VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 26295

Last change on this file since 26295 was 26263, checked in by vboxsync, 15 years ago

VMM: More warnings.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 171.0 KB
Line 
1/* $Id: CPUM.cpp 26263 2010-02-05 02:24:13Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum CPUM - CPU Monitor / Manager
23 *
24 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
25 * also responsible for lazy FPU handling and some of the context loading
26 * in raw mode.
27 *
28 * There are three CPU contexts, the most important one is the guest one (GC).
29 * When running in raw-mode (RC) there is a special hyper context for the VMM
30 * part that floats around inside the guest address space. When running in
31 * raw-mode, CPUM also maintains a host context for saving and restoring
32 * registers accross world switches. This latter is done in cooperation with the
33 * world switcher (@see pg_vmm).
34 *
35 * @see grp_cpum
36 */
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#define LOG_GROUP LOG_GROUP_CPUM
42#include <VBox/cpum.h>
43#include <VBox/cpumdis.h>
44#include <VBox/pgm.h>
45#include <VBox/mm.h>
46#include <VBox/selm.h>
47#include <VBox/dbgf.h>
48#include <VBox/patm.h>
49#include <VBox/hwaccm.h>
50#include <VBox/ssm.h>
51#include "CPUMInternal.h"
52#include <VBox/vm.h>
53
54#include <VBox/param.h>
55#include <VBox/dis.h>
56#include <VBox/err.h>
57#include <VBox/log.h>
58#include <iprt/assert.h>
59#include <iprt/asm.h>
60#include <iprt/string.h>
61#include <iprt/mp.h>
62#include <iprt/cpuset.h>
63
64
65/*******************************************************************************
66* Defined Constants And Macros *
67*******************************************************************************/
68/** The current saved state version. */
69#define CPUM_SAVED_STATE_VERSION 11
70/** The saved state version of 3.0 and 3.1 trunk before the teleportation
71 * changes. */
72#define CPUM_SAVED_STATE_VERSION_VER3_0 10
73/** The saved state version for the 2.1 trunk before the MSR changes. */
74#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
75/** The saved state version of 2.0, used for backwards compatibility. */
76#define CPUM_SAVED_STATE_VERSION_VER2_0 8
77/** The saved state version of 1.6, used for backwards compatability. */
78#define CPUM_SAVED_STATE_VERSION_VER1_6 6
79
80
81/*******************************************************************************
82* Structures and Typedefs *
83*******************************************************************************/
84
85/**
86 * What kind of cpu info dump to perform.
87 */
88typedef enum CPUMDUMPTYPE
89{
90 CPUMDUMPTYPE_TERSE,
91 CPUMDUMPTYPE_DEFAULT,
92 CPUMDUMPTYPE_VERBOSE
93} CPUMDUMPTYPE;
94/** Pointer to a cpu info dump type. */
95typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
96
97
98/*******************************************************************************
99* Internal Functions *
100*******************************************************************************/
101static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
102static int cpumR3CpuIdInit(PVM pVM);
103static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
104static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
106static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
107static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
108static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114
115
116/**
117 * Initializes the CPUM.
118 *
119 * @returns VBox status code.
120 * @param pVM The VM to operate on.
121 */
122VMMR3DECL(int) CPUMR3Init(PVM pVM)
123{
124 LogFlow(("CPUMR3Init\n"));
125
126 /*
127 * Assert alignment and sizes.
128 */
129 AssertCompileMemberAlignment(VM, cpum.s, 32);
130 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
131 AssertCompileSizeAlignment(CPUMCTX, 64);
132 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
133 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
134 AssertCompileMemberAlignment(VM, cpum, 64);
135 AssertCompileMemberAlignment(VM, aCpus, 64);
136 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
137 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
138
139 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
140 pVM->cpum.s.ulOffCPUMCPU = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
141 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.ulOffCPUMCPU == (uintptr_t)&pVM->aCpus[0].cpum);
142
143 /* Calculate the offset from CPUMCPU to CPUM. */
144 for (VMCPUID i = 0; i < pVM->cCpus; i++)
145 {
146 PVMCPU pVCpu = &pVM->aCpus[i];
147
148 /*
149 * Setup any fixed pointers and offsets.
150 */
151 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
152 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
153
154 pVCpu->cpum.s.ulOffCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
155 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.ulOffCPUM == (uintptr_t)&pVM->cpum);
156 }
157
158 /*
159 * Check that the CPU supports the minimum features we require.
160 */
161 if (!ASMHasCpuId())
162 {
163 Log(("The CPU doesn't support CPUID!\n"));
164 return VERR_UNSUPPORTED_CPU;
165 }
166 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
167 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
168
169 /* Setup the CR4 AND and OR masks used in the switcher */
170 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
171 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
172 {
173 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
174 /* No FXSAVE implies no SSE */
175 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
176 pVM->cpum.s.CR4.OrMask = 0;
177 }
178 else
179 {
180 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
181 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
182 }
183
184 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
185 {
186 Log(("The CPU doesn't support MMX!\n"));
187 return VERR_UNSUPPORTED_CPU;
188 }
189 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
190 {
191 Log(("The CPU doesn't support TSC!\n"));
192 return VERR_UNSUPPORTED_CPU;
193 }
194 /* Bogus on AMD? */
195 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
196 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
197
198 /*
199 * Detech the host CPU vendor.
200 * (The guest CPU vendor is re-detected later on.)
201 */
202 uint32_t uEAX, uEBX, uECX, uEDX;
203 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
204 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
205 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
206
207 /*
208 * Setup hypervisor startup values.
209 */
210
211 /*
212 * Register saved state data item.
213 */
214 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
215 NULL, cpumR3LiveExec, NULL,
216 NULL, cpumR3SaveExec, NULL,
217 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
218 if (RT_FAILURE(rc))
219 return rc;
220
221 /*
222 * Register info handlers.
223 */
224 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
225 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
228 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
229 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
230
231 /*
232 * Initialize the Guest CPUID state.
233 */
234 rc = cpumR3CpuIdInit(pVM);
235 if (RT_FAILURE(rc))
236 return rc;
237 CPUMR3Reset(pVM);
238 return VINF_SUCCESS;
239}
240
241
242/**
243 * Initializes the per-VCPU CPUM.
244 *
245 * @returns VBox status code.
246 * @param pVM The VM to operate on.
247 */
248VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
249{
250 LogFlow(("CPUMR3InitCPU\n"));
251 return VINF_SUCCESS;
252}
253
254
255/**
256 * Detect the CPU vendor give n the
257 *
258 * @returns The vendor.
259 * @param uEAX EAX from CPUID(0).
260 * @param uEBX EBX from CPUID(0).
261 * @param uECX ECX from CPUID(0).
262 * @param uEDX EDX from CPUID(0).
263 */
264static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
265{
266 if ( uEAX >= 1
267 && uEBX == X86_CPUID_VENDOR_AMD_EBX
268 && uECX == X86_CPUID_VENDOR_AMD_ECX
269 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
270 return CPUMCPUVENDOR_AMD;
271
272 if ( uEAX >= 1
273 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
274 && uECX == X86_CPUID_VENDOR_INTEL_ECX
275 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
276 return CPUMCPUVENDOR_INTEL;
277
278 /** @todo detect the other buggers... */
279 return CPUMCPUVENDOR_UNKNOWN;
280}
281
282
283/**
284 * Fetches overrides for a CPUID leaf.
285 *
286 * @returns VBox status code.
287 * @param pLeaf The leaf to load the overrides into.
288 * @param pCfgNode The CFGM node containing the overrides
289 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
290 * @param iLeaf The CPUID leaf number.
291 */
292static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
293{
294 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
295 if (pLeafNode)
296 {
297 uint32_t u32;
298 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
299 if (RT_SUCCESS(rc))
300 pLeaf->eax = u32;
301 else
302 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
303
304 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
305 if (RT_SUCCESS(rc))
306 pLeaf->ebx = u32;
307 else
308 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
309
310 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
311 if (RT_SUCCESS(rc))
312 pLeaf->ecx = u32;
313 else
314 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
315
316 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
317 if (RT_SUCCESS(rc))
318 pLeaf->edx = u32;
319 else
320 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
321
322 }
323 return VINF_SUCCESS;
324}
325
326
327/**
328 * Load the overrides for a set of CPUID leafs.
329 *
330 * @returns VBox status code.
331 * @param paLeafs The leaf array.
332 * @param cLeafs The number of leafs.
333 * @param uStart The start leaf number.
334 * @param pCfgNode The CFGM node containing the overrides
335 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
336 */
337static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
338{
339 for (uint32_t i = 0; i < cLeafs; i++)
340 {
341 int rc = cpumR3CpuIdFetchLeafOverride(&paLeafs[i], pCfgNode, uStart + i);
342 if (RT_FAILURE(rc))
343 return rc;
344 }
345
346 return VINF_SUCCESS;
347}
348
349/**
350 * Init a set of host CPUID leafs.
351 *
352 * @returns VBox status code.
353 * @param paLeafs The leaf array.
354 * @param cLeafs The number of leafs.
355 * @param uStart The start leaf number.
356 * @param pCfgNode The /CPUM/HostCPUID/ node.
357 */
358static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
359{
360 /* Using the ECX variant for all of them can't hurt... */
361 for (uint32_t i = 0; i < cLeafs; i++)
362 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeafs[i].eax, &paLeafs[i].ebx, &paLeafs[i].ecx, &paLeafs[i].edx);
363
364 /* Load CPUID leaf override; we currently don't care if the caller
365 specifies features the host CPU doesn't support. */
366 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeafs, cLeafs, pCfgNode);
367}
368
369
370/**
371 * Initializes the emulated CPU's cpuid information.
372 *
373 * @returns VBox status code.
374 * @param pVM The VM to operate on.
375 */
376static int cpumR3CpuIdInit(PVM pVM)
377{
378 PCPUM pCPUM = &pVM->cpum.s;
379 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
380 uint32_t i;
381 int rc;
382
383 /*
384 * Get the host CPUIDs and redetect the guest CPU vendor (could've been overridden).
385 */
386 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
387 * Overrides the host CPUID leaf values used for calculating the guest CPUID
388 * leafs. This can be used to preserve the CPUID values when moving a VM to
389 * a different machine. Another use is restricting (or extending) the
390 * feature set exposed to the guest. */
391 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
392 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
393 AssertRCReturn(rc, rc);
394 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
395 AssertRCReturn(rc, rc);
396 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
397 AssertRCReturn(rc, rc);
398
399 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
400 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
401
402 /*
403 * Only report features we can support.
404 */
405 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
406 | X86_CPUID_FEATURE_EDX_VME
407 | X86_CPUID_FEATURE_EDX_DE
408 | X86_CPUID_FEATURE_EDX_PSE
409 | X86_CPUID_FEATURE_EDX_TSC
410 | X86_CPUID_FEATURE_EDX_MSR
411 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
412 | X86_CPUID_FEATURE_EDX_MCE
413 | X86_CPUID_FEATURE_EDX_CX8
414 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
415 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
416 //| X86_CPUID_FEATURE_EDX_SEP
417 | X86_CPUID_FEATURE_EDX_MTRR
418 | X86_CPUID_FEATURE_EDX_PGE
419 | X86_CPUID_FEATURE_EDX_MCA
420 | X86_CPUID_FEATURE_EDX_CMOV
421 | X86_CPUID_FEATURE_EDX_PAT
422 | X86_CPUID_FEATURE_EDX_PSE36
423 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
424 | X86_CPUID_FEATURE_EDX_CLFSH
425 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
426 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
427 | X86_CPUID_FEATURE_EDX_MMX
428 | X86_CPUID_FEATURE_EDX_FXSR
429 | X86_CPUID_FEATURE_EDX_SSE
430 | X86_CPUID_FEATURE_EDX_SSE2
431 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
432 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
433 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
434 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
435 | 0;
436 pCPUM->aGuestCpuIdStd[1].ecx &= 0
437 | X86_CPUID_FEATURE_ECX_SSE3
438 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
439 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
440 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
441 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
442 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
443 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
444 | X86_CPUID_FEATURE_ECX_SSSE3
445 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
446 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
447 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
448 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
449 /* ECX Bit 21 - x2APIC support - not yet. */
450 // | X86_CPUID_FEATURE_ECX_X2APIC
451 /* ECX Bit 23 - POPCNT instruction. */
452 //| X86_CPUID_FEATURE_ECX_POPCNT
453 | 0;
454
455 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
456 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
457 | X86_CPUID_AMD_FEATURE_EDX_VME
458 | X86_CPUID_AMD_FEATURE_EDX_DE
459 | X86_CPUID_AMD_FEATURE_EDX_PSE
460 | X86_CPUID_AMD_FEATURE_EDX_TSC
461 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
462 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
463 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
464 | X86_CPUID_AMD_FEATURE_EDX_CX8
465 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
466 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
467 //| X86_CPUID_AMD_FEATURE_EDX_SEP
468 | X86_CPUID_AMD_FEATURE_EDX_MTRR
469 | X86_CPUID_AMD_FEATURE_EDX_PGE
470 | X86_CPUID_AMD_FEATURE_EDX_MCA
471 | X86_CPUID_AMD_FEATURE_EDX_CMOV
472 | X86_CPUID_AMD_FEATURE_EDX_PAT
473 | X86_CPUID_AMD_FEATURE_EDX_PSE36
474 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
475 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
476 | X86_CPUID_AMD_FEATURE_EDX_MMX
477 | X86_CPUID_AMD_FEATURE_EDX_FXSR
478 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
479 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
480 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
481 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
482 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
483 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
484 | 0;
485 pCPUM->aGuestCpuIdExt[1].ecx &= 0
486 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
487 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
488 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
489 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
490 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
491 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
492 //| X86_CPUID_AMD_FEATURE_ECX_ABM
493 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
494 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
495 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
496 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
497 //| X86_CPUID_AMD_FEATURE_ECX_IBS
498 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
499 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
500 //| X86_CPUID_AMD_FEATURE_ECX_WDT
501 | 0;
502
503 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false); AssertRCReturn(rc, rc);
504 if (pCPUM->fSyntheticCpu)
505 {
506 const char szVendor[13] = "VirtualBox ";
507 const char szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
508
509 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
510
511 /* Limit the nr of standard leaves; 5 for monitor/mwait */
512 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
513
514 /* 0: Vendor */
515 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)szVendor)[0];
516 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)szVendor)[2];
517 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)szVendor)[1];
518
519 /* 1.eax: Version information. family : model : stepping */
520 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
521
522 /* Leaves 2 - 4 are Intel only - zero them out */
523 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
524 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
525 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
526
527 /* Leaf 5 = monitor/mwait */
528
529 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
530 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
531 /* AMD only - set to zero. */
532 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
533
534 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
535 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
536
537 /* 0x800000002-4: Processor Name String Identifier. */
538 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)szProcessor)[0];
539 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)szProcessor)[1];
540 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)szProcessor)[2];
541 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)szProcessor)[3];
542 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)szProcessor)[4];
543 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)szProcessor)[5];
544 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)szProcessor)[6];
545 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)szProcessor)[7];
546 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)szProcessor)[8];
547 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)szProcessor)[9];
548 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)szProcessor)[10];
549 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)szProcessor)[11];
550
551 /* 0x800000005-7 - reserved -> zero */
552 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
553 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
554 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
555
556 /* 0x800000008: only the max virtual and physical address size. */
557 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
558 }
559
560 /*
561 * Hide HTT, multicode, SMP, whatever.
562 * (APIC-ID := 0 and #LogCpus := 0)
563 */
564 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
565#ifdef VBOX_WITH_MULTI_CORE
566 if ( pVM->cCpus > 1
567 && pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC)
568 {
569 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
570 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
571 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
572 }
573#endif
574
575 /* Cpuid 2:
576 * Intel: Cache and TLB information
577 * AMD: Reserved
578 * Safe to expose
579 */
580
581 /* Cpuid 3:
582 * Intel: EAX, EBX - reserved
583 * ECX, EDX - Processor Serial Number if available, otherwise reserved
584 * AMD: Reserved
585 * Safe to expose
586 */
587 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
588 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
589
590 /* Cpuid 4:
591 * Intel: Deterministic Cache Parameters Leaf
592 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
593 * AMD: Reserved
594 * Safe to expose, except for EAX:
595 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
596 * Bits 31-26: Maximum number of processor cores in this physical package**
597 * Note: These SMP values are constant regardless of ECX
598 */
599 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
600 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
601#ifdef VBOX_WITH_MULTI_CORE
602 if ( pVM->cCpus > 1
603 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
604 {
605 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
606 /* One logical processor with possibly multiple cores. */
607 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
608 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
609 }
610#endif
611
612 /* Cpuid 5: Monitor/mwait Leaf
613 * Intel: ECX, EDX - reserved
614 * EAX, EBX - Smallest and largest monitor line size
615 * AMD: EDX - reserved
616 * EAX, EBX - Smallest and largest monitor line size
617 * ECX - extensions (ignored for now)
618 * Safe to expose
619 */
620 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
621 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
622
623 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
624
625 /*
626 * Determine the default.
627 *
628 * Intel returns values of the highest standard function, while AMD
629 * returns zeros. VIA on the other hand seems to returning nothing or
630 * perhaps some random garbage, we don't try to duplicate this behavior.
631 */
632 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
633 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
634 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
635
636 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
637 * Safe to pass on to the guest.
638 *
639 * Intel: 0x800000005 reserved
640 * 0x800000006 L2 cache information
641 * AMD: 0x800000005 L1 cache information
642 * 0x800000006 L2/L3 cache information
643 */
644
645 /* Cpuid 0x800000007:
646 * AMD: EAX, EBX, ECX - reserved
647 * EDX: Advanced Power Management Information
648 * Intel: Reserved
649 */
650 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
651 {
652 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
653
654 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
655
656 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
657 {
658 /* Only expose the TSC invariant capability bit to the guest. */
659 pCPUM->aGuestCpuIdExt[7].edx &= 0
660 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
661 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
662 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
663 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
664 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
665 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
666 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
667 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
668#if 1
669 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer Linux kernels blindly assume
670 * that the AMD performance counters work if this is set for 64 bits guests. (can't really find a CPUID feature bit for them though)
671 */
672#else
673 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
674#endif
675 | 0;
676 }
677 else
678 pCPUM->aGuestCpuIdExt[7].edx = 0;
679 }
680
681 /* Cpuid 0x800000008:
682 * AMD: EBX, EDX - reserved
683 * EAX: Virtual/Physical address Size
684 * ECX: Number of cores + APICIdCoreIdSize
685 * Intel: EAX: Virtual/Physical address Size
686 * EBX, ECX, EDX - reserved
687 */
688 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
689 {
690 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
691 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
692 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
693 * NC (0-7) Number of cores; 0 equals 1 core */
694 pCPUM->aGuestCpuIdExt[8].ecx = 0;
695#ifdef VBOX_WITH_MULTI_CORE
696 if ( pVM->cCpus > 1
697 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
698 {
699 /* Legacy method to determine the number of cores. */
700 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
701 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
702
703 }
704#endif
705 }
706
707 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
708 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
709 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
710 * This option corrsponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
711 */
712 bool fNt4LeafLimit;
713 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
714 if (fNt4LeafLimit)
715 pCPUM->aGuestCpuIdStd[0].eax = 3;
716
717 /*
718 * Limit it the number of entries and fill the remaining with the defaults.
719 *
720 * The limits are masking off stuff about power saving and similar, this
721 * is perhaps a bit crudely done as there is probably some relatively harmless
722 * info too in these leaves (like words about having a constant TSC).
723 */
724 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
725 pCPUM->aGuestCpuIdStd[0].eax = 5;
726
727 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
728 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
729
730 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
731 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
732 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
733 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
734 : 0;
735 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
736 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
737
738 /*
739 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
740 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
741 * of processors from (cpuid(4).eax >> 26) + 1.
742 */
743 if (pVM->cCpus == 1)
744 pCPUM->aGuestCpuIdStd[4].eax = 0;
745
746 /*
747 * Centaur stuff (VIA).
748 *
749 * The important part here (we think) is to make sure the 0xc0000000
750 * function returns 0xc0000001. As for the features, we don't currently
751 * let on about any of those... 0xc0000002 seems to be some
752 * temperature/hz/++ stuff, include it as well (static).
753 */
754 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
755 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
756 {
757 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
758 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
759 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
760 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
761 i++)
762 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
763 }
764 else
765 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
766 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
767
768
769 /*
770 * Load CPUID overrides from configuration.
771 * Note: Kind of redundant now, but allows unchanged overrides
772 */
773 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
774 * Overrides the CPUID leaf values. */
775 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
776 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
777 AssertRCReturn(rc, rc);
778 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
779 AssertRCReturn(rc, rc);
780 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
781 AssertRCReturn(rc, rc);
782
783 /*
784 * Check if PAE was explicitely enabled by the user.
785 */
786 bool fEnable;
787 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
788 if (fEnable)
789 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
790
791 /*
792 * Log the cpuid and we're good.
793 */
794 RTCPUSET OnlineSet;
795 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
796 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
797 LogRel(("************************* CPUID dump ************************\n"));
798 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
799 LogRel(("\n"));
800 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
801 LogRel(("******************** End of CPUID dump **********************\n"));
802 return VINF_SUCCESS;
803}
804
805
806
807
808/**
809 * Applies relocations to data and code managed by this
810 * component. This function will be called at init and
811 * whenever the VMM need to relocate it self inside the GC.
812 *
813 * The CPUM will update the addresses used by the switcher.
814 *
815 * @param pVM The VM.
816 */
817VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
818{
819 LogFlow(("CPUMR3Relocate\n"));
820 for (VMCPUID i = 0; i < pVM->cCpus; i++)
821 {
822 /*
823 * Switcher pointers.
824 */
825 PVMCPU pVCpu = &pVM->aCpus[i];
826 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
827 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
828 }
829}
830
831
832/**
833 * Terminates the CPUM.
834 *
835 * Termination means cleaning up and freeing all resources,
836 * the VM it self is at this point powered off or suspended.
837 *
838 * @returns VBox status code.
839 * @param pVM The VM to operate on.
840 */
841VMMR3DECL(int) CPUMR3Term(PVM pVM)
842{
843 CPUMR3TermCPU(pVM);
844 return 0;
845}
846
847
848/**
849 * Terminates the per-VCPU CPUM.
850 *
851 * Termination means cleaning up and freeing all resources,
852 * the VM it self is at this point powered off or suspended.
853 *
854 * @returns VBox status code.
855 * @param pVM The VM to operate on.
856 */
857VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
858{
859#ifdef VBOX_WITH_CRASHDUMP_MAGIC
860 for (VMCPUID i = 0; i < pVM->cCpus; i++)
861 {
862 PVMCPU pVCpu = &pVM->aCpus[i];
863 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
864
865 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
866 pVCpu->cpum.s.uMagic = 0;
867 pCtx->dr[5] = 0;
868 }
869#endif
870 return 0;
871}
872
873
874/**
875 * Resets a virtual CPU.
876 *
877 * Used by CPUMR3Reset and CPU hot plugging.
878 *
879 * @param pVCpu The virtual CPU handle.
880 */
881VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
882{
883 /** @todo anything different for VCPU > 0? */
884 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
885
886 /*
887 * Initialize everything to ZERO first.
888 */
889 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
890 memset(pCtx, 0, sizeof(*pCtx));
891 pVCpu->cpum.s.fUseFlags = fUseFlags;
892
893 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
894 pCtx->eip = 0x0000fff0;
895 pCtx->edx = 0x00000600; /* P6 processor */
896 pCtx->eflags.Bits.u1Reserved0 = 1;
897
898 pCtx->cs = 0xf000;
899 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
900 pCtx->csHid.u32Limit = 0x0000ffff;
901 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
902 pCtx->csHid.Attr.n.u1Present = 1;
903 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
904
905 pCtx->dsHid.u32Limit = 0x0000ffff;
906 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
907 pCtx->dsHid.Attr.n.u1Present = 1;
908 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
909
910 pCtx->esHid.u32Limit = 0x0000ffff;
911 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
912 pCtx->esHid.Attr.n.u1Present = 1;
913 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
914
915 pCtx->fsHid.u32Limit = 0x0000ffff;
916 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
917 pCtx->fsHid.Attr.n.u1Present = 1;
918 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
919
920 pCtx->gsHid.u32Limit = 0x0000ffff;
921 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
922 pCtx->gsHid.Attr.n.u1Present = 1;
923 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
924
925 pCtx->ssHid.u32Limit = 0x0000ffff;
926 pCtx->ssHid.Attr.n.u1Present = 1;
927 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
928 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
929
930 pCtx->idtr.cbIdt = 0xffff;
931 pCtx->gdtr.cbGdt = 0xffff;
932
933 pCtx->ldtrHid.u32Limit = 0xffff;
934 pCtx->ldtrHid.Attr.n.u1Present = 1;
935 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
936
937 pCtx->trHid.u32Limit = 0xffff;
938 pCtx->trHid.Attr.n.u1Present = 1;
939 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
940
941 pCtx->dr[6] = X86_DR6_INIT_VAL;
942 pCtx->dr[7] = X86_DR7_INIT_VAL;
943
944 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
945 pCtx->fpu.FCW = 0x37f;
946
947 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
948 pCtx->fpu.MXCSR = 0x1F80;
949
950 /* Init PAT MSR */
951 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
952
953 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
954 * The Intel docs don't mention it.
955 */
956 pCtx->msrEFER = 0;
957}
958
959
960/**
961 * Resets the CPU.
962 *
963 * @returns VINF_SUCCESS.
964 * @param pVM The VM handle.
965 */
966VMMR3DECL(void) CPUMR3Reset(PVM pVM)
967{
968 for (VMCPUID i = 0; i < pVM->cCpus; i++)
969 {
970 CPUMR3ResetCpu(&pVM->aCpus[i]);
971
972#ifdef VBOX_WITH_CRASHDUMP_MAGIC
973 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
974
975 /* Magic marker for searching in crash dumps. */
976 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
977 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
978 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
979#endif
980 }
981}
982
983
984/**
985 * Called both in pass 0 and the final pass.
986 *
987 * @param pVM The VM handle.
988 * @param pSSM The saved state handle.
989 */
990static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
991{
992 /*
993 * Save all the CPU ID leaves here so we can check them for compatability
994 * upon loading.
995 */
996 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
997 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
998
999 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1000 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1001
1002 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1003 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1004
1005 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1006
1007 /*
1008 * Save a good portion of the raw CPU IDs as well as they may come in
1009 * handy when validating features for raw mode.
1010 */
1011 CPUMCPUID aRawStd[16];
1012 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1013 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1014 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1015 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1016
1017 CPUMCPUID aRawExt[32];
1018 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1019 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1020 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1021 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1022}
1023
1024
1025/**
1026 * Loads the CPU ID leaves saved by pass 0.
1027 *
1028 * @returns VBox status code.
1029 * @param pVM The VM handle.
1030 * @param pSSM The saved state handle.
1031 * @param uVersion The format version.
1032 */
1033static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1034{
1035 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1036
1037 /*
1038 * Define a bunch of macros for simplifying the code.
1039 */
1040 /* Generic expression + failure message. */
1041#define CPUID_CHECK_RET(expr, fmt) \
1042 do { \
1043 if (!(expr)) \
1044 { \
1045 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadict macros sucks */ \
1046 if (fStrictCpuIdChecks) \
1047 { \
1048 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1049 RTStrFree(pszMsg); \
1050 return rcCpuid; \
1051 } \
1052 LogRel(("CPUM: %s\n", pszMsg)); \
1053 RTStrFree(pszMsg); \
1054 } \
1055 } while (0)
1056#define CPUID_CHECK_WRN(expr, fmt) \
1057 do { \
1058 if (!(expr)) \
1059 LogRel(fmt); \
1060 } while (0)
1061
1062 /* For comparing two values and bitch if they differs. */
1063#define CPUID_CHECK2_RET(what, host, saved) \
1064 do { \
1065 if ((host) != (saved)) \
1066 { \
1067 if (fStrictCpuIdChecks) \
1068 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1069 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1070 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1071 } \
1072 } while (0)
1073#define CPUID_CHECK2_WRN(what, host, saved) \
1074 do { \
1075 if ((host) != (saved)) \
1076 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1077 } while (0)
1078
1079 /* For checking raw cpu features (raw mode). */
1080#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1081 do { \
1082 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1083 { \
1084 if (fStrictCpuIdChecks) \
1085 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1086 N_(#bit " mismatch: host=%d saved=%d"), \
1087 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1088 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1089 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1090 } \
1091 } while (0)
1092#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1093 do { \
1094 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1095 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1096 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1097 } while (0)
1098#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1099
1100 /* For checking guest features. */
1101#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1102 do { \
1103 if ( (aGuestCpuId##set [1].reg & bit) \
1104 && !(aHostRaw##set [1].reg & bit) \
1105 && !(aHostOverride##set [1].reg & bit) \
1106 && !(aGuestOverride##set [1].reg & bit) \
1107 ) \
1108 { \
1109 if (fStrictCpuIdChecks) \
1110 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1111 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1112 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1113 } \
1114 } while (0)
1115#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1116 do { \
1117 if ( (aGuestCpuId##set [1].reg & bit) \
1118 && !(aHostRaw##set [1].reg & bit) \
1119 && !(aHostOverride##set [1].reg & bit) \
1120 && !(aGuestOverride##set [1].reg & bit) \
1121 ) \
1122 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1123 } while (0)
1124#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1125 do { \
1126 if ( (aGuestCpuId##set [1].reg & bit) \
1127 && !(aHostRaw##set [1].reg & bit) \
1128 && !(aHostOverride##set [1].reg & bit) \
1129 && !(aGuestOverride##set [1].reg & bit) \
1130 ) \
1131 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1132 } while (0)
1133#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1134
1135 /* For checking guest features if AMD guest CPU. */
1136#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1137 do { \
1138 if ( (aGuestCpuId##set [1].reg & bit) \
1139 && fGuestAmd \
1140 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1141 && !(aHostOverride##set [1].reg & bit) \
1142 && !(aGuestOverride##set [1].reg & bit) \
1143 ) \
1144 { \
1145 if (fStrictCpuIdChecks) \
1146 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1147 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1148 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1149 } \
1150 } while (0)
1151#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1152 do { \
1153 if ( (aGuestCpuId##set [1].reg & bit) \
1154 && fGuestAmd \
1155 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1156 && !(aHostOverride##set [1].reg & bit) \
1157 && !(aGuestOverride##set [1].reg & bit) \
1158 ) \
1159 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1160 } while (0)
1161#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1162 do { \
1163 if ( (aGuestCpuId##set [1].reg & bit) \
1164 && fGuestAmd \
1165 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1166 && !(aHostOverride##set [1].reg & bit) \
1167 && !(aGuestOverride##set [1].reg & bit) \
1168 ) \
1169 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1170 } while (0)
1171#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1172
1173 /* For checking AMD features which have a corresponding bit in the standard
1174 range. (Intel defines very few bits in the extended feature sets.) */
1175#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1176 do { \
1177 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1178 && !(fHostAmd \
1179 ? aHostRawExt[1].reg & (ExtBit) \
1180 : aHostRawStd[1].reg & (StdBit)) \
1181 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1182 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1183 ) \
1184 { \
1185 if (fStrictCpuIdChecks) \
1186 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1187 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1188 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1189 } \
1190 } while (0)
1191#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1192 do { \
1193 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1194 && !(fHostAmd \
1195 ? aHostRawExt[1].reg & (ExtBit) \
1196 : aHostRawStd[1].reg & (StdBit)) \
1197 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1198 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1199 ) \
1200 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1201 } while (0)
1202#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1203 do { \
1204 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1205 && !(fHostAmd \
1206 ? aHostRawExt[1].reg & (ExtBit) \
1207 : aHostRawStd[1].reg & (StdBit)) \
1208 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1209 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1210 ) \
1211 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1212 } while (0)
1213#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1214
1215 /*
1216 * Load them into stack buffers first.
1217 */
1218 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1219 uint32_t cGuestCpuIdStd;
1220 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1221 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1222 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1223 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1224
1225 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1226 uint32_t cGuestCpuIdExt;
1227 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1228 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1229 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1230 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1231
1232 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1233 uint32_t cGuestCpuIdCentaur;
1234 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1235 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1236 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1237 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1238
1239 CPUMCPUID GuestCpuIdDef;
1240 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1241 AssertRCReturn(rc, rc);
1242
1243 CPUMCPUID aRawStd[16];
1244 uint32_t cRawStd;
1245 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1246 if (cRawStd > RT_ELEMENTS(aRawStd))
1247 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1248 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1249
1250 CPUMCPUID aRawExt[32];
1251 uint32_t cRawExt;
1252 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1253 if (cRawExt > RT_ELEMENTS(aRawExt))
1254 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1255 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1256 AssertRCReturn(rc, rc);
1257
1258 /*
1259 * Note that we support restoring less than the current amount of standard
1260 * leaves because we've been allowed more is newer version of VBox.
1261 *
1262 * So, pad new entries with the default.
1263 */
1264 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1265 aGuestCpuIdStd[i] = GuestCpuIdDef;
1266
1267 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1268 aGuestCpuIdExt[i] = GuestCpuIdDef;
1269
1270 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1271 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1272
1273 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1274 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1275
1276 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1277 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1278
1279 /*
1280 * Get the raw CPU IDs for the current host.
1281 */
1282 CPUMCPUID aHostRawStd[16];
1283 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1284 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1285
1286 CPUMCPUID aHostRawExt[32];
1287 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1288 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1289
1290 /*
1291 * Get the host and guest overrides so we don't reject the state because
1292 * some feature was enabled thru these interfaces.
1293 * Note! We currently only need the feature leafs, so skip rest.
1294 */
1295 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1296 CPUMCPUID aGuestOverrideStd[2];
1297 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1298 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1299
1300 CPUMCPUID aGuestOverrideExt[2];
1301 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1302 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1303
1304 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1305 CPUMCPUID aHostOverrideStd[2];
1306 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1307 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1308
1309 CPUMCPUID aHostOverrideExt[2];
1310 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1311 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1312
1313 /*
1314 * This can be skipped.
1315 */
1316 bool fStrictCpuIdChecks;
1317 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1318
1319
1320
1321 /*
1322 * For raw-mode we'll require that the CPUs are very similar since we don't
1323 * intercept CPUID instructions for user mode applications.
1324 */
1325 if (!HWACCMIsEnabled(pVM))
1326 {
1327 /* CPUID(0) */
1328 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1329 && aHostRawStd[0].ecx == aRawStd[0].ecx
1330 && aHostRawStd[0].edx == aRawStd[0].edx,
1331 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1332 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1333 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1334 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1335 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1336 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1337
1338 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1339
1340 /* CPUID(1).eax */
1341 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1342 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1343 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1344
1345 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1346 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1347 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1348
1349 /* CPUID(1).ecx */
1350 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1351 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1352 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1353 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1354 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1355 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1356 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1357 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1358 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1359 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1360 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1361 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1362 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1363 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1364 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1365 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1366 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1367 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1368 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1369 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1370 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1371 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1372 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1373 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1374 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1375 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1376 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1377 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1378 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1379 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1380 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1381 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1382
1383 /* CPUID(1).edx */
1384 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1385 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1386 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1387 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1388 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1389 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1390 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1391 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1392 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1393 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1394 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1395 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1396 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1397 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1398 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1399 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1400 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1401 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1402 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1403 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1404 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1405 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1406 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1407 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1408 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1409 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1410 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1411 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1412 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1413 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1414 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1415 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1416
1417 /* CPUID(2) - config, mostly about caches. ignore. */
1418 /* CPUID(3) - processor serial number. ignore. */
1419 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1420 /* CPUID(5) - mwait/monitor config. ignore. */
1421 /* CPUID(6) - power management. ignore. */
1422 /* CPUID(7) - ???. ignore. */
1423 /* CPUID(8) - ???. ignore. */
1424 /* CPUID(9) - DCA. ignore for now. */
1425 /* CPUID(a) - PeMo info. ignore for now. */
1426 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1427
1428 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1429 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1430 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1431 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1432 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1433 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1434 {
1435 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1436 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1437 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1438 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1439 }
1440
1441 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1442 Note! Intel have/is marking many of the fields here as reserved. We
1443 will verify them as if it's an AMD CPU. */
1444 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1445 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1446 (N_("Extended leafs was present on saved state host, but is missing on the current\n")));
1447 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1448 {
1449 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1450 && aHostRawExt[0].ecx == aRawExt[0].ecx
1451 && aHostRawExt[0].edx == aRawExt[0].edx,
1452 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1453 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1454 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1455 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1456
1457 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1458 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1459 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1460 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1461 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1462 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1463
1464 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1465 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1466 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1467 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1468
1469 /* CPUID(0x80000001).ecx */
1470 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1471 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1472 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1473 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1474 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1475 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1476 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1477 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1478 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1479 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1480 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1481 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1482 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1483 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1484 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1485 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1486 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1487 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1488 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1489 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1490 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1491 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1492 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1493 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1494 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1495 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1496 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1497 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1498 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1499 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1500 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1501 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1502
1503 /* CPUID(0x80000001).edx */
1504 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1505 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1506 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1507 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1508 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1509 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1510 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1511 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1512 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1513 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1514 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1515 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1516 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1517 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1518 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1519 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1520 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1521 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1522 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1523 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1524 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1525 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1526 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1527 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1528 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1529 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1530 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1531 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1532 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1533 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1534 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1535 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1536
1537 /** @todo verify the rest as well. */
1538 }
1539 }
1540
1541
1542
1543 /*
1544 * Verify that we can support the features already exposed to the guest on
1545 * this host.
1546 *
1547 * Most of the features we're emulating requires intercepting instruction
1548 * and doing it the slow way, so there is no need to warn when they aren't
1549 * present in the host CPU. Thus we use IGN instead of EMU on these.
1550 *
1551 * Trailing comments:
1552 * "EMU" - Possible to emulate, could be lots of work and very slow.
1553 * "EMU?" - Can this be emulated?
1554 */
1555 /* CPUID(1).ecx */
1556 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1557 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1558 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1559 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1560 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1561 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1562 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1563 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1564 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1565 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1566 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1567 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1568 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1569 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1570 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1571 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1572 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1573 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1574 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1575 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1576 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1577 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1578 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1579 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1580 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1581 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1582 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1583 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1584 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1585 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1586 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1587 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1588
1589 /* CPUID(1).edx */
1590 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1591 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1592 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1593 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1594 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1595 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1596 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1597 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1598 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1599 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1600 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1601 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1602 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1603 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1604 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1605 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1606 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1607 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1608 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1609 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1610 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1611 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1612 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1613 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1614 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1615 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1616 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1617 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1618 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1619 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1620 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1621 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1622
1623 /* CPUID(0x80000000). */
1624 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1625 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1626 {
1627 /** @todo deal with no 0x80000001 on the host. */
1628 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1629 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1630
1631 /* CPUID(0x80000001).ecx */
1632 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1633 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1634 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1635 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1636 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1637 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1638 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1639 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1640 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1641 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1642 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1643 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1644 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1645 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1646 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1647 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1648 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1649 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1650 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1651 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1652 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1653 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1654 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1655 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1656 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1657 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1658 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1659 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1660 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1661 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1662 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1663 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1664
1665 /* CPUID(0x80000001).edx */
1666 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1667 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1668 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1669 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1670 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1671 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1672 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1673 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1674 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1675 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1676 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1677 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1678 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1679 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1680 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1681 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1682 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1683 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1684 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1685 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1686 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1687 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1688 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1689 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1690 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1691 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1692 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1693 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1694 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1695 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1696 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1697 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1698 }
1699
1700 /*
1701 * We're good, commit the CPU ID leaves.
1702 */
1703 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1704 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1705 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1706 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1707
1708#undef CPUID_CHECK_RET
1709#undef CPUID_CHECK_WRN
1710#undef CPUID_CHECK2_RET
1711#undef CPUID_CHECK2_WRN
1712#undef CPUID_RAW_FEATURE_RET
1713#undef CPUID_RAW_FEATURE_WRN
1714#undef CPUID_RAW_FEATURE_IGN
1715#undef CPUID_GST_FEATURE_RET
1716#undef CPUID_GST_FEATURE_WRN
1717#undef CPUID_GST_FEATURE_EMU
1718#undef CPUID_GST_FEATURE_IGN
1719#undef CPUID_GST_FEATURE2_RET
1720#undef CPUID_GST_FEATURE2_WRN
1721#undef CPUID_GST_FEATURE2_EMU
1722#undef CPUID_GST_FEATURE2_IGN
1723#undef CPUID_GST_AMD_FEATURE_RET
1724#undef CPUID_GST_AMD_FEATURE_WRN
1725#undef CPUID_GST_AMD_FEATURE_EMU
1726#undef CPUID_GST_AMD_FEATURE_IGN
1727
1728 return VINF_SUCCESS;
1729}
1730
1731
1732/**
1733 * Pass 0 live exec callback.
1734 *
1735 * @returns VINF_SSM_DONT_CALL_AGAIN.
1736 * @param pVM The VM handle.
1737 * @param pSSM The saved state handle.
1738 * @param uPass The pass (0).
1739 */
1740static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1741{
1742 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1743 cpumR3SaveCpuId(pVM, pSSM);
1744 return VINF_SSM_DONT_CALL_AGAIN;
1745}
1746
1747
1748/**
1749 * Execute state save operation.
1750 *
1751 * @returns VBox status code.
1752 * @param pVM VM Handle.
1753 * @param pSSM SSM operation handle.
1754 */
1755static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1756{
1757 /*
1758 * Save.
1759 */
1760 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1761 {
1762 PVMCPU pVCpu = &pVM->aCpus[i];
1763
1764 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1765 }
1766
1767 SSMR3PutU32(pSSM, pVM->cCpus);
1768 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1769 {
1770 PVMCPU pVCpu = &pVM->aCpus[i];
1771
1772 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1773 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1774 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1775 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1776 }
1777
1778 cpumR3SaveCpuId(pVM, pSSM);
1779 return VINF_SUCCESS;
1780}
1781
1782
1783/**
1784 * Load a version 1.6 CPUMCTX structure.
1785 *
1786 * @returns VBox status code.
1787 * @param pVM VM Handle.
1788 * @param pCpumctx16 Version 1.6 CPUMCTX
1789 */
1790static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1791{
1792#define CPUMCTX16_LOADREG(RegName) \
1793 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1794
1795#define CPUMCTX16_LOADDRXREG(RegName) \
1796 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1797
1798#define CPUMCTX16_LOADHIDREG(RegName) \
1799 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1800 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1801 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1802
1803#define CPUMCTX16_LOADSEGREG(RegName) \
1804 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1805 CPUMCTX16_LOADHIDREG(RegName);
1806
1807 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1808
1809 CPUMCTX16_LOADREG(rax);
1810 CPUMCTX16_LOADREG(rbx);
1811 CPUMCTX16_LOADREG(rcx);
1812 CPUMCTX16_LOADREG(rdx);
1813 CPUMCTX16_LOADREG(rdi);
1814 CPUMCTX16_LOADREG(rsi);
1815 CPUMCTX16_LOADREG(rbp);
1816 CPUMCTX16_LOADREG(esp);
1817 CPUMCTX16_LOADREG(rip);
1818 CPUMCTX16_LOADREG(rflags);
1819
1820 CPUMCTX16_LOADSEGREG(cs);
1821 CPUMCTX16_LOADSEGREG(ds);
1822 CPUMCTX16_LOADSEGREG(es);
1823 CPUMCTX16_LOADSEGREG(fs);
1824 CPUMCTX16_LOADSEGREG(gs);
1825 CPUMCTX16_LOADSEGREG(ss);
1826
1827 CPUMCTX16_LOADREG(r8);
1828 CPUMCTX16_LOADREG(r9);
1829 CPUMCTX16_LOADREG(r10);
1830 CPUMCTX16_LOADREG(r11);
1831 CPUMCTX16_LOADREG(r12);
1832 CPUMCTX16_LOADREG(r13);
1833 CPUMCTX16_LOADREG(r14);
1834 CPUMCTX16_LOADREG(r15);
1835
1836 CPUMCTX16_LOADREG(cr0);
1837 CPUMCTX16_LOADREG(cr2);
1838 CPUMCTX16_LOADREG(cr3);
1839 CPUMCTX16_LOADREG(cr4);
1840
1841 CPUMCTX16_LOADDRXREG(0);
1842 CPUMCTX16_LOADDRXREG(1);
1843 CPUMCTX16_LOADDRXREG(2);
1844 CPUMCTX16_LOADDRXREG(3);
1845 CPUMCTX16_LOADDRXREG(4);
1846 CPUMCTX16_LOADDRXREG(5);
1847 CPUMCTX16_LOADDRXREG(6);
1848 CPUMCTX16_LOADDRXREG(7);
1849
1850 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
1851 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
1852 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
1853 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
1854
1855 CPUMCTX16_LOADREG(ldtr);
1856 CPUMCTX16_LOADREG(tr);
1857
1858 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
1859
1860 CPUMCTX16_LOADREG(msrEFER);
1861 CPUMCTX16_LOADREG(msrSTAR);
1862 CPUMCTX16_LOADREG(msrPAT);
1863 CPUMCTX16_LOADREG(msrLSTAR);
1864 CPUMCTX16_LOADREG(msrCSTAR);
1865 CPUMCTX16_LOADREG(msrSFMASK);
1866 CPUMCTX16_LOADREG(msrKERNELGSBASE);
1867
1868 CPUMCTX16_LOADHIDREG(ldtr);
1869 CPUMCTX16_LOADHIDREG(tr);
1870
1871#undef CPUMCTX16_LOADSEGREG
1872#undef CPUMCTX16_LOADHIDREG
1873#undef CPUMCTX16_LOADDRXREG
1874#undef CPUMCTX16_LOADREG
1875}
1876
1877
1878/**
1879 * @copydoc FNSSMINTLOADPREP
1880 */
1881static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1882{
1883 pVM->cpum.s.fPendingRestore = true;
1884 return VINF_SUCCESS;
1885}
1886
1887
1888/**
1889 * @copydoc FNSSMINTLOADEXEC
1890 */
1891static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1892{
1893 /*
1894 * Validate version.
1895 */
1896 if ( uVersion != CPUM_SAVED_STATE_VERSION
1897 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1898 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1899 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1900 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1901 {
1902 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1903 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1904 }
1905
1906 if (uPass == SSM_PASS_FINAL)
1907 {
1908 /*
1909 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1910 * really old SSM file versions.)
1911 */
1912 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1913 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1914 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1915 SSMR3SetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1916
1917 /*
1918 * Restore.
1919 */
1920 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1921 {
1922 PVMCPU pVCpu = &pVM->aCpus[i];
1923 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1924 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
1925
1926 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1927 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1928 pVCpu->cpum.s.Hyper.esp = uESP;
1929 }
1930
1931 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1932 {
1933 CPUMCTX_VER1_6 cpumctx16;
1934 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
1935 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
1936
1937 /* Save the old cpumctx state into the new one. */
1938 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
1939
1940 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
1941 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
1942 }
1943 else
1944 {
1945 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1946 {
1947 uint32_t cCpus;
1948 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1949 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1950 VERR_SSM_UNEXPECTED_DATA);
1951 }
1952 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1953 || pVM->cCpus == 1,
1954 ("cCpus=%u\n", pVM->cCpus),
1955 VERR_SSM_UNEXPECTED_DATA);
1956
1957 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1958 {
1959 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
1960 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
1961 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
1962 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1963 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
1964 }
1965 }
1966 }
1967
1968 pVM->cpum.s.fPendingRestore = false;
1969
1970 /*
1971 * Guest CPUIDs.
1972 */
1973 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
1974 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1975
1976 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
1977 * actually required. */
1978
1979 /*
1980 * Restore the CPUID leaves.
1981 *
1982 * Note that we support restoring less than the current amount of standard
1983 * leaves because we've been allowed more is newer version of VBox.
1984 */
1985 uint32_t cElements;
1986 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1987 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
1988 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1989 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
1990
1991 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1992 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
1993 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1994 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1995
1996 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1997 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
1998 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1999 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2000
2001 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2002
2003 /*
2004 * Check that the basic cpuid id information is unchanged.
2005 */
2006 /** @todo we should check the 64 bits capabilities too! */
2007 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2008 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2009 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2010 uint32_t au32CpuIdSaved[8];
2011 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2012 if (RT_SUCCESS(rc))
2013 {
2014 /* Ignore CPU stepping. */
2015 au32CpuId[4] &= 0xfffffff0;
2016 au32CpuIdSaved[4] &= 0xfffffff0;
2017
2018 /* Ignore APIC ID (AMD specs). */
2019 au32CpuId[5] &= ~0xff000000;
2020 au32CpuIdSaved[5] &= ~0xff000000;
2021
2022 /* Ignore the number of Logical CPUs (AMD specs). */
2023 au32CpuId[5] &= ~0x00ff0000;
2024 au32CpuIdSaved[5] &= ~0x00ff0000;
2025
2026 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2027 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2028 | X86_CPUID_FEATURE_ECX_VMX
2029 | X86_CPUID_FEATURE_ECX_SMX
2030 | X86_CPUID_FEATURE_ECX_EST
2031 | X86_CPUID_FEATURE_ECX_TM2
2032 | X86_CPUID_FEATURE_ECX_CNTXID
2033 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2034 | X86_CPUID_FEATURE_ECX_PDCM
2035 | X86_CPUID_FEATURE_ECX_DCA
2036 | X86_CPUID_FEATURE_ECX_X2APIC
2037 );
2038 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2039 | X86_CPUID_FEATURE_ECX_VMX
2040 | X86_CPUID_FEATURE_ECX_SMX
2041 | X86_CPUID_FEATURE_ECX_EST
2042 | X86_CPUID_FEATURE_ECX_TM2
2043 | X86_CPUID_FEATURE_ECX_CNTXID
2044 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2045 | X86_CPUID_FEATURE_ECX_PDCM
2046 | X86_CPUID_FEATURE_ECX_DCA
2047 | X86_CPUID_FEATURE_ECX_X2APIC
2048 );
2049
2050 /* Make sure we don't forget to update the masks when enabling
2051 * features in the future.
2052 */
2053 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2054 ( X86_CPUID_FEATURE_ECX_DTES64
2055 | X86_CPUID_FEATURE_ECX_VMX
2056 | X86_CPUID_FEATURE_ECX_SMX
2057 | X86_CPUID_FEATURE_ECX_EST
2058 | X86_CPUID_FEATURE_ECX_TM2
2059 | X86_CPUID_FEATURE_ECX_CNTXID
2060 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2061 | X86_CPUID_FEATURE_ECX_PDCM
2062 | X86_CPUID_FEATURE_ECX_DCA
2063 | X86_CPUID_FEATURE_ECX_X2APIC
2064 )));
2065 /* do the compare */
2066 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2067 {
2068 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2069 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2070 "Saved=%.*Rhxs\n"
2071 "Real =%.*Rhxs\n",
2072 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2073 sizeof(au32CpuId), au32CpuId));
2074 else
2075 {
2076 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2077 "Saved=%.*Rhxs\n"
2078 "Real =%.*Rhxs\n",
2079 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2080 sizeof(au32CpuId), au32CpuId));
2081 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2082 }
2083 }
2084 }
2085
2086 return rc;
2087}
2088
2089
2090/**
2091 * @copydoc FNSSMINTLOADPREP
2092 */
2093static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2094{
2095 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2096 return VINF_SUCCESS;
2097
2098 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2099 if (pVM->cpum.s.fPendingRestore)
2100 {
2101 LogRel(("CPUM: Missing state!\n"));
2102 return VERR_INTERNAL_ERROR_2;
2103 }
2104
2105 return VINF_SUCCESS;
2106}
2107
2108
2109/**
2110 * Checks if the CPUM state restore is still pending.
2111 *
2112 * @returns true / false.
2113 * @param pVM The VM handle.
2114 */
2115VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2116{
2117 return pVM->cpum.s.fPendingRestore;
2118}
2119
2120
2121/**
2122 * Formats the EFLAGS value into mnemonics.
2123 *
2124 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2125 * @param efl The EFLAGS value.
2126 */
2127static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2128{
2129 /*
2130 * Format the flags.
2131 */
2132 static const struct
2133 {
2134 const char *pszSet; const char *pszClear; uint32_t fFlag;
2135 } s_aFlags[] =
2136 {
2137 { "vip",NULL, X86_EFL_VIP },
2138 { "vif",NULL, X86_EFL_VIF },
2139 { "ac", NULL, X86_EFL_AC },
2140 { "vm", NULL, X86_EFL_VM },
2141 { "rf", NULL, X86_EFL_RF },
2142 { "nt", NULL, X86_EFL_NT },
2143 { "ov", "nv", X86_EFL_OF },
2144 { "dn", "up", X86_EFL_DF },
2145 { "ei", "di", X86_EFL_IF },
2146 { "tf", NULL, X86_EFL_TF },
2147 { "nt", "pl", X86_EFL_SF },
2148 { "nz", "zr", X86_EFL_ZF },
2149 { "ac", "na", X86_EFL_AF },
2150 { "po", "pe", X86_EFL_PF },
2151 { "cy", "nc", X86_EFL_CF },
2152 };
2153 char *psz = pszEFlags;
2154 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2155 {
2156 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2157 if (pszAdd)
2158 {
2159 strcpy(psz, pszAdd);
2160 psz += strlen(pszAdd);
2161 *psz++ = ' ';
2162 }
2163 }
2164 psz[-1] = '\0';
2165}
2166
2167
2168/**
2169 * Formats a full register dump.
2170 *
2171 * @param pVM VM Handle.
2172 * @param pCtx The context to format.
2173 * @param pCtxCore The context core to format.
2174 * @param pHlp Output functions.
2175 * @param enmType The dump type.
2176 * @param pszPrefix Register name prefix.
2177 */
2178static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2179{
2180 /*
2181 * Format the EFLAGS.
2182 */
2183 uint32_t efl = pCtxCore->eflags.u32;
2184 char szEFlags[80];
2185 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2186
2187 /*
2188 * Format the registers.
2189 */
2190 switch (enmType)
2191 {
2192 case CPUMDUMPTYPE_TERSE:
2193 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2194 pHlp->pfnPrintf(pHlp,
2195 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2196 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2197 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2198 "%sr14=%016RX64 %sr15=%016RX64\n"
2199 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2200 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2201 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2202 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2203 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2204 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2205 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2206 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2207 else
2208 pHlp->pfnPrintf(pHlp,
2209 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2210 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2211 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2212 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2213 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2214 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2215 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2216 break;
2217
2218 case CPUMDUMPTYPE_DEFAULT:
2219 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2220 pHlp->pfnPrintf(pHlp,
2221 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2222 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2223 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2224 "%sr14=%016RX64 %sr15=%016RX64\n"
2225 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2226 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2227 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2228 ,
2229 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2230 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2231 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2232 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2233 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2234 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2235 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2236 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2237 else
2238 pHlp->pfnPrintf(pHlp,
2239 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2240 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2241 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2242 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2243 ,
2244 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2245 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2246 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2247 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2248 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2249 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2250 break;
2251
2252 case CPUMDUMPTYPE_VERBOSE:
2253 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2254 pHlp->pfnPrintf(pHlp,
2255 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2256 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2257 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2258 "%sr14=%016RX64 %sr15=%016RX64\n"
2259 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2260 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2261 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2262 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2263 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2264 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2265 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2266 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2267 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2268 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2269 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2270 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2271 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2272 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2273 ,
2274 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2275 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2276 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2277 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2278 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2279 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2280 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2281 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2282 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2283 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2284 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2285 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2286 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2287 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2288 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2289 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2290 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2291 else
2292 pHlp->pfnPrintf(pHlp,
2293 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2294 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2295 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2296 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2297 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2298 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2299 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2300 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2301 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2302 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2303 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2304 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2305 ,
2306 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2307 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2308 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2309 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2310 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2311 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2312 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2313 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2314 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2315 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2316 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2317 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2318
2319 pHlp->pfnPrintf(pHlp,
2320 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2321 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2322 ,
2323 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2324 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2325 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2326 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2327 );
2328 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2329 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2330 {
2331 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2332 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2333 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2334 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2335 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2336 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2337 /** @todo This isn't entirenly correct and needs more work! */
2338 pHlp->pfnPrintf(pHlp,
2339 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2340 pszPrefix, iST, pszPrefix, iFPR,
2341 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2342 uTag, chSign, iInteger, u64Fraction, uExponent);
2343 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2344 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2345 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2346 else
2347 pHlp->pfnPrintf(pHlp, "\n");
2348 }
2349 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2350 pHlp->pfnPrintf(pHlp,
2351 iXMM & 1
2352 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2353 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2354 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2355 pCtx->fpu.aXMM[iXMM].au32[3],
2356 pCtx->fpu.aXMM[iXMM].au32[2],
2357 pCtx->fpu.aXMM[iXMM].au32[1],
2358 pCtx->fpu.aXMM[iXMM].au32[0]);
2359 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2360 if (pCtx->fpu.au32RsrvdRest[i])
2361 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2362 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2363
2364 pHlp->pfnPrintf(pHlp,
2365 "%sEFER =%016RX64\n"
2366 "%sPAT =%016RX64\n"
2367 "%sSTAR =%016RX64\n"
2368 "%sCSTAR =%016RX64\n"
2369 "%sLSTAR =%016RX64\n"
2370 "%sSFMASK =%016RX64\n"
2371 "%sKERNELGSBASE =%016RX64\n",
2372 pszPrefix, pCtx->msrEFER,
2373 pszPrefix, pCtx->msrPAT,
2374 pszPrefix, pCtx->msrSTAR,
2375 pszPrefix, pCtx->msrCSTAR,
2376 pszPrefix, pCtx->msrLSTAR,
2377 pszPrefix, pCtx->msrSFMASK,
2378 pszPrefix, pCtx->msrKERNELGSBASE);
2379 break;
2380 }
2381}
2382
2383
2384/**
2385 * Display all cpu states and any other cpum info.
2386 *
2387 * @param pVM VM Handle.
2388 * @param pHlp The info helper functions.
2389 * @param pszArgs Arguments, ignored.
2390 */
2391static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2392{
2393 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2394 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2395 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2396 cpumR3InfoHost(pVM, pHlp, pszArgs);
2397}
2398
2399
2400/**
2401 * Parses the info argument.
2402 *
2403 * The argument starts with 'verbose', 'terse' or 'default' and then
2404 * continues with the comment string.
2405 *
2406 * @param pszArgs The pointer to the argument string.
2407 * @param penmType Where to store the dump type request.
2408 * @param ppszComment Where to store the pointer to the comment string.
2409 */
2410static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2411{
2412 if (!pszArgs)
2413 {
2414 *penmType = CPUMDUMPTYPE_DEFAULT;
2415 *ppszComment = "";
2416 }
2417 else
2418 {
2419 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2420 {
2421 pszArgs += 5;
2422 *penmType = CPUMDUMPTYPE_VERBOSE;
2423 }
2424 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2425 {
2426 pszArgs += 5;
2427 *penmType = CPUMDUMPTYPE_TERSE;
2428 }
2429 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2430 {
2431 pszArgs += 7;
2432 *penmType = CPUMDUMPTYPE_DEFAULT;
2433 }
2434 else
2435 *penmType = CPUMDUMPTYPE_DEFAULT;
2436 *ppszComment = RTStrStripL(pszArgs);
2437 }
2438}
2439
2440
2441/**
2442 * Display the guest cpu state.
2443 *
2444 * @param pVM VM Handle.
2445 * @param pHlp The info helper functions.
2446 * @param pszArgs Arguments, ignored.
2447 */
2448static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2449{
2450 CPUMDUMPTYPE enmType;
2451 const char *pszComment;
2452 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2453
2454 /* @todo SMP support! */
2455 PVMCPU pVCpu = VMMGetCpu(pVM);
2456 if (!pVCpu)
2457 pVCpu = &pVM->aCpus[0];
2458
2459 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2460
2461 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2462 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2463}
2464
2465
2466/**
2467 * Display the current guest instruction
2468 *
2469 * @param pVM VM Handle.
2470 * @param pHlp The info helper functions.
2471 * @param pszArgs Arguments, ignored.
2472 */
2473static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2474{
2475 char szInstruction[256];
2476 /* @todo SMP support! */
2477 PVMCPU pVCpu = VMMGetCpu(pVM);
2478 if (!pVCpu)
2479 pVCpu = &pVM->aCpus[0];
2480
2481 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2482 if (RT_SUCCESS(rc))
2483 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2484}
2485
2486
2487/**
2488 * Display the hypervisor cpu state.
2489 *
2490 * @param pVM VM Handle.
2491 * @param pHlp The info helper functions.
2492 * @param pszArgs Arguments, ignored.
2493 */
2494static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2495{
2496 CPUMDUMPTYPE enmType;
2497 const char *pszComment;
2498 /* @todo SMP */
2499 PVMCPU pVCpu = &pVM->aCpus[0];
2500
2501 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2502 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2503 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2504 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2505}
2506
2507
2508/**
2509 * Display the host cpu state.
2510 *
2511 * @param pVM VM Handle.
2512 * @param pHlp The info helper functions.
2513 * @param pszArgs Arguments, ignored.
2514 */
2515static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2516{
2517 CPUMDUMPTYPE enmType;
2518 const char *pszComment;
2519 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2520 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2521
2522 /*
2523 * Format the EFLAGS.
2524 */
2525 /* @todo SMP */
2526 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2527#if HC_ARCH_BITS == 32
2528 uint32_t efl = pCtx->eflags.u32;
2529#else
2530 uint64_t efl = pCtx->rflags;
2531#endif
2532 char szEFlags[80];
2533 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2534
2535 /*
2536 * Format the registers.
2537 */
2538#if HC_ARCH_BITS == 32
2539# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2540 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2541# endif
2542 {
2543 pHlp->pfnPrintf(pHlp,
2544 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2545 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2546 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2547 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2548 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2549 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2550 ,
2551 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2552 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2553 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2554 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2555 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2556 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2557 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2558 }
2559# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2560 else
2561# endif
2562#endif
2563#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2564 {
2565 pHlp->pfnPrintf(pHlp,
2566 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2567 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2568 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2569 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2570 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2571 "r14=%016RX64 r15=%016RX64\n"
2572 "iopl=%d %31s\n"
2573 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2574 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2575 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2576 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2577 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2578 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2579 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2580 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2581 ,
2582 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2583 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2584 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2585 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2586 pCtx->r11, pCtx->r12, pCtx->r13,
2587 pCtx->r14, pCtx->r15,
2588 X86_EFL_GET_IOPL(efl), szEFlags,
2589 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2590 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2591 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2592 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2593 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2594 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2595 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2596 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2597 }
2598#endif
2599}
2600
2601
2602/**
2603 * Get L1 cache / TLS associativity.
2604 */
2605static const char *getCacheAss(unsigned u, char *pszBuf)
2606{
2607 if (u == 0)
2608 return "res0 ";
2609 if (u == 1)
2610 return "direct";
2611 if (u >= 256)
2612 return "???";
2613
2614 RTStrPrintf(pszBuf, 16, "%d way", u);
2615 return pszBuf;
2616}
2617
2618
2619/**
2620 * Get L2 cache soociativity.
2621 */
2622const char *getL2CacheAss(unsigned u)
2623{
2624 switch (u)
2625 {
2626 case 0: return "off ";
2627 case 1: return "direct";
2628 case 2: return "2 way ";
2629 case 3: return "res3 ";
2630 case 4: return "4 way ";
2631 case 5: return "res5 ";
2632 case 6: return "8 way "; case 7: return "res7 ";
2633 case 8: return "16 way";
2634 case 9: return "res9 ";
2635 case 10: return "res10 ";
2636 case 11: return "res11 ";
2637 case 12: return "res12 ";
2638 case 13: return "res13 ";
2639 case 14: return "res14 ";
2640 case 15: return "fully ";
2641 default:
2642 return "????";
2643 }
2644}
2645
2646
2647/**
2648 * Display the guest CpuId leaves.
2649 *
2650 * @param pVM VM Handle.
2651 * @param pHlp The info helper functions.
2652 * @param pszArgs "terse", "default" or "verbose".
2653 */
2654static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2655{
2656 /*
2657 * Parse the argument.
2658 */
2659 unsigned iVerbosity = 1;
2660 if (pszArgs)
2661 {
2662 pszArgs = RTStrStripL(pszArgs);
2663 if (!strcmp(pszArgs, "terse"))
2664 iVerbosity--;
2665 else if (!strcmp(pszArgs, "verbose"))
2666 iVerbosity++;
2667 }
2668
2669 /*
2670 * Start cracking.
2671 */
2672 CPUMCPUID Host;
2673 CPUMCPUID Guest;
2674 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2675
2676 pHlp->pfnPrintf(pHlp,
2677 " RAW Standard CPUIDs\n"
2678 " Function eax ebx ecx edx\n");
2679 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2680 {
2681 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2682 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2683
2684 pHlp->pfnPrintf(pHlp,
2685 "Gst: %08x %08x %08x %08x %08x%s\n"
2686 "Hst: %08x %08x %08x %08x\n",
2687 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2688 i <= cStdMax ? "" : "*",
2689 Host.eax, Host.ebx, Host.ecx, Host.edx);
2690 }
2691
2692 /*
2693 * If verbose, decode it.
2694 */
2695 if (iVerbosity)
2696 {
2697 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2698 pHlp->pfnPrintf(pHlp,
2699 "Name: %.04s%.04s%.04s\n"
2700 "Supports: 0-%x\n",
2701 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2702 }
2703
2704 /*
2705 * Get Features.
2706 */
2707 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2708 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2709 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2710 if (cStdMax >= 1 && iVerbosity)
2711 {
2712 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2713 uint32_t uEAX = Guest.eax;
2714
2715 pHlp->pfnPrintf(pHlp,
2716 "Family: %d \tExtended: %d \tEffective: %d\n"
2717 "Model: %d \tExtended: %d \tEffective: %d\n"
2718 "Stepping: %d\n"
2719 "Type: %d\n"
2720 "APIC ID: %#04x\n"
2721 "Logical CPUs: %d\n"
2722 "CLFLUSH Size: %d\n"
2723 "Brand ID: %#04x\n",
2724 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2725 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2726 ASMGetCpuStepping(uEAX),
2727 (uEAX >> 12) & 3,
2728 (Guest.ebx >> 24) & 0xff,
2729 (Guest.ebx >> 16) & 0xff,
2730 (Guest.ebx >> 8) & 0xff,
2731 (Guest.ebx >> 0) & 0xff);
2732 if (iVerbosity == 1)
2733 {
2734 uint32_t uEDX = Guest.edx;
2735 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2736 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2737 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2738 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2739 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2740 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2741 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2742 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2743 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2744 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2745 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2746 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2747 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2748 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2749 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2750 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2751 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2752 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2753 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2754 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2755 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2756 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2757 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2758 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2759 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2760 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2761 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2762 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2763 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2764 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2765 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2766 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2767 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2768 pHlp->pfnPrintf(pHlp, "\n");
2769
2770 uint32_t uECX = Guest.ecx;
2771 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2772 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2773 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2774 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2775 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2776 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2777 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2778 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2779 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2780 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2781 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2782 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2783 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2784 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2785 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2786 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2787 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2788 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2789 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " 17");
2790 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2791 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4_1");
2792 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4_2");
2793 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2794 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2795 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2796 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " 24");
2797 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2798 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2799 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2800 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2801 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2802 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2803 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2804 pHlp->pfnPrintf(pHlp, "\n");
2805 }
2806 else
2807 {
2808 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2809
2810 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2811 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2812 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2813 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2814
2815 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2816 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
2817 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
2818 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
2819 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
2820 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
2821 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
2822 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
2823 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
2824 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
2825 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
2826 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
2827 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
2828 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
2829 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
2830 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
2831 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
2832 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
2833 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
2834 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
2835 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
2836 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
2837 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
2838 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
2839 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
2840 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
2841 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
2842 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
2843 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
2844 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
2845 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
2846 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
2847 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
2848
2849 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
2850 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
2851 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
2852 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
2853 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
2854 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
2855 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
2856 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
2857 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
2858 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
2859 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
2860 pHlp->pfnPrintf(pHlp, "FMA = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
2861 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
2862 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
2863 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
2864 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
2865 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
2866 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
2867 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
2868 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
2869 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
2870 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
2871 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
2872 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
2873 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
2874 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
2875 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
2876 }
2877 }
2878 if (cStdMax >= 2 && iVerbosity)
2879 {
2880 /** @todo */
2881 }
2882
2883 /*
2884 * Extended.
2885 * Implemented after AMD specs.
2886 */
2887 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
2888
2889 pHlp->pfnPrintf(pHlp,
2890 "\n"
2891 " RAW Extended CPUIDs\n"
2892 " Function eax ebx ecx edx\n");
2893 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
2894 {
2895 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
2896 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2897
2898 pHlp->pfnPrintf(pHlp,
2899 "Gst: %08x %08x %08x %08x %08x%s\n"
2900 "Hst: %08x %08x %08x %08x\n",
2901 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2902 i <= cExtMax ? "" : "*",
2903 Host.eax, Host.ebx, Host.ecx, Host.edx);
2904 }
2905
2906 /*
2907 * Understandable output
2908 */
2909 if (iVerbosity)
2910 {
2911 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
2912 pHlp->pfnPrintf(pHlp,
2913 "Ext Name: %.4s%.4s%.4s\n"
2914 "Ext Supports: 0x80000000-%#010x\n",
2915 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2916 }
2917
2918 if (iVerbosity && cExtMax >= 1)
2919 {
2920 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
2921 uint32_t uEAX = Guest.eax;
2922 pHlp->pfnPrintf(pHlp,
2923 "Family: %d \tExtended: %d \tEffective: %d\n"
2924 "Model: %d \tExtended: %d \tEffective: %d\n"
2925 "Stepping: %d\n"
2926 "Brand ID: %#05x\n",
2927 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2928 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2929 ASMGetCpuStepping(uEAX),
2930 Guest.ebx & 0xfff);
2931
2932 if (iVerbosity == 1)
2933 {
2934 uint32_t uEDX = Guest.edx;
2935 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2936 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2937 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2938 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2939 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2940 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2941 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2942 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2943 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2944 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2945 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2946 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2947 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
2948 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2949 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2950 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2951 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2952 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2953 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2954 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
2955 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
2956 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
2957 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
2958 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
2959 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2960 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2961 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
2962 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
2963 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
2964 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
2965 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
2966 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
2967 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
2968 pHlp->pfnPrintf(pHlp, "\n");
2969
2970 uint32_t uECX = Guest.ecx;
2971 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2972 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
2973 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
2974 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
2975 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
2976 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
2977 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
2978 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
2979 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
2980 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
2981 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
2982 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
2983 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
2984 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
2985 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
2986 for (unsigned iBit = 5; iBit < 32; iBit++)
2987 if (uECX & RT_BIT(iBit))
2988 pHlp->pfnPrintf(pHlp, " %d", iBit);
2989 pHlp->pfnPrintf(pHlp, "\n");
2990 }
2991 else
2992 {
2993 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2994
2995 uint32_t uEdxGst = Guest.edx;
2996 uint32_t uEdxHst = Host.edx;
2997 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2998 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
2999 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3000 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3001 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3002 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3003 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3004 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3005 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3006 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3007 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3008 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3009 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3010 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3011 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3012 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3013 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3014 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3015 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3016 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3017 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3018 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3019 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3020 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3021 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3022 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3023 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3024 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3025 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3026 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3027 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3028 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3029 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3030
3031 uint32_t uEcxGst = Guest.ecx;
3032 uint32_t uEcxHst = Host.ecx;
3033 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3034 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3035 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3036 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3037 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3038 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3039 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3040 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3041 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3042 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3043 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3044 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3045 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3046 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3047 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3048 }
3049 }
3050
3051 if (iVerbosity && cExtMax >= 2)
3052 {
3053 char szString[4*4*3+1] = {0};
3054 uint32_t *pu32 = (uint32_t *)szString;
3055 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3056 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3057 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3058 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3059 if (cExtMax >= 3)
3060 {
3061 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3062 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3063 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3064 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3065 }
3066 if (cExtMax >= 4)
3067 {
3068 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3069 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3070 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3071 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3072 }
3073 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3074 }
3075
3076 if (iVerbosity && cExtMax >= 5)
3077 {
3078 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3079 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3080 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3081 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3082 char sz1[32];
3083 char sz2[32];
3084
3085 pHlp->pfnPrintf(pHlp,
3086 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3087 "TLB 2/4M Data: %s %3d entries\n",
3088 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3089 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3090 pHlp->pfnPrintf(pHlp,
3091 "TLB 4K Instr/Uni: %s %3d entries\n"
3092 "TLB 4K Data: %s %3d entries\n",
3093 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3094 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3095 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3096 "L1 Instr Cache Lines Per Tag: %d\n"
3097 "L1 Instr Cache Associativity: %s\n"
3098 "L1 Instr Cache Size: %d KB\n",
3099 (uEDX >> 0) & 0xff,
3100 (uEDX >> 8) & 0xff,
3101 getCacheAss((uEDX >> 16) & 0xff, sz1),
3102 (uEDX >> 24) & 0xff);
3103 pHlp->pfnPrintf(pHlp,
3104 "L1 Data Cache Line Size: %d bytes\n"
3105 "L1 Data Cache Lines Per Tag: %d\n"
3106 "L1 Data Cache Associativity: %s\n"
3107 "L1 Data Cache Size: %d KB\n",
3108 (uECX >> 0) & 0xff,
3109 (uECX >> 8) & 0xff,
3110 getCacheAss((uECX >> 16) & 0xff, sz1),
3111 (uECX >> 24) & 0xff);
3112 }
3113
3114 if (iVerbosity && cExtMax >= 6)
3115 {
3116 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3117 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3118 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3119
3120 pHlp->pfnPrintf(pHlp,
3121 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3122 "L2 TLB 2/4M Data: %s %4d entries\n",
3123 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3124 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3125 pHlp->pfnPrintf(pHlp,
3126 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3127 "L2 TLB 4K Data: %s %4d entries\n",
3128 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3129 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3130 pHlp->pfnPrintf(pHlp,
3131 "L2 Cache Line Size: %d bytes\n"
3132 "L2 Cache Lines Per Tag: %d\n"
3133 "L2 Cache Associativity: %s\n"
3134 "L2 Cache Size: %d KB\n",
3135 (uEDX >> 0) & 0xff,
3136 (uEDX >> 8) & 0xf,
3137 getL2CacheAss((uEDX >> 12) & 0xf),
3138 (uEDX >> 16) & 0xffff);
3139 }
3140
3141 if (iVerbosity && cExtMax >= 7)
3142 {
3143 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3144
3145 pHlp->pfnPrintf(pHlp, "APM Features: ");
3146 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3147 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3148 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3149 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3150 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3151 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3152 for (unsigned iBit = 6; iBit < 32; iBit++)
3153 if (uEDX & RT_BIT(iBit))
3154 pHlp->pfnPrintf(pHlp, " %d", iBit);
3155 pHlp->pfnPrintf(pHlp, "\n");
3156 }
3157
3158 if (iVerbosity && cExtMax >= 8)
3159 {
3160 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3161 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3162
3163 pHlp->pfnPrintf(pHlp,
3164 "Physical Address Width: %d bits\n"
3165 "Virtual Address Width: %d bits\n",
3166 (uEAX >> 0) & 0xff,
3167 (uEAX >> 8) & 0xff);
3168 pHlp->pfnPrintf(pHlp,
3169 "Physical Core Count: %d\n",
3170 (uECX >> 0) & 0xff);
3171 }
3172
3173
3174 /*
3175 * Centaur.
3176 */
3177 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3178
3179 pHlp->pfnPrintf(pHlp,
3180 "\n"
3181 " RAW Centaur CPUIDs\n"
3182 " Function eax ebx ecx edx\n");
3183 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3184 {
3185 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3186 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3187
3188 pHlp->pfnPrintf(pHlp,
3189 "Gst: %08x %08x %08x %08x %08x%s\n"
3190 "Hst: %08x %08x %08x %08x\n",
3191 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3192 i <= cCentaurMax ? "" : "*",
3193 Host.eax, Host.ebx, Host.ecx, Host.edx);
3194 }
3195
3196 /*
3197 * Understandable output
3198 */
3199 if (iVerbosity)
3200 {
3201 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3202 pHlp->pfnPrintf(pHlp,
3203 "Centaur Supports: 0xc0000000-%#010x\n",
3204 Guest.eax);
3205 }
3206
3207 if (iVerbosity && cCentaurMax >= 1)
3208 {
3209 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3210 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3211 uint32_t uEdxHst = Host.edx;
3212
3213 if (iVerbosity == 1)
3214 {
3215 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3216 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3217 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3218 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3219 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3220 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3221 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3222 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3223 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3224 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3225 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3226 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3227 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3228 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3229 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3230 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3231 for (unsigned iBit = 14; iBit < 32; iBit++)
3232 if (uEdxGst & RT_BIT(iBit))
3233 pHlp->pfnPrintf(pHlp, " %d", iBit);
3234 pHlp->pfnPrintf(pHlp, "\n");
3235 }
3236 else
3237 {
3238 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3239 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3240 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3241 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3242 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3243 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3244 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3245 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3246 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3247 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3248 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3249 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3250 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3251 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3252 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3253 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3254 for (unsigned iBit = 14; iBit < 32; iBit++)
3255 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3256 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3257 pHlp->pfnPrintf(pHlp, "\n");
3258 }
3259 }
3260}
3261
3262
3263/**
3264 * Structure used when disassembling and instructions in DBGF.
3265 * This is used so the reader function can get the stuff it needs.
3266 */
3267typedef struct CPUMDISASSTATE
3268{
3269 /** Pointer to the CPU structure. */
3270 PDISCPUSTATE pCpu;
3271 /** The VM handle. */
3272 PVM pVM;
3273 /** The VMCPU handle. */
3274 PVMCPU pVCpu;
3275 /** Pointer to the first byte in the segemnt. */
3276 RTGCUINTPTR GCPtrSegBase;
3277 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3278 RTGCUINTPTR GCPtrSegEnd;
3279 /** The size of the segment minus 1. */
3280 RTGCUINTPTR cbSegLimit;
3281 /** Pointer to the current page - R3 Ptr. */
3282 void const *pvPageR3;
3283 /** Pointer to the current page - GC Ptr. */
3284 RTGCPTR pvPageGC;
3285 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3286 PGMPAGEMAPLOCK PageMapLock;
3287 /** Whether the PageMapLock is valid or not. */
3288 bool fLocked;
3289 /** 64 bits mode or not. */
3290 bool f64Bits;
3291} CPUMDISASSTATE, *PCPUMDISASSTATE;
3292
3293
3294/**
3295 * Instruction reader.
3296 *
3297 * @returns VBox status code.
3298 * @param PtrSrc Address to read from.
3299 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3300 * @param pu8Dst Where to store the bytes.
3301 * @param cbRead Number of bytes to read.
3302 * @param uDisCpu Pointer to the disassembler cpu state.
3303 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3304 */
3305static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3306{
3307 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3308 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3309 Assert(cbRead > 0);
3310 for (;;)
3311 {
3312 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3313
3314 /* Need to update the page translation? */
3315 if ( !pState->pvPageR3
3316 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3317 {
3318 int rc = VINF_SUCCESS;
3319
3320 /* translate the address */
3321 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3322 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3323 && !HWACCMIsEnabled(pState->pVM))
3324 {
3325 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3326 if (!pState->pvPageR3)
3327 rc = VERR_INVALID_POINTER;
3328 }
3329 else
3330 {
3331 /* Release mapping lock previously acquired. */
3332 if (pState->fLocked)
3333 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3334 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3335 pState->fLocked = RT_SUCCESS_NP(rc);
3336 }
3337 if (RT_FAILURE(rc))
3338 {
3339 pState->pvPageR3 = NULL;
3340 return rc;
3341 }
3342 }
3343
3344 /* check the segemnt limit */
3345 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3346 return VERR_OUT_OF_SELECTOR_BOUNDS;
3347
3348 /* calc how much we can read */
3349 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3350 if (!pState->f64Bits)
3351 {
3352 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3353 if (cb > cbSeg && cbSeg)
3354 cb = cbSeg;
3355 }
3356 if (cb > cbRead)
3357 cb = cbRead;
3358
3359 /* read and advance */
3360 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3361 cbRead -= cb;
3362 if (!cbRead)
3363 return VINF_SUCCESS;
3364 pu8Dst += cb;
3365 PtrSrc += cb;
3366 }
3367}
3368
3369
3370/**
3371 * Disassemble an instruction and return the information in the provided structure.
3372 *
3373 * @returns VBox status code.
3374 * @param pVM VM Handle
3375 * @param pVCpu VMCPU Handle
3376 * @param pCtx CPU context
3377 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3378 * @param pCpu Disassembly state
3379 * @param pszPrefix String prefix for logging (debug only)
3380 *
3381 */
3382VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3383{
3384 CPUMDISASSTATE State;
3385 int rc;
3386
3387 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3388 State.pCpu = pCpu;
3389 State.pvPageGC = 0;
3390 State.pvPageR3 = NULL;
3391 State.pVM = pVM;
3392 State.pVCpu = pVCpu;
3393 State.fLocked = false;
3394 State.f64Bits = false;
3395
3396 /*
3397 * Get selector information.
3398 */
3399 if ( (pCtx->cr0 & X86_CR0_PE)
3400 && pCtx->eflags.Bits.u1VM == 0)
3401 {
3402 if (CPUMAreHiddenSelRegsValid(pVM))
3403 {
3404 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3405 State.GCPtrSegBase = pCtx->csHid.u64Base;
3406 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3407 State.cbSegLimit = pCtx->csHid.u32Limit;
3408 pCpu->mode = (State.f64Bits)
3409 ? CPUMODE_64BIT
3410 : pCtx->csHid.Attr.n.u1DefBig
3411 ? CPUMODE_32BIT
3412 : CPUMODE_16BIT;
3413 }
3414 else
3415 {
3416 DBGFSELINFO SelInfo;
3417
3418 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3419 if (RT_FAILURE(rc))
3420 {
3421 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3422 return rc;
3423 }
3424
3425 /*
3426 * Validate the selector.
3427 */
3428 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3429 if (RT_FAILURE(rc))
3430 {
3431 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3432 return rc;
3433 }
3434 State.GCPtrSegBase = SelInfo.GCPtrBase;
3435 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3436 State.cbSegLimit = SelInfo.cbLimit;
3437 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3438 }
3439 }
3440 else
3441 {
3442 /* real or V86 mode */
3443 pCpu->mode = CPUMODE_16BIT;
3444 State.GCPtrSegBase = pCtx->cs * 16;
3445 State.GCPtrSegEnd = 0xFFFFFFFF;
3446 State.cbSegLimit = 0xFFFFFFFF;
3447 }
3448
3449 /*
3450 * Disassemble the instruction.
3451 */
3452 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3453 pCpu->apvUserData[0] = &State;
3454
3455 uint32_t cbInstr;
3456#ifndef LOG_ENABLED
3457 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3458 if (RT_SUCCESS(rc))
3459 {
3460#else
3461 char szOutput[160];
3462 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3463 if (RT_SUCCESS(rc))
3464 {
3465 /* log it */
3466 if (pszPrefix)
3467 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3468 else
3469 Log(("%s", szOutput));
3470#endif
3471 rc = VINF_SUCCESS;
3472 }
3473 else
3474 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3475
3476 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3477 if (State.fLocked)
3478 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3479
3480 return rc;
3481}
3482
3483#ifdef DEBUG
3484
3485/**
3486 * Disassemble an instruction and dump it to the log
3487 *
3488 * @returns VBox status code.
3489 * @param pVM VM Handle
3490 * @param pVCpu VMCPU Handle
3491 * @param pCtx CPU context
3492 * @param pc GC instruction pointer
3493 * @param pszPrefix String prefix for logging
3494 *
3495 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3496 */
3497VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3498{
3499 DISCPUSTATE Cpu;
3500 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3501}
3502
3503
3504/**
3505 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3506 *
3507 * @internal
3508 */
3509VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3510{
3511 /** @todo SMP support!! */
3512 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3513}
3514
3515#endif /* DEBUG */
3516
3517/**
3518 * API for controlling a few of the CPU features found in CR4.
3519 *
3520 * Currently only X86_CR4_TSD is accepted as input.
3521 *
3522 * @returns VBox status code.
3523 *
3524 * @param pVM The VM handle.
3525 * @param fOr The CR4 OR mask.
3526 * @param fAnd The CR4 AND mask.
3527 */
3528VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3529{
3530 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3531 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3532
3533 pVM->cpum.s.CR4.OrMask &= fAnd;
3534 pVM->cpum.s.CR4.OrMask |= fOr;
3535
3536 return VINF_SUCCESS;
3537}
3538
3539
3540/**
3541 * Gets a pointer to the array of standard CPUID leaves.
3542 *
3543 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3544 *
3545 * @returns Pointer to the standard CPUID leaves (read-only).
3546 * @param pVM The VM handle.
3547 * @remark Intended for PATM.
3548 */
3549VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3550{
3551 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3552}
3553
3554
3555/**
3556 * Gets a pointer to the array of extended CPUID leaves.
3557 *
3558 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3559 *
3560 * @returns Pointer to the extended CPUID leaves (read-only).
3561 * @param pVM The VM handle.
3562 * @remark Intended for PATM.
3563 */
3564VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3565{
3566 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3567}
3568
3569
3570/**
3571 * Gets a pointer to the array of centaur CPUID leaves.
3572 *
3573 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3574 *
3575 * @returns Pointer to the centaur CPUID leaves (read-only).
3576 * @param pVM The VM handle.
3577 * @remark Intended for PATM.
3578 */
3579VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3580{
3581 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3582}
3583
3584
3585/**
3586 * Gets a pointer to the default CPUID leaf.
3587 *
3588 * @returns Pointer to the default CPUID leaf (read-only).
3589 * @param pVM The VM handle.
3590 * @remark Intended for PATM.
3591 */
3592VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3593{
3594 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3595}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette