_GUESTS
1019/* Guest - AMD64 mode */
1020# define PGM_GST_TYPE PGM_TYPE_AMD64
1021# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1022# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1023# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1024# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1025# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1026# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1027# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1028# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1029# include "PGMGstDefs.h"
1030# include "PGMBth.h"
1031# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1032# undef BTH_PGMPOOLKIND_PT_FOR_PT
1033# undef PGM_BTH_NAME
1034# undef PGM_BTH_NAME_RC_STR
1035# undef PGM_BTH_NAME_R0_STR
1036# undef PGM_GST_TYPE
1037# undef PGM_GST_NAME
1038# undef PGM_GST_NAME_RC_STR
1039# undef PGM_GST_NAME_R0_STR
1040#endif /* VBOX_WITH_64_BITS_GUESTS */
1041
1042#undef PGM_SHW_TYPE
1043#undef PGM_SHW_NAME
1044#undef PGM_SHW_NAME_RC_STR
1045#undef PGM_SHW_NAME_R0_STR
1046
1047
1048/*
1049 * Shadow - EPT
1050 */
1051#define PGM_SHW_TYPE PGM_TYPE_EPT
1052#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1053#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1054#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1055#include "PGMShw.h"
1056
1057/* Guest - real mode */
1058#define PGM_GST_TYPE PGM_TYPE_REAL
1059#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1060#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1061#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1062#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1063#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1064#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1065#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1066#include "PGMGstDefs.h"
1067#include "PGMBth.h"
1068#undef BTH_PGMPOOLKIND_PT_FOR_PT
1069#undef PGM_BTH_NAME
1070#undef PGM_BTH_NAME_RC_STR
1071#undef PGM_BTH_NAME_R0_STR
1072#undef PGM_GST_TYPE
1073#undef PGM_GST_NAME
1074#undef PGM_GST_NAME_RC_STR
1075#undef PGM_GST_NAME_R0_STR
1076
1077/* Guest - protected mode */
1078#define PGM_GST_TYPE PGM_TYPE_PROT
1079#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1080#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1081#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1082#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1083#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1084#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1085#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1086#include "PGMGstDefs.h"
1087#include "PGMBth.h"
1088#undef BTH_PGMPOOLKIND_PT_FOR_PT
1089#undef PGM_BTH_NAME
1090#undef PGM_BTH_NAME_RC_STR
1091#undef PGM_BTH_NAME_R0_STR
1092#undef PGM_GST_TYPE
1093#undef PGM_GST_NAME
1094#undef PGM_GST_NAME_RC_STR
1095#undef PGM_GST_NAME_R0_STR
1096
1097/* Guest - 32-bit mode */
1098#define PGM_GST_TYPE PGM_TYPE_32BIT
1099#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1100#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1101#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1102#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1103#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1104#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1105#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1106#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1107#include "PGMGstDefs.h"
1108#include "PGMBth.h"
1109#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1110#undef BTH_PGMPOOLKIND_PT_FOR_PT
1111#undef PGM_BTH_NAME
1112#undef PGM_BTH_NAME_RC_STR
1113#undef PGM_BTH_NAME_R0_STR
1114#undef PGM_GST_TYPE
1115#undef PGM_GST_NAME
1116#undef PGM_GST_NAME_RC_STR
1117#undef PGM_GST_NAME_R0_STR
1118
1119/* Guest - PAE mode */
1120#define PGM_GST_TYPE PGM_TYPE_PAE
1121#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1122#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1123#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1124#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1125#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1126#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1127#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1128#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1129#include "PGMGstDefs.h"
1130#include "PGMBth.h"
1131#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1132#undef BTH_PGMPOOLKIND_PT_FOR_PT
1133#undef PGM_BTH_NAME
1134#undef PGM_BTH_NAME_RC_STR
1135#undef PGM_BTH_NAME_R0_STR
1136#undef PGM_GST_TYPE
1137#undef PGM_GST_NAME
1138#undef PGM_GST_NAME_RC_STR
1139#undef PGM_GST_NAME_R0_STR
1140
1141#ifdef VBOX_WITH_64_BITS_GUESTS
1142/* Guest - AMD64 mode */
1143# define PGM_GST_TYPE PGM_TYPE_AMD64
1144# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1145# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1146# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1147# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1148# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1149# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1150# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1151# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1152# include "PGMGstDefs.h"
1153# include "PGMBth.h"
1154# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1155# undef BTH_PGMPOOLKIND_PT_FOR_PT
1156# undef PGM_BTH_NAME
1157# undef PGM_BTH_NAME_RC_STR
1158# undef PGM_BTH_NAME_R0_STR
1159# undef PGM_GST_TYPE
1160# undef PGM_GST_NAME
1161# undef PGM_GST_NAME_RC_STR
1162# undef PGM_GST_NAME_R0_STR
1163#endif /* VBOX_WITH_64_BITS_GUESTS */
1164
1165#undef PGM_SHW_TYPE
1166#undef PGM_SHW_NAME
1167#undef PGM_SHW_NAME_RC_STR
1168#undef PGM_SHW_NAME_R0_STR
1169
1170
1171
1172/**
1173 * Initiates the paging of VM.
1174 *
1175 * @returns VBox status code.
1176 * @param pVM Pointer to VM structure.
1177 */
1178VMMR3DECL(int) PGMR3Init(PVM pVM)
1179{
1180 LogFlow(("PGMR3Init:\n"));
1181 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1182 int rc;
1183
1184 /*
1185 * Assert alignment and sizes.
1186 */
1187 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1188 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1189 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1190
1191 /*
1192 * Init the structure.
1193 */
1194#ifdef PGM_WITHOUT_MAPPINGS
1195 pVM->pgm.s.fMappingsDisabled = true;
1196#endif
1197 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1198 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1199
1200 /* Init the per-CPU part. */
1201 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1202 {
1203 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1204 PPGMCPU pPGM = &pVCpu->pgm.s;
1205
1206 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1207 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1208 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1209
1210 pPGM->enmShadowMode = PGMMODE_INVALID;
1211 pPGM->enmGuestMode = PGMMODE_INVALID;
1212
1213 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1214
1215 pPGM->pGstPaePdptR3 = NULL;
1216#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1217 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1218#endif
1219 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1220 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1221 {
1222 pPGM->apGstPaePDsR3[i] = NULL;
1223#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1224 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1225#endif
1226 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1227 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1228 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1229 }
1230
1231 pPGM->fA20Enabled = true;
1232 }
1233
1234 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1235 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1236 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1237
1238 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1239#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1240 true
1241#else
1242 false
1243#endif
1244 );
1245 AssertLogRelRCReturn(rc, rc);
1246
1247#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1248 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1249#else
1250 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1251#endif
1252 AssertLogRelRCReturn(rc, rc);
1253 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1254 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1255
1256 /*
1257 * Get the configured RAM size - to estimate saved state size.
1258 */
1259 uint64_t cbRam;
1260 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1261 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1262 cbRam = 0;
1263 else if (RT_SUCCESS(rc))
1264 {
1265 if (cbRam < PAGE_SIZE)
1266 cbRam = 0;
1267 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1268 }
1269 else
1270 {
1271 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1272 return rc;
1273 }
1274
1275 /*
1276 * Register callbacks, string formatters and the saved state data unit.
1277 */
1278#ifdef VBOX_STRICT
1279 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1280#endif
1281 PGMRegisterStringFormatTypes();
1282
1283 rc = pgmR3InitSavedState(pVM, cbRam);
1284 if (RT_FAILURE(rc))
1285 return rc;
1286
1287 /*
1288 * Initialize the PGM critical section and flush the phys TLBs
1289 */
1290 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1291 AssertRCReturn(rc, rc);
1292
1293 PGMR3PhysChunkInvalidateTLB(pVM);
1294 PGMPhysInvalidatePageMapTLB(pVM);
1295
1296 /*
1297 * For the time being we sport a full set of handy pages in addition to the base
1298 * memory to simplify things.
1299 */
1300 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1301 AssertRCReturn(rc, rc);
1302
1303 /*
1304 * Trees
1305 */
1306 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1307 if (RT_SUCCESS(rc))
1308 {
1309 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1310 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1311
1312 /*
1313 * Alocate the zero page.
1314 */
1315 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1316 }
1317 if (RT_SUCCESS(rc))
1318 {
1319 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1320 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1321 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1322 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1323
1324 /*
1325 * Init the paging.
1326 */
1327 rc = pgmR3InitPaging(pVM);
1328 }
1329 if (RT_SUCCESS(rc))
1330 {
1331 /*
1332 * Init the page pool.
1333 */
1334 rc = pgmR3PoolInit(pVM);
1335 }
1336 if (RT_SUCCESS(rc))
1337 {
1338 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1339 {
1340 PVMCPU pVCpu = &pVM->aCpus[i];
1341 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1342 if (RT_FAILURE(rc))
1343 break;
1344 }
1345 }
1346
1347 if (RT_SUCCESS(rc))
1348 {
1349 /*
1350 * Info & statistics
1351 */
1352 DBGFR3InfoRegisterInternal(pVM, "mode",
1353 "Shows the current paging mode. "
1354 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1355 pgmR3InfoMode);
1356 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1357 "Dumps all the entries in the top level paging table. No arguments.",
1358 pgmR3InfoCr3);
1359 DBGFR3InfoRegisterInternal(pVM, "phys",
1360 "Dumps all the physical address ranges. No arguments.",
1361 pgmR3PhysInfo);
1362 DBGFR3InfoRegisterInternal(pVM, "handlers",
1363 "Dumps physical, virtual and hyper virtual handlers. "
1364 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1365 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1366 pgmR3InfoHandlers);
1367 DBGFR3InfoRegisterInternal(pVM, "mappings",
1368 "Dumps guest mappings.",
1369 pgmR3MapInfo);
1370
1371 pgmR3InitStats(pVM);
1372
1373#ifdef VBOX_WITH_DEBUGGER
1374 /*
1375 * Debugger commands.
1376 */
1377 static bool s_fRegisteredCmds = false;
1378 if (!s_fRegisteredCmds)
1379 {
1380 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1381 if (RT_SUCCESS(rc2))
1382 s_fRegisteredCmds = true;
1383 }
1384#endif
1385 return VINF_SUCCESS;
1386 }
1387
1388 /* Almost no cleanup necessary, MM frees all memory. */
1389 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1390
1391 return rc;
1392}
1393
1394
1395/**
1396 * Initializes the per-VCPU PGM.
1397 *
1398 * @returns VBox status code.
1399 * @param pVM The VM to operate on.
1400 */
1401VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1402{
1403 LogFlow(("PGMR3InitCPU\n"));
1404 return VINF_SUCCESS;
1405}
1406
1407
1408/**
1409 * Init paging.
1410 *
1411 * Since we need to check what mode the host is operating in before we can choose
1412 * the right paging functions for the host we have to delay this until R0 has
1413 * been initialized.
1414 *
1415 * @returns VBox status code.
1416 * @param pVM VM handle.
1417 */
1418static int pgmR3InitPaging(PVM pVM)
1419{
1420 /*
1421 * Force a recalculation of modes and switcher so everyone gets notified.
1422 */
1423 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1424 {
1425 PVMCPU pVCpu = &pVM->aCpus[i];
1426
1427 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1428 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1429 }
1430
1431 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1432
1433 /*
1434 * Allocate static mapping space for whatever the cr3 register
1435 * points to and in the case of PAE mode to the 4 PDs.
1436 */
1437 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1438 if (RT_FAILURE(rc))
1439 {
1440 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1441 return rc;
1442 }
1443 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1444
1445 /*
1446 * Allocate pages for the three possible intermediate contexts
1447 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1448 * for the sake of simplicity. The AMD64 uses the PAE for the
1449 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1450 *
1451 * We assume that two page tables will be enought for the core code
1452 * mappings (HC virtual and identity).
1453 */
1454 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1455 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1456 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1457 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1458 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1459 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1466
1467 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1468 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1469 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1470 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1471 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1472 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1473
1474 /*
1475 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1476 */
1477 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1478 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1479 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1480
1481 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1482 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1483
1484 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1485 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1486 {
1487 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1488 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1489 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1490 }
1491
1492 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1493 {
1494 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1495 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1496 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1497 }
1498
1499 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1500 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1501 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1502 | HCPhysInterPaePDPT64;
1503
1504 /*
1505 * Initialize paging workers and mode from current host mode
1506 * and the guest running in real mode.
1507 */
1508 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1509 switch (pVM->pgm.s.enmHostMode)
1510 {
1511 case SUPPAGINGMODE_32_BIT:
1512 case SUPPAGINGMODE_32_BIT_GLOBAL:
1513 case SUPPAGINGMODE_PAE:
1514 case SUPPAGINGMODE_PAE_GLOBAL:
1515 case SUPPAGINGMODE_PAE_NX:
1516 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1517 break;
1518
1519 case SUPPAGINGMODE_AMD64:
1520 case SUPPAGINGMODE_AMD64_GLOBAL:
1521 case SUPPAGINGMODE_AMD64_NX:
1522 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1523#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1524 if (ARCH_BITS != 64)
1525 {
1526 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1527 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1528 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1529 }
1530#endif
1531 break;
1532 default:
1533 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1534 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1535 }
1536 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1537 if (RT_SUCCESS(rc))
1538 {
1539 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1540#if HC_ARCH_BITS == 64
1541 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1542 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1543 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1544 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1545 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1546 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1547 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1548#endif
1549
1550 return VINF_SUCCESS;
1551 }
1552
1553 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1554 return rc;
1555}
1556
1557
1558/**
1559 * Init statistics
1560 */
1561static void pgmR3InitStats(PVM pVM)
1562{
1563 PPGM pPGM = &pVM->pgm.s;
1564 int rc;
1565
1566 /* Common - misc variables */
1567 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1568 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1569 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1570 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1571 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1572 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1573 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1574 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1575 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1576 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1577 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1578 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1579 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1580
1581 /* Live save */
1582 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1583 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1584 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1585 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1586 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1587 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1588 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1589 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1590 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1591 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1592 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1593 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1594 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1595 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1596 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1597 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1598 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1599 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1600
1601#ifdef VBOX_WITH_STATISTICS
1602
1603# define PGM_REG_COUNTER(a, b, c) \
1604 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1605 AssertRC(rc);
1606
1607# define PGM_REG_COUNTER_BYTES(a, b, c) \
1608 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1609 AssertRC(rc);
1610
1611# define PGM_REG_PROFILE(a, b, c) \
1612 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1613 AssertRC(rc);
1614
1615 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1616 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1617 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1618 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1619 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1620 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1621 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1622 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1623 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1624 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1625
1626 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1627 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1628 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1629 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1630 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1631 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1632 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1633 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1634 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1635 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1636
1637 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1638 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1639 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1640 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1641
1642 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1643 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1644 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1645 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1646
1647 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1648 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1649/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1650 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1651 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1652/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1653
1654 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1655 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1656 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1657 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1658 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1659 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1660 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1661 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1662
1663 /* GC only: */
1664 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1665 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1666 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1667 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1668
1669 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1670 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1671 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1672 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1673 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1674 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1675 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1676 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1677
1678# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1679 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1680 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1681 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1682 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1683 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1684 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1685# endif
1686
1687# undef PGM_REG_COUNTER
1688# undef PGM_REG_PROFILE
1689#endif
1690
1691 /*
1692 * Note! The layout below matches the member layout exactly!
1693 */
1694
1695 /*
1696 * Common - stats
1697 */
1698 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1699 {
1700 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1701
1702#define PGM_REG_COUNTER(a, b, c) \
1703 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1704 AssertRC(rc);
1705#define PGM_REG_PROFILE(a, b, c) \
1706 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1707 AssertRC(rc);
1708
1709 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1710
1711#ifdef VBOX_WITH_STATISTICS
1712
1713# if 0 /* rarely useful; leave for debugging. */
1714 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1715 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1716 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1717 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPagePD); j++)
1718 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1719 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1720# endif
1721 /* R0 only: */
1722 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1723 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1724 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1725 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1726 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1727 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1728 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1729 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1730 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1731 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1732 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1733 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1734 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1735 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1736 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1737 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1738 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1739 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1740 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1741 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1742 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1743 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1744 //PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1745 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1746 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1747 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1748 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1749 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1750 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1751 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1752 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1753 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1754 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1755 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1756 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1757 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1758
1759 /* RZ only: */
1760 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1761 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%u/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1762 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeSyncPT, "/PGM/CPU%u/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1763 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeMapping, "/PGM/CPU%u/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1764 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1765 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeHandlers, "/PGM/CPU%u/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1766 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1767 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1768 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1769 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1770 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1771 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1772 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1773 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1774 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1775 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1776 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1777 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1778 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1779 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1780 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1781 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1782 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1783 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1784 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1785 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1786 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1787 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1788 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1789 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1790 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1791 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1792 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1793 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1794 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1795 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1796 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1797 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1798 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1799 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFUnh, "/PGM/CPU%u/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1800 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1801 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1802 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1803#if 0 /* rarely useful; leave for debugging. */
1804 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatRZTrap0ePD); j++)
1805 STAMR3RegisterF(pVM, &pPgmCpu->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1806 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1807#endif
1808 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1809 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1810 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1811 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1812 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1813
1814 /* HC only: */
1815
1816 /* RZ & R3: */
1817 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1818 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1819 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1820 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1821 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1822 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1823 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1824 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1825 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1826 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1827 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1828 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1829 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1830 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1831 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1832 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1833 PGM_REG_COUNTER(&pPgmCpu->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1834 PGM_REG_PROFILE(&pPgmCpu->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1835 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1836 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1837 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1838 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1839 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1840 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1841 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1842 PGM_REG_COUNTER(&pPgmCpu->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1843 PGM_REG_PROFILE(&pPgmCpu->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1844 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1845 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1846 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1847 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1848 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1849 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1850 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1851 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1852 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1853 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1854 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1855 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1856 PGM_REG_PROFILE(&pPgmCpu->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1857 PGM_REG_PROFILE(&pPgmCpu->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1858 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1859 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1860 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1861 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1862 PGM_REG_PROFILE(&pPgmCpu->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1863
1864 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1865 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1866 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1867 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1868 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1869 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1870 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1871 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1872 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1873 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1874 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1875 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1876 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1877 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1878 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1879 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1880 PGM_REG_COUNTER(&pPgmCpu->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1881 PGM_REG_PROFILE(&pPgmCpu->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1882 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1883 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1884 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1885 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1886 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1887 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1888 PGM_REG_COUNTER(&pPgmCpu->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1889 PGM_REG_PROFILE(&pPgmCpu->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1890 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1891 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1892 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1893 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1894 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1895 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1896 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1897 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1898 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1899 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1900 PGM_REG_PROFILE(&pPgmCpu->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1901 PGM_REG_PROFILE(&pPgmCpu->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1902 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1903 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1904 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1905 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1906 PGM_REG_PROFILE(&pPgmCpu->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1907#endif /* VBOX_WITH_STATISTICS */
1908
1909#undef PGM_REG_PROFILE
1910#undef PGM_REG_COUNTER
1911
1912 }
1913}
1914
1915
1916/**
1917 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1918 *
1919 * The dynamic mapping area will also be allocated and initialized at this
1920 * time. We could allocate it during PGMR3Init of course, but the mapping
1921 * wouldn't be allocated at that time preventing us from setting up the
1922 * page table entries with the dummy page.
1923 *
1924 * @returns VBox status code.
1925 * @param pVM VM handle.
1926 */
1927VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1928{
1929 RTGCPTR GCPtr;
1930 int rc;
1931
1932 /*
1933 * Reserve space for the dynamic mappings.
1934 */
1935 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1936 if (RT_SUCCESS(rc))
1937 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1938
1939 if ( RT_SUCCESS(rc)
1940 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1941 {
1942 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1943 if (RT_SUCCESS(rc))
1944 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1945 }
1946 if (RT_SUCCESS(rc))
1947 {
1948 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1949 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1950 }
1951 return rc;
1952}
1953
1954
1955/**
1956 * Ring-3 init finalizing.
1957 *
1958 * @returns VBox status code.
1959 * @param pVM The VM handle.
1960 */
1961VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1962{
1963 int rc;
1964
1965 /*
1966 * Reserve space for the dynamic mappings.
1967 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1968 */
1969 /* get the pointer to the page table entries. */
1970 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1971 AssertRelease(pMapping);
1972 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1973 const unsigned iPT = off >> X86_PD_SHIFT;
1974 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1975 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1976 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1977
1978 /* init cache */
1979 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1980 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1981 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1982
1983 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1984 {
1985 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1986 AssertRCReturn(rc, rc);
1987 }
1988
1989 /*
1990 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1991 * Intel only goes up to 36 bits, so we stick to 36 as well.
1992 */
1993 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1994 uint32_t u32Dummy, u32Features;
1995 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1996
1997 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1998 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1999 else
2000 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2001
2002 /*
2003 * Allocate memory if we're supposed to do that.
2004 */
2005 if (pVM->pgm.s.fRamPreAlloc)
2006 rc = pgmR3PhysRamPreAllocate(pVM);
2007
2008 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2009 return rc;
2010}
2011
2012
2013/**
2014 * Applies relocations to data and code managed by this component.
2015 *
2016 * This function will be called at init and whenever the VMM need to relocate it
2017 * self inside the GC.
2018 *
2019 * @param pVM The VM.
2020 * @param offDelta Relocation delta relative to old location.
2021 */
2022VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2023{
2024 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2025
2026 /*
2027 * Paging stuff.
2028 */
2029 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2030
2031 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2032
2033 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2034 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2035 {
2036 PVMCPU pVCpu = &pVM->aCpus[i];
2037
2038 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2039
2040 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2041 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2042 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2043 }
2044
2045 /*
2046 * Trees.
2047 */
2048 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2049
2050 /*
2051 * Ram ranges.
2052 */
2053 if (pVM->pgm.s.pRamRangesR3)
2054 {
2055 /* Update the pSelfRC pointers and relink them. */
2056 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2057 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2058 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2059 pgmR3PhysRelinkRamRanges(pVM);
2060 }
2061
2062 /*
2063 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2064 * be mapped and thus not included in the above exercise.
2065 */
2066 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2067 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2068 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2069
2070 /*
2071 * Update the two page directories with all page table mappings.
2072 * (One or more of them have changed, that's why we're here.)
2073 */
2074 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2075 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2076 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2077
2078 /* Relocate GC addresses of Page Tables. */
2079 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2080 {
2081 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2082 {
2083 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2084 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2085 }
2086 }
2087
2088 /*
2089 * Dynamic page mapping area.
2090 */
2091 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2092 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2093 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2094
2095 /*
2096 * The Zero page.
2097 */
2098 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2099#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2100 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2101#else
2102 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2103#endif
2104
2105 /*
2106 * Physical and virtual handlers.
2107 */
2108 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2109 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2110 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2111
2112 /*
2113 * The page pool.
2114 */
2115 pgmR3PoolRelocate(pVM);
2116}
2117
2118
2119/**
2120 * Callback function for relocating a physical access handler.
2121 *
2122 * @returns 0 (continue enum)
2123 * @param pNode Pointer to a PGMPHYSHANDLER node.
2124 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2125 * not certain the delta will fit in a void pointer for all possible configs.
2126 */
2127static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2128{
2129 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2130 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2131 if (pHandler->pfnHandlerRC)
2132 pHandler->pfnHandlerRC += offDelta;
2133 if (pHandler->pvUserRC >= 0x10000)
2134 pHandler->pvUserRC += offDelta;
2135 return 0;
2136}
2137
2138
2139/**
2140 * Callback function for relocating a virtual access handler.
2141 *
2142 * @returns 0 (continue enum)
2143 * @param pNode Pointer to a PGMVIRTHANDLER node.
2144 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2145 * not certain the delta will fit in a void pointer for all possible configs.
2146 */
2147static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2148{
2149 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2150 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2151 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2152 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2153 Assert(pHandler->pfnHandlerRC);
2154 pHandler->pfnHandlerRC += offDelta;
2155 return 0;
2156}
2157
2158
2159/**
2160 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2161 *
2162 * @returns 0 (continue enum)
2163 * @param pNode Pointer to a PGMVIRTHANDLER node.
2164 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2165 * not certain the delta will fit in a void pointer for all possible configs.
2166 */
2167static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2168{
2169 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2170 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2171 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2172 Assert(pHandler->pfnHandlerRC);
2173 pHandler->pfnHandlerRC += offDelta;
2174 return 0;
2175}
2176
2177
2178/**
2179 * Resets a virtual CPU when unplugged.
2180 *
2181 * @param pVM The VM handle.
2182 * @param pVCpu The virtual CPU handle.
2183 */
2184VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2185{
2186 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2187 AssertRC(rc);
2188
2189 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2190 AssertRC(rc);
2191
2192 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2193
2194 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2195
2196 /*
2197 * Re-init other members.
2198 */
2199 pVCpu->pgm.s.fA20Enabled = true;
2200
2201 /*
2202 * Clear the FFs PGM owns.
2203 */
2204 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2205 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2206}
2207
2208
2209/**
2210 * The VM is being reset.
2211 *
2212 * For the PGM component this means that any PD write monitors
2213 * needs to be removed.
2214 *
2215 * @param pVM VM handle.
2216 */
2217VMMR3DECL(void) PGMR3Reset(PVM pVM)
2218{
2219 int rc;
2220
2221 LogFlow(("PGMR3Reset:\n"));
2222 VM_ASSERT_EMT(pVM);
2223
2224 pgmLock(pVM);
2225
2226 /*
2227 * Unfix any fixed mappings and disable CR3 monitoring.
2228 */
2229 pVM->pgm.s.fMappingsFixed = false;
2230 pVM->pgm.s.fMappingsFixedRestored = false;
2231 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2232 pVM->pgm.s.cbMappingFixed = 0;
2233
2234 /*
2235 * Exit the guest paging mode before the pgm pool gets reset.
2236 * Important to clean up the amd64 case.
2237 */
2238 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2239 {
2240 PVMCPU pVCpu = &pVM->aCpus[i];
2241 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2242 AssertRC(rc);
2243 }
2244
2245#ifdef DEBUG
2246 DBGFR3InfoLog(pVM, "mappings", NULL);
2247 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2248#endif
2249
2250 /*
2251 * Switch mode back to real mode. (before resetting the pgm pool!)
2252 */
2253 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2254 {
2255 PVMCPU pVCpu = &pVM->aCpus[i];
2256
2257 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2258 AssertRC(rc);
2259
2260 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2261 }
2262
2263 /*
2264 * Reset the shadow page pool.
2265 */
2266 pgmR3PoolReset(pVM);
2267
2268 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2269 {
2270 PVMCPU pVCpu = &pVM->aCpus[i];
2271
2272 /*
2273 * Re-init other members.
2274 */
2275 pVCpu->pgm.s.fA20Enabled = true;
2276
2277 /*
2278 * Clear the FFs PGM owns.
2279 */
2280 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2281 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2282 }
2283
2284 /*
2285 * Reset (zero) RAM pages.
2286 */
2287 rc = pgmR3PhysRamReset(pVM);
2288 if (RT_SUCCESS(rc))
2289 {
2290 /*
2291 * Reset (zero) shadow ROM pages.
2292 */
2293 rc = pgmR3PhysRomReset(pVM);
2294 }
2295
2296 pgmUnlock(pVM);
2297 AssertReleaseRC(rc);
2298}
2299
2300
2301#ifdef VBOX_STRICT
2302/**
2303 * VM state change callback for clearing fNoMorePhysWrites after
2304 * a snapshot has been created.
2305 */
2306static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2307{
2308 if ( enmState == VMSTATE_RUNNING
2309 || enmState == VMSTATE_RESUMING)
2310 pVM->pgm.s.fNoMorePhysWrites = false;
2311}
2312#endif
2313
2314
2315/**
2316 * Terminates the PGM.
2317 *
2318 * @returns VBox status code.
2319 * @param pVM Pointer to VM structure.
2320 */
2321VMMR3DECL(int) PGMR3Term(PVM pVM)
2322{
2323 PGMDeregisterStringFormatTypes();
2324 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2325}
2326
2327
2328/**
2329 * Terminates the per-VCPU PGM.
2330 *
2331 * Termination means cleaning up and freeing all resources,
2332 * the VM it self is at this point powered off or suspended.
2333 *
2334 * @returns VBox status code.
2335 * @param pVM The VM to operate on.
2336 */
2337VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2338{
2339 return 0;
2340}
2341
2342
2343/**
2344 * Show paging mode.
2345 *
2346 * @param pVM VM Handle.
2347 * @param pHlp The info helpers.
2348 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2349 */
2350static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2351{
2352 /* digest argument. */
2353 bool fGuest, fShadow, fHost;
2354 if (pszArgs)
2355 pszArgs = RTStrStripL(pszArgs);
2356 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2357 fShadow = fHost = fGuest = true;
2358 else
2359 {
2360 fShadow = fHost = fGuest = false;
2361 if (strstr(pszArgs, "guest"))
2362 fGuest = true;
2363 if (strstr(pszArgs, "shadow"))
2364 fShadow = true;
2365 if (strstr(pszArgs, "host"))
2366 fHost = true;
2367 }
2368
2369 /** @todo SMP support! */
2370 /* print info. */
2371 if (fGuest)
2372 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2373 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2374 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2375 if (fShadow)
2376 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2377 if (fHost)
2378 {
2379 const char *psz;
2380 switch (pVM->pgm.s.enmHostMode)
2381 {
2382 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2383 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2384 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2385 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2386 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2387 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2388 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2389 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2390 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2391 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2392 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2393 default: psz = "unknown"; break;
2394 }
2395 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2396 }
2397}
2398
2399
2400/**
2401 * Dump registered MMIO ranges to the log.
2402 *
2403 * @param pVM VM Handle.
2404 * @param pHlp The info helpers.
2405 * @param pszArgs Arguments, ignored.
2406 */
2407static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2408{
2409 NOREF(pszArgs);
2410 pHlp->pfnPrintf(pHlp,
2411 "RAM ranges (pVM=%p)\n"
2412 "%.*s %.*s\n",
2413 pVM,
2414 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2415 sizeof(RTHCPTR) * 2, "pvHC ");
2416
2417 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2418 pHlp->pfnPrintf(pHlp,
2419 "%RGp-%RGp %RHv %s\n",
2420 pCur->GCPhys,
2421 pCur->GCPhysLast,
2422 pCur->pvR3,
2423 pCur->pszDesc);
2424}
2425
2426/**
2427 * Dump the page directory to the log.
2428 *
2429 * @param pVM VM Handle.
2430 * @param pHlp The info helpers.
2431 * @param pszArgs Arguments, ignored.
2432 */
2433static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2434{
2435 /** @todo SMP support!! */
2436 PVMCPU pVCpu = &pVM->aCpus[0];
2437
2438/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2439 /* Big pages supported? */
2440 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2441
2442 /* Global pages supported? */
2443 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2444
2445 NOREF(pszArgs);
2446
2447 /*
2448 * Get page directory addresses.
2449 */
2450 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
2451 Assert(pPDSrc);
2452 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2453
2454 /*
2455 * Iterate the page directory.
2456 */
2457 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2458 {
2459 X86PDE PdeSrc = pPDSrc->a[iPD];
2460 if (PdeSrc.n.u1Present)
2461 {
2462 if (PdeSrc.b.u1Size && fPSE)
2463 pHlp->pfnPrintf(pHlp,
2464 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2465 iPD,
2466 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2467 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2468 else
2469 pHlp->pfnPrintf(pHlp,
2470 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2471 iPD,
2472 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2473 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2474 }
2475 }
2476}
2477
2478
2479/**
2480 * Service a VMMCALLRING3_PGM_LOCK call.
2481 *
2482 * @returns VBox status code.
2483 * @param pVM The VM handle.
2484 */
2485VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2486{
2487 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2488 AssertRC(rc);
2489 return rc;
2490}
2491
2492
2493/**
2494 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2495 *
2496 * @returns PGM_TYPE_*.
2497 * @param pgmMode The mode value to convert.
2498 */
2499DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2500{
2501 switch (pgmMode)
2502 {
2503 case PGMMODE_REAL: return PGM_TYPE_REAL;
2504 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2505 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2506 case PGMMODE_PAE:
2507 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2508 case PGMMODE_AMD64:
2509 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2510 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2511 case PGMMODE_EPT: return PGM_TYPE_EPT;
2512 default:
2513 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2514 }
2515}
2516
2517
2518/**
2519 * Gets the index into the paging mode data array of a SHW+GST mode.
2520 *
2521 * @returns PGM::paPagingData index.
2522 * @param uShwType The shadow paging mode type.
2523 * @param uGstType The guest paging mode type.
2524 */
2525DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2526{
2527 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2528 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2529 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2530 + (uGstType - PGM_TYPE_REAL);
2531}
2532
2533
2534/**
2535 * Gets the index into the paging mode data array of a SHW+GST mode.
2536 *
2537 * @returns PGM::paPagingData index.
2538 * @param enmShw The shadow paging mode.
2539 * @param enmGst The guest paging mode.
2540 */
2541DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2542{
2543 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2544 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2545 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2546}
2547
2548
2549/**
2550 * Calculates the max data index.
2551 * @returns The number of entries in the paging data array.
2552 */
2553DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2554{
2555 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2556}
2557
2558
2559/**
2560 * Initializes the paging mode data kept in PGM::paModeData.
2561 *
2562 * @param pVM The VM handle.
2563 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2564 * This is used early in the init process to avoid trouble with PDM
2565 * not being initialized yet.
2566 */
2567static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2568{
2569 PPGMMODEDATA pModeData;
2570 int rc;
2571
2572 /*
2573 * Allocate the array on the first call.
2574 */
2575 if (!pVM->pgm.s.paModeData)
2576 {
2577 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2578 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2579 }
2580
2581 /*
2582 * Initialize the array entries.
2583 */
2584 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2585 pModeData->uShwType = PGM_TYPE_32BIT;
2586 pModeData->uGstType = PGM_TYPE_REAL;
2587 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2588 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2589 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2590
2591 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2592 pModeData->uShwType = PGM_TYPE_32BIT;
2593 pModeData->uGstType = PGM_TYPE_PROT;
2594 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2595 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2596 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2597
2598 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2599 pModeData->uShwType = PGM_TYPE_32BIT;
2600 pModeData->uGstType = PGM_TYPE_32BIT;
2601 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2602 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2603 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2604
2605 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2606 pModeData->uShwType = PGM_TYPE_PAE;
2607 pModeData->uGstType = PGM_TYPE_REAL;
2608 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2609 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2610 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2611
2612 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2613 pModeData->uShwType = PGM_TYPE_PAE;
2614 pModeData->uGstType = PGM_TYPE_PROT;
2615 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2616 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2617 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2618
2619 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2620 pModeData->uShwType = PGM_TYPE_PAE;
2621 pModeData->uGstType = PGM_TYPE_32BIT;
2622 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2623 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2624 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2625
2626 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2627 pModeData->uShwType = PGM_TYPE_PAE;
2628 pModeData->uGstType = PGM_TYPE_PAE;
2629 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2630 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2631 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2632
2633#ifdef VBOX_WITH_64_BITS_GUESTS
2634 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2635 pModeData->uShwType = PGM_TYPE_AMD64;
2636 pModeData->uGstType = PGM_TYPE_AMD64;
2637 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2638 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2639 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2640#endif
2641
2642 /* The nested paging mode. */
2643 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2644 pModeData->uShwType = PGM_TYPE_NESTED;
2645 pModeData->uGstType = PGM_TYPE_REAL;
2646 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2647 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2648
2649 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2650 pModeData->uShwType = PGM_TYPE_NESTED;
2651 pModeData->uGstType = PGM_TYPE_PROT;
2652 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2653 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2654
2655 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2656 pModeData->uShwType = PGM_TYPE_NESTED;
2657 pModeData->uGstType = PGM_TYPE_32BIT;
2658 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2659 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2660
2661 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2662 pModeData->uShwType = PGM_TYPE_NESTED;
2663 pModeData->uGstType = PGM_TYPE_PAE;
2664 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2665 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2666
2667#ifdef VBOX_WITH_64_BITS_GUESTS
2668 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2669 pModeData->uShwType = PGM_TYPE_NESTED;
2670 pModeData->uGstType = PGM_TYPE_AMD64;
2671 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2672 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2673#endif
2674
2675 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2676 switch (pVM->pgm.s.enmHostMode)
2677 {
2678#if HC_ARCH_BITS == 32
2679 case SUPPAGINGMODE_32_BIT:
2680 case SUPPAGINGMODE_32_BIT_GLOBAL:
2681 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2682 {
2683 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2684 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685 }
2686# ifdef VBOX_WITH_64_BITS_GUESTS
2687 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2688 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2689# endif
2690 break;
2691
2692 case SUPPAGINGMODE_PAE:
2693 case SUPPAGINGMODE_PAE_NX:
2694 case SUPPAGINGMODE_PAE_GLOBAL:
2695 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2696 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2697 {
2698 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2699 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2700 }
2701# ifdef VBOX_WITH_64_BITS_GUESTS
2702 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2703 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2704# endif
2705 break;
2706#endif /* HC_ARCH_BITS == 32 */
2707
2708#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2709 case SUPPAGINGMODE_AMD64:
2710 case SUPPAGINGMODE_AMD64_GLOBAL:
2711 case SUPPAGINGMODE_AMD64_NX:
2712 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2713# ifdef VBOX_WITH_64_BITS_GUESTS
2714 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2715# else
2716 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2717# endif
2718 {
2719 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2720 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721 }
2722 break;
2723#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2724
2725 default:
2726 AssertFailed();
2727 break;
2728 }
2729
2730 /* Extended paging (EPT) / Intel VT-x */
2731 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2732 pModeData->uShwType = PGM_TYPE_EPT;
2733 pModeData->uGstType = PGM_TYPE_REAL;
2734 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2736 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2737
2738 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2739 pModeData->uShwType = PGM_TYPE_EPT;
2740 pModeData->uGstType = PGM_TYPE_PROT;
2741 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2742 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744
2745 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2746 pModeData->uShwType = PGM_TYPE_EPT;
2747 pModeData->uGstType = PGM_TYPE_32BIT;
2748 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751
2752 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2753 pModeData->uShwType = PGM_TYPE_EPT;
2754 pModeData->uGstType = PGM_TYPE_PAE;
2755 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758
2759#ifdef VBOX_WITH_64_BITS_GUESTS
2760 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2761 pModeData->uShwType = PGM_TYPE_EPT;
2762 pModeData->uGstType = PGM_TYPE_AMD64;
2763 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766#endif
2767 return VINF_SUCCESS;
2768}
2769
2770
2771/**
2772 * Switch to different (or relocated in the relocate case) mode data.
2773 *
2774 * @param pVM The VM handle.
2775 * @param pVCpu The VMCPU to operate on.
2776 * @param enmShw The the shadow paging mode.
2777 * @param enmGst The the guest paging mode.
2778 */
2779static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2780{
2781 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2782
2783 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2784 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2785
2786 /* shadow */
2787 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2788 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2789 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2790 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2791 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2792
2793 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2794 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2795
2796 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2797 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2798
2799
2800 /* guest */
2801 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2802 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2803 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2804 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2805 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2806 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2807 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2808 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2809 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2810 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2811 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2812 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2813
2814 /* both */
2815 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2816 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2817 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2818 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2819 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2820 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2821 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2822#ifdef VBOX_STRICT
2823 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2824#endif
2825 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2826 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2827
2828 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2829 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2830 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2831 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2832 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2833 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2834#ifdef VBOX_STRICT
2835 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2836#endif
2837 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2838 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2839
2840 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2841 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2842 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2843 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2844 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2845 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2846#ifdef VBOX_STRICT
2847 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2848#endif
2849 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2850 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2851}
2852
2853
2854/**
2855 * Calculates the shadow paging mode.
2856 *
2857 * @returns The shadow paging mode.
2858 * @param pVM VM handle.
2859 * @param enmGuestMode The guest mode.
2860 * @param enmHostMode The host mode.
2861 * @param enmShadowMode The current shadow mode.
2862 * @param penmSwitcher Where to store the switcher to use.
2863 * VMMSWITCHER_INVALID means no change.
2864 */
2865static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2866{
2867 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2868 switch (enmGuestMode)
2869 {
2870 /*
2871 * When switching to real or protected mode we don't change
2872 * anything since it's likely that we'll switch back pretty soon.
2873 *
2874 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2875 * and is supposed to determine which shadow paging and switcher to
2876 * use during init.
2877 */
2878 case PGMMODE_REAL:
2879 case PGMMODE_PROTECTED:
2880 if ( enmShadowMode != PGMMODE_INVALID
2881 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2882 break; /* (no change) */
2883
2884 switch (enmHostMode)
2885 {
2886 case SUPPAGINGMODE_32_BIT:
2887 case SUPPAGINGMODE_32_BIT_GLOBAL:
2888 enmShadowMode = PGMMODE_32_BIT;
2889 enmSwitcher = VMMSWITCHER_32_TO_32;
2890 break;
2891
2892 case SUPPAGINGMODE_PAE:
2893 case SUPPAGINGMODE_PAE_NX:
2894 case SUPPAGINGMODE_PAE_GLOBAL:
2895 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2896 enmShadowMode = PGMMODE_PAE;
2897 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2898#ifdef DEBUG_bird
2899 if (RTEnvExist("VBOX_32BIT"))
2900 {
2901 enmShadowMode = PGMMODE_32_BIT;
2902 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2903 }
2904#endif
2905 break;
2906
2907 case SUPPAGINGMODE_AMD64:
2908 case SUPPAGINGMODE_AMD64_GLOBAL:
2909 case SUPPAGINGMODE_AMD64_NX:
2910 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2911 enmShadowMode = PGMMODE_PAE;
2912 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2913#ifdef DEBUG_bird
2914 if (RTEnvExist("VBOX_32BIT"))
2915 {
2916 enmShadowMode = PGMMODE_32_BIT;
2917 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2918 }
2919#endif
2920 break;
2921
2922 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2923 }
2924 break;
2925
2926 case PGMMODE_32_BIT:
2927 switch (enmHostMode)
2928 {
2929 case SUPPAGINGMODE_32_BIT:
2930 case SUPPAGINGMODE_32_BIT_GLOBAL:
2931 enmShadowMode = PGMMODE_32_BIT;
2932 enmSwitcher = VMMSWITCHER_32_TO_32;
2933 break;
2934
2935 case SUPPAGINGMODE_PAE:
2936 case SUPPAGINGMODE_PAE_NX:
2937 case SUPPAGINGMODE_PAE_GLOBAL:
2938 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2939 enmShadowMode = PGMMODE_PAE;
2940 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2941#ifdef DEBUG_bird
2942 if (RTEnvExist("VBOX_32BIT"))
2943 {
2944 enmShadowMode = PGMMODE_32_BIT;
2945 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2946 }
2947#endif
2948 break;
2949
2950 case SUPPAGINGMODE_AMD64:
2951 case SUPPAGINGMODE_AMD64_GLOBAL:
2952 case SUPPAGINGMODE_AMD64_NX:
2953 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2954 enmShadowMode = PGMMODE_PAE;
2955 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2956#ifdef DEBUG_bird
2957 if (RTEnvExist("VBOX_32BIT"))
2958 {
2959 enmShadowMode = PGMMODE_32_BIT;
2960 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2961 }
2962#endif
2963 break;
2964
2965 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2966 }
2967 break;
2968
2969 case PGMMODE_PAE:
2970 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2971 switch (enmHostMode)
2972 {
2973 case SUPPAGINGMODE_32_BIT:
2974 case SUPPAGINGMODE_32_BIT_GLOBAL:
2975 enmShadowMode = PGMMODE_PAE;
2976 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2977 break;
2978
2979 case SUPPAGINGMODE_PAE:
2980 case SUPPAGINGMODE_PAE_NX:
2981 case SUPPAGINGMODE_PAE_GLOBAL:
2982 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2983 enmShadowMode = PGMMODE_PAE;
2984 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2985 break;
2986
2987 case SUPPAGINGMODE_AMD64:
2988 case SUPPAGINGMODE_AMD64_GLOBAL:
2989 case SUPPAGINGMODE_AMD64_NX:
2990 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2991 enmShadowMode = PGMMODE_PAE;
2992 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2993 break;
2994
2995 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2996 }
2997 break;
2998
2999 case PGMMODE_AMD64:
3000 case PGMMODE_AMD64_NX:
3001 switch (enmHostMode)
3002 {
3003 case SUPPAGINGMODE_32_BIT:
3004 case SUPPAGINGMODE_32_BIT_GLOBAL:
3005 enmShadowMode = PGMMODE_AMD64;
3006 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3007 break;
3008
3009 case SUPPAGINGMODE_PAE:
3010 case SUPPAGINGMODE_PAE_NX:
3011 case SUPPAGINGMODE_PAE_GLOBAL:
3012 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3013 enmShadowMode = PGMMODE_AMD64;
3014 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3015 break;
3016
3017 case SUPPAGINGMODE_AMD64:
3018 case SUPPAGINGMODE_AMD64_GLOBAL:
3019 case SUPPAGINGMODE_AMD64_NX:
3020 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3021 enmShadowMode = PGMMODE_AMD64;
3022 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3023 break;
3024
3025 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3026 }
3027 break;
3028
3029
3030 default:
3031 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3032 *penmSwitcher = VMMSWITCHER_INVALID;
3033 return PGMMODE_INVALID;
3034 }
3035 /* Override the shadow mode is nested paging is active. */
3036 if (HWACCMIsNestedPagingActive(pVM))
3037 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3038
3039 *penmSwitcher = enmSwitcher;
3040 return enmShadowMode;
3041}
3042
3043
3044/**
3045 * Performs the actual mode change.
3046 * This is called by PGMChangeMode and pgmR3InitPaging().
3047 *
3048 * @returns VBox status code. May suspend or power off the VM on error, but this
3049 * will trigger using FFs and not status codes.
3050 *
3051 * @param pVM VM handle.
3052 * @param pVCpu The VMCPU to operate on.
3053 * @param enmGuestMode The new guest mode. This is assumed to be different from
3054 * the current mode.
3055 */
3056VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3057{
3058 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3059 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3060
3061 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3062 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3063
3064 /*
3065 * Calc the shadow mode and switcher.
3066 */
3067 VMMSWITCHER enmSwitcher;
3068 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3069
3070#ifdef VBOX_WITH_RAW_MODE
3071 if (enmSwitcher != VMMSWITCHER_INVALID)
3072 {
3073 /*
3074 * Select new switcher.
3075 */
3076 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3077 if (RT_FAILURE(rc))
3078 {
3079 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3080 return rc;
3081 }
3082 }
3083#endif
3084
3085 /*
3086 * Exit old mode(s).
3087 */
3088#if HC_ARCH_BITS == 32
3089 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3090 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3091 && enmShadowMode == PGMMODE_NESTED);
3092#else
3093 const bool fForceShwEnterExit = false;
3094#endif
3095 /* shadow */
3096 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3097 || fForceShwEnterExit)
3098 {
3099 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3100 if (PGM_SHW_PFN(Exit, pVCpu))
3101 {
3102 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3103 if (RT_FAILURE(rc))
3104 {
3105 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3106 return rc;
3107 }
3108 }
3109
3110 }
3111 else
3112 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3113
3114 /* guest */
3115 if (PGM_GST_PFN(Exit, pVCpu))
3116 {
3117 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3118 if (RT_FAILURE(rc))
3119 {
3120 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3121 return rc;
3122 }
3123 }
3124
3125 /*
3126 * Load new paging mode data.
3127 */
3128 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3129
3130 /*
3131 * Enter new shadow mode (if changed).
3132 */
3133 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3134 || fForceShwEnterExit)
3135 {
3136 int rc;
3137 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3138 switch (enmShadowMode)
3139 {
3140 case PGMMODE_32_BIT:
3141 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3142 break;
3143 case PGMMODE_PAE:
3144 case PGMMODE_PAE_NX:
3145 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3146 break;
3147 case PGMMODE_AMD64:
3148 case PGMMODE_AMD64_NX:
3149 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3150 break;
3151 case PGMMODE_NESTED:
3152 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3153 break;
3154 case PGMMODE_EPT:
3155 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3156 break;
3157 case PGMMODE_REAL:
3158 case PGMMODE_PROTECTED:
3159 default:
3160 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3161 return VERR_INTERNAL_ERROR;
3162 }
3163 if (RT_FAILURE(rc))
3164 {
3165 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3166 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3167 return rc;
3168 }
3169 }
3170
3171 /*
3172 * Always flag the necessary updates
3173 */
3174 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3175
3176 /*
3177 * Enter the new guest and shadow+guest modes.
3178 */
3179 int rc = -1;
3180 int rc2 = -1;
3181 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3182 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3183 switch (enmGuestMode)
3184 {
3185 case PGMMODE_REAL:
3186 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3187 switch (pVCpu->pgm.s.enmShadowMode)
3188 {
3189 case PGMMODE_32_BIT:
3190 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3191 break;
3192 case PGMMODE_PAE:
3193 case PGMMODE_PAE_NX:
3194 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3195 break;
3196 case PGMMODE_NESTED:
3197 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3198 break;
3199 case PGMMODE_EPT:
3200 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3201 break;
3202 case PGMMODE_AMD64:
3203 case PGMMODE_AMD64_NX:
3204 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3205 default: AssertFailed(); break;
3206 }
3207 break;
3208
3209 case PGMMODE_PROTECTED:
3210 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3211 switch (pVCpu->pgm.s.enmShadowMode)
3212 {
3213 case PGMMODE_32_BIT:
3214 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3215 break;
3216 case PGMMODE_PAE:
3217 case PGMMODE_PAE_NX:
3218 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3219 break;
3220 case PGMMODE_NESTED:
3221 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3222 break;
3223 case PGMMODE_EPT:
3224 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3225 break;
3226 case PGMMODE_AMD64:
3227 case PGMMODE_AMD64_NX:
3228 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3229 default: AssertFailed(); break;
3230 }
3231 break;
3232
3233 case PGMMODE_32_BIT:
3234 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3235 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3236 switch (pVCpu->pgm.s.enmShadowMode)
3237 {
3238 case PGMMODE_32_BIT:
3239 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3240 break;
3241 case PGMMODE_PAE:
3242 case PGMMODE_PAE_NX:
3243 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3244 break;
3245 case PGMMODE_NESTED:
3246 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3247 break;
3248 case PGMMODE_EPT:
3249 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3250 break;
3251 case PGMMODE_AMD64:
3252 case PGMMODE_AMD64_NX:
3253 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3254 default: AssertFailed(); break;
3255 }
3256 break;
3257
3258 case PGMMODE_PAE_NX:
3259 case PGMMODE_PAE:
3260 {
3261 uint32_t u32Dummy, u32Features;
3262
3263 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3264 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3265 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3266 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3267
3268 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3269 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3270 switch (pVCpu->pgm.s.enmShadowMode)
3271 {
3272 case PGMMODE_PAE:
3273 case PGMMODE_PAE_NX:
3274 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3275 break;
3276 case PGMMODE_NESTED:
3277 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3278 break;
3279 case PGMMODE_EPT:
3280 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3281 break;
3282 case PGMMODE_32_BIT:
3283 case PGMMODE_AMD64:
3284 case PGMMODE_AMD64_NX:
3285 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3286 default: AssertFailed(); break;
3287 }
3288 break;
3289 }
3290
3291#ifdef VBOX_WITH_64_BITS_GUESTS
3292 case PGMMODE_AMD64_NX:
3293 case PGMMODE_AMD64:
3294 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3295 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3296 switch (pVCpu->pgm.s.enmShadowMode)
3297 {
3298 case PGMMODE_AMD64:
3299 case PGMMODE_AMD64_NX:
3300 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3301 break;
3302 case PGMMODE_NESTED:
3303 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3304 break;
3305 case PGMMODE_EPT:
3306 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3307 break;
3308 case PGMMODE_32_BIT:
3309 case PGMMODE_PAE:
3310 case PGMMODE_PAE_NX:
3311 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3312 default: AssertFailed(); break;
3313 }
3314 break;
3315#endif
3316
3317 default:
3318 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3319 rc = VERR_NOT_IMPLEMENTED;
3320 break;
3321 }
3322
3323 /* status codes. */
3324 AssertRC(rc);
3325 AssertRC(rc2);
3326 if (RT_SUCCESS(rc))
3327 {
3328 rc = rc2;
3329 if (RT_SUCCESS(rc)) /* no informational status codes. */
3330 rc = VINF_SUCCESS;
3331 }
3332
3333 /* Notify HWACCM as well. */
3334 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3335 return rc;
3336}
3337
3338/**
3339 * Release the pgm lock if owned by the current VCPU
3340 *
3341 * @param pVM The VM to operate on.
3342 */
3343VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
3344{
3345 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
3346 PDMCritSectLeave(&pVM->pgm.s.CritSect);
3347}
3348
3349/**
3350 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3351 *
3352 * @returns VBox status code, fully asserted.
3353 * @param pVM The VM handle.
3354 * @param pVCpu The VMCPU to operate on.
3355 */
3356int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3357{
3358 /* Unmap the old CR3 value before flushing everything. */
3359 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3360 AssertRC(rc);
3361
3362 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3363 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3364 AssertRC(rc);
3365 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3366 return rc;
3367}
3368
3369
3370/**
3371 * Called by pgmPoolFlushAllInt after flushing the pool.
3372 *
3373 * @returns VBox status code, fully asserted.
3374 * @param pVM The VM handle.
3375 * @param pVCpu The VMCPU to operate on.
3376 */
3377int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3378{
3379 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3380 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3381 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3382 AssertRCReturn(rc, rc);
3383 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3384
3385 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3386 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3387 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3388 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3389 return rc;
3390}
3391
3392
3393/**
3394 * Dumps a PAE shadow page table.
3395 *
3396 * @returns VBox status code (VINF_SUCCESS).
3397 * @param pVM The VM handle.
3398 * @param pPT Pointer to the page table.
3399 * @param u64Address The virtual address of the page table starts.
3400 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3401 * @param cMaxDepth The maxium depth.
3402 * @param pHlp Pointer to the output functions.
3403 */
3404static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3405{
3406 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3407 {
3408 X86PTEPAE Pte = pPT->a[i];
3409 if (Pte.n.u1Present)
3410 {
3411 pHlp->pfnPrintf(pHlp,
3412 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3413 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3414 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3415 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3416 Pte.n.u1Write ? 'W' : 'R',
3417 Pte.n.u1User ? 'U' : 'S',
3418 Pte.n.u1Accessed ? 'A' : '-',
3419 Pte.n.u1Dirty ? 'D' : '-',
3420 Pte.n.u1Global ? 'G' : '-',
3421 Pte.n.u1WriteThru ? "WT" : "--",
3422 Pte.n.u1CacheDisable? "CD" : "--",
3423 Pte.n.u1PAT ? "AT" : "--",
3424 Pte.n.u1NoExecute ? "NX" : "--",
3425 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3426 Pte.u & RT_BIT(10) ? '1' : '0',
3427 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3428 Pte.u & X86_PTE_PAE_PG_MASK);
3429 }
3430 }
3431 return VINF_SUCCESS;
3432}
3433
3434
3435/**
3436 * Dumps a PAE shadow page directory table.
3437 *
3438 * @returns VBox status code (VINF_SUCCESS).
3439 * @param pVM The VM handle.
3440 * @param HCPhys The physical address of the page directory table.
3441 * @param u64Address The virtual address of the page table starts.
3442 * @param cr4 The CR4, PSE is currently used.
3443 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3444 * @param cMaxDepth The maxium depth.
3445 * @param pHlp Pointer to the output functions.
3446 */
3447static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3448{
3449 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3450 if (!pPD)
3451 {
3452 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3453 fLongMode ? 16 : 8, u64Address, HCPhys);
3454 return VERR_INVALID_PARAMETER;
3455 }
3456 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3457
3458 int rc = VINF_SUCCESS;
3459 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3460 {
3461 X86PDEPAE Pde = pPD->a[i];
3462 if (Pde.n.u1Present)
3463 {
3464 if (fBigPagesSupported && Pde.b.u1Size)
3465 pHlp->pfnPrintf(pHlp,
3466 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3467 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3468 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3469 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3470 Pde.b.u1Write ? 'W' : 'R',
3471 Pde.b.u1User ? 'U' : 'S',
3472 Pde.b.u1Accessed ? 'A' : '-',
3473 Pde.b.u1Dirty ? 'D' : '-',
3474 Pde.b.u1Global ? 'G' : '-',
3475 Pde.b.u1WriteThru ? "WT" : "--",
3476 Pde.b.u1CacheDisable? "CD" : "--",
3477 Pde.b.u1PAT ? "AT" : "--",
3478 Pde.b.u1NoExecute ? "NX" : "--",
3479 Pde.u & RT_BIT_64(9) ? '1' : '0',
3480 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3481 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3482 Pde.u & X86_PDE_PAE_PG_MASK);
3483 else
3484 {
3485 pHlp->pfnPrintf(pHlp,
3486 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3487 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3488 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3489 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3490 Pde.n.u1Write ? 'W' : 'R',
3491 Pde.n.u1User ? 'U' : 'S',
3492 Pde.n.u1Accessed ? 'A' : '-',
3493 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3494 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3495 Pde.n.u1WriteThru ? "WT" : "--",
3496 Pde.n.u1CacheDisable? "CD" : "--",
3497 Pde.n.u1NoExecute ? "NX" : "--",
3498 Pde.u & RT_BIT_64(9) ? '1' : '0',
3499 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3500 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3501 Pde.u & X86_PDE_PAE_PG_MASK);
3502 if (cMaxDepth >= 1)
3503 {
3504 /** @todo what about using the page pool for mapping PTs? */
3505 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3506 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3507 PX86PTPAE pPT = NULL;
3508 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3509 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3510 else
3511 {
3512 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3513 {
3514 uint64_t off = u64AddressPT - pMap->GCPtr;
3515 if (off < pMap->cb)
3516 {
3517 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3518 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3519 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3520 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3521 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3522 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3523 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3524 }
3525 }
3526 }
3527 int rc2 = VERR_INVALID_PARAMETER;
3528 if (pPT)
3529 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3530 else
3531 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3532 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3533 if (rc2 < rc && RT_SUCCESS(rc))
3534 rc = rc2;
3535 }
3536 }
3537 }
3538 }
3539 return rc;
3540}
3541
3542
3543/**
3544 * Dumps a PAE shadow page directory pointer table.
3545 *
3546 * @returns VBox status code (VINF_SUCCESS).
3547 * @param pVM The VM handle.
3548 * @param HCPhys The physical address of the page directory pointer table.
3549 * @param u64Address The virtual address of the page table starts.
3550 * @param cr4 The CR4, PSE is currently used.
3551 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3552 * @param cMaxDepth The maxium depth.
3553 * @param pHlp Pointer to the output functions.
3554 */
3555static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3556{
3557 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3558 if (!pPDPT)
3559 {
3560 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3561 fLongMode ? 16 : 8, u64Address, HCPhys);
3562 return VERR_INVALID_PARAMETER;
3563 }
3564
3565 int rc = VINF_SUCCESS;
3566 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3567 for (unsigned i = 0; i < c; i++)
3568 {
3569 X86PDPE Pdpe = pPDPT->a[i];
3570 if (Pdpe.n.u1Present)
3571 {
3572 if (fLongMode)
3573 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3574 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3575 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3576 Pdpe.lm.u1Write ? 'W' : 'R',
3577 Pdpe.lm.u1User ? 'U' : 'S',
3578 Pdpe.lm.u1Accessed ? 'A' : '-',
3579 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3580 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3581 Pdpe.lm.u1WriteThru ? "WT" : "--",
3582 Pdpe.lm.u1CacheDisable? "CD" : "--",
3583 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3584 Pdpe.lm.u1NoExecute ? "NX" : "--",
3585 Pdpe.u & RT_BIT(9) ? '1' : '0',
3586 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3587 Pdpe.u & RT_BIT(11) ? '1' : '0',
3588 Pdpe.u & X86_PDPE_PG_MASK);
3589 else
3590 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3591 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3592 i << X86_PDPT_SHIFT,
3593 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3594 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3595 Pdpe.n.u1WriteThru ? "WT" : "--",
3596 Pdpe.n.u1CacheDisable? "CD" : "--",
3597 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3598 Pdpe.u & RT_BIT(9) ? '1' : '0',
3599 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3600 Pdpe.u & RT_BIT(11) ? '1' : '0',
3601 Pdpe.u & X86_PDPE_PG_MASK);
3602 if (cMaxDepth >= 1)
3603 {
3604 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3605 cr4, fLongMode, cMaxDepth - 1, pHlp);
3606 if (rc2 < rc && RT_SUCCESS(rc))
3607 rc = rc2;
3608 }
3609 }
3610 }
3611 return rc;
3612}
3613
3614
3615/**
3616 * Dumps a 32-bit shadow page table.
3617 *
3618 * @returns VBox status code (VINF_SUCCESS).
3619 * @param pVM The VM handle.
3620 * @param HCPhys The physical address of the table.
3621 * @param cr4 The CR4, PSE is currently used.
3622 * @param cMaxDepth The maxium depth.
3623 * @param pHlp Pointer to the output functions.
3624 */
3625static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3626{
3627 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3628 if (!pPML4)
3629 {
3630 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3631 return VERR_INVALID_PARAMETER;
3632 }
3633
3634 int rc = VINF_SUCCESS;
3635 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3636 {
3637 X86PML4E Pml4e = pPML4->a[i];
3638 if (Pml4e.n.u1Present)
3639 {
3640 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3641 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3642 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3643 u64Address,
3644 Pml4e.n.u1Write ? 'W' : 'R',
3645 Pml4e.n.u1User ? 'U' : 'S',
3646 Pml4e.n.u1Accessed ? 'A' : '-',
3647 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3648 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3649 Pml4e.n.u1WriteThru ? "WT" : "--",
3650 Pml4e.n.u1CacheDisable? "CD" : "--",
3651 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3652 Pml4e.n.u1NoExecute ? "NX" : "--",
3653 Pml4e.u & RT_BIT(9) ? '1' : '0',
3654 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3655 Pml4e.u & RT_BIT(11) ? '1' : '0',
3656 Pml4e.u & X86_PML4E_PG_MASK);
3657
3658 if (cMaxDepth >= 1)
3659 {
3660 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3661 if (rc2 < rc && RT_SUCCESS(rc))
3662 rc = rc2;
3663 }
3664 }
3665 }
3666 return rc;
3667}
3668
3669
3670/**
3671 * Dumps a 32-bit shadow page table.
3672 *
3673 * @returns VBox status code (VINF_SUCCESS).
3674 * @param pVM The VM handle.
3675 * @param pPT Pointer to the page table.
3676 * @param u32Address The virtual address this table starts at.
3677 * @param pHlp Pointer to the output functions.
3678 */
3679int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3680{
3681 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3682 {
3683 X86PTE Pte = pPT->a[i];
3684 if (Pte.n.u1Present)
3685 {
3686 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3687 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3688 u32Address + (i << X86_PT_SHIFT),
3689 Pte.n.u1Write ? 'W' : 'R',
3690 Pte.n.u1User ? 'U' : 'S',
3691 Pte.n.u1Accessed ? 'A' : '-',
3692 Pte.n.u1Dirty ? 'D' : '-',
3693 Pte.n.u1Global ? 'G' : '-',
3694 Pte.n.u1WriteThru ? "WT" : "--",
3695 Pte.n.u1CacheDisable? "CD" : "--",
3696 Pte.n.u1PAT ? "AT" : "--",
3697 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3698 Pte.u & RT_BIT(10) ? '1' : '0',
3699 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3700 Pte.u & X86_PDE_PG_MASK);
3701 }
3702 }
3703 return VINF_SUCCESS;
3704}
3705
3706
3707/**
3708 * Dumps a 32-bit shadow page directory and page tables.
3709 *
3710 * @returns VBox status code (VINF_SUCCESS).
3711 * @param pVM The VM handle.
3712 * @param cr3 The root of the hierarchy.
3713 * @param cr4 The CR4, PSE is currently used.
3714 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3715 * @param pHlp Pointer to the output functions.
3716 */
3717int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3718{
3719 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3720 if (!pPD)
3721 {
3722 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3723 return VERR_INVALID_PARAMETER;
3724 }
3725
3726 int rc = VINF_SUCCESS;
3727 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3728 {
3729 X86PDE Pde = pPD->a[i];
3730 if (Pde.n.u1Present)
3731 {
3732 const uint32_t u32Address = i << X86_PD_SHIFT;
3733 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3734 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3735 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3736 u32Address,
3737 Pde.b.u1Write ? 'W' : 'R',
3738 Pde.b.u1User ? 'U' : 'S',
3739 Pde.b.u1Accessed ? 'A' : '-',
3740 Pde.b.u1Dirty ? 'D' : '-',
3741 Pde.b.u1Global ? 'G' : '-',
3742 Pde.b.u1WriteThru ? "WT" : "--",
3743 Pde.b.u1CacheDisable? "CD" : "--",
3744 Pde.b.u1PAT ? "AT" : "--",
3745 Pde.u & RT_BIT_64(9) ? '1' : '0',
3746 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3747 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3748 Pde.u & X86_PDE4M_PG_MASK);
3749 else
3750 {
3751 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3752 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3753 u32Address,
3754 Pde.n.u1Write ? 'W' : 'R',
3755 Pde.n.u1User ? 'U' : 'S',
3756 Pde.n.u1Accessed ? 'A' : '-',
3757 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3758 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3759 Pde.n.u1WriteThru ? "WT" : "--",
3760 Pde.n.u1CacheDisable? "CD" : "--",
3761 Pde.u & RT_BIT_64(9) ? '1' : '0',
3762 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3763 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3764 Pde.u & X86_PDE_PG_MASK);
3765 if (cMaxDepth >= 1)
3766 {
3767 /** @todo what about using the page pool for mapping PTs? */
3768 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3769 PX86PT pPT = NULL;
3770 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3771 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3772 else
3773 {
3774 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3775 if (u32Address - pMap->GCPtr < pMap->cb)
3776 {
3777 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3778 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3779 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3780 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3781 pPT = pMap->aPTs[iPDE].pPTR3;
3782 }
3783 }
3784 int rc2 = VERR_INVALID_PARAMETER;
3785 if (pPT)
3786 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3787 else
3788 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3789 if (rc2 < rc && RT_SUCCESS(rc))
3790 rc = rc2;
3791 }
3792 }
3793 }
3794 }
3795
3796 return rc;
3797}
3798
3799
3800/**
3801 * Dumps a 32-bit shadow page table.
3802 *
3803 * @returns VBox status code (VINF_SUCCESS).
3804 * @param pVM The VM handle.
3805 * @param pPT Pointer to the page table.
3806 * @param u32Address The virtual address this table starts at.
3807 * @param PhysSearch Address to search for.
3808 */
3809int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3810{
3811 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3812 {
3813 X86PTE Pte = pPT->a[i];
3814 if (Pte.n.u1Present)
3815 {
3816 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3817 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3818 u32Address + (i << X86_PT_SHIFT),
3819 Pte.n.u1Write ? 'W' : 'R',
3820 Pte.n.u1User ? 'U' : 'S',
3821 Pte.n.u1Accessed ? 'A' : '-',
3822 Pte.n.u1Dirty ? 'D' : '-',
3823 Pte.n.u1Global ? 'G' : '-',
3824 Pte.n.u1WriteThru ? "WT" : "--",
3825 Pte.n.u1CacheDisable? "CD" : "--",
3826 Pte.n.u1PAT ? "AT" : "--",
3827 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3828 Pte.u & RT_BIT(10) ? '1' : '0',
3829 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3830 Pte.u & X86_PDE_PG_MASK));
3831
3832 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3833 {
3834 uint64_t fPageShw = 0;
3835 RTHCPHYS pPhysHC = 0;
3836
3837 /** @todo SMP support!! */
3838 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3839 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3840 }
3841 }
3842 }
3843 return VINF_SUCCESS;
3844}
3845
3846
3847/**
3848 * Dumps a 32-bit guest page directory and page tables.
3849 *
3850 * @returns VBox status code (VINF_SUCCESS).
3851 * @param pVM The VM handle.
3852 * @param cr3 The root of the hierarchy.
3853 * @param cr4 The CR4, PSE is currently used.
3854 * @param PhysSearch Address to search for.
3855 */
3856VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3857{
3858 bool fLongMode = false;
3859 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3860 PX86PD pPD = 0;
3861
3862 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3863 if (RT_FAILURE(rc) || !pPD)
3864 {
3865 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3866 return VERR_INVALID_PARAMETER;
3867 }
3868
3869 Log(("cr3=%08x cr4=%08x%s\n"
3870 "%-*s P - Present\n"
3871 "%-*s | R/W - Read (0) / Write (1)\n"
3872 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3873 "%-*s | | | A - Accessed\n"
3874 "%-*s | | | | D - Dirty\n"
3875 "%-*s | | | | | G - Global\n"
3876 "%-*s | | | | | | WT - Write thru\n"
3877 "%-*s | | | | | | | CD - Cache disable\n"
3878 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3879 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3880 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3881 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3882 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3883 "%-*s Level | | | | | | | | | | | | Page\n"
3884 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3885 - W U - - - -- -- -- -- -- 010 */
3886 , cr3, cr4, fLongMode ? " Long Mode" : "",
3887 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3888 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3889
3890 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3891 {
3892 X86PDE Pde = pPD->a[i];
3893 if (Pde.n.u1Present)
3894 {
3895 const uint32_t u32Address = i << X86_PD_SHIFT;
3896
3897 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3898 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3899 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3900 u32Address,
3901 Pde.b.u1Write ? 'W' : 'R',
3902 Pde.b.u1User ? 'U' : 'S',
3903 Pde.b.u1Accessed ? 'A' : '-',
3904 Pde.b.u1Dirty ? 'D' : '-',
3905 Pde.b.u1Global ? 'G' : '-',
3906 Pde.b.u1WriteThru ? "WT" : "--",
3907 Pde.b.u1CacheDisable? "CD" : "--",
3908 Pde.b.u1PAT ? "AT" : "--",
3909 Pde.u & RT_BIT(9) ? '1' : '0',
3910 Pde.u & RT_BIT(10) ? '1' : '0',
3911 Pde.u & RT_BIT(11) ? '1' : '0',
3912 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3913 /** @todo PhysSearch */
3914 else
3915 {
3916 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3917 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3918 u32Address,
3919 Pde.n.u1Write ? 'W' : 'R',
3920 Pde.n.u1User ? 'U' : 'S',
3921 Pde.n.u1Accessed ? 'A' : '-',
3922 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3923 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3924 Pde.n.u1WriteThru ? "WT" : "--",
3925 Pde.n.u1CacheDisable? "CD" : "--",
3926 Pde.u & RT_BIT(9) ? '1' : '0',
3927 Pde.u & RT_BIT(10) ? '1' : '0',
3928 Pde.u & RT_BIT(11) ? '1' : '0',
3929 Pde.u & X86_PDE_PG_MASK));
3930 ////if (cMaxDepth >= 1)
3931 {
3932 /** @todo what about using the page pool for mapping PTs? */
3933 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3934 PX86PT pPT = NULL;
3935
3936 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3937
3938 int rc2 = VERR_INVALID_PARAMETER;
3939 if (pPT)
3940 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3941 else
3942 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3943 if (rc2 < rc && RT_SUCCESS(rc))
3944 rc = rc2;
3945 }
3946 }
3947 }
3948 }
3949
3950 return rc;
3951}
3952
3953
3954/**
3955 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3956 *
3957 * @returns VBox status code (VINF_SUCCESS).
3958 * @param pVM The VM handle.
3959 * @param cr3 The root of the hierarchy.
3960 * @param cr4 The cr4, only PAE and PSE is currently used.
3961 * @param fLongMode Set if long mode, false if not long mode.
3962 * @param cMaxDepth Number of levels to dump.
3963 * @param pHlp Pointer to the output functions.
3964 */
3965VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3966{
3967 if (!pHlp)
3968 pHlp = DBGFR3InfoLogHlp();
3969 if (!cMaxDepth)
3970 return VINF_SUCCESS;
3971 const unsigned cch = fLongMode ? 16 : 8;
3972 pHlp->pfnPrintf(pHlp,
3973 "cr3=%08x cr4=%08x%s\n"
3974 "%-*s P - Present\n"
3975 "%-*s | R/W - Read (0) / Write (1)\n"
3976 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3977 "%-*s | | | A - Accessed\n"
3978 "%-*s | | | | D - Dirty\n"
3979 "%-*s | | | | | G - Global\n"
3980 "%-*s | | | | | | WT - Write thru\n"
3981 "%-*s | | | | | | | CD - Cache disable\n"
3982 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3983 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3984 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3985 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3986 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3987 "%-*s Level | | | | | | | | | | | | Page\n"
3988 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3989 - W U - - - -- -- -- -- -- 010 */
3990 , cr3, cr4, fLongMode ? " Long Mode" : "",
3991 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3992 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3993 if (cr4 & X86_CR4_PAE)
3994 {
3995 if (fLongMode)
3996 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3997 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3998 }
3999 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4000}
4001
4002#ifdef VBOX_WITH_DEBUGGER
4003
4004/**
4005 * The '.pgmram' command.
4006 *
4007 * @returns VBox status.
4008 * @param pCmd Pointer to the command descriptor (as registered).
4009 * @param pCmdHlp Pointer to command helper functions.
4010 * @param pVM Pointer to the current VM (if any).
4011 * @param paArgs Pointer to (readonly) array of arguments.
4012 * @param cArgs Number of arguments in the array.
4013 */
4014static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4015{
4016 /*
4017 * Validate input.
4018 */
4019 if (!pVM)
4020 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4021 if (!pVM->pgm.s.pRamRangesRC)
4022 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4023
4024 /*
4025 * Dump the ranges.
4026 */
4027 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4028 PPGMRAMRANGE pRam;
4029 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4030 {
4031 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4032 "%RGp - %RGp %p\n",
4033 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4034 if (RT_FAILURE(rc))
4035 return rc;
4036 }
4037
4038 return VINF_SUCCESS;
4039}
4040
4041
4042/**
4043 * The '.pgmerror' and '.pgmerroroff' commands.
4044 *
4045 * @returns VBox status.
4046 * @param pCmd Pointer to the command descriptor (as registered).
4047 * @param pCmdHlp Pointer to command helper functions.
4048 * @param pVM Pointer to the current VM (if any).
4049 * @param paArgs Pointer to (readonly) array of arguments.
4050 * @param cArgs Number of arguments in the array.
4051 */
4052static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4053{
4054 /*
4055 * Validate input.
4056 */
4057 if (!pVM)
4058 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4059 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4060 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4061
4062 if (!cArgs)
4063 {
4064 /*
4065 * Print the list of error injection locations with status.
4066 */
4067 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4068 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4069 }
4070 else
4071 {
4072
4073 /*
4074 * String switch on where to inject the error.
4075 */
4076 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4077 const char *pszWhere = paArgs[0].u.pszString;
4078 if (!strcmp(pszWhere, "handy"))
4079 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4080 else
4081 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4082 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4083 }
4084 return VINF_SUCCESS;
4085}
4086
4087
4088/**
4089 * The '.pgmsync' command.
4090 *
4091 * @returns VBox status.
4092 * @param pCmd Pointer to the command descriptor (as registered).
4093 * @param pCmdHlp Pointer to command helper functions.
4094 * @param pVM Pointer to the current VM (if any).
4095 * @param paArgs Pointer to (readonly) array of arguments.
4096 * @param cArgs Number of arguments in the array.
4097 */
4098static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4099{
4100 /** @todo SMP support */
4101 PVMCPU pVCpu = &pVM->aCpus[0];
4102
4103 /*
4104 * Validate input.
4105 */
4106 if (!pVM)
4107 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4108
4109 /*
4110 * Force page directory sync.
4111 */
4112 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4113
4114 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4115 if (RT_FAILURE(rc))
4116 return rc;
4117
4118 return VINF_SUCCESS;
4119}
4120
4121
4122#ifdef VBOX_STRICT
4123/**
4124 * The '.pgmassertcr3' command.
4125 *
4126 * @returns VBox status.
4127 * @param pCmd Pointer to the command descriptor (as registered).
4128 * @param pCmdHlp Pointer to command helper functions.
4129 * @param pVM Pointer to the current VM (if any).
4130 * @param paArgs Pointer to (readonly) array of arguments.
4131 * @param cArgs Number of arguments in the array.
4132 */
4133static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4134{
4135 /** @todo SMP support!! */
4136 PVMCPU pVCpu = &pVM->aCpus[0];
4137
4138 /*
4139 * Validate input.
4140 */
4141 if (!pVM)
4142 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4143
4144 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4145 if (RT_FAILURE(rc))
4146 return rc;
4147
4148 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4149
4150 return VINF_SUCCESS;
4151}
4152#endif /* VBOX_STRICT */
4153
4154
4155/**
4156 * The '.pgmsyncalways' command.
4157 *
4158 * @returns VBox status.
4159 * @param pCmd Pointer to the command descriptor (as registered).
4160 * @param pCmdHlp Pointer to command helper functions.
4161 * @param pVM Pointer to the current VM (if any).
4162 * @param paArgs Pointer to (readonly) array of arguments.
4163 * @param cArgs Number of arguments in the array.
4164 */
4165static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4166{
4167 /** @todo SMP support!! */
4168 PVMCPU pVCpu = &pVM->aCpus[0];
4169
4170 /*
4171 * Validate input.
4172 */
4173 if (!pVM)
4174 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4175
4176 /*
4177 * Force page directory sync.
4178 */
4179 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4180 {
4181 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4182 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4183 }
4184 else
4185 {
4186 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4187 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4188 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4189 }
4190}
4191
4192
4193/**
4194 * The '.pgmsyncalways' command.
4195 *
4196 * @returns VBox status.
4197 * @param pCmd Pointer to the command descriptor (as registered).
4198 * @param pCmdHlp Pointer to command helper functions.
4199 * @param pVM Pointer to the current VM (if any).
4200 * @param paArgs Pointer to (readonly) array of arguments.
4201 * @param cArgs Number of arguments in the array.
4202 */
4203static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4204{
4205 /*
4206 * Validate input.
4207 */
4208 if (!pVM)
4209 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4210 if ( cArgs < 1
4211 || cArgs > 2
4212 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4213 || ( cArgs > 1
4214 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4215 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4216 if ( cArgs >= 2
4217 && strcmp(paArgs[1].u.pszString, "nozero"))
4218 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4219 bool fIncZeroPgs = cArgs < 2;
4220
4221 /*
4222 * Open the output file and get the ram parameters.
4223 */
4224 RTFILE hFile;
4225 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4226 if (RT_FAILURE(rc))
4227 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4228
4229 uint32_t cbRamHole = 0;
4230 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4231 uint64_t cbRam = 0;
4232 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4233 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4234
4235 /*
4236 * Dump the physical memory, page by page.
4237 */
4238 RTGCPHYS GCPhys = 0;
4239 char abZeroPg[PAGE_SIZE];
4240 RT_ZERO(abZeroPg);
4241
4242 pgmLock(pVM);
4243 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4244 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4245 pRam = pRam->pNextR3)
4246 {
4247 /* fill the gap */
4248 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4249 {
4250 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4251 {
4252 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4253 GCPhys += PAGE_SIZE;
4254 }
4255 }
4256
4257 PCPGMPAGE pPage = &pRam->aPages[0];
4258 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4259 {
4260 if (PGM_PAGE_IS_ZERO(pPage))
4261 {
4262 if (fIncZeroPgs)
4263 {
4264 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4265 if (RT_FAILURE(rc))
4266 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4267 }
4268 }
4269 else
4270 {
4271 switch (PGM_PAGE_GET_TYPE(pPage))
4272 {
4273 case PGMPAGETYPE_RAM:
4274 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4275 case PGMPAGETYPE_ROM:
4276 case PGMPAGETYPE_MMIO2:
4277 {
4278 void const *pvPage;
4279 PGMPAGEMAPLOCK Lock;
4280 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4281 if (RT_SUCCESS(rc))
4282 {
4283 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4284 PGMPhysReleasePageMappingLock(pVM, &Lock);
4285 if (RT_FAILURE(rc))
4286 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4287 }
4288 else
4289 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4290 break;
4291 }
4292
4293 default:
4294 AssertFailed();
4295 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4296 case PGMPAGETYPE_MMIO:
4297 if (fIncZeroPgs)
4298 {
4299 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4300 if (RT_FAILURE(rc))
4301 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4302 }
4303 break;
4304 }
4305 }
4306
4307
4308 /* advance */
4309 GCPhys += PAGE_SIZE;
4310 pPage++;
4311 }
4312 }
4313 pgmUnlock(pVM);
4314
4315 RTFileClose(hFile);
4316 if (RT_SUCCESS(rc))
4317 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4318 return VINF_SUCCESS;
4319}
4320
4321#endif /* VBOX_WITH_DEBUGGER */
4322
4323/**
4324 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4325 */
4326typedef struct PGMCHECKINTARGS
4327{
4328 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4329 PPGMPHYSHANDLER pPrevPhys;
4330 PPGMVIRTHANDLER pPrevVirt;
4331 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4332 PVM pVM;
4333} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4334
4335/**
4336 * Validate a node in the physical handler tree.
4337 *
4338 * @returns 0 on if ok, other wise 1.
4339 * @param pNode The handler node.
4340 * @param pvUser pVM.
4341 */
4342static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4343{
4344 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4345 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4346 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4347 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4348 AssertReleaseMsg( !pArgs->pPrevPhys
4349 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4350 ("pPrevPhys=%p %RGp-%RGp %s\n"
4351 " pCur=%p %RGp-%RGp %s\n",
4352 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4353 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4354 pArgs->pPrevPhys = pCur;
4355 return 0;
4356}
4357
4358
4359/**
4360 * Validate a node in the virtual handler tree.
4361 *
4362 * @returns 0 on if ok, other wise 1.
4363 * @param pNode The handler node.
4364 * @param pvUser pVM.
4365 */
4366static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4367{
4368 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4369 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4370 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4371 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4372 AssertReleaseMsg( !pArgs->pPrevVirt
4373 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4374 ("pPrevVirt=%p %RGv-%RGv %s\n"
4375 " pCur=%p %RGv-%RGv %s\n",
4376 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4377 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4378 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4379 {
4380 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4381 ("pCur=%p %RGv-%RGv %s\n"
4382 "iPage=%d offVirtHandle=%#x expected %#x\n",
4383 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4384 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4385 }
4386 pArgs->pPrevVirt = pCur;
4387 return 0;
4388}
4389
4390
4391/**
4392 * Validate a node in the virtual handler tree.
4393 *
4394 * @returns 0 on if ok, other wise 1.
4395 * @param pNode The handler node.
4396 * @param pvUser pVM.
4397 */
4398static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4399{
4400 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4401 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4402 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4403 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4404 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4405 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4406 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4407 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4408 " pCur=%p %RGp-%RGp\n",
4409 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4410 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4411 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4412 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4413 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4414 " pCur=%p %RGp-%RGp\n",
4415 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4416 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4417 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4418 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4419 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4420 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4421 {
4422 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4423 for (;;)
4424 {
4425 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4426 AssertReleaseMsg(pCur2 != pCur,
4427 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4428 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4429 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4430 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4431 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4432 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4433 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4434 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4435 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4436 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4437 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4438 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4439 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4440 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4441 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4442 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4443 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4444 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4445 break;
4446 }
4447 }
4448
4449 pArgs->pPrevPhys2Virt = pCur;
4450 return 0;
4451}
4452
4453
4454/**
4455 * Perform an integrity check on the PGM component.
4456 *
4457 * @returns VINF_SUCCESS if everything is fine.
4458 * @returns VBox error status after asserting on integrity breach.
4459 * @param pVM The VM handle.
4460 */
4461VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4462{
4463 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4464
4465 /*
4466 * Check the trees.
4467 */
4468 int cErrors = 0;
4469 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4470 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4471 PGMCHECKINTARGS Args = s_LeftToRight;
4472 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4473 Args = s_RightToLeft;
4474 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4475 Args = s_LeftToRight;
4476 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4477 Args = s_RightToLeft;
4478 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4479 Args = s_LeftToRight;
4480 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4481 Args = s_RightToLeft;
4482 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4483 Args = s_LeftToRight;
4484 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4485 Args = s_RightToLeft;
4486 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4487
4488 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4489}
4490
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette