VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 25957

Last change on this file since 25957 was 25957, checked in by vboxsync, 15 years ago

CPUM: StrictCpuIdChecks should default to true instead of false (to override: VBoxInternal/CPUM/StrictCpuIdChecks 0). Fixed log messages about bits.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 171.0 KB
Line 
1/* $Id: CPUM.cpp 25957 2010-01-21 13:33:58Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum CPUM - CPU Monitor / Manager
23 *
24 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
25 * also responsible for lazy FPU handling and some of the context loading
26 * in raw mode.
27 *
28 * There are three CPU contexts, the most important one is the guest one (GC).
29 * When running in raw-mode (RC) there is a special hyper context for the VMM
30 * part that floats around inside the guest address space. When running in
31 * raw-mode, CPUM also maintains a host context for saving and restoring
32 * registers accross world switches. This latter is done in cooperation with the
33 * world switcher (@see pg_vmm).
34 *
35 * @see grp_cpum
36 */
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#define LOG_GROUP LOG_GROUP_CPUM
42#include <VBox/cpum.h>
43#include <VBox/cpumdis.h>
44#include <VBox/pgm.h>
45#include <VBox/pdm.h>
46#include <VBox/mm.h>
47#include <VBox/selm.h>
48#include <VBox/dbgf.h>
49#include <VBox/patm.h>
50#include <VBox/hwaccm.h>
51#include <VBox/ssm.h>
52#include "CPUMInternal.h"
53#include <VBox/vm.h>
54
55#include <VBox/param.h>
56#include <VBox/dis.h>
57#include <VBox/err.h>
58#include <VBox/log.h>
59#include <iprt/assert.h>
60#include <iprt/asm.h>
61#include <iprt/string.h>
62#include <iprt/mp.h>
63#include <iprt/cpuset.h>
64
65
66/*******************************************************************************
67* Defined Constants And Macros *
68*******************************************************************************/
69/** The current saved state version. */
70#define CPUM_SAVED_STATE_VERSION 11
71/** The saved state version of 3.0 and 3.1 trunk before the teleportation
72 * changes. */
73#define CPUM_SAVED_STATE_VERSION_VER3_0 10
74/** The saved state version for the 2.1 trunk before the MSR changes. */
75#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
76/** The saved state version of 2.0, used for backwards compatibility. */
77#define CPUM_SAVED_STATE_VERSION_VER2_0 8
78/** The saved state version of 1.6, used for backwards compatability. */
79#define CPUM_SAVED_STATE_VERSION_VER1_6 6
80
81
82/*******************************************************************************
83* Structures and Typedefs *
84*******************************************************************************/
85
86/**
87 * What kind of cpu info dump to perform.
88 */
89typedef enum CPUMDUMPTYPE
90{
91 CPUMDUMPTYPE_TERSE,
92 CPUMDUMPTYPE_DEFAULT,
93 CPUMDUMPTYPE_VERBOSE
94} CPUMDUMPTYPE;
95/** Pointer to a cpu info dump type. */
96typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
97
98
99/*******************************************************************************
100* Internal Functions *
101*******************************************************************************/
102static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
103static int cpumR3CpuIdInit(PVM pVM);
104static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
105static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
106static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
107static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
108static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
109static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
115
116
117/**
118 * Initializes the CPUM.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR3DECL(int) CPUMR3Init(PVM pVM)
124{
125 LogFlow(("CPUMR3Init\n"));
126
127 /*
128 * Assert alignment and sizes.
129 */
130 AssertCompileMemberAlignment(VM, cpum.s, 32);
131 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
132 AssertCompileSizeAlignment(CPUMCTX, 64);
133 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
134 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
135 AssertCompileMemberAlignment(VM, cpum, 64);
136 AssertCompileMemberAlignment(VM, aCpus, 64);
137 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
138 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
139
140 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
141 pVM->cpum.s.ulOffCPUMCPU = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
142 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.ulOffCPUMCPU == (uintptr_t)&pVM->aCpus[0].cpum);
143
144 /* Calculate the offset from CPUMCPU to CPUM. */
145 for (VMCPUID i = 0; i < pVM->cCpus; i++)
146 {
147 PVMCPU pVCpu = &pVM->aCpus[i];
148
149 /*
150 * Setup any fixed pointers and offsets.
151 */
152 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
153 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
154
155 pVCpu->cpum.s.ulOffCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
156 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.ulOffCPUM == (uintptr_t)&pVM->cpum);
157 }
158
159 /*
160 * Check that the CPU supports the minimum features we require.
161 */
162 if (!ASMHasCpuId())
163 {
164 Log(("The CPU doesn't support CPUID!\n"));
165 return VERR_UNSUPPORTED_CPU;
166 }
167 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
168 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
169
170 /* Setup the CR4 AND and OR masks used in the switcher */
171 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
172 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
173 {
174 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
175 /* No FXSAVE implies no SSE */
176 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
177 pVM->cpum.s.CR4.OrMask = 0;
178 }
179 else
180 {
181 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
182 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
183 }
184
185 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
186 {
187 Log(("The CPU doesn't support MMX!\n"));
188 return VERR_UNSUPPORTED_CPU;
189 }
190 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
191 {
192 Log(("The CPU doesn't support TSC!\n"));
193 return VERR_UNSUPPORTED_CPU;
194 }
195 /* Bogus on AMD? */
196 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
197 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
198
199 /*
200 * Detech the host CPU vendor.
201 * (The guest CPU vendor is re-detected later on.)
202 */
203 uint32_t uEAX, uEBX, uECX, uEDX;
204 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
205 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
206 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
207
208 /*
209 * Setup hypervisor startup values.
210 */
211
212 /*
213 * Register saved state data item.
214 */
215 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
216 NULL, cpumR3LiveExec, NULL,
217 NULL, cpumR3SaveExec, NULL,
218 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
219 if (RT_FAILURE(rc))
220 return rc;
221
222 /*
223 * Register info handlers.
224 */
225 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
226 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
228 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
229 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
230 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
231
232 /*
233 * Initialize the Guest CPUID state.
234 */
235 rc = cpumR3CpuIdInit(pVM);
236 if (RT_FAILURE(rc))
237 return rc;
238 CPUMR3Reset(pVM);
239 return VINF_SUCCESS;
240}
241
242
243/**
244 * Initializes the per-VCPU CPUM.
245 *
246 * @returns VBox status code.
247 * @param pVM The VM to operate on.
248 */
249VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
250{
251 LogFlow(("CPUMR3InitCPU\n"));
252 return VINF_SUCCESS;
253}
254
255
256/**
257 * Detect the CPU vendor give n the
258 *
259 * @returns The vendor.
260 * @param uEAX EAX from CPUID(0).
261 * @param uEBX EBX from CPUID(0).
262 * @param uECX ECX from CPUID(0).
263 * @param uEDX EDX from CPUID(0).
264 */
265static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
266{
267 if ( uEAX >= 1
268 && uEBX == X86_CPUID_VENDOR_AMD_EBX
269 && uECX == X86_CPUID_VENDOR_AMD_ECX
270 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
271 return CPUMCPUVENDOR_AMD;
272
273 if ( uEAX >= 1
274 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
275 && uECX == X86_CPUID_VENDOR_INTEL_ECX
276 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
277 return CPUMCPUVENDOR_INTEL;
278
279 /** @todo detect the other buggers... */
280 return CPUMCPUVENDOR_UNKNOWN;
281}
282
283
284/**
285 * Fetches overrides for a CPUID leaf.
286 *
287 * @returns VBox status code.
288 * @param pLeaf The leaf to load the overrides into.
289 * @param pCfgNode The CFGM node containing the overrides
290 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
291 * @param iLeaf The CPUID leaf number.
292 */
293static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
294{
295 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
296 if (pLeafNode)
297 {
298 uint32_t u32;
299 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
300 if (RT_SUCCESS(rc))
301 pLeaf->eax = u32;
302 else
303 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
304
305 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
306 if (RT_SUCCESS(rc))
307 pLeaf->ebx = u32;
308 else
309 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
310
311 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
312 if (RT_SUCCESS(rc))
313 pLeaf->ecx = u32;
314 else
315 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
316
317 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
318 if (RT_SUCCESS(rc))
319 pLeaf->edx = u32;
320 else
321 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
322
323 }
324 return VINF_SUCCESS;
325}
326
327
328/**
329 * Load the overrides for a set of CPUID leafs.
330 *
331 * @returns VBox status code.
332 * @param paLeafs The leaf array.
333 * @param cLeafs The number of leafs.
334 * @param uStart The start leaf number.
335 * @param pCfgNode The CFGM node containing the overrides
336 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
337 */
338static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
339{
340 for (uint32_t i = 0; i < cLeafs; i++)
341 {
342 int rc = cpumR3CpuIdFetchLeafOverride(&paLeafs[i], pCfgNode, uStart + i);
343 if (RT_FAILURE(rc))
344 return rc;
345 }
346
347 return VINF_SUCCESS;
348}
349
350/**
351 * Init a set of host CPUID leafs.
352 *
353 * @returns VBox status code.
354 * @param paLeafs The leaf array.
355 * @param cLeafs The number of leafs.
356 * @param uStart The start leaf number.
357 * @param pCfgNode The /CPUM/HostCPUID/ node.
358 */
359static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
360{
361 /* Using the ECX variant for all of them can't hurt... */
362 for (uint32_t i = 0; i < cLeafs; i++)
363 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeafs[i].eax, &paLeafs[i].ebx, &paLeafs[i].ecx, &paLeafs[i].edx);
364
365 /* Load CPUID leaf override; we currently don't care if the caller
366 specifies features the host CPU doesn't support. */
367 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeafs, cLeafs, pCfgNode);
368}
369
370
371/**
372 * Initializes the emulated CPU's cpuid information.
373 *
374 * @returns VBox status code.
375 * @param pVM The VM to operate on.
376 */
377static int cpumR3CpuIdInit(PVM pVM)
378{
379 PCPUM pCPUM = &pVM->cpum.s;
380 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
381 uint32_t i;
382 int rc;
383
384 /*
385 * Get the host CPUIDs and redetect the guest CPU vendor (could've been overridden).
386 */
387 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
388 * Overrides the host CPUID leaf values used for calculating the guest CPUID
389 * leafs. This can be used to preserve the CPUID values when moving a VM to
390 * a different machine. Another use is restricting (or extending) the
391 * feature set exposed to the guest. */
392 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
393 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
394 AssertRCReturn(rc, rc);
395 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
396 AssertRCReturn(rc, rc);
397 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
398 AssertRCReturn(rc, rc);
399
400 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
401 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
402
403 /*
404 * Only report features we can support.
405 */
406 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
407 | X86_CPUID_FEATURE_EDX_VME
408 | X86_CPUID_FEATURE_EDX_DE
409 | X86_CPUID_FEATURE_EDX_PSE
410 | X86_CPUID_FEATURE_EDX_TSC
411 | X86_CPUID_FEATURE_EDX_MSR
412 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
413 | X86_CPUID_FEATURE_EDX_MCE
414 | X86_CPUID_FEATURE_EDX_CX8
415 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
416 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
417 //| X86_CPUID_FEATURE_EDX_SEP
418 | X86_CPUID_FEATURE_EDX_MTRR
419 | X86_CPUID_FEATURE_EDX_PGE
420 | X86_CPUID_FEATURE_EDX_MCA
421 | X86_CPUID_FEATURE_EDX_CMOV
422 | X86_CPUID_FEATURE_EDX_PAT
423 | X86_CPUID_FEATURE_EDX_PSE36
424 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
425 | X86_CPUID_FEATURE_EDX_CLFSH
426 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
427 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
428 | X86_CPUID_FEATURE_EDX_MMX
429 | X86_CPUID_FEATURE_EDX_FXSR
430 | X86_CPUID_FEATURE_EDX_SSE
431 | X86_CPUID_FEATURE_EDX_SSE2
432 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
433 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
434 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
435 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
436 | 0;
437 pCPUM->aGuestCpuIdStd[1].ecx &= 0
438 | X86_CPUID_FEATURE_ECX_SSE3
439 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
440 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
441 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
442 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
443 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
444 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
445 | X86_CPUID_FEATURE_ECX_SSSE3
446 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
447 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
448 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
449 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
450 /* ECX Bit 21 - x2APIC support - not yet. */
451 // | X86_CPUID_FEATURE_ECX_X2APIC
452 /* ECX Bit 23 - POPCNT instruction. */
453 //| X86_CPUID_FEATURE_ECX_POPCNT
454 | 0;
455
456 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
457 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
458 | X86_CPUID_AMD_FEATURE_EDX_VME
459 | X86_CPUID_AMD_FEATURE_EDX_DE
460 | X86_CPUID_AMD_FEATURE_EDX_PSE
461 | X86_CPUID_AMD_FEATURE_EDX_TSC
462 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
463 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
464 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
465 | X86_CPUID_AMD_FEATURE_EDX_CX8
466 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
467 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
468 //| X86_CPUID_AMD_FEATURE_EDX_SEP
469 | X86_CPUID_AMD_FEATURE_EDX_MTRR
470 | X86_CPUID_AMD_FEATURE_EDX_PGE
471 | X86_CPUID_AMD_FEATURE_EDX_MCA
472 | X86_CPUID_AMD_FEATURE_EDX_CMOV
473 | X86_CPUID_AMD_FEATURE_EDX_PAT
474 | X86_CPUID_AMD_FEATURE_EDX_PSE36
475 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
476 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
477 | X86_CPUID_AMD_FEATURE_EDX_MMX
478 | X86_CPUID_AMD_FEATURE_EDX_FXSR
479 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
480 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
481 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
482 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
483 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
484 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
485 | 0;
486 pCPUM->aGuestCpuIdExt[1].ecx &= 0
487 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
488 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
489 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
490 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
491 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
492 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
493 //| X86_CPUID_AMD_FEATURE_ECX_ABM
494 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
495 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
496 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
497 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
498 //| X86_CPUID_AMD_FEATURE_ECX_IBS
499 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
500 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
501 //| X86_CPUID_AMD_FEATURE_ECX_WDT
502 | 0;
503
504 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false); AssertRCReturn(rc, rc);
505 if (pCPUM->fSyntheticCpu)
506 {
507 const char szVendor[13] = "VirtualBox ";
508 const char szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
509
510 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
511
512 /* Limit the nr of standard leaves; 5 for monitor/mwait */
513 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
514
515 /* 0: Vendor */
516 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)szVendor)[0];
517 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)szVendor)[2];
518 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)szVendor)[1];
519
520 /* 1.eax: Version information. family : model : stepping */
521 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
522
523 /* Leaves 2 - 4 are Intel only - zero them out */
524 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
525 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
526 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
527
528 /* Leaf 5 = monitor/mwait */
529
530 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
531 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
532 /* AMD only - set to zero. */
533 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
534
535 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
536 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
537
538 /* 0x800000002-4: Processor Name String Identifier. */
539 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)szProcessor)[0];
540 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)szProcessor)[1];
541 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)szProcessor)[2];
542 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)szProcessor)[3];
543 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)szProcessor)[4];
544 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)szProcessor)[5];
545 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)szProcessor)[6];
546 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)szProcessor)[7];
547 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)szProcessor)[8];
548 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)szProcessor)[9];
549 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)szProcessor)[10];
550 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)szProcessor)[11];
551
552 /* 0x800000005-7 - reserved -> zero */
553 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
554 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
555 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
556
557 /* 0x800000008: only the max virtual and physical address size. */
558 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
559 }
560
561 /*
562 * Hide HTT, multicode, SMP, whatever.
563 * (APIC-ID := 0 and #LogCpus := 0)
564 */
565 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
566#ifdef VBOX_WITH_MULTI_CORE
567 if ( pVM->cCpus > 1
568 && pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC)
569 {
570 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
571 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
572 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
573 }
574#endif
575
576 /* Cpuid 2:
577 * Intel: Cache and TLB information
578 * AMD: Reserved
579 * Safe to expose
580 */
581
582 /* Cpuid 3:
583 * Intel: EAX, EBX - reserved
584 * ECX, EDX - Processor Serial Number if available, otherwise reserved
585 * AMD: Reserved
586 * Safe to expose
587 */
588 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
589 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
590
591 /* Cpuid 4:
592 * Intel: Deterministic Cache Parameters Leaf
593 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
594 * AMD: Reserved
595 * Safe to expose, except for EAX:
596 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
597 * Bits 31-26: Maximum number of processor cores in this physical package**
598 * Note: These SMP values are constant regardless of ECX
599 */
600 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
601 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
602#ifdef VBOX_WITH_MULTI_CORE
603 if ( pVM->cCpus > 1
604 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
605 {
606 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
607 /* One logical processor with possibly multiple cores. */
608 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
609 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
610 }
611#endif
612
613 /* Cpuid 5: Monitor/mwait Leaf
614 * Intel: ECX, EDX - reserved
615 * EAX, EBX - Smallest and largest monitor line size
616 * AMD: EDX - reserved
617 * EAX, EBX - Smallest and largest monitor line size
618 * ECX - extensions (ignored for now)
619 * Safe to expose
620 */
621 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
622 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
623
624 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
625
626 /*
627 * Determine the default.
628 *
629 * Intel returns values of the highest standard function, while AMD
630 * returns zeros. VIA on the other hand seems to returning nothing or
631 * perhaps some random garbage, we don't try to duplicate this behavior.
632 */
633 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
634 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
635 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
636
637 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
638 * Safe to pass on to the guest.
639 *
640 * Intel: 0x800000005 reserved
641 * 0x800000006 L2 cache information
642 * AMD: 0x800000005 L1 cache information
643 * 0x800000006 L2/L3 cache information
644 */
645
646 /* Cpuid 0x800000007:
647 * AMD: EAX, EBX, ECX - reserved
648 * EDX: Advanced Power Management Information
649 * Intel: Reserved
650 */
651 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
652 {
653 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
654
655 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
656
657 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
658 {
659 /* Only expose the TSC invariant capability bit to the guest. */
660 pCPUM->aGuestCpuIdExt[7].edx &= 0
661 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
662 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
663 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
664 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
665 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
666 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
667 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
668 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
669#if 1
670 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer Linux kernels blindly assume
671 * that the AMD performance counters work if this is set for 64 bits guests. (can't really find a CPUID feature bit for them though)
672 */
673#else
674 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
675#endif
676 | 0;
677 }
678 else
679 pCPUM->aGuestCpuIdExt[7].edx = 0;
680 }
681
682 /* Cpuid 0x800000008:
683 * AMD: EBX, EDX - reserved
684 * EAX: Virtual/Physical address Size
685 * ECX: Number of cores + APICIdCoreIdSize
686 * Intel: EAX: Virtual/Physical address Size
687 * EBX, ECX, EDX - reserved
688 */
689 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
690 {
691 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
692 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
693 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
694 * NC (0-7) Number of cores; 0 equals 1 core */
695 pCPUM->aGuestCpuIdExt[8].ecx = 0;
696#ifdef VBOX_WITH_MULTI_CORE
697 if ( pVM->cCpus > 1
698 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
699 {
700 /* Legacy method to determine the number of cores. */
701 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
702 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
703
704 }
705#endif
706 }
707
708 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
709 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
710 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
711 * This option corrsponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
712 */
713 bool fNt4LeafLimit;
714 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
715 if (fNt4LeafLimit)
716 pCPUM->aGuestCpuIdStd[0].eax = 3;
717
718 /*
719 * Limit it the number of entries and fill the remaining with the defaults.
720 *
721 * The limits are masking off stuff about power saving and similar, this
722 * is perhaps a bit crudely done as there is probably some relatively harmless
723 * info too in these leaves (like words about having a constant TSC).
724 */
725 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
726 pCPUM->aGuestCpuIdStd[0].eax = 5;
727
728 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
729 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
730
731 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
732 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
733 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
734 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
735 : 0;
736 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
737 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
738
739 /*
740 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
741 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
742 * of processors from (cpuid(4).eax >> 26) + 1.
743 */
744 if (pVM->cCpus == 1)
745 pCPUM->aGuestCpuIdStd[4].eax = 0;
746
747 /*
748 * Centaur stuff (VIA).
749 *
750 * The important part here (we think) is to make sure the 0xc0000000
751 * function returns 0xc0000001. As for the features, we don't currently
752 * let on about any of those... 0xc0000002 seems to be some
753 * temperature/hz/++ stuff, include it as well (static).
754 */
755 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
756 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
757 {
758 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
759 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
760 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
761 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
762 i++)
763 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
764 }
765 else
766 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
767 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
768
769
770 /*
771 * Load CPUID overrides from configuration.
772 * Note: Kind of redundant now, but allows unchanged overrides
773 */
774 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
775 * Overrides the CPUID leaf values. */
776 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
777 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
778 AssertRCReturn(rc, rc);
779 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
780 AssertRCReturn(rc, rc);
781 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
782 AssertRCReturn(rc, rc);
783
784 /*
785 * Check if PAE was explicitely enabled by the user.
786 */
787 bool fEnable;
788 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
789 if (fEnable)
790 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
791
792 /*
793 * Log the cpuid and we're good.
794 */
795 RTCPUSET OnlineSet;
796 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
797 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
798 LogRel(("************************* CPUID dump ************************\n"));
799 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
800 LogRel(("\n"));
801 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
802 LogRel(("******************** End of CPUID dump **********************\n"));
803 return VINF_SUCCESS;
804}
805
806
807
808
809/**
810 * Applies relocations to data and code managed by this
811 * component. This function will be called at init and
812 * whenever the VMM need to relocate it self inside the GC.
813 *
814 * The CPUM will update the addresses used by the switcher.
815 *
816 * @param pVM The VM.
817 */
818VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
819{
820 LogFlow(("CPUMR3Relocate\n"));
821 for (VMCPUID i = 0; i < pVM->cCpus; i++)
822 {
823 /*
824 * Switcher pointers.
825 */
826 PVMCPU pVCpu = &pVM->aCpus[i];
827 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
828 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
829 }
830}
831
832
833/**
834 * Terminates the CPUM.
835 *
836 * Termination means cleaning up and freeing all resources,
837 * the VM it self is at this point powered off or suspended.
838 *
839 * @returns VBox status code.
840 * @param pVM The VM to operate on.
841 */
842VMMR3DECL(int) CPUMR3Term(PVM pVM)
843{
844 CPUMR3TermCPU(pVM);
845 return 0;
846}
847
848
849/**
850 * Terminates the per-VCPU CPUM.
851 *
852 * Termination means cleaning up and freeing all resources,
853 * the VM it self is at this point powered off or suspended.
854 *
855 * @returns VBox status code.
856 * @param pVM The VM to operate on.
857 */
858VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
859{
860#ifdef VBOX_WITH_CRASHDUMP_MAGIC
861 for (VMCPUID i = 0; i < pVM->cCpus; i++)
862 {
863 PVMCPU pVCpu = &pVM->aCpus[i];
864 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
865
866 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
867 pVCpu->cpum.s.uMagic = 0;
868 pCtx->dr[5] = 0;
869 }
870#endif
871 return 0;
872}
873
874
875/**
876 * Resets a virtual CPU.
877 *
878 * Used by CPUMR3Reset and CPU hot plugging.
879 *
880 * @param pVCpu The virtual CPU handle.
881 */
882VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
883{
884 /** @todo anything different for VCPU > 0? */
885 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
886
887 /*
888 * Initialize everything to ZERO first.
889 */
890 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
891 memset(pCtx, 0, sizeof(*pCtx));
892 pVCpu->cpum.s.fUseFlags = fUseFlags;
893
894 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
895 pCtx->eip = 0x0000fff0;
896 pCtx->edx = 0x00000600; /* P6 processor */
897 pCtx->eflags.Bits.u1Reserved0 = 1;
898
899 pCtx->cs = 0xf000;
900 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
901 pCtx->csHid.u32Limit = 0x0000ffff;
902 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
903 pCtx->csHid.Attr.n.u1Present = 1;
904 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
905
906 pCtx->dsHid.u32Limit = 0x0000ffff;
907 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
908 pCtx->dsHid.Attr.n.u1Present = 1;
909 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
910
911 pCtx->esHid.u32Limit = 0x0000ffff;
912 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
913 pCtx->esHid.Attr.n.u1Present = 1;
914 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
915
916 pCtx->fsHid.u32Limit = 0x0000ffff;
917 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
918 pCtx->fsHid.Attr.n.u1Present = 1;
919 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
920
921 pCtx->gsHid.u32Limit = 0x0000ffff;
922 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
923 pCtx->gsHid.Attr.n.u1Present = 1;
924 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
925
926 pCtx->ssHid.u32Limit = 0x0000ffff;
927 pCtx->ssHid.Attr.n.u1Present = 1;
928 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
929 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
930
931 pCtx->idtr.cbIdt = 0xffff;
932 pCtx->gdtr.cbGdt = 0xffff;
933
934 pCtx->ldtrHid.u32Limit = 0xffff;
935 pCtx->ldtrHid.Attr.n.u1Present = 1;
936 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
937
938 pCtx->trHid.u32Limit = 0xffff;
939 pCtx->trHid.Attr.n.u1Present = 1;
940 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
941
942 pCtx->dr[6] = X86_DR6_INIT_VAL;
943 pCtx->dr[7] = X86_DR7_INIT_VAL;
944
945 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
946 pCtx->fpu.FCW = 0x37f;
947
948 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
949 pCtx->fpu.MXCSR = 0x1F80;
950
951 /* Init PAT MSR */
952 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
953
954 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
955 * The Intel docs don't mention it.
956 */
957 pCtx->msrEFER = 0;
958}
959
960
961/**
962 * Resets the CPU.
963 *
964 * @returns VINF_SUCCESS.
965 * @param pVM The VM handle.
966 */
967VMMR3DECL(void) CPUMR3Reset(PVM pVM)
968{
969 for (VMCPUID i = 0; i < pVM->cCpus; i++)
970 {
971 CPUMR3ResetCpu(&pVM->aCpus[i]);
972
973#ifdef VBOX_WITH_CRASHDUMP_MAGIC
974 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
975
976 /* Magic marker for searching in crash dumps. */
977 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
978 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
979 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
980#endif
981 }
982}
983
984
985/**
986 * Called both in pass 0 and the final pass.
987 *
988 * @param pVM The VM handle.
989 * @param pSSM The saved state handle.
990 */
991static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
992{
993 /*
994 * Save all the CPU ID leaves here so we can check them for compatability
995 * upon loading.
996 */
997 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
998 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
999
1000 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1001 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1002
1003 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1004 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1005
1006 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1007
1008 /*
1009 * Save a good portion of the raw CPU IDs as well as they may come in
1010 * handy when validating features for raw mode.
1011 */
1012 CPUMCPUID aRawStd[16];
1013 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1014 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1015 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1016 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1017
1018 CPUMCPUID aRawExt[32];
1019 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1020 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1021 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1022 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1023}
1024
1025
1026/**
1027 * Loads the CPU ID leaves saved by pass 0.
1028 *
1029 * @returns VBox status code.
1030 * @param pVM The VM handle.
1031 * @param pSSM The saved state handle.
1032 * @param uVersion The format version.
1033 */
1034static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1035{
1036 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1037
1038 /*
1039 * Define a bunch of macros for simplifying the code.
1040 */
1041 /* Generic expression + failure message. */
1042#define CPUID_CHECK_RET(expr, fmt) \
1043 do { \
1044 if (!(expr)) \
1045 { \
1046 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadict macros sucks */ \
1047 if (fStrictCpuIdChecks) \
1048 { \
1049 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1050 RTStrFree(pszMsg); \
1051 return rcCpuid; \
1052 } \
1053 LogRel(("CPUM: %s\n", pszMsg)); \
1054 RTStrFree(pszMsg); \
1055 } \
1056 } while (0)
1057#define CPUID_CHECK_WRN(expr, fmt) \
1058 do { \
1059 if (!(expr)) \
1060 LogRel(fmt); \
1061 } while (0)
1062
1063 /* For comparing two values and bitch if they differs. */
1064#define CPUID_CHECK2_RET(what, host, saved) \
1065 do { \
1066 if ((host) != (saved)) \
1067 { \
1068 if (fStrictCpuIdChecks) \
1069 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1070 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1071 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1072 } \
1073 } while (0)
1074#define CPUID_CHECK2_WRN(what, host, saved) \
1075 do { \
1076 if ((host) != (saved)) \
1077 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1078 } while (0)
1079
1080 /* For checking raw cpu features (raw mode). */
1081#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1082 do { \
1083 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1084 { \
1085 if (fStrictCpuIdChecks) \
1086 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1087 N_(#bit " mismatch: host=%d saved=%d"), \
1088 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1089 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1090 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1091 } \
1092 } while (0)
1093#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1094 do { \
1095 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1096 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1097 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1098 } while (0)
1099#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1100
1101 /* For checking guest features. */
1102#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1103 do { \
1104 if ( (aGuestCpuId##set [1].reg & bit) \
1105 && !(aHostRaw##set [1].reg & bit) \
1106 && !(aHostOverride##set [1].reg & bit) \
1107 && !(aGuestOverride##set [1].reg & bit) \
1108 ) \
1109 { \
1110 if (fStrictCpuIdChecks) \
1111 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1112 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1113 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1114 } \
1115 } while (0)
1116#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1117 do { \
1118 if ( (aGuestCpuId##set [1].reg & bit) \
1119 && !(aHostRaw##set [1].reg & bit) \
1120 && !(aHostOverride##set [1].reg & bit) \
1121 && !(aGuestOverride##set [1].reg & bit) \
1122 ) \
1123 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1124 } while (0)
1125#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1126 do { \
1127 if ( (aGuestCpuId##set [1].reg & bit) \
1128 && !(aHostRaw##set [1].reg & bit) \
1129 && !(aHostOverride##set [1].reg & bit) \
1130 && !(aGuestOverride##set [1].reg & bit) \
1131 ) \
1132 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1133 } while (0)
1134#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1135
1136 /* For checking guest features if AMD guest CPU. */
1137#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1138 do { \
1139 if ( (aGuestCpuId##set [1].reg & bit) \
1140 && fGuestAmd \
1141 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1142 && !(aHostOverride##set [1].reg & bit) \
1143 && !(aGuestOverride##set [1].reg & bit) \
1144 ) \
1145 { \
1146 if (fStrictCpuIdChecks) \
1147 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1148 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1149 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1150 } \
1151 } while (0)
1152#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1153 do { \
1154 if ( (aGuestCpuId##set [1].reg & bit) \
1155 && fGuestAmd \
1156 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1157 && !(aHostOverride##set [1].reg & bit) \
1158 && !(aGuestOverride##set [1].reg & bit) \
1159 ) \
1160 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1161 } while (0)
1162#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1163 do { \
1164 if ( (aGuestCpuId##set [1].reg & bit) \
1165 && fGuestAmd \
1166 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1167 && !(aHostOverride##set [1].reg & bit) \
1168 && !(aGuestOverride##set [1].reg & bit) \
1169 ) \
1170 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1171 } while (0)
1172#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1173
1174 /* For checking AMD features which have a corresponding bit in the standard
1175 range. (Intel defines very few bits in the extended feature sets.) */
1176#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1177 do { \
1178 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1179 && !(fHostAmd \
1180 ? aHostRawExt[1].reg & (ExtBit) \
1181 : aHostRawStd[1].reg & (StdBit)) \
1182 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1183 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1184 ) \
1185 { \
1186 if (fStrictCpuIdChecks) \
1187 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1188 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1189 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1190 } \
1191 } while (0)
1192#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1193 do { \
1194 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1195 && !(fHostAmd \
1196 ? aHostRawExt[1].reg & (ExtBit) \
1197 : aHostRawStd[1].reg & (StdBit)) \
1198 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1199 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1200 ) \
1201 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1202 } while (0)
1203#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1204 do { \
1205 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1206 && !(fHostAmd \
1207 ? aHostRawExt[1].reg & (ExtBit) \
1208 : aHostRawStd[1].reg & (StdBit)) \
1209 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1210 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1211 ) \
1212 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1213 } while (0)
1214#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1215
1216 /*
1217 * Load them into stack buffers first.
1218 */
1219 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1220 uint32_t cGuestCpuIdStd;
1221 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1222 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1223 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1224 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1225
1226 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1227 uint32_t cGuestCpuIdExt;
1228 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1229 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1230 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1231 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1232
1233 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1234 uint32_t cGuestCpuIdCentaur;
1235 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1236 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1237 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1238 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1239
1240 CPUMCPUID GuestCpuIdDef;
1241 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1242 AssertRCReturn(rc, rc);
1243
1244 CPUMCPUID aRawStd[16];
1245 uint32_t cRawStd;
1246 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1247 if (cRawStd > RT_ELEMENTS(aRawStd))
1248 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1249 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1250
1251 CPUMCPUID aRawExt[32];
1252 uint32_t cRawExt;
1253 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1254 if (cRawExt > RT_ELEMENTS(aRawExt))
1255 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1256 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1257 AssertRCReturn(rc, rc);
1258
1259 /*
1260 * Note that we support restoring less than the current amount of standard
1261 * leaves because we've been allowed more is newer version of VBox.
1262 *
1263 * So, pad new entries with the default.
1264 */
1265 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1266 aGuestCpuIdStd[i] = GuestCpuIdDef;
1267
1268 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1269 aGuestCpuIdExt[i] = GuestCpuIdDef;
1270
1271 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1272 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1273
1274 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1275 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1276
1277 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1278 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1279
1280 /*
1281 * Get the raw CPU IDs for the current host.
1282 */
1283 CPUMCPUID aHostRawStd[16];
1284 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1285 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1286
1287 CPUMCPUID aHostRawExt[32];
1288 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1289 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1290
1291 /*
1292 * Get the host and guest overrides so we don't reject the state because
1293 * some feature was enabled thru these interfaces.
1294 * Note! We currently only need the feature leafs, so skip rest.
1295 */
1296 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1297 CPUMCPUID aGuestOverrideStd[2];
1298 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1299 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1300
1301 CPUMCPUID aGuestOverrideExt[2];
1302 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1303 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1304
1305 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1306 CPUMCPUID aHostOverrideStd[2];
1307 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1308 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1309
1310 CPUMCPUID aHostOverrideExt[2];
1311 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1312 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1313
1314 /*
1315 * This can be skipped.
1316 */
1317 bool fStrictCpuIdChecks;
1318 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1319
1320
1321
1322 /*
1323 * For raw-mode we'll require that the CPUs are very similar since we don't
1324 * intercept CPUID instructions for user mode applications.
1325 */
1326 if (!HWACCMIsEnabled(pVM))
1327 {
1328 /* CPUID(0) */
1329 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1330 && aHostRawStd[0].ecx == aRawStd[0].ecx
1331 && aHostRawStd[0].edx == aRawStd[0].edx,
1332 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1333 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1334 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1335 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1336 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1337 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1338
1339 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1340
1341 /* CPUID(1).eax */
1342 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1343 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1344 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1345
1346 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1347 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1348 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1349
1350 /* CPUID(1).ecx */
1351 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1352 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1353 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1354 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1355 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1356 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1357 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1358 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1359 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1360 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1361 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1362 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1363 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1364 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1365 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1366 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1367 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1368 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1369 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1370 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1371 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1372 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1373 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1374 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1375 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1376 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1377 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1378 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1379 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1380 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1381 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1382 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1383
1384 /* CPUID(1).edx */
1385 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1386 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1387 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1388 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1389 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1390 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1391 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1392 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1393 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1394 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1395 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1396 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1397 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1398 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1399 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1400 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1401 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1402 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1403 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1404 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1405 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1406 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1407 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1408 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1409 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1410 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1411 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1412 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1413 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1414 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1415 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1416 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1417
1418 /* CPUID(2) - config, mostly about caches. ignore. */
1419 /* CPUID(3) - processor serial number. ignore. */
1420 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1421 /* CPUID(5) - mwait/monitor config. ignore. */
1422 /* CPUID(6) - power management. ignore. */
1423 /* CPUID(7) - ???. ignore. */
1424 /* CPUID(8) - ???. ignore. */
1425 /* CPUID(9) - DCA. ignore for now. */
1426 /* CPUID(a) - PeMo info. ignore for now. */
1427 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1428
1429 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1430 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1431 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1432 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1433 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1434 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1435 {
1436 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1437 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1438 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1439 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1440 }
1441
1442 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1443 Note! Intel have/is marking many of the fields here as reserved. We
1444 will verify them as if it's an AMD CPU. */
1445 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1446 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1447 (N_("Extended leafs was present on saved state host, but is missing on the current\n")));
1448 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1449 {
1450 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1451 && aHostRawExt[0].ecx == aRawExt[0].ecx
1452 && aHostRawExt[0].edx == aRawExt[0].edx,
1453 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1454 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1455 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1456 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1457
1458 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1459 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1460 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1461 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1462 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1463 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1464
1465 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1466 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1467 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1468 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1469
1470 /* CPUID(0x80000001).ecx */
1471 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1472 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1473 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1474 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1475 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1476 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1477 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1478 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1479 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1480 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1481 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1482 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1483 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1484 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1485 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1486 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1487 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1488 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1489 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1490 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1491 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1492 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1493 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1494 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1495 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1496 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1497 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1498 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1499 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1500 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1501 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1502 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1503
1504 /* CPUID(0x80000001).edx */
1505 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1506 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1507 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1508 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1509 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1510 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1511 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1512 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1513 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1514 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1515 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1516 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1517 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1518 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1519 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1520 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1521 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1522 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1523 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1524 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1525 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1526 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1527 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1528 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1529 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1530 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1531 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1532 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1533 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1534 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1535 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1536 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1537
1538 /** @todo verify the rest as well. */
1539 }
1540 }
1541
1542
1543
1544 /*
1545 * Verify that we can support the features already exposed to the guest on
1546 * this host.
1547 *
1548 * Most of the features we're emulating requires intercepting instruction
1549 * and doing it the slow way, so there is no need to warn when they aren't
1550 * present in the host CPU. Thus we use IGN instead of EMU on these.
1551 *
1552 * Trailing comments:
1553 * "EMU" - Possible to emulate, could be lots of work and very slow.
1554 * "EMU?" - Can this be emulated?
1555 */
1556 /* CPUID(1).ecx */
1557 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1558 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1559 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1560 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1561 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1562 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1563 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1564 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1565 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1566 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1567 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1568 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1569 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1570 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1571 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1572 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1573 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1574 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1575 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1576 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1577 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1578 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1579 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1580 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1581 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1582 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1583 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1584 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1585 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1586 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1587 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1588 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1589
1590 /* CPUID(1).edx */
1591 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1592 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1593 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1594 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1595 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1596 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1597 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1598 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1599 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1600 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1601 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1602 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1603 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1604 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1605 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1606 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1607 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1608 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1609 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1610 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1611 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1612 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1613 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1614 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1615 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1616 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1617 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1618 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1619 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1620 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1621 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1622 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1623
1624 /* CPUID(0x80000000). */
1625 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1626 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1627 {
1628 /** @todo deal with no 0x80000001 on the host. */
1629 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1630 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1631
1632 /* CPUID(0x80000001).ecx */
1633 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1634 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1635 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1636 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1637 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1638 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1639 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1640 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1641 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1642 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1643 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1644 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1645 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1646 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1647 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1648 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1649 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1650 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1651 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1652 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1653 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1654 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1655 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1656 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1657 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1658 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1659 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1660 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1661 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1662 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1663 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1664 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1665
1666 /* CPUID(0x80000001).edx */
1667 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1668 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1669 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1670 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1671 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1672 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1673 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1674 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1675 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1676 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1677 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1678 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1679 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1680 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1681 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1682 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1683 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1684 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1685 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1686 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1687 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1688 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1689 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1690 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1691 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1692 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1693 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1694 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1695 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1696 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1697 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1698 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1699 }
1700
1701 /*
1702 * We're good, commit the CPU ID leaves.
1703 */
1704 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1705 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1706 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1707 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1708
1709#undef CPUID_CHECK_RET
1710#undef CPUID_CHECK_WRN
1711#undef CPUID_CHECK2_RET
1712#undef CPUID_CHECK2_WRN
1713#undef CPUID_RAW_FEATURE_RET
1714#undef CPUID_RAW_FEATURE_WRN
1715#undef CPUID_RAW_FEATURE_IGN
1716#undef CPUID_GST_FEATURE_RET
1717#undef CPUID_GST_FEATURE_WRN
1718#undef CPUID_GST_FEATURE_EMU
1719#undef CPUID_GST_FEATURE_IGN
1720#undef CPUID_GST_FEATURE2_RET
1721#undef CPUID_GST_FEATURE2_WRN
1722#undef CPUID_GST_FEATURE2_EMU
1723#undef CPUID_GST_FEATURE2_IGN
1724#undef CPUID_GST_AMD_FEATURE_RET
1725#undef CPUID_GST_AMD_FEATURE_WRN
1726#undef CPUID_GST_AMD_FEATURE_EMU
1727#undef CPUID_GST_AMD_FEATURE_IGN
1728
1729 return VINF_SUCCESS;
1730}
1731
1732
1733/**
1734 * Pass 0 live exec callback.
1735 *
1736 * @returns VINF_SSM_DONT_CALL_AGAIN.
1737 * @param pVM The VM handle.
1738 * @param pSSM The saved state handle.
1739 * @param uPass The pass (0).
1740 */
1741static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1742{
1743 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1744 cpumR3SaveCpuId(pVM, pSSM);
1745 return VINF_SSM_DONT_CALL_AGAIN;
1746}
1747
1748
1749/**
1750 * Execute state save operation.
1751 *
1752 * @returns VBox status code.
1753 * @param pVM VM Handle.
1754 * @param pSSM SSM operation handle.
1755 */
1756static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1757{
1758 /*
1759 * Save.
1760 */
1761 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1762 {
1763 PVMCPU pVCpu = &pVM->aCpus[i];
1764
1765 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1766 }
1767
1768 SSMR3PutU32(pSSM, pVM->cCpus);
1769 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1770 {
1771 PVMCPU pVCpu = &pVM->aCpus[i];
1772
1773 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1774 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1775 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1776 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1777 }
1778
1779 cpumR3SaveCpuId(pVM, pSSM);
1780 return VINF_SUCCESS;
1781}
1782
1783
1784/**
1785 * Load a version 1.6 CPUMCTX structure.
1786 *
1787 * @returns VBox status code.
1788 * @param pVM VM Handle.
1789 * @param pCpumctx16 Version 1.6 CPUMCTX
1790 */
1791static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1792{
1793#define CPUMCTX16_LOADREG(RegName) \
1794 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1795
1796#define CPUMCTX16_LOADDRXREG(RegName) \
1797 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1798
1799#define CPUMCTX16_LOADHIDREG(RegName) \
1800 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1801 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1802 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1803
1804#define CPUMCTX16_LOADSEGREG(RegName) \
1805 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1806 CPUMCTX16_LOADHIDREG(RegName);
1807
1808 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1809
1810 CPUMCTX16_LOADREG(rax);
1811 CPUMCTX16_LOADREG(rbx);
1812 CPUMCTX16_LOADREG(rcx);
1813 CPUMCTX16_LOADREG(rdx);
1814 CPUMCTX16_LOADREG(rdi);
1815 CPUMCTX16_LOADREG(rsi);
1816 CPUMCTX16_LOADREG(rbp);
1817 CPUMCTX16_LOADREG(esp);
1818 CPUMCTX16_LOADREG(rip);
1819 CPUMCTX16_LOADREG(rflags);
1820
1821 CPUMCTX16_LOADSEGREG(cs);
1822 CPUMCTX16_LOADSEGREG(ds);
1823 CPUMCTX16_LOADSEGREG(es);
1824 CPUMCTX16_LOADSEGREG(fs);
1825 CPUMCTX16_LOADSEGREG(gs);
1826 CPUMCTX16_LOADSEGREG(ss);
1827
1828 CPUMCTX16_LOADREG(r8);
1829 CPUMCTX16_LOADREG(r9);
1830 CPUMCTX16_LOADREG(r10);
1831 CPUMCTX16_LOADREG(r11);
1832 CPUMCTX16_LOADREG(r12);
1833 CPUMCTX16_LOADREG(r13);
1834 CPUMCTX16_LOADREG(r14);
1835 CPUMCTX16_LOADREG(r15);
1836
1837 CPUMCTX16_LOADREG(cr0);
1838 CPUMCTX16_LOADREG(cr2);
1839 CPUMCTX16_LOADREG(cr3);
1840 CPUMCTX16_LOADREG(cr4);
1841
1842 CPUMCTX16_LOADDRXREG(0);
1843 CPUMCTX16_LOADDRXREG(1);
1844 CPUMCTX16_LOADDRXREG(2);
1845 CPUMCTX16_LOADDRXREG(3);
1846 CPUMCTX16_LOADDRXREG(4);
1847 CPUMCTX16_LOADDRXREG(5);
1848 CPUMCTX16_LOADDRXREG(6);
1849 CPUMCTX16_LOADDRXREG(7);
1850
1851 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
1852 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
1853 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
1854 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
1855
1856 CPUMCTX16_LOADREG(ldtr);
1857 CPUMCTX16_LOADREG(tr);
1858
1859 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
1860
1861 CPUMCTX16_LOADREG(msrEFER);
1862 CPUMCTX16_LOADREG(msrSTAR);
1863 CPUMCTX16_LOADREG(msrPAT);
1864 CPUMCTX16_LOADREG(msrLSTAR);
1865 CPUMCTX16_LOADREG(msrCSTAR);
1866 CPUMCTX16_LOADREG(msrSFMASK);
1867 CPUMCTX16_LOADREG(msrKERNELGSBASE);
1868
1869 CPUMCTX16_LOADHIDREG(ldtr);
1870 CPUMCTX16_LOADHIDREG(tr);
1871
1872#undef CPUMCTX16_LOADSEGREG
1873#undef CPUMCTX16_LOADHIDREG
1874#undef CPUMCTX16_LOADDRXREG
1875#undef CPUMCTX16_LOADREG
1876}
1877
1878
1879/**
1880 * @copydoc FNSSMINTLOADPREP
1881 */
1882static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1883{
1884 pVM->cpum.s.fPendingRestore = true;
1885 return VINF_SUCCESS;
1886}
1887
1888
1889/**
1890 * @copydoc FNSSMINTLOADEXEC
1891 */
1892static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1893{
1894 /*
1895 * Validate version.
1896 */
1897 if ( uVersion != CPUM_SAVED_STATE_VERSION
1898 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1899 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1900 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1901 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1902 {
1903 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1904 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1905 }
1906
1907 if (uPass == SSM_PASS_FINAL)
1908 {
1909 /*
1910 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1911 * really old SSM file versions.)
1912 */
1913 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1914 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1915 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1916 SSMR3SetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1917
1918 /*
1919 * Restore.
1920 */
1921 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1922 {
1923 PVMCPU pVCpu = &pVM->aCpus[i];
1924 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1925 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
1926
1927 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1928 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1929 pVCpu->cpum.s.Hyper.esp = uESP;
1930 }
1931
1932 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1933 {
1934 CPUMCTX_VER1_6 cpumctx16;
1935 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
1936 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
1937
1938 /* Save the old cpumctx state into the new one. */
1939 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
1940
1941 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
1942 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
1943 }
1944 else
1945 {
1946 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1947 {
1948 uint32_t cCpus;
1949 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1950 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1951 VERR_SSM_UNEXPECTED_DATA);
1952 }
1953 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1954 || pVM->cCpus == 1,
1955 ("cCpus=%u\n", pVM->cCpus),
1956 VERR_SSM_UNEXPECTED_DATA);
1957
1958 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1959 {
1960 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
1961 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
1962 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
1963 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1964 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
1965 }
1966 }
1967 }
1968
1969 pVM->cpum.s.fPendingRestore = false;
1970
1971 /*
1972 * Guest CPUIDs.
1973 */
1974 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
1975 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1976
1977 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
1978 * actually required. */
1979
1980 /*
1981 * Restore the CPUID leaves.
1982 *
1983 * Note that we support restoring less than the current amount of standard
1984 * leaves because we've been allowed more is newer version of VBox.
1985 */
1986 uint32_t cElements;
1987 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1988 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
1989 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1990 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
1991
1992 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1993 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
1994 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1995 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1996
1997 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1998 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
1999 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2000 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2001
2002 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2003
2004 /*
2005 * Check that the basic cpuid id information is unchanged.
2006 */
2007 /** @todo we should check the 64 bits capabilities too! */
2008 uint32_t au32CpuId[8] = {0};
2009 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2010 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2011 uint32_t au32CpuIdSaved[8];
2012 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2013 if (RT_SUCCESS(rc))
2014 {
2015 /* Ignore CPU stepping. */
2016 au32CpuId[4] &= 0xfffffff0;
2017 au32CpuIdSaved[4] &= 0xfffffff0;
2018
2019 /* Ignore APIC ID (AMD specs). */
2020 au32CpuId[5] &= ~0xff000000;
2021 au32CpuIdSaved[5] &= ~0xff000000;
2022
2023 /* Ignore the number of Logical CPUs (AMD specs). */
2024 au32CpuId[5] &= ~0x00ff0000;
2025 au32CpuIdSaved[5] &= ~0x00ff0000;
2026
2027 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2028 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2029 | X86_CPUID_FEATURE_ECX_VMX
2030 | X86_CPUID_FEATURE_ECX_SMX
2031 | X86_CPUID_FEATURE_ECX_EST
2032 | X86_CPUID_FEATURE_ECX_TM2
2033 | X86_CPUID_FEATURE_ECX_CNTXID
2034 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2035 | X86_CPUID_FEATURE_ECX_PDCM
2036 | X86_CPUID_FEATURE_ECX_DCA
2037 | X86_CPUID_FEATURE_ECX_X2APIC
2038 );
2039 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2040 | X86_CPUID_FEATURE_ECX_VMX
2041 | X86_CPUID_FEATURE_ECX_SMX
2042 | X86_CPUID_FEATURE_ECX_EST
2043 | X86_CPUID_FEATURE_ECX_TM2
2044 | X86_CPUID_FEATURE_ECX_CNTXID
2045 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2046 | X86_CPUID_FEATURE_ECX_PDCM
2047 | X86_CPUID_FEATURE_ECX_DCA
2048 | X86_CPUID_FEATURE_ECX_X2APIC
2049 );
2050
2051 /* Make sure we don't forget to update the masks when enabling
2052 * features in the future.
2053 */
2054 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2055 ( X86_CPUID_FEATURE_ECX_DTES64
2056 | X86_CPUID_FEATURE_ECX_VMX
2057 | X86_CPUID_FEATURE_ECX_SMX
2058 | X86_CPUID_FEATURE_ECX_EST
2059 | X86_CPUID_FEATURE_ECX_TM2
2060 | X86_CPUID_FEATURE_ECX_CNTXID
2061 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2062 | X86_CPUID_FEATURE_ECX_PDCM
2063 | X86_CPUID_FEATURE_ECX_DCA
2064 | X86_CPUID_FEATURE_ECX_X2APIC
2065 )));
2066 /* do the compare */
2067 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2068 {
2069 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2070 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2071 "Saved=%.*Rhxs\n"
2072 "Real =%.*Rhxs\n",
2073 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2074 sizeof(au32CpuId), au32CpuId));
2075 else
2076 {
2077 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2078 "Saved=%.*Rhxs\n"
2079 "Real =%.*Rhxs\n",
2080 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2081 sizeof(au32CpuId), au32CpuId));
2082 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2083 }
2084 }
2085 }
2086
2087 return rc;
2088}
2089
2090
2091/**
2092 * @copydoc FNSSMINTLOADPREP
2093 */
2094static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2095{
2096 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2097 return VINF_SUCCESS;
2098
2099 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2100 if (pVM->cpum.s.fPendingRestore)
2101 {
2102 LogRel(("CPUM: Missing state!\n"));
2103 return VERR_INTERNAL_ERROR_2;
2104 }
2105
2106 return VINF_SUCCESS;
2107}
2108
2109
2110/**
2111 * Checks if the CPUM state restore is still pending.
2112 *
2113 * @returns true / false.
2114 * @param pVM The VM handle.
2115 */
2116VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2117{
2118 return pVM->cpum.s.fPendingRestore;
2119}
2120
2121
2122/**
2123 * Formats the EFLAGS value into mnemonics.
2124 *
2125 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2126 * @param efl The EFLAGS value.
2127 */
2128static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2129{
2130 /*
2131 * Format the flags.
2132 */
2133 static const struct
2134 {
2135 const char *pszSet; const char *pszClear; uint32_t fFlag;
2136 } s_aFlags[] =
2137 {
2138 { "vip",NULL, X86_EFL_VIP },
2139 { "vif",NULL, X86_EFL_VIF },
2140 { "ac", NULL, X86_EFL_AC },
2141 { "vm", NULL, X86_EFL_VM },
2142 { "rf", NULL, X86_EFL_RF },
2143 { "nt", NULL, X86_EFL_NT },
2144 { "ov", "nv", X86_EFL_OF },
2145 { "dn", "up", X86_EFL_DF },
2146 { "ei", "di", X86_EFL_IF },
2147 { "tf", NULL, X86_EFL_TF },
2148 { "nt", "pl", X86_EFL_SF },
2149 { "nz", "zr", X86_EFL_ZF },
2150 { "ac", "na", X86_EFL_AF },
2151 { "po", "pe", X86_EFL_PF },
2152 { "cy", "nc", X86_EFL_CF },
2153 };
2154 char *psz = pszEFlags;
2155 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2156 {
2157 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2158 if (pszAdd)
2159 {
2160 strcpy(psz, pszAdd);
2161 psz += strlen(pszAdd);
2162 *psz++ = ' ';
2163 }
2164 }
2165 psz[-1] = '\0';
2166}
2167
2168
2169/**
2170 * Formats a full register dump.
2171 *
2172 * @param pVM VM Handle.
2173 * @param pCtx The context to format.
2174 * @param pCtxCore The context core to format.
2175 * @param pHlp Output functions.
2176 * @param enmType The dump type.
2177 * @param pszPrefix Register name prefix.
2178 */
2179static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2180{
2181 /*
2182 * Format the EFLAGS.
2183 */
2184 uint32_t efl = pCtxCore->eflags.u32;
2185 char szEFlags[80];
2186 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2187
2188 /*
2189 * Format the registers.
2190 */
2191 switch (enmType)
2192 {
2193 case CPUMDUMPTYPE_TERSE:
2194 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2195 pHlp->pfnPrintf(pHlp,
2196 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2197 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2198 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2199 "%sr14=%016RX64 %sr15=%016RX64\n"
2200 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2201 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2202 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2203 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2204 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2205 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2206 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2207 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2208 else
2209 pHlp->pfnPrintf(pHlp,
2210 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2211 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2212 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2213 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2214 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2215 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2216 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2217 break;
2218
2219 case CPUMDUMPTYPE_DEFAULT:
2220 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2221 pHlp->pfnPrintf(pHlp,
2222 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2223 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2224 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2225 "%sr14=%016RX64 %sr15=%016RX64\n"
2226 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2227 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2228 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2229 ,
2230 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2231 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2232 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2233 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2234 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2235 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2236 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2237 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2238 else
2239 pHlp->pfnPrintf(pHlp,
2240 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2241 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2242 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2243 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2244 ,
2245 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2246 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2247 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2248 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2249 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2250 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2251 break;
2252
2253 case CPUMDUMPTYPE_VERBOSE:
2254 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2255 pHlp->pfnPrintf(pHlp,
2256 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2257 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2258 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2259 "%sr14=%016RX64 %sr15=%016RX64\n"
2260 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2261 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2262 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2263 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2264 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2265 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2266 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2267 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2268 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2269 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2270 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2271 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2272 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2273 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2274 ,
2275 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2276 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2277 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2278 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2279 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2280 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2281 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2282 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2283 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2284 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2285 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2286 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2287 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2288 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2289 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2290 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2291 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2292 else
2293 pHlp->pfnPrintf(pHlp,
2294 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2295 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2296 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2297 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2298 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2299 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2300 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2301 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2302 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2303 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2304 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2305 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2306 ,
2307 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2308 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2309 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2310 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2311 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2312 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2313 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2314 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2315 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2316 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2317 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2318 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2319
2320 pHlp->pfnPrintf(pHlp,
2321 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2322 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2323 ,
2324 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2325 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2326 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2327 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2328 );
2329 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2330 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2331 {
2332 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2333 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2334 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2335 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2336 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2337 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2338 /** @todo This isn't entirenly correct and needs more work! */
2339 pHlp->pfnPrintf(pHlp,
2340 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2341 pszPrefix, iST, pszPrefix, iFPR,
2342 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2343 uTag, chSign, iInteger, u64Fraction, uExponent);
2344 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2345 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2346 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2347 else
2348 pHlp->pfnPrintf(pHlp, "\n");
2349 }
2350 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2351 pHlp->pfnPrintf(pHlp,
2352 iXMM & 1
2353 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2354 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2355 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2356 pCtx->fpu.aXMM[iXMM].au32[3],
2357 pCtx->fpu.aXMM[iXMM].au32[2],
2358 pCtx->fpu.aXMM[iXMM].au32[1],
2359 pCtx->fpu.aXMM[iXMM].au32[0]);
2360 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2361 if (pCtx->fpu.au32RsrvdRest[i])
2362 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2363 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2364
2365 pHlp->pfnPrintf(pHlp,
2366 "%sEFER =%016RX64\n"
2367 "%sPAT =%016RX64\n"
2368 "%sSTAR =%016RX64\n"
2369 "%sCSTAR =%016RX64\n"
2370 "%sLSTAR =%016RX64\n"
2371 "%sSFMASK =%016RX64\n"
2372 "%sKERNELGSBASE =%016RX64\n",
2373 pszPrefix, pCtx->msrEFER,
2374 pszPrefix, pCtx->msrPAT,
2375 pszPrefix, pCtx->msrSTAR,
2376 pszPrefix, pCtx->msrCSTAR,
2377 pszPrefix, pCtx->msrLSTAR,
2378 pszPrefix, pCtx->msrSFMASK,
2379 pszPrefix, pCtx->msrKERNELGSBASE);
2380 break;
2381 }
2382}
2383
2384
2385/**
2386 * Display all cpu states and any other cpum info.
2387 *
2388 * @param pVM VM Handle.
2389 * @param pHlp The info helper functions.
2390 * @param pszArgs Arguments, ignored.
2391 */
2392static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2393{
2394 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2395 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2396 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2397 cpumR3InfoHost(pVM, pHlp, pszArgs);
2398}
2399
2400
2401/**
2402 * Parses the info argument.
2403 *
2404 * The argument starts with 'verbose', 'terse' or 'default' and then
2405 * continues with the comment string.
2406 *
2407 * @param pszArgs The pointer to the argument string.
2408 * @param penmType Where to store the dump type request.
2409 * @param ppszComment Where to store the pointer to the comment string.
2410 */
2411static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2412{
2413 if (!pszArgs)
2414 {
2415 *penmType = CPUMDUMPTYPE_DEFAULT;
2416 *ppszComment = "";
2417 }
2418 else
2419 {
2420 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2421 {
2422 pszArgs += 5;
2423 *penmType = CPUMDUMPTYPE_VERBOSE;
2424 }
2425 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2426 {
2427 pszArgs += 5;
2428 *penmType = CPUMDUMPTYPE_TERSE;
2429 }
2430 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2431 {
2432 pszArgs += 7;
2433 *penmType = CPUMDUMPTYPE_DEFAULT;
2434 }
2435 else
2436 *penmType = CPUMDUMPTYPE_DEFAULT;
2437 *ppszComment = RTStrStripL(pszArgs);
2438 }
2439}
2440
2441
2442/**
2443 * Display the guest cpu state.
2444 *
2445 * @param pVM VM Handle.
2446 * @param pHlp The info helper functions.
2447 * @param pszArgs Arguments, ignored.
2448 */
2449static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2450{
2451 CPUMDUMPTYPE enmType;
2452 const char *pszComment;
2453 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2454
2455 /* @todo SMP support! */
2456 PVMCPU pVCpu = VMMGetCpu(pVM);
2457 if (!pVCpu)
2458 pVCpu = &pVM->aCpus[0];
2459
2460 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2461
2462 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2463 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2464}
2465
2466
2467/**
2468 * Display the current guest instruction
2469 *
2470 * @param pVM VM Handle.
2471 * @param pHlp The info helper functions.
2472 * @param pszArgs Arguments, ignored.
2473 */
2474static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2475{
2476 char szInstruction[256];
2477 /* @todo SMP support! */
2478 PVMCPU pVCpu = VMMGetCpu(pVM);
2479 if (!pVCpu)
2480 pVCpu = &pVM->aCpus[0];
2481
2482 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2483 if (RT_SUCCESS(rc))
2484 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2485}
2486
2487
2488/**
2489 * Display the hypervisor cpu state.
2490 *
2491 * @param pVM VM Handle.
2492 * @param pHlp The info helper functions.
2493 * @param pszArgs Arguments, ignored.
2494 */
2495static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2496{
2497 CPUMDUMPTYPE enmType;
2498 const char *pszComment;
2499 /* @todo SMP */
2500 PVMCPU pVCpu = &pVM->aCpus[0];
2501
2502 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2503 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2504 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2505 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2506}
2507
2508
2509/**
2510 * Display the host cpu state.
2511 *
2512 * @param pVM VM Handle.
2513 * @param pHlp The info helper functions.
2514 * @param pszArgs Arguments, ignored.
2515 */
2516static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2517{
2518 CPUMDUMPTYPE enmType;
2519 const char *pszComment;
2520 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2521 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2522
2523 /*
2524 * Format the EFLAGS.
2525 */
2526 /* @todo SMP */
2527 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2528#if HC_ARCH_BITS == 32
2529 uint32_t efl = pCtx->eflags.u32;
2530#else
2531 uint64_t efl = pCtx->rflags;
2532#endif
2533 char szEFlags[80];
2534 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2535
2536 /*
2537 * Format the registers.
2538 */
2539#if HC_ARCH_BITS == 32
2540# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2541 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2542# endif
2543 {
2544 pHlp->pfnPrintf(pHlp,
2545 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2546 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2547 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2548 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2549 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2550 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2551 ,
2552 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2553 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2554 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2555 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2556 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2557 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2558 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2559 }
2560# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2561 else
2562# endif
2563#endif
2564#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2565 {
2566 pHlp->pfnPrintf(pHlp,
2567 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2568 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2569 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2570 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2571 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2572 "r14=%016RX64 r15=%016RX64\n"
2573 "iopl=%d %31s\n"
2574 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2575 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2576 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2577 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2578 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2579 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2580 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2581 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2582 ,
2583 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2584 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2585 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2586 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2587 pCtx->r11, pCtx->r12, pCtx->r13,
2588 pCtx->r14, pCtx->r15,
2589 X86_EFL_GET_IOPL(efl), szEFlags,
2590 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2591 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2592 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2593 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2594 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2595 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2596 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2597 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2598 }
2599#endif
2600}
2601
2602
2603/**
2604 * Get L1 cache / TLS associativity.
2605 */
2606static const char *getCacheAss(unsigned u, char *pszBuf)
2607{
2608 if (u == 0)
2609 return "res0 ";
2610 if (u == 1)
2611 return "direct";
2612 if (u >= 256)
2613 return "???";
2614
2615 RTStrPrintf(pszBuf, 16, "%d way", u);
2616 return pszBuf;
2617}
2618
2619
2620/**
2621 * Get L2 cache soociativity.
2622 */
2623const char *getL2CacheAss(unsigned u)
2624{
2625 switch (u)
2626 {
2627 case 0: return "off ";
2628 case 1: return "direct";
2629 case 2: return "2 way ";
2630 case 3: return "res3 ";
2631 case 4: return "4 way ";
2632 case 5: return "res5 ";
2633 case 6: return "8 way "; case 7: return "res7 ";
2634 case 8: return "16 way";
2635 case 9: return "res9 ";
2636 case 10: return "res10 ";
2637 case 11: return "res11 ";
2638 case 12: return "res12 ";
2639 case 13: return "res13 ";
2640 case 14: return "res14 ";
2641 case 15: return "fully ";
2642 default:
2643 return "????";
2644 }
2645}
2646
2647
2648/**
2649 * Display the guest CpuId leaves.
2650 *
2651 * @param pVM VM Handle.
2652 * @param pHlp The info helper functions.
2653 * @param pszArgs "terse", "default" or "verbose".
2654 */
2655static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2656{
2657 /*
2658 * Parse the argument.
2659 */
2660 unsigned iVerbosity = 1;
2661 if (pszArgs)
2662 {
2663 pszArgs = RTStrStripL(pszArgs);
2664 if (!strcmp(pszArgs, "terse"))
2665 iVerbosity--;
2666 else if (!strcmp(pszArgs, "verbose"))
2667 iVerbosity++;
2668 }
2669
2670 /*
2671 * Start cracking.
2672 */
2673 CPUMCPUID Host;
2674 CPUMCPUID Guest;
2675 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2676
2677 pHlp->pfnPrintf(pHlp,
2678 " RAW Standard CPUIDs\n"
2679 " Function eax ebx ecx edx\n");
2680 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2681 {
2682 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2683 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2684
2685 pHlp->pfnPrintf(pHlp,
2686 "Gst: %08x %08x %08x %08x %08x%s\n"
2687 "Hst: %08x %08x %08x %08x\n",
2688 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2689 i <= cStdMax ? "" : "*",
2690 Host.eax, Host.ebx, Host.ecx, Host.edx);
2691 }
2692
2693 /*
2694 * If verbose, decode it.
2695 */
2696 if (iVerbosity)
2697 {
2698 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2699 pHlp->pfnPrintf(pHlp,
2700 "Name: %.04s%.04s%.04s\n"
2701 "Supports: 0-%x\n",
2702 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2703 }
2704
2705 /*
2706 * Get Features.
2707 */
2708 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2709 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2710 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2711 if (cStdMax >= 1 && iVerbosity)
2712 {
2713 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2714 uint32_t uEAX = Guest.eax;
2715
2716 pHlp->pfnPrintf(pHlp,
2717 "Family: %d \tExtended: %d \tEffective: %d\n"
2718 "Model: %d \tExtended: %d \tEffective: %d\n"
2719 "Stepping: %d\n"
2720 "Type: %d\n"
2721 "APIC ID: %#04x\n"
2722 "Logical CPUs: %d\n"
2723 "CLFLUSH Size: %d\n"
2724 "Brand ID: %#04x\n",
2725 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2726 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2727 ASMGetCpuStepping(uEAX),
2728 (uEAX >> 12) & 3,
2729 (Guest.ebx >> 24) & 0xff,
2730 (Guest.ebx >> 16) & 0xff,
2731 (Guest.ebx >> 8) & 0xff,
2732 (Guest.ebx >> 0) & 0xff);
2733 if (iVerbosity == 1)
2734 {
2735 uint32_t uEDX = Guest.edx;
2736 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2737 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2738 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2739 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2740 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2741 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2742 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2743 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2744 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2745 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2746 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2747 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2748 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2749 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2750 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2751 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2752 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2753 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2754 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2755 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2756 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2757 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2758 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2759 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2760 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2761 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2762 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2763 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2764 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2765 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2766 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2767 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2768 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2769 pHlp->pfnPrintf(pHlp, "\n");
2770
2771 uint32_t uECX = Guest.ecx;
2772 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2773 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2774 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2775 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2776 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2777 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2778 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2779 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2780 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2781 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2782 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2783 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2784 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2785 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2786 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2787 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2788 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2789 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2790 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " 17");
2791 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2792 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4_1");
2793 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4_2");
2794 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2795 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2796 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2797 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " 24");
2798 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2799 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2800 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2801 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2802 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2803 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2804 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2805 pHlp->pfnPrintf(pHlp, "\n");
2806 }
2807 else
2808 {
2809 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2810
2811 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2812 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2813 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2814 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2815
2816 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2817 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
2818 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
2819 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
2820 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
2821 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
2822 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
2823 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
2824 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
2825 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
2826 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
2827 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
2828 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
2829 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
2830 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
2831 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
2832 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
2833 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
2834 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
2835 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
2836 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
2837 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
2838 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
2839 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
2840 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
2841 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
2842 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
2843 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
2844 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
2845 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
2846 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
2847 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
2848 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
2849
2850 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
2851 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
2852 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
2853 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
2854 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
2855 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
2856 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
2857 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
2858 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
2859 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
2860 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
2861 pHlp->pfnPrintf(pHlp, "FMA = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
2862 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
2863 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
2864 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
2865 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
2866 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
2867 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
2868 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
2869 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
2870 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
2871 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
2872 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
2873 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
2874 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
2875 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
2876 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
2877 }
2878 }
2879 if (cStdMax >= 2 && iVerbosity)
2880 {
2881 /** @todo */
2882 }
2883
2884 /*
2885 * Extended.
2886 * Implemented after AMD specs.
2887 */
2888 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
2889
2890 pHlp->pfnPrintf(pHlp,
2891 "\n"
2892 " RAW Extended CPUIDs\n"
2893 " Function eax ebx ecx edx\n");
2894 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
2895 {
2896 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
2897 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2898
2899 pHlp->pfnPrintf(pHlp,
2900 "Gst: %08x %08x %08x %08x %08x%s\n"
2901 "Hst: %08x %08x %08x %08x\n",
2902 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2903 i <= cExtMax ? "" : "*",
2904 Host.eax, Host.ebx, Host.ecx, Host.edx);
2905 }
2906
2907 /*
2908 * Understandable output
2909 */
2910 if (iVerbosity)
2911 {
2912 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
2913 pHlp->pfnPrintf(pHlp,
2914 "Ext Name: %.4s%.4s%.4s\n"
2915 "Ext Supports: 0x80000000-%#010x\n",
2916 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2917 }
2918
2919 if (iVerbosity && cExtMax >= 1)
2920 {
2921 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
2922 uint32_t uEAX = Guest.eax;
2923 pHlp->pfnPrintf(pHlp,
2924 "Family: %d \tExtended: %d \tEffective: %d\n"
2925 "Model: %d \tExtended: %d \tEffective: %d\n"
2926 "Stepping: %d\n"
2927 "Brand ID: %#05x\n",
2928 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2929 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2930 ASMGetCpuStepping(uEAX),
2931 Guest.ebx & 0xfff);
2932
2933 if (iVerbosity == 1)
2934 {
2935 uint32_t uEDX = Guest.edx;
2936 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2937 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2938 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2939 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2940 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2941 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2942 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2943 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2944 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2945 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2946 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2947 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2948 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
2949 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2950 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2951 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2952 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2953 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2954 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2955 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
2956 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
2957 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
2958 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
2959 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
2960 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2961 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2962 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
2963 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
2964 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
2965 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
2966 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
2967 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
2968 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
2969 pHlp->pfnPrintf(pHlp, "\n");
2970
2971 uint32_t uECX = Guest.ecx;
2972 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2973 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
2974 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
2975 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
2976 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
2977 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
2978 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
2979 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
2980 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
2981 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
2982 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
2983 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
2984 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
2985 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
2986 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
2987 for (unsigned iBit = 5; iBit < 32; iBit++)
2988 if (uECX & RT_BIT(iBit))
2989 pHlp->pfnPrintf(pHlp, " %d", iBit);
2990 pHlp->pfnPrintf(pHlp, "\n");
2991 }
2992 else
2993 {
2994 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2995
2996 uint32_t uEdxGst = Guest.edx;
2997 uint32_t uEdxHst = Host.edx;
2998 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2999 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3000 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3001 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3002 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3003 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3004 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3005 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3006 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3007 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3008 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3009 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3010 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3011 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3012 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3013 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3014 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3015 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3016 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3017 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3018 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3019 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3020 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3021 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3022 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3023 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3024 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3025 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3026 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3027 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3028 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3029 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3030 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3031
3032 uint32_t uEcxGst = Guest.ecx;
3033 uint32_t uEcxHst = Host.ecx;
3034 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3035 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3036 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3037 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3038 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3039 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3040 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3041 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3042 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3043 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3044 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3045 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3046 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3047 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3048 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3049 }
3050 }
3051
3052 if (iVerbosity && cExtMax >= 2)
3053 {
3054 char szString[4*4*3+1] = {0};
3055 uint32_t *pu32 = (uint32_t *)szString;
3056 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3057 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3058 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3059 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3060 if (cExtMax >= 3)
3061 {
3062 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3063 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3064 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3065 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3066 }
3067 if (cExtMax >= 4)
3068 {
3069 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3070 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3071 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3072 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3073 }
3074 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3075 }
3076
3077 if (iVerbosity && cExtMax >= 5)
3078 {
3079 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3080 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3081 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3082 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3083 char sz1[32];
3084 char sz2[32];
3085
3086 pHlp->pfnPrintf(pHlp,
3087 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3088 "TLB 2/4M Data: %s %3d entries\n",
3089 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3090 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3091 pHlp->pfnPrintf(pHlp,
3092 "TLB 4K Instr/Uni: %s %3d entries\n"
3093 "TLB 4K Data: %s %3d entries\n",
3094 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3095 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3096 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3097 "L1 Instr Cache Lines Per Tag: %d\n"
3098 "L1 Instr Cache Associativity: %s\n"
3099 "L1 Instr Cache Size: %d KB\n",
3100 (uEDX >> 0) & 0xff,
3101 (uEDX >> 8) & 0xff,
3102 getCacheAss((uEDX >> 16) & 0xff, sz1),
3103 (uEDX >> 24) & 0xff);
3104 pHlp->pfnPrintf(pHlp,
3105 "L1 Data Cache Line Size: %d bytes\n"
3106 "L1 Data Cache Lines Per Tag: %d\n"
3107 "L1 Data Cache Associativity: %s\n"
3108 "L1 Data Cache Size: %d KB\n",
3109 (uECX >> 0) & 0xff,
3110 (uECX >> 8) & 0xff,
3111 getCacheAss((uECX >> 16) & 0xff, sz1),
3112 (uECX >> 24) & 0xff);
3113 }
3114
3115 if (iVerbosity && cExtMax >= 6)
3116 {
3117 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3118 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3119 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3120
3121 pHlp->pfnPrintf(pHlp,
3122 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3123 "L2 TLB 2/4M Data: %s %4d entries\n",
3124 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3125 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3126 pHlp->pfnPrintf(pHlp,
3127 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3128 "L2 TLB 4K Data: %s %4d entries\n",
3129 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3130 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3131 pHlp->pfnPrintf(pHlp,
3132 "L2 Cache Line Size: %d bytes\n"
3133 "L2 Cache Lines Per Tag: %d\n"
3134 "L2 Cache Associativity: %s\n"
3135 "L2 Cache Size: %d KB\n",
3136 (uEDX >> 0) & 0xff,
3137 (uEDX >> 8) & 0xf,
3138 getL2CacheAss((uEDX >> 12) & 0xf),
3139 (uEDX >> 16) & 0xffff);
3140 }
3141
3142 if (iVerbosity && cExtMax >= 7)
3143 {
3144 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3145
3146 pHlp->pfnPrintf(pHlp, "APM Features: ");
3147 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3148 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3149 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3150 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3151 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3152 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3153 for (unsigned iBit = 6; iBit < 32; iBit++)
3154 if (uEDX & RT_BIT(iBit))
3155 pHlp->pfnPrintf(pHlp, " %d", iBit);
3156 pHlp->pfnPrintf(pHlp, "\n");
3157 }
3158
3159 if (iVerbosity && cExtMax >= 8)
3160 {
3161 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3162 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3163
3164 pHlp->pfnPrintf(pHlp,
3165 "Physical Address Width: %d bits\n"
3166 "Virtual Address Width: %d bits\n",
3167 (uEAX >> 0) & 0xff,
3168 (uEAX >> 8) & 0xff);
3169 pHlp->pfnPrintf(pHlp,
3170 "Physical Core Count: %d\n",
3171 (uECX >> 0) & 0xff);
3172 }
3173
3174
3175 /*
3176 * Centaur.
3177 */
3178 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3179
3180 pHlp->pfnPrintf(pHlp,
3181 "\n"
3182 " RAW Centaur CPUIDs\n"
3183 " Function eax ebx ecx edx\n");
3184 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3185 {
3186 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3187 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3188
3189 pHlp->pfnPrintf(pHlp,
3190 "Gst: %08x %08x %08x %08x %08x%s\n"
3191 "Hst: %08x %08x %08x %08x\n",
3192 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3193 i <= cCentaurMax ? "" : "*",
3194 Host.eax, Host.ebx, Host.ecx, Host.edx);
3195 }
3196
3197 /*
3198 * Understandable output
3199 */
3200 if (iVerbosity)
3201 {
3202 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3203 pHlp->pfnPrintf(pHlp,
3204 "Centaur Supports: 0xc0000000-%#010x\n",
3205 Guest.eax);
3206 }
3207
3208 if (iVerbosity && cCentaurMax >= 1)
3209 {
3210 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3211 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3212 uint32_t uEdxHst = Host.edx;
3213
3214 if (iVerbosity == 1)
3215 {
3216 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3217 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3218 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3219 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3220 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3221 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3222 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3223 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3224 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3225 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3226 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3227 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3228 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3229 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3230 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3231 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3232 for (unsigned iBit = 14; iBit < 32; iBit++)
3233 if (uEdxGst & RT_BIT(iBit))
3234 pHlp->pfnPrintf(pHlp, " %d", iBit);
3235 pHlp->pfnPrintf(pHlp, "\n");
3236 }
3237 else
3238 {
3239 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3240 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3241 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3242 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3243 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3244 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3245 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3246 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3247 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3248 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3249 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3250 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3251 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3252 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3253 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3254 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3255 for (unsigned iBit = 14; iBit < 32; iBit++)
3256 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3257 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3258 pHlp->pfnPrintf(pHlp, "\n");
3259 }
3260 }
3261}
3262
3263
3264/**
3265 * Structure used when disassembling and instructions in DBGF.
3266 * This is used so the reader function can get the stuff it needs.
3267 */
3268typedef struct CPUMDISASSTATE
3269{
3270 /** Pointer to the CPU structure. */
3271 PDISCPUSTATE pCpu;
3272 /** The VM handle. */
3273 PVM pVM;
3274 /** The VMCPU handle. */
3275 PVMCPU pVCpu;
3276 /** Pointer to the first byte in the segemnt. */
3277 RTGCUINTPTR GCPtrSegBase;
3278 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3279 RTGCUINTPTR GCPtrSegEnd;
3280 /** The size of the segment minus 1. */
3281 RTGCUINTPTR cbSegLimit;
3282 /** Pointer to the current page - R3 Ptr. */
3283 void const *pvPageR3;
3284 /** Pointer to the current page - GC Ptr. */
3285 RTGCPTR pvPageGC;
3286 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3287 PGMPAGEMAPLOCK PageMapLock;
3288 /** Whether the PageMapLock is valid or not. */
3289 bool fLocked;
3290 /** 64 bits mode or not. */
3291 bool f64Bits;
3292} CPUMDISASSTATE, *PCPUMDISASSTATE;
3293
3294
3295/**
3296 * Instruction reader.
3297 *
3298 * @returns VBox status code.
3299 * @param PtrSrc Address to read from.
3300 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3301 * @param pu8Dst Where to store the bytes.
3302 * @param cbRead Number of bytes to read.
3303 * @param uDisCpu Pointer to the disassembler cpu state.
3304 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3305 */
3306static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3307{
3308 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3309 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3310 Assert(cbRead > 0);
3311 for (;;)
3312 {
3313 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3314
3315 /* Need to update the page translation? */
3316 if ( !pState->pvPageR3
3317 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3318 {
3319 int rc = VINF_SUCCESS;
3320
3321 /* translate the address */
3322 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3323 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3324 && !HWACCMIsEnabled(pState->pVM))
3325 {
3326 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3327 if (!pState->pvPageR3)
3328 rc = VERR_INVALID_POINTER;
3329 }
3330 else
3331 {
3332 /* Release mapping lock previously acquired. */
3333 if (pState->fLocked)
3334 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3335 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3336 pState->fLocked = RT_SUCCESS_NP(rc);
3337 }
3338 if (RT_FAILURE(rc))
3339 {
3340 pState->pvPageR3 = NULL;
3341 return rc;
3342 }
3343 }
3344
3345 /* check the segemnt limit */
3346 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3347 return VERR_OUT_OF_SELECTOR_BOUNDS;
3348
3349 /* calc how much we can read */
3350 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3351 if (!pState->f64Bits)
3352 {
3353 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3354 if (cb > cbSeg && cbSeg)
3355 cb = cbSeg;
3356 }
3357 if (cb > cbRead)
3358 cb = cbRead;
3359
3360 /* read and advance */
3361 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3362 cbRead -= cb;
3363 if (!cbRead)
3364 return VINF_SUCCESS;
3365 pu8Dst += cb;
3366 PtrSrc += cb;
3367 }
3368}
3369
3370
3371/**
3372 * Disassemble an instruction and return the information in the provided structure.
3373 *
3374 * @returns VBox status code.
3375 * @param pVM VM Handle
3376 * @param pVCpu VMCPU Handle
3377 * @param pCtx CPU context
3378 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3379 * @param pCpu Disassembly state
3380 * @param pszPrefix String prefix for logging (debug only)
3381 *
3382 */
3383VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3384{
3385 CPUMDISASSTATE State;
3386 int rc;
3387
3388 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3389 State.pCpu = pCpu;
3390 State.pvPageGC = 0;
3391 State.pvPageR3 = NULL;
3392 State.pVM = pVM;
3393 State.pVCpu = pVCpu;
3394 State.fLocked = false;
3395 State.f64Bits = false;
3396
3397 /*
3398 * Get selector information.
3399 */
3400 if ( (pCtx->cr0 & X86_CR0_PE)
3401 && pCtx->eflags.Bits.u1VM == 0)
3402 {
3403 if (CPUMAreHiddenSelRegsValid(pVM))
3404 {
3405 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3406 State.GCPtrSegBase = pCtx->csHid.u64Base;
3407 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3408 State.cbSegLimit = pCtx->csHid.u32Limit;
3409 pCpu->mode = (State.f64Bits)
3410 ? CPUMODE_64BIT
3411 : pCtx->csHid.Attr.n.u1DefBig
3412 ? CPUMODE_32BIT
3413 : CPUMODE_16BIT;
3414 }
3415 else
3416 {
3417 DBGFSELINFO SelInfo;
3418
3419 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3420 if (RT_FAILURE(rc))
3421 {
3422 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3423 return rc;
3424 }
3425
3426 /*
3427 * Validate the selector.
3428 */
3429 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3430 if (RT_FAILURE(rc))
3431 {
3432 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3433 return rc;
3434 }
3435 State.GCPtrSegBase = SelInfo.GCPtrBase;
3436 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3437 State.cbSegLimit = SelInfo.cbLimit;
3438 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3439 }
3440 }
3441 else
3442 {
3443 /* real or V86 mode */
3444 pCpu->mode = CPUMODE_16BIT;
3445 State.GCPtrSegBase = pCtx->cs * 16;
3446 State.GCPtrSegEnd = 0xFFFFFFFF;
3447 State.cbSegLimit = 0xFFFFFFFF;
3448 }
3449
3450 /*
3451 * Disassemble the instruction.
3452 */
3453 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3454 pCpu->apvUserData[0] = &State;
3455
3456 uint32_t cbInstr;
3457#ifndef LOG_ENABLED
3458 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3459 if (RT_SUCCESS(rc))
3460 {
3461#else
3462 char szOutput[160];
3463 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3464 if (RT_SUCCESS(rc))
3465 {
3466 /* log it */
3467 if (pszPrefix)
3468 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3469 else
3470 Log(("%s", szOutput));
3471#endif
3472 rc = VINF_SUCCESS;
3473 }
3474 else
3475 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3476
3477 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3478 if (State.fLocked)
3479 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3480
3481 return rc;
3482}
3483
3484#ifdef DEBUG
3485
3486/**
3487 * Disassemble an instruction and dump it to the log
3488 *
3489 * @returns VBox status code.
3490 * @param pVM VM Handle
3491 * @param pVCpu VMCPU Handle
3492 * @param pCtx CPU context
3493 * @param pc GC instruction pointer
3494 * @param pszPrefix String prefix for logging
3495 *
3496 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3497 */
3498VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3499{
3500 DISCPUSTATE Cpu;
3501 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3502}
3503
3504
3505/**
3506 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3507 *
3508 * @internal
3509 */
3510VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3511{
3512 /** @todo SMP support!! */
3513 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3514}
3515
3516#endif /* DEBUG */
3517
3518/**
3519 * API for controlling a few of the CPU features found in CR4.
3520 *
3521 * Currently only X86_CR4_TSD is accepted as input.
3522 *
3523 * @returns VBox status code.
3524 *
3525 * @param pVM The VM handle.
3526 * @param fOr The CR4 OR mask.
3527 * @param fAnd The CR4 AND mask.
3528 */
3529VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3530{
3531 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3532 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3533
3534 pVM->cpum.s.CR4.OrMask &= fAnd;
3535 pVM->cpum.s.CR4.OrMask |= fOr;
3536
3537 return VINF_SUCCESS;
3538}
3539
3540
3541/**
3542 * Gets a pointer to the array of standard CPUID leaves.
3543 *
3544 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3545 *
3546 * @returns Pointer to the standard CPUID leaves (read-only).
3547 * @param pVM The VM handle.
3548 * @remark Intended for PATM.
3549 */
3550VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3551{
3552 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3553}
3554
3555
3556/**
3557 * Gets a pointer to the array of extended CPUID leaves.
3558 *
3559 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3560 *
3561 * @returns Pointer to the extended CPUID leaves (read-only).
3562 * @param pVM The VM handle.
3563 * @remark Intended for PATM.
3564 */
3565VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3566{
3567 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3568}
3569
3570
3571/**
3572 * Gets a pointer to the array of centaur CPUID leaves.
3573 *
3574 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3575 *
3576 * @returns Pointer to the centaur CPUID leaves (read-only).
3577 * @param pVM The VM handle.
3578 * @remark Intended for PATM.
3579 */
3580VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3581{
3582 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3583}
3584
3585
3586/**
3587 * Gets a pointer to the default CPUID leaf.
3588 *
3589 * @returns Pointer to the default CPUID leaf (read-only).
3590 * @param pVM The VM handle.
3591 * @remark Intended for PATM.
3592 */
3593VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3594{
3595 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3596}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette