/* $Id: MMHyper.cpp 18811 2009-04-07 12:21:17Z vboxsync $ */ /** @file * MM - Memory Manager - Hypervisor Memory Area. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_MM_HYPER #include #include #include #include "MMInternal.h" #include #include #include #include #include #include #include /******************************************************************************* * Internal Functions * *******************************************************************************/ static DECLCALLBACK(bool) mmR3HyperRelocateCallback(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser); static int mmR3HyperMap(PVM pVM, const size_t cb, const char *pszDesc, PRTGCPTR pGCPtr, PMMLOOKUPHYPER *ppLookup); static int mmR3HyperHeapCreate(PVM pVM, const size_t cb, PMMHYPERHEAP *ppHeap, PRTR0PTR pR0PtrHeap); static int mmR3HyperHeapMap(PVM pVM, PMMHYPERHEAP pHeap, PRTGCPTR ppHeapGC); static DECLCALLBACK(void) mmR3HyperInfoHma(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); /** * Initializes the hypvervisor related MM stuff without * calling down to PGM. * * PGM is not initialized at this point, PGM relies on * the heap to initialize. * * @returns VBox status. */ int mmR3HyperInit(PVM pVM) { LogFlow(("mmR3HyperInit:\n")); /* * Decide Hypervisor mapping in the guest context * And setup various hypervisor area and heap parameters. */ pVM->mm.s.pvHyperAreaGC = (RTGCPTR)MM_HYPER_AREA_ADDRESS; pVM->mm.s.cbHyperArea = MM_HYPER_AREA_MAX_SIZE; AssertRelease(RT_ALIGN_T(pVM->mm.s.pvHyperAreaGC, 1 << X86_PD_SHIFT, RTGCPTR) == pVM->mm.s.pvHyperAreaGC); Assert(pVM->mm.s.pvHyperAreaGC < 0xff000000); /** @todo @bugref{1865}, @bugref{3202}: Change the cbHyperHeap default * depending on whether VT-x/AMD-V is enabled or not! Don't waste * precious kernel space on heap for the PATM. */ uint32_t cbHyperHeap; int rc = CFGMR3QueryU32(CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM"), "cbHyperHeap", &cbHyperHeap); if (rc == VERR_CFGM_NO_PARENT || rc == VERR_CFGM_VALUE_NOT_FOUND) cbHyperHeap = VMMIsHwVirtExtForced(pVM) ? 640*_1K : 1280*_1K; else AssertLogRelRCReturn(rc, rc); cbHyperHeap = RT_ALIGN_32(cbHyperHeap, PAGE_SIZE); LogRel(("MM: cbHyperHeap=%#x (%u)\n", cbHyperHeap, cbHyperHeap)); /* * Allocate the hypervisor heap. * * (This must be done before we start adding memory to the * hypervisor static area because lookup records are allocated from it.) */ rc = mmR3HyperHeapCreate(pVM, cbHyperHeap, &pVM->mm.s.pHyperHeapR3, &pVM->mm.s.pHyperHeapR0); if (RT_SUCCESS(rc)) { /* * Make a small head fence to fend of accidental sequential access. */ MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); /* * Map the VM structure into the hypervisor space. */ AssertRelease(pVM->cbSelf == RT_UOFFSETOF(VM, aCpus[pVM->cCPUs])); RTGCPTR GCPtr; rc = MMR3HyperMapPages(pVM, pVM, pVM->pVMR0, RT_ALIGN_Z(pVM->cbSelf, PAGE_SIZE) >> PAGE_SHIFT, pVM->paVMPagesR3, "VM", &GCPtr); if (RT_SUCCESS(rc)) { pVM->pVMRC = (RTRCPTR)GCPtr; for (uint32_t i = 0; i < pVM->cCPUs; i++) pVM->aCpus[i].pVMRC = pVM->pVMRC; /* Reserve a page for fencing. */ MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); /* * Map the heap into the hypervisor space. */ rc = mmR3HyperHeapMap(pVM, pVM->mm.s.pHyperHeapR3, &GCPtr); if (RT_SUCCESS(rc)) { pVM->mm.s.pHyperHeapRC = (RTRCPTR)GCPtr; Assert(pVM->mm.s.pHyperHeapRC == GCPtr); /* * Register info handlers. */ DBGFR3InfoRegisterInternal(pVM, "hma", "Show the layout of the Hypervisor Memory Area.", mmR3HyperInfoHma); LogFlow(("mmR3HyperInit: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /* Caller will do proper cleanup. */ } } LogFlow(("mmR3HyperInit: returns %Rrc\n", rc)); return rc; } /** * Finalizes the HMA mapping. * * This is called later during init, most (all) HMA allocations should be done * by the time this function is called. * * @returns VBox status. */ VMMR3DECL(int) MMR3HyperInitFinalize(PVM pVM) { LogFlow(("MMR3HyperInitFinalize:\n")); /* * Adjust and create the HMA mapping. */ while ((RTINT)pVM->mm.s.offHyperNextStatic + 64*_1K < (RTINT)pVM->mm.s.cbHyperArea - _4M) pVM->mm.s.cbHyperArea -= _4M; int rc = PGMR3MapPT(pVM, pVM->mm.s.pvHyperAreaGC, pVM->mm.s.cbHyperArea, 0 /*fFlags*/, mmR3HyperRelocateCallback, NULL, "Hypervisor Memory Area"); if (RT_FAILURE(rc)) return rc; pVM->mm.s.fPGMInitialized = true; /* * Do all the delayed mappings. */ PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uintptr_t)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { RTGCPTR GCPtr = pVM->mm.s.pvHyperAreaGC + pLookup->off; uint32_t cPages = pLookup->cb >> PAGE_SHIFT; switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: { PCRTHCPHYS paHCPhysPages = pLookup->u.Locked.paHCPhysPages; for (uint32_t i = 0; i < cPages; i++) { rc = PGMMap(pVM, GCPtr + (i << PAGE_SHIFT), paHCPhysPages[i], PAGE_SIZE, 0); AssertRCReturn(rc, rc); } break; } case MMLOOKUPHYPERTYPE_HCPHYS: rc = PGMMap(pVM, GCPtr, pLookup->u.HCPhys.HCPhys, pLookup->cb, 0); break; case MMLOOKUPHYPERTYPE_GCPHYS: { const RTGCPHYS GCPhys = pLookup->u.GCPhys.GCPhys; const uint32_t cb = pLookup->cb; for (uint32_t off = 0; off < cb; off += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys + off, &HCPhys); if (RT_FAILURE(rc)) break; rc = PGMMap(pVM, GCPtr + off, HCPhys, PAGE_SIZE, 0); if (RT_FAILURE(rc)) break; } break; } case MMLOOKUPHYPERTYPE_MMIO2: { const RTGCPHYS offEnd = pLookup->u.MMIO2.off + pLookup->cb; for (RTGCPHYS offCur = pLookup->u.MMIO2.off; offCur < offEnd; offCur += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMR3PhysMMIO2GetHCPhys(pVM, pLookup->u.MMIO2.pDevIns, pLookup->u.MMIO2.iRegion, offCur, &HCPhys); if (RT_FAILURE(rc)) break; rc = PGMMap(pVM, GCPtr + (offCur - pLookup->u.MMIO2.off), HCPhys, PAGE_SIZE, 0); if (RT_FAILURE(rc)) break; } break; } case MMLOOKUPHYPERTYPE_DYNAMIC: /* do nothing here since these are either fences or managed by someone else using PGM. */ break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc cb=%d off=%#RX32 enmType=%d pszDesc=%s\n", rc, pLookup->cb, pLookup->off, pLookup->enmType, pLookup->pszDesc)); return rc; } /* next */ if (pLookup->offNext == (int32_t)NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uintptr_t)pLookup + pLookup->offNext); } LogFlow(("MMR3HyperInitFinalize: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Callback function which will be called when PGM is trying to find * a new location for the mapping. * * The callback is called in two modes, 1) the check mode and 2) the relocate mode. * In 1) the callback should say if it objects to a suggested new location. If it * accepts the new location, it is called again for doing it's relocation. * * * @returns true if the location is ok. * @returns false if another location should be found. * @param pVM The VM handle. * @param GCPtrOld The old virtual address. * @param GCPtrNew The new virtual address. * @param enmMode Used to indicate the callback mode. * @param pvUser User argument. Ignored. * @remark The return value is no a failure indicator, it's an acceptance * indicator. Relocation can not fail! */ static DECLCALLBACK(bool) mmR3HyperRelocateCallback(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser) { switch (enmMode) { /* * Verify location - all locations are good for us. */ case PGMRELOCATECALL_SUGGEST: return true; /* * Execute the relocation. */ case PGMRELOCATECALL_RELOCATE: { /* * Accepted! */ AssertMsg(GCPtrOld == pVM->mm.s.pvHyperAreaGC, ("GCPtrOld=%RGv pVM->mm.s.pvHyperAreaGC=%RGv\n", GCPtrOld, pVM->mm.s.pvHyperAreaGC)); Log(("Relocating the hypervisor from %RGv to %RGv\n", GCPtrOld, GCPtrNew)); /* * Relocate the VM structure and ourselves. */ RTGCINTPTR offDelta = GCPtrNew - GCPtrOld; pVM->pVMRC += offDelta; for (uint32_t i = 0; i < pVM->cCPUs; i++) pVM->aCpus[i].pVMRC = pVM->pVMRC; pVM->mm.s.pvHyperAreaGC += offDelta; Assert(pVM->mm.s.pvHyperAreaGC < _4G); pVM->mm.s.pHyperHeapRC += offDelta; pVM->mm.s.pHyperHeapR3->pbHeapRC += offDelta; pVM->mm.s.pHyperHeapR3->pVMRC = pVM->pVMRC; /* * Relocate the rest. */ VMR3Relocate(pVM, offDelta); return true; } default: AssertMsgFailed(("Invalid relocation mode %d\n", enmMode)); } return false; } /** * Maps contiguous HC physical memory into the hypervisor region in the GC. * * @return VBox status code. * * @param pVM VM handle. * @param pvR3 Ring-3 address of the memory. Must be page aligned! * @param pvR0 Optional ring-0 address of the memory. * @param HCPhys Host context physical address of the memory to be * mapped. Must be page aligned! * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc Description. * @param pGCPtr Where to store the GC address. */ VMMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvR3, RTR0PTR pvR0, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapHCPhys: pvR3=%p pvR0=%p HCPhys=%RHp cb=%d pszDesc=%p:{%s} pGCPtr=%p\n", pvR3, pvR0, HCPhys, (int)cb, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ AssertReturn(RT_ALIGN_P(pvR3, PAGE_SIZE) == pvR3, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(pvR0, PAGE_SIZE, RTR0PTR) == pvR0, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(HCPhys, PAGE_SIZE, RTHCPHYS) == HCPhys, VERR_INVALID_PARAMETER); AssertReturn(pszDesc && *pszDesc, VERR_INVALID_PARAMETER); /* * Add the memory to the hypervisor area. */ uint32_t cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cbAligned, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_HCPHYS; pLookup->u.HCPhys.pvR3 = pvR3; pLookup->u.HCPhys.pvR0 = pvR0; pLookup->u.HCPhys.HCPhys = HCPhys; /* * Update the page table. */ if (pVM->mm.s.fPGMInitialized) rc = PGMMap(pVM, GCPtr, HCPhys, cbAligned, 0); if (RT_SUCCESS(rc)) *pGCPtr = GCPtr; } return rc; } /** * Maps contiguous GC physical memory into the hypervisor region in the GC. * * @return VBox status code. * * @param pVM VM handle. * @param GCPhys Guest context physical address of the memory to be mapped. Must be page aligned! * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc Mapping description. * @param pGCPtr Where to store the GC address. */ VMMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapGCPhys: GCPhys=%RGp cb=%d pszDesc=%p:{%s} pGCPtr=%p\n", GCPhys, (int)cb, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(pszDesc && *pszDesc, VERR_INVALID_PARAMETER); /* * Add the memory to the hypervisor area. */ cb = RT_ALIGN_Z(cb, PAGE_SIZE); RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cb, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_GCPHYS; pLookup->u.GCPhys.GCPhys = GCPhys; /* * Update the page table. */ for (unsigned off = 0; off < cb; off += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys + off, &HCPhys); AssertRC(rc); if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc GCPhys=%RGp off=%#x %s\n", rc, GCPhys, off, pszDesc)); break; } if (pVM->mm.s.fPGMInitialized) { rc = PGMMap(pVM, GCPtr + off, HCPhys, PAGE_SIZE, 0); AssertRC(rc); if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc GCPhys=%RGp off=%#x %s\n", rc, GCPhys, off, pszDesc)); break; } } } if (RT_SUCCESS(rc) && pGCPtr) *pGCPtr = GCPtr; } return rc; } /** * Maps a portion of an MMIO2 region into the hypervisor region. * * Callers of this API must never deregister the MMIO2 region before the * VM is powered off. If this becomes a requirement MMR3HyperUnmapMMIO2 * API will be needed to perform cleanups. * * @return VBox status code. * * @param pVM Pointer to the shared VM structure. * @param pDevIns The device owning the MMIO2 memory. * @param iRegion The region. * @param off The offset into the region. Will be rounded down to closest page boundrary. * @param cb The number of bytes to map. Will be rounded up to the closest page boundrary. * @param pszDesc Mapping description. * @param pRCPtr Where to store the RC address. */ VMMR3DECL(int) MMR3HyperMapMMIO2(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTRCPTR pRCPtr) { LogFlow(("MMR3HyperMapMMIO2: pDevIns=%p iRegion=%#x off=%RGp cb=%RGp pszDesc=%p:{%s} pRCPtr=%p\n", pDevIns, iRegion, off, cb, pszDesc, pszDesc, pRCPtr)); int rc; /* * Validate input. */ AssertReturn(pszDesc && *pszDesc, VERR_INVALID_PARAMETER); AssertReturn(off + cb > off, VERR_INVALID_PARAMETER); uint32_t const offPage = off & PAGE_OFFSET_MASK; off &= ~(RTGCPHYS)PAGE_OFFSET_MASK; cb += offPage; cb = RT_ALIGN_Z(cb, PAGE_SIZE); const RTGCPHYS offEnd = off + cb; AssertReturn(offEnd > off, VERR_INVALID_PARAMETER); for (RTGCPHYS offCur = off; offCur < offEnd; offCur += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMR3PhysMMIO2GetHCPhys(pVM, pDevIns, iRegion, offCur, &HCPhys); AssertMsgRCReturn(rc, ("rc=%Rrc - iRegion=%d off=%RGp\n", rc, iRegion, off), rc); } /* * Add the memory to the hypervisor area. */ RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; rc = mmR3HyperMap(pVM, cb, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_MMIO2; pLookup->u.MMIO2.pDevIns = pDevIns; pLookup->u.MMIO2.iRegion = iRegion; pLookup->u.MMIO2.off = off; /* * Update the page table. */ if (pVM->mm.s.fPGMInitialized) { for (RTGCPHYS offCur = off; offCur < offEnd; offCur += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMR3PhysMMIO2GetHCPhys(pVM, pDevIns, iRegion, offCur, &HCPhys); AssertRCReturn(rc, VERR_INTERNAL_ERROR); rc = PGMMap(pVM, GCPtr + (offCur - off), HCPhys, PAGE_SIZE, 0); if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc offCur=%RGp %s\n", rc, offCur, pszDesc)); break; } } } if (RT_SUCCESS(rc)) { GCPtr |= offPage; *pRCPtr = GCPtr; AssertLogRelReturn(*pRCPtr == GCPtr, VERR_INTERNAL_ERROR); } } return rc; } /** * Maps locked R3 virtual memory into the hypervisor region in the GC. * * @return VBox status code. * * @param pVM VM handle. * @param pvR3 The ring-3 address of the memory, must be page aligned. * @param pvR0 The ring-0 address of the memory, must be page aligned. (optional) * @param cPages The number of pages. * @param paPages The page descriptors. * @param pszDesc Mapping description. * @param pGCPtr Where to store the GC address corresponding to pvR3. */ VMMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapPages: pvR3=%p pvR0=%p cPages=%zu paPages=%p pszDesc=%p:{%s} pGCPtr=%p\n", pvR3, pvR0, cPages, paPages, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ AssertPtrReturn(pvR3, VERR_INVALID_POINTER); AssertPtrReturn(paPages, VERR_INVALID_POINTER); AssertReturn(cPages > 0, VERR_PAGE_COUNT_OUT_OF_RANGE); AssertReturn(cPages <= VBOX_MAX_ALLOC_PAGE_COUNT, VERR_PAGE_COUNT_OUT_OF_RANGE); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); AssertPtrReturn(pGCPtr, VERR_INVALID_PARAMETER); /* * Add the memory to the hypervisor area. */ RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cPages << PAGE_SHIFT, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { /* * Copy the physical page addresses and tell PGM about them. */ PRTHCPHYS paHCPhysPages = (PRTHCPHYS)MMR3HeapAlloc(pVM, MM_TAG_MM, sizeof(RTHCPHYS) * cPages); if (paHCPhysPages) { for (size_t i = 0; i < cPages; i++) { AssertReleaseReturn(paPages[i].Phys != 0 && paPages[i].Phys != NIL_RTHCPHYS && !(paPages[i].Phys & PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR); paHCPhysPages[i] = paPages[i].Phys; } if (pVM->mm.s.fPGMInitialized) { for (size_t i = 0; i < cPages; i++) { rc = PGMMap(pVM, GCPtr + (i << PAGE_SHIFT), paHCPhysPages[i], PAGE_SIZE, 0); AssertRCBreak(rc); } } if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_LOCKED; pLookup->u.Locked.pvR3 = pvR3; pLookup->u.Locked.pvR0 = pvR0; pLookup->u.Locked.paHCPhysPages = paHCPhysPages; /* done. */ *pGCPtr = GCPtr; return rc; } /* Don't care about failure clean, we're screwed if this fails anyway. */ } } return rc; } /** * Reserves a hypervisor memory area. * Most frequent usage is fence pages and dynamically mappings like the guest PD and PDPT. * * @return VBox status code. * * @param pVM VM handle. * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc Mapping description. * @param pGCPtr Where to store the assigned GC address. Optional. */ VMMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapHCRam: cb=%d pszDesc=%p:{%s} pGCPtr=%p\n", (int)cb, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ if ( cb <= 0 || !pszDesc || !*pszDesc) { AssertMsgFailed(("Invalid parameter\n")); return VERR_INVALID_PARAMETER; } /* * Add the memory to the hypervisor area. */ RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cb, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_DYNAMIC; if (pGCPtr) *pGCPtr = GCPtr; return VINF_SUCCESS; } return rc; } /** * Adds memory to the hypervisor memory arena. * * @return VBox status code. * @param pVM The VM handle. * @param cb Size of the memory. Will be rounded up to neares page. * @param pszDesc The description of the memory. * @param pGCPtr Where to store the GC address. * @param ppLookup Where to store the pointer to the lookup record. * @remark We assume the threading structure of VBox imposes natural * serialization of most functions, this one included. */ static int mmR3HyperMap(PVM pVM, const size_t cb, const char *pszDesc, PRTGCPTR pGCPtr, PMMLOOKUPHYPER *ppLookup) { /* * Validate input. */ const uint32_t cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); if (pVM->mm.s.offHyperNextStatic + cbAligned >= pVM->mm.s.cbHyperArea) /* don't use the last page, it's a fence. */ { AssertMsgFailed(("Out of static mapping space in the HMA! offHyperAreaGC=%x cbAligned=%x cbHyperArea=%x\n", pVM->mm.s.offHyperNextStatic, cbAligned, pVM->mm.s.cbHyperArea)); return VERR_NO_MEMORY; } /* * Allocate lookup record. */ PMMLOOKUPHYPER pLookup; int rc = MMHyperAlloc(pVM, sizeof(*pLookup), 1, MM_TAG_MM, (void **)&pLookup); if (RT_SUCCESS(rc)) { /* * Initialize it and insert it. */ pLookup->offNext = pVM->mm.s.offLookupHyper; pLookup->cb = cbAligned; pLookup->off = pVM->mm.s.offHyperNextStatic; pVM->mm.s.offLookupHyper = (uint8_t *)pLookup - (uint8_t *)pVM->mm.s.pHyperHeapR3; if (pLookup->offNext != (int32_t)NIL_OFFSET) pLookup->offNext -= pVM->mm.s.offLookupHyper; pLookup->enmType = MMLOOKUPHYPERTYPE_INVALID; memset(&pLookup->u, 0xff, sizeof(pLookup->u)); pLookup->pszDesc = pszDesc; /* Mapping. */ *pGCPtr = pVM->mm.s.pvHyperAreaGC + pVM->mm.s.offHyperNextStatic; pVM->mm.s.offHyperNextStatic += cbAligned; /* Return pointer. */ *ppLookup = pLookup; } AssertRC(rc); LogFlow(("mmR3HyperMap: returns %Rrc *pGCPtr=%RGv\n", rc, *pGCPtr)); return rc; } /** * Allocates a new heap. * * @returns VBox status code. * @param pVM The VM handle. * @param cb The size of the new heap. * @param ppHeap Where to store the heap pointer on successful return. * @param pR0PtrHeap Where to store the ring-0 address of the heap on * success. */ static int mmR3HyperHeapCreate(PVM pVM, const size_t cb, PMMHYPERHEAP *ppHeap, PRTR0PTR pR0PtrHeap) { /* * Allocate the hypervisor heap. */ const uint32_t cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); uint32_t const cPages = cbAligned >> PAGE_SHIFT; PSUPPAGE paPages = (PSUPPAGE)MMR3HeapAlloc(pVM, MM_TAG_MM, cPages * sizeof(paPages[0])); if (!paPages) return VERR_NO_MEMORY; void *pv; RTR0PTR pvR0 = NIL_RTR0PTR; int rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pv, #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE VMMIsHwVirtExtForced(pVM) ? &pvR0 : NULL, #else NULL, #endif paPages); if (RT_SUCCESS(rc)) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE if (!VMMIsHwVirtExtForced(pVM)) pvR0 = NIL_RTR0PTR; #else pvR0 = (uintptr_t)pv; #endif memset(pv, 0, cbAligned); /* * Initialize the heap and first free chunk. */ PMMHYPERHEAP pHeap = (PMMHYPERHEAP)pv; pHeap->u32Magic = MMHYPERHEAP_MAGIC; pHeap->pbHeapR3 = (uint8_t *)pHeap + MMYPERHEAP_HDR_SIZE; pHeap->pbHeapR0 = pvR0 != NIL_RTR0PTR ? pvR0 + MMYPERHEAP_HDR_SIZE : NIL_RTR0PTR; //pHeap->pbHeapRC = 0; // set by mmR3HyperHeapMap() pHeap->pVMR3 = pVM; pHeap->pVMR0 = pVM->pVMR0; pHeap->pVMRC = pVM->pVMRC; pHeap->cbHeap = cbAligned - MMYPERHEAP_HDR_SIZE; pHeap->cbFree = pHeap->cbHeap - sizeof(MMHYPERCHUNK); //pHeap->offFreeHead = 0; //pHeap->offFreeTail = 0; pHeap->offPageAligned = pHeap->cbHeap; //pHeap->HyperHeapStatTree = 0; pHeap->paPages = paPages; PMMHYPERCHUNKFREE pFree = (PMMHYPERCHUNKFREE)pHeap->pbHeapR3; pFree->cb = pHeap->cbFree; //pFree->core.offNext = 0; MMHYPERCHUNK_SET_TYPE(&pFree->core, MMHYPERCHUNK_FLAGS_FREE); pFree->core.offHeap = -(int32_t)MMYPERHEAP_HDR_SIZE; //pFree->offNext = 0; //pFree->offPrev = 0; STAMR3Register(pVM, &pHeap->cbHeap, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, "/MM/HyperHeap/cbHeap", STAMUNIT_BYTES, "The heap size."); STAMR3Register(pVM, &pHeap->cbFree, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, "/MM/HyperHeap/cbFree", STAMUNIT_BYTES, "The free space."); *ppHeap = pHeap; *pR0PtrHeap = pvR0; return VINF_SUCCESS; } AssertMsgFailed(("SUPR3PageAllocEx(%d,,,,) -> %Rrc\n", cbAligned >> PAGE_SHIFT, rc)); *ppHeap = NULL; return rc; } /** * Allocates a new heap. */ static int mmR3HyperHeapMap(PVM pVM, PMMHYPERHEAP pHeap, PRTGCPTR ppHeapGC) { Assert(RT_ALIGN_Z(pHeap->cbHeap + MMYPERHEAP_HDR_SIZE, PAGE_SIZE) == pHeap->cbHeap + MMYPERHEAP_HDR_SIZE); Assert(pHeap->paPages); int rc = MMR3HyperMapPages(pVM, pHeap, pHeap->pbHeapR0 != NIL_RTR0PTR ? pHeap->pbHeapR0 - MMYPERHEAP_HDR_SIZE : NIL_RTR0PTR, (pHeap->cbHeap + MMYPERHEAP_HDR_SIZE) >> PAGE_SHIFT, pHeap->paPages, "Heap", ppHeapGC); if (RT_SUCCESS(rc)) { pHeap->pVMRC = pVM->pVMRC; pHeap->pbHeapRC = *ppHeapGC + MMYPERHEAP_HDR_SIZE; /* Reserve a page for fencing. */ MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); /* We won't need these any more. */ MMR3HeapFree(pHeap->paPages); pHeap->paPages = NULL; } return rc; } #if 0 /** * Destroys a heap. */ static int mmR3HyperHeapDestroy(PVM pVM, PMMHYPERHEAP pHeap) { /* all this is dealt with when unlocking and freeing locked memory. */ } #endif /** * Allocates memory in the Hypervisor (GC VMM) area which never will * be freed and doesn't have any offset based relation to other heap blocks. * * The latter means that two blocks allocated by this API will not have the * same relative position to each other in GC and HC. In short, never use * this API for allocating nodes for an offset based AVL tree! * * The returned memory is of course zeroed. * * @returns VBox status code. * @param pVM The VM to operate on. * @param cb Number of bytes to allocate. * @param uAlignment Required memory alignment in bytes. * Values are 0,8,16,32 and PAGE_SIZE. * 0 -> default alignment, i.e. 8 bytes. * @param enmTag The statistics tag. * @param ppv Where to store the address to the allocated * memory. * @remark This is assumed not to be used at times when serialization is required. */ VMMDECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, unsigned uAlignment, MMTAG enmTag, void **ppv) { AssertMsg(cb >= 8, ("Hey! Do you really mean to allocate less than 8 bytes?! cb=%d\n", cb)); /* * Choose between allocating a new chunk of HMA memory * and the heap. We will only do BIG allocations from HMA and * only at creation time. */ if ( ( cb < _64K && ( uAlignment != PAGE_SIZE || cb < 48*_1K)) || VMR3GetState(pVM) != VMSTATE_CREATING) { int rc = MMHyperAlloc(pVM, cb, uAlignment, enmTag, ppv); if ( rc != VERR_MM_HYPER_NO_MEMORY || cb <= 8*_1K) { Log2(("MMR3HyperAllocOnceNoRel: cb=%#zx uAlignment=%#x returns %Rrc and *ppv=%p\n", cb, uAlignment, rc, *ppv)); return rc; } } /* * Validate alignment. */ switch (uAlignment) { case 0: case 8: case 16: case 32: case PAGE_SIZE: break; default: AssertMsgFailed(("Invalid alignment %u\n", uAlignment)); return VERR_INVALID_PARAMETER; } /* * Allocate the pages and map them into HMA space. */ uint32_t const cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); uint32_t const cPages = cbAligned >> PAGE_SHIFT; PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(paPages[0])); if (!paPages) return VERR_NO_TMP_MEMORY; void *pvPages; RTR0PTR pvR0 = NIL_RTR0PTR; int rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE VMMIsHwVirtExtForced(pVM) ? &pvR0 : NULL, #else NULL, #endif paPages); if (RT_SUCCESS(rc)) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE if (!VMMIsHwVirtExtForced(pVM)) pvR0 = NIL_RTR0PTR; #else pvR0 = (uintptr_t)pvPages; #endif memset(pvPages, 0, cbAligned); RTGCPTR GCPtr; rc = MMR3HyperMapPages(pVM, pvPages, pvR0, cPages, paPages, MMR3HeapAPrintf(pVM, MM_TAG_MM, "alloc once (%s)", mmR3GetTagName(enmTag)), &GCPtr); if (RT_SUCCESS(rc)) { *ppv = pvPages; Log2(("MMR3HyperAllocOnceNoRel: cbAligned=%#x uAlignment=%#x returns VINF_SUCCESS and *ppv=%p\n", cbAligned, uAlignment, *ppv)); MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); return rc; } AssertMsgFailed(("Failed to allocate %zd bytes! %Rrc\n", cbAligned, rc)); SUPR3PageFreeEx(pvPages, cPages); /* * HACK ALERT! Try allocate it off the heap so that we don't freak * out during vga/vmmdev mmio2 allocation with certain ram sizes. */ /** @todo make a proper fix for this so we will never end up in this kind of situation! */ Log(("MMR3HyperAllocOnceNoRel: MMR3HyperMapHCRam failed with rc=%Rrc, try MMHyperAlloc(,%#x,,) instead\n", rc, cb)); int rc2 = MMHyperAlloc(pVM, cb, uAlignment, enmTag, ppv); if (RT_SUCCESS(rc2)) { Log2(("MMR3HyperAllocOnceNoRel: cb=%#x uAlignment=%#x returns %Rrc and *ppv=%p\n", cb, uAlignment, rc, *ppv)); return rc; } } else AssertMsgFailed(("Failed to allocate %zd bytes! %Rrc\n", cbAligned, rc)); if (rc == VERR_NO_MEMORY) rc = VERR_MM_HYPER_NO_MEMORY; LogRel(("MMR3HyperAllocOnceNoRel: cb=%#zx uAlignment=%#x returns %Rrc\n", cb, uAlignment, rc)); return rc; } /** * Convert hypervisor HC virtual address to HC physical address. * * @returns HC physical address. * @param pVM VM Handle * @param pvR3 Host context virtual address. */ VMMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvR3) { PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: { unsigned off = (uint8_t *)pvR3 - (uint8_t *)pLookup->u.Locked.pvR3; if (off < pLookup->cb) return pLookup->u.Locked.paHCPhysPages[off >> PAGE_SHIFT] | (off & PAGE_OFFSET_MASK); break; } case MMLOOKUPHYPERTYPE_HCPHYS: { unsigned off = (uint8_t *)pvR3 - (uint8_t *)pLookup->u.HCPhys.pvR3; if (off < pLookup->cb) return pLookup->u.HCPhys.HCPhys + off; break; } case MMLOOKUPHYPERTYPE_GCPHYS: case MMLOOKUPHYPERTYPE_MMIO2: case MMLOOKUPHYPERTYPE_DYNAMIC: /* can (or don't want to) convert these kind of records. */ break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } /* next */ if ((unsigned)pLookup->offNext == NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uint8_t *)pLookup + pLookup->offNext); } AssertMsgFailed(("pvR3=%p is not inside the hypervisor memory area!\n", pvR3)); return NIL_RTHCPHYS; } #if 0 /* unused, not implemented */ /** * Convert hypervisor HC physical address to HC virtual address. * * @returns HC virtual address. * @param pVM VM Handle * @param HCPhys Host context physical address. */ VMMR3DECL(void *) MMR3HyperHCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys) { void *pv; int rc = MMR3HyperHCPhys2HCVirtEx(pVM, HCPhys, &pv); if (RT_SUCCESS(rc)) return pv; AssertMsgFailed(("Invalid address HCPhys=%x rc=%d\n", HCPhys, rc)); return NULL; } /** * Convert hypervisor HC physical address to HC virtual address. * * @returns VBox status. * @param pVM VM Handle * @param HCPhys Host context physical address. * @param ppv Where to store the HC virtual address. */ VMMR3DECL(int) MMR3HyperHCPhys2HCVirtEx(PVM pVM, RTHCPHYS HCPhys, void **ppv) { /* * Linear search. */ /** @todo implement when actually used. */ return VERR_INVALID_POINTER; } #endif /* unused, not implemented */ /** * Read hypervisor memory from GC virtual address. * * @returns VBox status. * @param pVM VM handle. * @param pvDst Destination address (HC of course). * @param GCPtr GC virtual address. * @param cb Number of bytes to read. * * @remarks For DBGF only. */ VMMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb) { if (GCPtr - pVM->mm.s.pvHyperAreaGC >= pVM->mm.s.cbHyperArea) return VERR_INVALID_PARAMETER; return PGMR3MapRead(pVM, pvDst, GCPtr, cb); } /** * Info handler for 'hma', it dumps the list of lookup records for the hypervisor memory area. * * @param pVM The VM handle. * @param pHlp Callback functions for doing output. * @param pszArgs Argument string. Optional and specific to the handler. */ static DECLCALLBACK(void) mmR3HyperInfoHma(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { pHlp->pfnPrintf(pHlp, "Hypervisor Memory Area (HMA) Layout: Base %RGv, 0x%08x bytes\n", pVM->mm.s.pvHyperAreaGC, pVM->mm.s.cbHyperArea); PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %RHv %RHv LOCKED %-*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, pLookup->u.Locked.pvR3, pLookup->u.Locked.pvR0, sizeof(RTHCPTR) * 2, "", pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_HCPHYS: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %RHv %RHv HCPHYS %RHp %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, pLookup->u.HCPhys.pvR3, pLookup->u.HCPhys.pvR0, pLookup->u.HCPhys.HCPhys, pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_GCPHYS: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %*s GCPHYS %RGp%*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, sizeof(RTHCPTR) * 2 * 2 + 1, "", pLookup->u.GCPhys.GCPhys, RT_ABS((int)(sizeof(RTHCPHYS) - sizeof(RTGCPHYS))) * 2, "", pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_MMIO2: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %*s MMIO2 %RGp%*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, sizeof(RTHCPTR) * 2 * 2 + 1, "", pLookup->u.MMIO2.off, RT_ABS((int)(sizeof(RTHCPHYS) - sizeof(RTGCPHYS))) * 2, "", pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_DYNAMIC: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %*s DYNAMIC %*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, sizeof(RTHCPTR) * 2 * 2 + 1, "", sizeof(RTHCPTR) * 2, "", pLookup->pszDesc); break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } /* next */ if ((unsigned)pLookup->offNext == NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uint8_t *)pLookup + pLookup->offNext); } }