VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 20961

Last change on this file since 20961 was 20917, checked in by vboxsync, 15 years ago

Move VBOX_WITH_MULTI_CORE to Config.kmk

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 114.2 KB
Line 
1/* $Id: CPUM.cpp 20917 2009-06-25 09:24:06Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum CPUM - CPU Monitor / Manager
23 *
24 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
25 * also responsible for lazy FPU handling and some of the context loading
26 * in raw mode.
27 *
28 * There are three CPU contexts, the most important one is the guest one (GC).
29 * When running in raw-mode (RC) there is a special hyper context for the VMM
30 * part that floats around inside the guest address space. When running in
31 * raw-mode, CPUM also maintains a host context for saving and restoring
32 * registers accross world switches. This latter is done in cooperation with the
33 * world switcher (@see pg_vmm).
34 *
35 * @see grp_cpum
36 */
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#define LOG_GROUP LOG_GROUP_CPUM
42#include <VBox/cpum.h>
43#include <VBox/cpumdis.h>
44#include <VBox/pgm.h>
45#include <VBox/pdm.h>
46#include <VBox/mm.h>
47#include <VBox/selm.h>
48#include <VBox/dbgf.h>
49#include <VBox/patm.h>
50#include <VBox/hwaccm.h>
51#include <VBox/ssm.h>
52#include "CPUMInternal.h"
53#include <VBox/vm.h>
54
55#include <VBox/param.h>
56#include <VBox/dis.h>
57#include <VBox/err.h>
58#include <VBox/log.h>
59#include <iprt/assert.h>
60#include <iprt/asm.h>
61#include <iprt/string.h>
62#include <iprt/mp.h>
63#include <iprt/cpuset.h>
64
65
66/*******************************************************************************
67* Defined Constants And Macros *
68*******************************************************************************/
69/** The saved state version. */
70#define CPUM_SAVED_STATE_VERSION 10
71/** The saved state version for the 2.1 trunk before the MSR changes. */
72#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
73/** The saved state version of 2.0, used for backwards compatibility. */
74#define CPUM_SAVED_STATE_VERSION_VER2_0 8
75/** The saved state version of 1.6, used for backwards compatability. */
76#define CPUM_SAVED_STATE_VERSION_VER1_6 6
77
78
79/*******************************************************************************
80* Structures and Typedefs *
81*******************************************************************************/
82
83/**
84 * What kind of cpu info dump to perform.
85 */
86typedef enum CPUMDUMPTYPE
87{
88 CPUMDUMPTYPE_TERSE,
89 CPUMDUMPTYPE_DEFAULT,
90 CPUMDUMPTYPE_VERBOSE
91
92} CPUMDUMPTYPE;
93/** Pointer to a cpu info dump type. */
94typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static int cpumR3CpuIdInit(PVM pVM);
101static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM);
102static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
103static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
104static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
105static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
106static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
107static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109
110
111/**
112 * Initializes the CPUM.
113 *
114 * @returns VBox status code.
115 * @param pVM The VM to operate on.
116 */
117VMMR3DECL(int) CPUMR3Init(PVM pVM)
118{
119 LogFlow(("CPUMR3Init\n"));
120
121 /*
122 * Assert alignment and sizes.
123 */
124 AssertCompileMemberAlignment(VM, cpum.s, 32);
125 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
126 AssertCompileSizeAlignment(CPUMCTX, 64);
127 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
128 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
129 AssertCompileMemberAlignment(VM, cpum, 64);
130 AssertCompileMemberAlignment(VM, aCpus, 64);
131 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
132 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
133
134 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
135 pVM->cpum.s.ulOffCPUMCPU = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
136 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.ulOffCPUMCPU == (uintptr_t)&pVM->aCpus[0].cpum);
137
138 /* Calculate the offset from CPUMCPU to CPUM. */
139 for (unsigned i=0;i<pVM->cCPUs;i++)
140 {
141 PVMCPU pVCpu = &pVM->aCpus[i];
142
143 /*
144 * Setup any fixed pointers and offsets.
145 */
146 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
147 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
148
149 pVCpu->cpum.s.ulOffCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
150 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.ulOffCPUM == (uintptr_t)&pVM->cpum);
151 }
152
153 /*
154 * Check that the CPU supports the minimum features we require.
155 */
156 if (!ASMHasCpuId())
157 {
158 Log(("The CPU doesn't support CPUID!\n"));
159 return VERR_UNSUPPORTED_CPU;
160 }
161 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
162 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
163
164 /* Setup the CR4 AND and OR masks used in the switcher */
165 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
166 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
167 {
168 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
169 /* No FXSAVE implies no SSE */
170 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
171 pVM->cpum.s.CR4.OrMask = 0;
172 }
173 else
174 {
175 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
176 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
177 }
178
179 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
180 {
181 Log(("The CPU doesn't support MMX!\n"));
182 return VERR_UNSUPPORTED_CPU;
183 }
184 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
185 {
186 Log(("The CPU doesn't support TSC!\n"));
187 return VERR_UNSUPPORTED_CPU;
188 }
189 /* Bogus on AMD? */
190 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
191 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
192
193 /*
194 * Setup hypervisor startup values.
195 */
196
197 /*
198 * Register saved state data item.
199 */
200 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
201 NULL, cpumR3Save, NULL,
202 NULL, cpumR3Load, NULL);
203 if (RT_FAILURE(rc))
204 return rc;
205
206 /* Query the CPU manufacturer. */
207 uint32_t uEAX, uEBX, uECX, uEDX;
208 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
209 if ( uEAX >= 1
210 && uEBX == X86_CPUID_VENDOR_AMD_EBX
211 && uECX == X86_CPUID_VENDOR_AMD_ECX
212 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
213 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_AMD;
214 else if ( uEAX >= 1
215 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
216 && uECX == X86_CPUID_VENDOR_INTEL_ECX
217 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
218 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_INTEL;
219 else /** @todo Via */
220 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_UNKNOWN;
221
222 /*
223 * Register info handlers.
224 */
225 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
226 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
228 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
229 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
230 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
231
232 /*
233 * Initialize the Guest CPU state.
234 */
235 rc = cpumR3CpuIdInit(pVM);
236 if (RT_FAILURE(rc))
237 return rc;
238 CPUMR3Reset(pVM);
239 return VINF_SUCCESS;
240}
241
242
243/**
244 * Initializes the per-VCPU CPUM.
245 *
246 * @returns VBox status code.
247 * @param pVM The VM to operate on.
248 */
249VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
250{
251 LogFlow(("CPUMR3InitCPU\n"));
252 return VINF_SUCCESS;
253}
254
255
256/**
257 * Initializes the emulated CPU's cpuid information.
258 *
259 * @returns VBox status code.
260 * @param pVM The VM to operate on.
261 */
262static int cpumR3CpuIdInit(PVM pVM)
263{
264 PCPUM pCPUM = &pVM->cpum.s;
265 uint32_t i;
266
267 /*
268 * Get the host CPUIDs.
269 */
270 for (i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
271 ASMCpuId_Idx_ECX(i, 0,
272 &pCPUM->aGuestCpuIdStd[i].eax, &pCPUM->aGuestCpuIdStd[i].ebx,
273 &pCPUM->aGuestCpuIdStd[i].ecx, &pCPUM->aGuestCpuIdStd[i].edx);
274 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
275 ASMCpuId(0x80000000 + i,
276 &pCPUM->aGuestCpuIdExt[i].eax, &pCPUM->aGuestCpuIdExt[i].ebx,
277 &pCPUM->aGuestCpuIdExt[i].ecx, &pCPUM->aGuestCpuIdExt[i].edx);
278 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
279 ASMCpuId(0xc0000000 + i,
280 &pCPUM->aGuestCpuIdCentaur[i].eax, &pCPUM->aGuestCpuIdCentaur[i].ebx,
281 &pCPUM->aGuestCpuIdCentaur[i].ecx, &pCPUM->aGuestCpuIdCentaur[i].edx);
282
283
284 /*
285 * Only report features we can support.
286 */
287 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
288 | X86_CPUID_FEATURE_EDX_VME
289 | X86_CPUID_FEATURE_EDX_DE
290 | X86_CPUID_FEATURE_EDX_PSE
291 | X86_CPUID_FEATURE_EDX_TSC
292 | X86_CPUID_FEATURE_EDX_MSR
293 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
294 | X86_CPUID_FEATURE_EDX_MCE
295 | X86_CPUID_FEATURE_EDX_CX8
296 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
297 /** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
298 //| X86_CPUID_FEATURE_EDX_SEP
299 | X86_CPUID_FEATURE_EDX_MTRR
300 | X86_CPUID_FEATURE_EDX_PGE
301 | X86_CPUID_FEATURE_EDX_MCA
302 | X86_CPUID_FEATURE_EDX_CMOV
303 | X86_CPUID_FEATURE_EDX_PAT
304 | X86_CPUID_FEATURE_EDX_PSE36
305 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
306 | X86_CPUID_FEATURE_EDX_CLFSH
307 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
308 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
309 | X86_CPUID_FEATURE_EDX_MMX
310 | X86_CPUID_FEATURE_EDX_FXSR
311 | X86_CPUID_FEATURE_EDX_SSE
312 | X86_CPUID_FEATURE_EDX_SSE2
313 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
314 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
315 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
316 //| X86_CPUID_FEATURE_EDX_PBE - no pneding break enabled.
317 | 0;
318 pCPUM->aGuestCpuIdStd[1].ecx &= 0
319 | X86_CPUID_FEATURE_ECX_SSE3
320 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
321 | ((pVM->cCPUs == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
322 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
323 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
324 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
325 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
326 //| X86_CPUID_FEATURE_ECX_SSSE3 - no SSSE3 support
327 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
328 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
329 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
330 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
331 /* ECX Bit 21 - x2APIC support - not yet. */
332 // | X86_CPUID_FEATURE_ECX_X2APIC
333 /* ECX Bit 23 - POPCOUNT instruction. */
334 //| X86_CPUID_FEATURE_ECX_POPCOUNT
335 | 0;
336
337 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
338 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
339 | X86_CPUID_AMD_FEATURE_EDX_VME
340 | X86_CPUID_AMD_FEATURE_EDX_DE
341 | X86_CPUID_AMD_FEATURE_EDX_PSE
342 | X86_CPUID_AMD_FEATURE_EDX_TSC
343 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
344 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
345 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
346 | X86_CPUID_AMD_FEATURE_EDX_CX8
347 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
348 /** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
349 //| X86_CPUID_AMD_FEATURE_EDX_SEP
350 | X86_CPUID_AMD_FEATURE_EDX_MTRR
351 | X86_CPUID_AMD_FEATURE_EDX_PGE
352 | X86_CPUID_AMD_FEATURE_EDX_MCA
353 | X86_CPUID_AMD_FEATURE_EDX_CMOV
354 | X86_CPUID_AMD_FEATURE_EDX_PAT
355 | X86_CPUID_AMD_FEATURE_EDX_PSE36
356 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
357 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
358 | X86_CPUID_AMD_FEATURE_EDX_MMX
359 | X86_CPUID_AMD_FEATURE_EDX_FXSR
360 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
361 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
362 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
363 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
364 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
365 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
366 | 0;
367 pCPUM->aGuestCpuIdExt[1].ecx &= 0
368 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
369 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
370 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
371 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
372 /** Note: This could prevent migration from AMD to Intel CPUs! */
373 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
374 //| X86_CPUID_AMD_FEATURE_ECX_ABM
375 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
376 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
377 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
378 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
379 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
380 //| X86_CPUID_AMD_FEATURE_ECX_WDT
381 | 0;
382
383 /*
384 * Hide HTT, multicode, SMP, whatever.
385 * (APIC-ID := 0 and #LogCpus := 0)
386 */
387 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
388#ifdef VBOX_WITH_MULTI_CORE
389 if (pVM->cCPUs > 1)
390 {
391 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
392 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCPUs << 16);
393 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
394 }
395#endif
396
397 /* Cpuid 2:
398 * Intel: Cache and TLB information
399 * AMD: Reserved
400 * Safe to expose
401 */
402
403 /* Cpuid 3:
404 * Intel: EAX, EBX - reserved
405 * ECX, EDX - Processor Serial Number if available, otherwise reserved
406 * AMD: Reserved
407 * Safe to expose
408 */
409 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
410 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
411
412 /* Cpuid 4:
413 * Intel: Deterministic Cache Parameters Leaf
414 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
415 * AMD: Reserved
416 * Safe to expose, except for EAX:
417 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
418 * Bits 31-26: Maximum number of processor cores in this physical package**
419 * @Note These SMP values are constant regardless of ECX
420 */
421 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
422 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
423#ifdef VBOX_WITH_MULTI_CORE
424 if ( pVM->cCPUs > 1
425 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_INTEL)
426 {
427 AssertReturn(pVM->cCPUs <= 64, VERR_TOO_MANY_CPUS);
428 /* One logical processor with possibly multiple cores. */
429 pCPUM->aGuestCpuIdStd[4].eax |= (pVM->cCPUs << 26); /* 6 bits only -> 64 cores! */
430 }
431#endif
432
433 /* Cpuid 5: Monitor/mwait Leaf
434 * Intel: ECX, EDX - reserved
435 * EAX, EBX - Smallest and largest monitor line size
436 * AMD: EDX - reserved
437 * EAX, EBX - Smallest and largest monitor line size
438 * ECX - extensions (ignored for now)
439 * Safe to expose
440 */
441 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
442 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
443
444 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
445
446 /*
447 * Determine the default.
448 *
449 * Intel returns values of the highest standard function, while AMD
450 * returns zeros. VIA on the other hand seems to returning nothing or
451 * perhaps some random garbage, we don't try to duplicate this behavior.
452 */
453 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
454 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
455 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
456
457 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
458 * Safe to pass on to the guest.
459 *
460 * Intel: 0x800000005 reserved
461 * 0x800000006 L2 cache information
462 * AMD: 0x800000005 L1 cache information
463 * 0x800000006 L2/L3 cache information
464 */
465
466 /* Cpuid 0x800000007:
467 * AMD: EAX, EBX, ECX - reserved
468 * EDX: Advanced Power Management Information
469 * Intel: Reserved
470 */
471 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
472 {
473 Assert(pVM->cpum.s.enmCPUVendor != CPUMCPUVENDOR_INVALID);
474
475 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
476
477 if (pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD)
478 {
479 /* Only expose the TSC invariant capability bit to the guest. */
480 pCPUM->aGuestCpuIdExt[7].edx &= 0
481 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
482 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
483 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
484 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
485 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
486 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
487 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
488 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
489#if 1
490 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer Linux kernels blindly assume
491 * that the AMD performance counters work if this is set for 64 bits guests. (can't really find a CPUID feature bit for them though)
492 */
493#else
494 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
495#endif
496 | 0;
497 }
498 else
499 pCPUM->aGuestCpuIdExt[7].edx = 0;
500 }
501
502 /* Cpuid 0x800000008:
503 * AMD: EBX, EDX - reserved
504 * EAX: Virtual/Physical address Size
505 * ECX: Number of cores + APICIdCoreIdSize
506 * Intel: EAX: Virtual/Physical address Size
507 * EBX, ECX, EDX - reserved
508 */
509 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
510 {
511 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
512 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
513 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
514 * NC (0-7) Number of cores; 0 equals 1 core */
515 pCPUM->aGuestCpuIdExt[8].ecx = 0;
516#ifdef VBOX_WITH_MULTI_CORE
517 if ( pVM->cCPUs > 1
518 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD)
519 {
520 /* Legacy method to determine the number of cores. */
521 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
522 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCPUs - 1); /* NC: Number of CPU cores - 1; 8 bits */
523
524 }
525#endif
526 }
527
528 /*
529 * Limit it the number of entries and fill the remaining with the defaults.
530 *
531 * The limits are masking off stuff about power saving and similar, this
532 * is perhaps a bit crudely done as there is probably some relatively harmless
533 * info too in these leaves (like words about having a constant TSC).
534 */
535#if 0
536 /** @todo NT4 installation regression - investigate */
537 /** Note from Intel manuals:
538 * CPUID leaves > 3 < 80000000 are visible only when
539 * IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).
540 *
541 */
542 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
543 pCPUM->aGuestCpuIdStd[0].eax = 5;
544#else
545 if (pCPUM->aGuestCpuIdStd[0].eax > 2)
546 pCPUM->aGuestCpuIdStd[0].eax = 2;
547#endif
548 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
549 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
550
551 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
552 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
553 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
554 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
555 : 0;
556 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
557 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
558
559 /*
560 * Workaround for missing cpuid(0) patches: If we miss to patch a cpuid(0).eax then
561 * Linux tries to determine the number of processors from (cpuid(4).eax >> 26) + 1.
562 * We currently don't support more than 1 processor.
563 */
564 pCPUM->aGuestCpuIdStd[4].eax = 0;
565
566 /*
567 * Centaur stuff (VIA).
568 *
569 * The important part here (we think) is to make sure the 0xc0000000
570 * function returns 0xc0000001. As for the features, we don't currently
571 * let on about any of those... 0xc0000002 seems to be some
572 * temperature/hz/++ stuff, include it as well (static).
573 */
574 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
575 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
576 {
577 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
578 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
579 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
580 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
581 i++)
582 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
583 }
584 else
585 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
586 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
587
588
589 /*
590 * Load CPUID overrides from configuration.
591 */
592 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
593 * Overloads the CPUID leaf values. */
594 PCPUMCPUID pCpuId = &pCPUM->aGuestCpuIdStd[0];
595 uint32_t cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdStd);
596 for (i=0;; )
597 {
598 while (cElements-- > 0)
599 {
600 PCFGMNODE pNode = CFGMR3GetChildF(CFGMR3GetRoot(pVM), "CPUM/CPUID/%RX32", i);
601 if (pNode)
602 {
603 uint32_t u32;
604 int rc = CFGMR3QueryU32(pNode, "eax", &u32);
605 if (RT_SUCCESS(rc))
606 pCpuId->eax = u32;
607 else
608 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
609
610 rc = CFGMR3QueryU32(pNode, "ebx", &u32);
611 if (RT_SUCCESS(rc))
612 pCpuId->ebx = u32;
613 else
614 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
615
616 rc = CFGMR3QueryU32(pNode, "ecx", &u32);
617 if (RT_SUCCESS(rc))
618 pCpuId->ecx = u32;
619 else
620 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
621
622 rc = CFGMR3QueryU32(pNode, "edx", &u32);
623 if (RT_SUCCESS(rc))
624 pCpuId->edx = u32;
625 else
626 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
627 }
628 pCpuId++;
629 i++;
630 }
631
632 /* next */
633 if ((i & UINT32_C(0xc0000000)) == 0)
634 {
635 pCpuId = &pCPUM->aGuestCpuIdExt[0];
636 cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
637 i = UINT32_C(0x80000000);
638 }
639 else if ((i & UINT32_C(0xc0000000)) == UINT32_C(0x80000000))
640 {
641 pCpuId = &pCPUM->aGuestCpuIdCentaur[0];
642 cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
643 i = UINT32_C(0xc0000000);
644 }
645 else
646 break;
647 }
648
649 /* Check if PAE was explicitely enabled by the user. */
650 bool fEnable = false;
651 int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable);
652 if (RT_SUCCESS(rc) && fEnable)
653 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
654
655 /*
656 * Log the cpuid and we're good.
657 */
658 RTCPUSET OnlineSet;
659 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
660 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
661 LogRel(("************************* CPUID dump ************************\n"));
662 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
663 LogRel(("\n"));
664 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
665 LogRel(("******************** End of CPUID dump **********************\n"));
666 return VINF_SUCCESS;
667}
668
669
670
671
672/**
673 * Applies relocations to data and code managed by this
674 * component. This function will be called at init and
675 * whenever the VMM need to relocate it self inside the GC.
676 *
677 * The CPUM will update the addresses used by the switcher.
678 *
679 * @param pVM The VM.
680 */
681VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
682{
683 LogFlow(("CPUMR3Relocate\n"));
684 for (unsigned i=0;i<pVM->cCPUs;i++)
685 {
686 PVMCPU pVCpu = &pVM->aCpus[i];
687 /*
688 * Switcher pointers.
689 */
690 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
691 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
692 }
693}
694
695
696/**
697 * Terminates the CPUM.
698 *
699 * Termination means cleaning up and freeing all resources,
700 * the VM it self is at this point powered off or suspended.
701 *
702 * @returns VBox status code.
703 * @param pVM The VM to operate on.
704 */
705VMMR3DECL(int) CPUMR3Term(PVM pVM)
706{
707 CPUMR3TermCPU(pVM);
708 return 0;
709}
710
711
712/**
713 * Terminates the per-VCPU CPUM.
714 *
715 * Termination means cleaning up and freeing all resources,
716 * the VM it self is at this point powered off or suspended.
717 *
718 * @returns VBox status code.
719 * @param pVM The VM to operate on.
720 */
721VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
722{
723#ifdef VBOX_WITH_CRASHDUMP_MAGIC
724 for (unsigned i=0;i<pVM->cCPUs;i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
728
729 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
730 pVCpu->cpum.s.uMagic = 0;
731 pCtx->dr[5] = 0;
732 }
733#endif
734 return 0;
735}
736
737VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
738{
739 /* @todo anything different for VCPU > 0? */
740 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
741
742 /*
743 * Initialize everything to ZERO first.
744 */
745 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
746 memset(pCtx, 0, sizeof(*pCtx));
747 pVCpu->cpum.s.fUseFlags = fUseFlags;
748
749 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
750 pCtx->eip = 0x0000fff0;
751 pCtx->edx = 0x00000600; /* P6 processor */
752 pCtx->eflags.Bits.u1Reserved0 = 1;
753
754 pCtx->cs = 0xf000;
755 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
756 pCtx->csHid.u32Limit = 0x0000ffff;
757 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
758 pCtx->csHid.Attr.n.u1Present = 1;
759 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
760
761 pCtx->dsHid.u32Limit = 0x0000ffff;
762 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
763 pCtx->dsHid.Attr.n.u1Present = 1;
764 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
765
766 pCtx->esHid.u32Limit = 0x0000ffff;
767 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
768 pCtx->esHid.Attr.n.u1Present = 1;
769 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
770
771 pCtx->fsHid.u32Limit = 0x0000ffff;
772 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
773 pCtx->fsHid.Attr.n.u1Present = 1;
774 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
775
776 pCtx->gsHid.u32Limit = 0x0000ffff;
777 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
778 pCtx->gsHid.Attr.n.u1Present = 1;
779 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
780
781 pCtx->ssHid.u32Limit = 0x0000ffff;
782 pCtx->ssHid.Attr.n.u1Present = 1;
783 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
784 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
785
786 pCtx->idtr.cbIdt = 0xffff;
787 pCtx->gdtr.cbGdt = 0xffff;
788
789 pCtx->ldtrHid.u32Limit = 0xffff;
790 pCtx->ldtrHid.Attr.n.u1Present = 1;
791 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
792
793 pCtx->trHid.u32Limit = 0xffff;
794 pCtx->trHid.Attr.n.u1Present = 1;
795 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
796
797 pCtx->dr[6] = X86_DR6_INIT_VAL;
798 pCtx->dr[7] = X86_DR7_INIT_VAL;
799
800 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
801 pCtx->fpu.FCW = 0x37f;
802
803 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
804 pCtx->fpu.MXCSR = 0x1F80;
805
806 /* Init PAT MSR */
807 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
808
809 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
810 * The Intel docs don't mention it.
811 */
812 pCtx->msrEFER = 0;
813}
814
815/**
816 * Resets the CPU.
817 *
818 * @returns VINF_SUCCESS.
819 * @param pVM The VM handle.
820 */
821VMMR3DECL(void) CPUMR3Reset(PVM pVM)
822{
823 for (unsigned i=0;i<pVM->cCPUs;i++)
824 {
825 CPUMR3ResetCpu(&pVM->aCpus[i]);
826
827#ifdef VBOX_WITH_CRASHDUMP_MAGIC
828 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
829
830 /* Magic marker for searching in crash dumps. */
831 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
832 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
833 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
834#endif
835 }
836}
837
838
839/**
840 * Execute state save operation.
841 *
842 * @returns VBox status code.
843 * @param pVM VM Handle.
844 * @param pSSM SSM operation handle.
845 */
846static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM)
847{
848 /*
849 * Save.
850 */
851 for (unsigned i=0;i<pVM->cCPUs;i++)
852 {
853 PVMCPU pVCpu = &pVM->aCpus[i];
854
855 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
856 }
857
858 SSMR3PutU32(pSSM, pVM->cCPUs);
859 for (unsigned i=0;i<pVM->cCPUs;i++)
860 {
861 PVMCPU pVCpu = &pVM->aCpus[i];
862
863 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
864 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
865 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
866 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
867 }
868
869 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
870 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
871
872 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
873 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
874
875 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
876 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
877
878 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
879
880 /* Add the cpuid for checking that the cpu is unchanged. */
881 uint32_t au32CpuId[8] = {0};
882 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
883 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
884 return SSMR3PutMem(pSSM, &au32CpuId[0], sizeof(au32CpuId));
885}
886
887
888/**
889 * Load a version 1.6 CPUMCTX structure.
890 *
891 * @returns VBox status code.
892 * @param pVM VM Handle.
893 * @param pCpumctx16 Version 1.6 CPUMCTX
894 */
895static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
896{
897#define CPUMCTX16_LOADREG(RegName) \
898 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
899
900#define CPUMCTX16_LOADDRXREG(RegName) \
901 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
902
903#define CPUMCTX16_LOADHIDREG(RegName) \
904 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
905 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
906 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
907
908#define CPUMCTX16_LOADSEGREG(RegName) \
909 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
910 CPUMCTX16_LOADHIDREG(RegName);
911
912 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
913
914 CPUMCTX16_LOADREG(rax);
915 CPUMCTX16_LOADREG(rbx);
916 CPUMCTX16_LOADREG(rcx);
917 CPUMCTX16_LOADREG(rdx);
918 CPUMCTX16_LOADREG(rdi);
919 CPUMCTX16_LOADREG(rsi);
920 CPUMCTX16_LOADREG(rbp);
921 CPUMCTX16_LOADREG(esp);
922 CPUMCTX16_LOADREG(rip);
923 CPUMCTX16_LOADREG(rflags);
924
925 CPUMCTX16_LOADSEGREG(cs);
926 CPUMCTX16_LOADSEGREG(ds);
927 CPUMCTX16_LOADSEGREG(es);
928 CPUMCTX16_LOADSEGREG(fs);
929 CPUMCTX16_LOADSEGREG(gs);
930 CPUMCTX16_LOADSEGREG(ss);
931
932 CPUMCTX16_LOADREG(r8);
933 CPUMCTX16_LOADREG(r9);
934 CPUMCTX16_LOADREG(r10);
935 CPUMCTX16_LOADREG(r11);
936 CPUMCTX16_LOADREG(r12);
937 CPUMCTX16_LOADREG(r13);
938 CPUMCTX16_LOADREG(r14);
939 CPUMCTX16_LOADREG(r15);
940
941 CPUMCTX16_LOADREG(cr0);
942 CPUMCTX16_LOADREG(cr2);
943 CPUMCTX16_LOADREG(cr3);
944 CPUMCTX16_LOADREG(cr4);
945
946 CPUMCTX16_LOADDRXREG(0);
947 CPUMCTX16_LOADDRXREG(1);
948 CPUMCTX16_LOADDRXREG(2);
949 CPUMCTX16_LOADDRXREG(3);
950 CPUMCTX16_LOADDRXREG(4);
951 CPUMCTX16_LOADDRXREG(5);
952 CPUMCTX16_LOADDRXREG(6);
953 CPUMCTX16_LOADDRXREG(7);
954
955 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
956 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
957 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
958 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
959
960 CPUMCTX16_LOADREG(ldtr);
961 CPUMCTX16_LOADREG(tr);
962
963 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
964
965 CPUMCTX16_LOADREG(msrEFER);
966 CPUMCTX16_LOADREG(msrSTAR);
967 CPUMCTX16_LOADREG(msrPAT);
968 CPUMCTX16_LOADREG(msrLSTAR);
969 CPUMCTX16_LOADREG(msrCSTAR);
970 CPUMCTX16_LOADREG(msrSFMASK);
971 CPUMCTX16_LOADREG(msrKERNELGSBASE);
972
973 CPUMCTX16_LOADHIDREG(ldtr);
974 CPUMCTX16_LOADHIDREG(tr);
975
976#undef CPUMCTX16_LOADSEGREG
977#undef CPUMCTX16_LOADHIDREG
978#undef CPUMCTX16_LOADDRXREG
979#undef CPUMCTX16_LOADREG
980}
981
982
983/**
984 * Execute state load operation.
985 *
986 * @returns VBox status code.
987 * @param pVM VM Handle.
988 * @param pSSM SSM operation handle.
989 * @param u32Version Data layout version.
990 */
991static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
992{
993 /*
994 * Validate version.
995 */
996 if ( u32Version != CPUM_SAVED_STATE_VERSION
997 && u32Version != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
998 && u32Version != CPUM_SAVED_STATE_VERSION_VER2_0
999 && u32Version != CPUM_SAVED_STATE_VERSION_VER1_6)
1000 {
1001 AssertMsgFailed(("cpuR3Load: Invalid version u32Version=%d!\n", u32Version));
1002 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1003 }
1004
1005 /* Set the size of RTGCPTR for SSMR3GetGCPtr. */
1006 if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
1007 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1008 else if (u32Version <= CPUM_SAVED_STATE_VERSION)
1009 SSMR3SetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1010
1011 /*
1012 * Restore.
1013 */
1014 for (unsigned i=0;i<pVM->cCPUs;i++)
1015 {
1016 PVMCPU pVCpu = &pVM->aCpus[i];
1017 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1018 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
1019
1020 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1021 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1022 pVCpu->cpum.s.Hyper.esp = uESP;
1023 }
1024
1025 if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
1026 {
1027 CPUMCTX_VER1_6 cpumctx16;
1028 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
1029 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
1030
1031 /* Save the old cpumctx state into the new one. */
1032 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
1033
1034 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
1035 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
1036 }
1037 else
1038 {
1039 if (u32Version >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1040 {
1041 int rc = SSMR3GetU32(pSSM, &pVM->cCPUs);
1042 AssertRCReturn(rc, rc);
1043 }
1044
1045 if ( !pVM->cCPUs
1046 || pVM->cCPUs > VMM_MAX_CPU_COUNT
1047 || ( u32Version == CPUM_SAVED_STATE_VERSION_VER2_0
1048 && pVM->cCPUs != 1))
1049 {
1050 AssertMsgFailed(("Unexpected number of VMCPUs (%d)\n", pVM->cCPUs));
1051 return VERR_SSM_UNEXPECTED_DATA;
1052 }
1053
1054 for (unsigned i=0;i<pVM->cCPUs;i++)
1055 {
1056 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
1057 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
1058 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
1059 if (u32Version == CPUM_SAVED_STATE_VERSION)
1060 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
1061 }
1062 }
1063
1064
1065 uint32_t cElements;
1066 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1067 /* Support old saved states with a smaller standard cpuid array. */
1068 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
1069 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1070 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
1071
1072 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1073 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
1074 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1075 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1076
1077 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1078 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
1079 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1080 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1081
1082 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1083
1084 /*
1085 * Check that the basic cpuid id information is unchanged.
1086 * @todo we should check the 64 bits capabilities too!
1087 */
1088 uint32_t au32CpuId[8] = {0};
1089 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
1090 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
1091 uint32_t au32CpuIdSaved[8];
1092 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
1093 if (RT_SUCCESS(rc))
1094 {
1095 /* Ignore CPU stepping. */
1096 au32CpuId[4] &= 0xfffffff0;
1097 au32CpuIdSaved[4] &= 0xfffffff0;
1098
1099 /* Ignore APIC ID (AMD specs). */
1100 au32CpuId[5] &= ~0xff000000;
1101 au32CpuIdSaved[5] &= ~0xff000000;
1102
1103 /* Ignore the number of Logical CPUs (AMD specs). */
1104 au32CpuId[5] &= ~0x00ff0000;
1105 au32CpuIdSaved[5] &= ~0x00ff0000;
1106
1107 /* do the compare */
1108 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
1109 {
1110 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
1111 LogRel(("cpumR3Load: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
1112 "Saved=%.*Rhxs\n"
1113 "Real =%.*Rhxs\n",
1114 sizeof(au32CpuIdSaved), au32CpuIdSaved,
1115 sizeof(au32CpuId), au32CpuId));
1116 else
1117 {
1118 LogRel(("cpumR3Load: CpuId mismatch!\n"
1119 "Saved=%.*Rhxs\n"
1120 "Real =%.*Rhxs\n",
1121 sizeof(au32CpuIdSaved), au32CpuIdSaved,
1122 sizeof(au32CpuId), au32CpuId));
1123 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
1124 }
1125 }
1126 }
1127
1128 return rc;
1129}
1130
1131
1132/**
1133 * Formats the EFLAGS value into mnemonics.
1134 *
1135 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
1136 * @param efl The EFLAGS value.
1137 */
1138static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
1139{
1140 /*
1141 * Format the flags.
1142 */
1143 static const struct
1144 {
1145 const char *pszSet; const char *pszClear; uint32_t fFlag;
1146 } s_aFlags[] =
1147 {
1148 { "vip",NULL, X86_EFL_VIP },
1149 { "vif",NULL, X86_EFL_VIF },
1150 { "ac", NULL, X86_EFL_AC },
1151 { "vm", NULL, X86_EFL_VM },
1152 { "rf", NULL, X86_EFL_RF },
1153 { "nt", NULL, X86_EFL_NT },
1154 { "ov", "nv", X86_EFL_OF },
1155 { "dn", "up", X86_EFL_DF },
1156 { "ei", "di", X86_EFL_IF },
1157 { "tf", NULL, X86_EFL_TF },
1158 { "nt", "pl", X86_EFL_SF },
1159 { "nz", "zr", X86_EFL_ZF },
1160 { "ac", "na", X86_EFL_AF },
1161 { "po", "pe", X86_EFL_PF },
1162 { "cy", "nc", X86_EFL_CF },
1163 };
1164 char *psz = pszEFlags;
1165 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1166 {
1167 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1168 if (pszAdd)
1169 {
1170 strcpy(psz, pszAdd);
1171 psz += strlen(pszAdd);
1172 *psz++ = ' ';
1173 }
1174 }
1175 psz[-1] = '\0';
1176}
1177
1178
1179/**
1180 * Formats a full register dump.
1181 *
1182 * @param pVM VM Handle.
1183 * @param pCtx The context to format.
1184 * @param pCtxCore The context core to format.
1185 * @param pHlp Output functions.
1186 * @param enmType The dump type.
1187 * @param pszPrefix Register name prefix.
1188 */
1189static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
1190{
1191 /*
1192 * Format the EFLAGS.
1193 */
1194 uint32_t efl = pCtxCore->eflags.u32;
1195 char szEFlags[80];
1196 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1197
1198 /*
1199 * Format the registers.
1200 */
1201 switch (enmType)
1202 {
1203 case CPUMDUMPTYPE_TERSE:
1204 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1205 pHlp->pfnPrintf(pHlp,
1206 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1207 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1208 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1209 "%sr14=%016RX64 %sr15=%016RX64\n"
1210 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1211 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1212 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1213 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1214 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1215 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1216 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1217 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
1218 else
1219 pHlp->pfnPrintf(pHlp,
1220 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1221 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1222 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1223 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1224 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1225 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1226 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
1227 break;
1228
1229 case CPUMDUMPTYPE_DEFAULT:
1230 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1231 pHlp->pfnPrintf(pHlp,
1232 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1233 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1234 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1235 "%sr14=%016RX64 %sr15=%016RX64\n"
1236 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1237 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1238 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
1239 ,
1240 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1241 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1242 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1243 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1244 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1245 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
1246 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1247 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
1248 else
1249 pHlp->pfnPrintf(pHlp,
1250 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1251 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1252 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1253 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
1254 ,
1255 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1256 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1257 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1258 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
1259 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1260 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
1261 break;
1262
1263 case CPUMDUMPTYPE_VERBOSE:
1264 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1265 pHlp->pfnPrintf(pHlp,
1266 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1267 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1268 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1269 "%sr14=%016RX64 %sr15=%016RX64\n"
1270 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1271 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1272 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1273 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1274 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1275 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1276 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1277 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
1278 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
1279 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
1280 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1281 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1282 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1283 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
1284 ,
1285 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1286 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1287 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1288 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1289 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
1290 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
1291 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
1292 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
1293 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
1294 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
1295 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1296 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1297 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1298 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1299 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
1300 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
1301 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1302 else
1303 pHlp->pfnPrintf(pHlp,
1304 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1305 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1306 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
1307 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
1308 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
1309 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
1310 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
1311 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
1312 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1313 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1314 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1315 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1316 ,
1317 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1318 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1319 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
1320 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1321 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
1322 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1323 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
1324 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1325 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1326 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
1327 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
1328 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1329
1330 pHlp->pfnPrintf(pHlp,
1331 "FPU:\n"
1332 "%sFCW=%04x %sFSW=%04x %sFTW=%02x\n"
1333 "%sres1=%02x %sFOP=%04x %sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x\n"
1334 "%sFPUDP=%04x %sDS=%04x %sRsvrd2=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
1335 ,
1336 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW,
1337 pszPrefix, pCtx->fpu.huh1, pszPrefix, pCtx->fpu.FOP, pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
1338 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2,
1339 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK);
1340
1341 pHlp->pfnPrintf(pHlp,
1342 "MSR:\n"
1343 "%sEFER =%016RX64\n"
1344 "%sPAT =%016RX64\n"
1345 "%sSTAR =%016RX64\n"
1346 "%sCSTAR =%016RX64\n"
1347 "%sLSTAR =%016RX64\n"
1348 "%sSFMASK =%016RX64\n"
1349 "%sKERNELGSBASE =%016RX64\n",
1350 pszPrefix, pCtx->msrEFER,
1351 pszPrefix, pCtx->msrPAT,
1352 pszPrefix, pCtx->msrSTAR,
1353 pszPrefix, pCtx->msrCSTAR,
1354 pszPrefix, pCtx->msrLSTAR,
1355 pszPrefix, pCtx->msrSFMASK,
1356 pszPrefix, pCtx->msrKERNELGSBASE);
1357 break;
1358 }
1359}
1360
1361
1362/**
1363 * Display all cpu states and any other cpum info.
1364 *
1365 * @param pVM VM Handle.
1366 * @param pHlp The info helper functions.
1367 * @param pszArgs Arguments, ignored.
1368 */
1369static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1370{
1371 cpumR3InfoGuest(pVM, pHlp, pszArgs);
1372 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
1373 cpumR3InfoHyper(pVM, pHlp, pszArgs);
1374 cpumR3InfoHost(pVM, pHlp, pszArgs);
1375}
1376
1377
1378/**
1379 * Parses the info argument.
1380 *
1381 * The argument starts with 'verbose', 'terse' or 'default' and then
1382 * continues with the comment string.
1383 *
1384 * @param pszArgs The pointer to the argument string.
1385 * @param penmType Where to store the dump type request.
1386 * @param ppszComment Where to store the pointer to the comment string.
1387 */
1388static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
1389{
1390 if (!pszArgs)
1391 {
1392 *penmType = CPUMDUMPTYPE_DEFAULT;
1393 *ppszComment = "";
1394 }
1395 else
1396 {
1397 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
1398 {
1399 pszArgs += 5;
1400 *penmType = CPUMDUMPTYPE_VERBOSE;
1401 }
1402 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
1403 {
1404 pszArgs += 5;
1405 *penmType = CPUMDUMPTYPE_TERSE;
1406 }
1407 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
1408 {
1409 pszArgs += 7;
1410 *penmType = CPUMDUMPTYPE_DEFAULT;
1411 }
1412 else
1413 *penmType = CPUMDUMPTYPE_DEFAULT;
1414 *ppszComment = RTStrStripL(pszArgs);
1415 }
1416}
1417
1418
1419/**
1420 * Display the guest cpu state.
1421 *
1422 * @param pVM VM Handle.
1423 * @param pHlp The info helper functions.
1424 * @param pszArgs Arguments, ignored.
1425 */
1426static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1427{
1428 CPUMDUMPTYPE enmType;
1429 const char *pszComment;
1430 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1431
1432 /* @todo SMP support! */
1433 PVMCPU pVCpu = VMMGetCpu(pVM);
1434 if (!pVCpu)
1435 pVCpu = &pVM->aCpus[0];
1436
1437 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
1438
1439 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1440 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
1441}
1442
1443
1444/**
1445 * Display the current guest instruction
1446 *
1447 * @param pVM VM Handle.
1448 * @param pHlp The info helper functions.
1449 * @param pszArgs Arguments, ignored.
1450 */
1451static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1452{
1453 char szInstruction[256];
1454 /* @todo SMP support! */
1455 PVMCPU pVCpu = VMMGetCpu(pVM);
1456 if (!pVCpu)
1457 pVCpu = &pVM->aCpus[0];
1458
1459 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
1460 if (RT_SUCCESS(rc))
1461 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
1462}
1463
1464
1465/**
1466 * Display the hypervisor cpu state.
1467 *
1468 * @param pVM VM Handle.
1469 * @param pHlp The info helper functions.
1470 * @param pszArgs Arguments, ignored.
1471 */
1472static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1473{
1474 CPUMDUMPTYPE enmType;
1475 const char *pszComment;
1476 /* @todo SMP */
1477 PVMCPU pVCpu = &pVM->aCpus[0];
1478
1479 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1480 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
1481 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
1482 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
1483}
1484
1485
1486/**
1487 * Display the host cpu state.
1488 *
1489 * @param pVM VM Handle.
1490 * @param pHlp The info helper functions.
1491 * @param pszArgs Arguments, ignored.
1492 */
1493static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1494{
1495 CPUMDUMPTYPE enmType;
1496 const char *pszComment;
1497 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1498 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
1499
1500 /*
1501 * Format the EFLAGS.
1502 */
1503 /* @todo SMP */
1504 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
1505#if HC_ARCH_BITS == 32
1506 uint32_t efl = pCtx->eflags.u32;
1507#else
1508 uint64_t efl = pCtx->rflags;
1509#endif
1510 char szEFlags[80];
1511 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1512
1513 /*
1514 * Format the registers.
1515 */
1516#if HC_ARCH_BITS == 32
1517# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1518 if (!(pCtx->efer & MSR_K6_EFER_LMA))
1519# endif
1520 {
1521 pHlp->pfnPrintf(pHlp,
1522 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
1523 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
1524 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
1525 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
1526 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
1527 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
1528 ,
1529 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
1530 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
1531 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
1532 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
1533 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
1534 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
1535 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1536 }
1537# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1538 else
1539# endif
1540#endif
1541#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1542 {
1543 pHlp->pfnPrintf(pHlp,
1544 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
1545 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
1546 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
1547 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
1548 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1549 "r14=%016RX64 r15=%016RX64\n"
1550 "iopl=%d %31s\n"
1551 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
1552 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
1553 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
1554 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
1555 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
1556 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
1557 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
1558 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
1559 ,
1560 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
1561 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
1562 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
1563 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
1564 pCtx->r11, pCtx->r12, pCtx->r13,
1565 pCtx->r14, pCtx->r15,
1566 X86_EFL_GET_IOPL(efl), szEFlags,
1567 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
1568 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
1569 pCtx->cr4, pCtx->ldtr, pCtx->tr,
1570 pCtx->dr0, pCtx->dr1, pCtx->dr2,
1571 pCtx->dr3, pCtx->dr6, pCtx->dr7,
1572 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
1573 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
1574 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
1575 }
1576#endif
1577}
1578
1579
1580/**
1581 * Get L1 cache / TLS associativity.
1582 */
1583static const char *getCacheAss(unsigned u, char *pszBuf)
1584{
1585 if (u == 0)
1586 return "res0 ";
1587 if (u == 1)
1588 return "direct";
1589 if (u >= 256)
1590 return "???";
1591
1592 RTStrPrintf(pszBuf, 16, "%d way", u);
1593 return pszBuf;
1594}
1595
1596
1597/**
1598 * Get L2 cache soociativity.
1599 */
1600const char *getL2CacheAss(unsigned u)
1601{
1602 switch (u)
1603 {
1604 case 0: return "off ";
1605 case 1: return "direct";
1606 case 2: return "2 way ";
1607 case 3: return "res3 ";
1608 case 4: return "4 way ";
1609 case 5: return "res5 ";
1610 case 6: return "8 way "; case 7: return "res7 ";
1611 case 8: return "16 way";
1612 case 9: return "res9 ";
1613 case 10: return "res10 ";
1614 case 11: return "res11 ";
1615 case 12: return "res12 ";
1616 case 13: return "res13 ";
1617 case 14: return "res14 ";
1618 case 15: return "fully ";
1619 default:
1620 return "????";
1621 }
1622}
1623
1624
1625/**
1626 * Display the guest CpuId leaves.
1627 *
1628 * @param pVM VM Handle.
1629 * @param pHlp The info helper functions.
1630 * @param pszArgs "terse", "default" or "verbose".
1631 */
1632static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1633{
1634 /*
1635 * Parse the argument.
1636 */
1637 unsigned iVerbosity = 1;
1638 if (pszArgs)
1639 {
1640 pszArgs = RTStrStripL(pszArgs);
1641 if (!strcmp(pszArgs, "terse"))
1642 iVerbosity--;
1643 else if (!strcmp(pszArgs, "verbose"))
1644 iVerbosity++;
1645 }
1646
1647 /*
1648 * Start cracking.
1649 */
1650 CPUMCPUID Host;
1651 CPUMCPUID Guest;
1652 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
1653
1654 pHlp->pfnPrintf(pHlp,
1655 " RAW Standard CPUIDs\n"
1656 " Function eax ebx ecx edx\n");
1657 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
1658 {
1659 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
1660 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1661
1662 pHlp->pfnPrintf(pHlp,
1663 "Gst: %08x %08x %08x %08x %08x%s\n"
1664 "Hst: %08x %08x %08x %08x\n",
1665 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1666 i <= cStdMax ? "" : "*",
1667 Host.eax, Host.ebx, Host.ecx, Host.edx);
1668 }
1669
1670 /*
1671 * If verbose, decode it.
1672 */
1673 if (iVerbosity)
1674 {
1675 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
1676 pHlp->pfnPrintf(pHlp,
1677 "Name: %.04s%.04s%.04s\n"
1678 "Supports: 0-%x\n",
1679 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
1680 }
1681
1682 /*
1683 * Get Features.
1684 */
1685 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
1686 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
1687 pVM->cpum.s.aGuestCpuIdStd[0].edx);
1688 if (cStdMax >= 1 && iVerbosity)
1689 {
1690 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
1691 uint32_t uEAX = Guest.eax;
1692
1693 pHlp->pfnPrintf(pHlp,
1694 "Family: %d \tExtended: %d \tEffective: %d\n"
1695 "Model: %d \tExtended: %d \tEffective: %d\n"
1696 "Stepping: %d\n"
1697 "APIC ID: %#04x\n"
1698 "Logical CPUs: %d\n"
1699 "CLFLUSH Size: %d\n"
1700 "Brand ID: %#04x\n",
1701 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
1702 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
1703 ASMGetCpuStepping(uEAX),
1704 (Guest.ebx >> 24) & 0xff,
1705 (Guest.ebx >> 16) & 0xff,
1706 (Guest.ebx >> 8) & 0xff,
1707 (Guest.ebx >> 0) & 0xff);
1708 if (iVerbosity == 1)
1709 {
1710 uint32_t uEDX = Guest.edx;
1711 pHlp->pfnPrintf(pHlp, "Features EDX: ");
1712 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
1713 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
1714 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
1715 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
1716 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
1717 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
1718 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
1719 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
1720 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
1721 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
1722 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
1723 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
1724 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
1725 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
1726 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
1727 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
1728 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
1729 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
1730 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
1731 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
1732 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
1733 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
1734 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
1735 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
1736 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
1737 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
1738 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
1739 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
1740 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
1741 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
1742 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
1743 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
1744 pHlp->pfnPrintf(pHlp, "\n");
1745
1746 uint32_t uECX = Guest.ecx;
1747 pHlp->pfnPrintf(pHlp, "Features ECX: ");
1748 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
1749 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " 1");
1750 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " 2");
1751 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
1752 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
1753 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
1754 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " 6");
1755 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
1756 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
1757 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " 9");
1758 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
1759 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
1760 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " 12");
1761 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
1762 for (unsigned iBit = 14; iBit < 32; iBit++)
1763 if (uECX & RT_BIT(iBit))
1764 pHlp->pfnPrintf(pHlp, " %d", iBit);
1765 pHlp->pfnPrintf(pHlp, "\n");
1766 }
1767 else
1768 {
1769 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1770
1771 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
1772 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
1773 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
1774 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
1775
1776 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
1777 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
1778 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
1779 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
1780 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
1781 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
1782 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
1783 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
1784 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
1785 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
1786 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
1787 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
1788 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
1789 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
1790 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
1791 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
1792 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
1793 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
1794 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
1795 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
1796 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
1797 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
1798 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
1799 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
1800 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
1801 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
1802 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
1803 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
1804 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
1805 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
1806 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
1807 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
1808 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
1809
1810 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
1811 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u2Reserved1, EcxHost.u2Reserved1);
1812 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
1813 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
1814 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
1815 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
1816 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
1817 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
1818 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
1819 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
1820 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved4, EcxHost.u2Reserved4);
1821 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
1822 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
1823 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u17Reserved5, EcxHost.u17Reserved5);
1824 }
1825 }
1826 if (cStdMax >= 2 && iVerbosity)
1827 {
1828 /** @todo */
1829 }
1830
1831 /*
1832 * Extended.
1833 * Implemented after AMD specs.
1834 */
1835 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
1836
1837 pHlp->pfnPrintf(pHlp,
1838 "\n"
1839 " RAW Extended CPUIDs\n"
1840 " Function eax ebx ecx edx\n");
1841 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
1842 {
1843 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
1844 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1845
1846 pHlp->pfnPrintf(pHlp,
1847 "Gst: %08x %08x %08x %08x %08x%s\n"
1848 "Hst: %08x %08x %08x %08x\n",
1849 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1850 i <= cExtMax ? "" : "*",
1851 Host.eax, Host.ebx, Host.ecx, Host.edx);
1852 }
1853
1854 /*
1855 * Understandable output
1856 */
1857 if (iVerbosity)
1858 {
1859 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
1860 pHlp->pfnPrintf(pHlp,
1861 "Ext Name: %.4s%.4s%.4s\n"
1862 "Ext Supports: 0x80000000-%#010x\n",
1863 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
1864 }
1865
1866 if (iVerbosity && cExtMax >= 1)
1867 {
1868 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
1869 uint32_t uEAX = Guest.eax;
1870 pHlp->pfnPrintf(pHlp,
1871 "Family: %d \tExtended: %d \tEffective: %d\n"
1872 "Model: %d \tExtended: %d \tEffective: %d\n"
1873 "Stepping: %d\n"
1874 "Brand ID: %#05x\n",
1875 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
1876 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
1877 ASMGetCpuStepping(uEAX),
1878 Guest.ebx & 0xfff);
1879
1880 if (iVerbosity == 1)
1881 {
1882 uint32_t uEDX = Guest.edx;
1883 pHlp->pfnPrintf(pHlp, "Features EDX: ");
1884 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
1885 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
1886 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
1887 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
1888 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
1889 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
1890 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
1891 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
1892 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
1893 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
1894 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
1895 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
1896 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
1897 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
1898 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
1899 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
1900 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
1901 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
1902 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
1903 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
1904 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
1905 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
1906 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
1907 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
1908 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
1909 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
1910 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
1911 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
1912 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
1913 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
1914 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
1915 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
1916 pHlp->pfnPrintf(pHlp, "\n");
1917
1918 uint32_t uECX = Guest.ecx;
1919 pHlp->pfnPrintf(pHlp, "Features ECX: ");
1920 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
1921 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
1922 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
1923 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
1924 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
1925 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
1926 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
1927 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
1928 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
1929 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
1930 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
1931 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
1932 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
1933 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
1934 for (unsigned iBit = 5; iBit < 32; iBit++)
1935 if (uECX & RT_BIT(iBit))
1936 pHlp->pfnPrintf(pHlp, " %d", iBit);
1937 pHlp->pfnPrintf(pHlp, "\n");
1938 }
1939 else
1940 {
1941 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1942
1943 uint32_t uEdxGst = Guest.edx;
1944 uint32_t uEdxHst = Host.edx;
1945 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
1946 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
1947 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
1948 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
1949 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
1950 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
1951 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
1952 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
1953 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
1954 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
1955 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
1956 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
1957 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
1958 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
1959 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
1960 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
1961 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
1962 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
1963 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
1964 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
1965 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
1966 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
1967 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
1968 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
1969 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
1970 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
1971 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
1972 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
1973 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
1974 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
1975 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
1976 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
1977 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
1978
1979 uint32_t uEcxGst = Guest.ecx;
1980 uint32_t uEcxHst = Host.ecx;
1981 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
1982 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
1983 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
1984 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
1985 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
1986 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
1987 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
1988 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
1989 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
1990 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
1991 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
1992 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
1993 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
1994 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
1995 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
1996 }
1997 }
1998
1999 if (iVerbosity && cExtMax >= 2)
2000 {
2001 char szString[4*4*3+1] = {0};
2002 uint32_t *pu32 = (uint32_t *)szString;
2003 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
2004 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
2005 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
2006 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
2007 if (cExtMax >= 3)
2008 {
2009 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
2010 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
2011 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
2012 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
2013 }
2014 if (cExtMax >= 4)
2015 {
2016 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
2017 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
2018 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
2019 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
2020 }
2021 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
2022 }
2023
2024 if (iVerbosity && cExtMax >= 5)
2025 {
2026 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
2027 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
2028 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
2029 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
2030 char sz1[32];
2031 char sz2[32];
2032
2033 pHlp->pfnPrintf(pHlp,
2034 "TLB 2/4M Instr/Uni: %s %3d entries\n"
2035 "TLB 2/4M Data: %s %3d entries\n",
2036 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
2037 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
2038 pHlp->pfnPrintf(pHlp,
2039 "TLB 4K Instr/Uni: %s %3d entries\n"
2040 "TLB 4K Data: %s %3d entries\n",
2041 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
2042 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
2043 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
2044 "L1 Instr Cache Lines Per Tag: %d\n"
2045 "L1 Instr Cache Associativity: %s\n"
2046 "L1 Instr Cache Size: %d KB\n",
2047 (uEDX >> 0) & 0xff,
2048 (uEDX >> 8) & 0xff,
2049 getCacheAss((uEDX >> 16) & 0xff, sz1),
2050 (uEDX >> 24) & 0xff);
2051 pHlp->pfnPrintf(pHlp,
2052 "L1 Data Cache Line Size: %d bytes\n"
2053 "L1 Data Cache Lines Per Tag: %d\n"
2054 "L1 Data Cache Associativity: %s\n"
2055 "L1 Data Cache Size: %d KB\n",
2056 (uECX >> 0) & 0xff,
2057 (uECX >> 8) & 0xff,
2058 getCacheAss((uECX >> 16) & 0xff, sz1),
2059 (uECX >> 24) & 0xff);
2060 }
2061
2062 if (iVerbosity && cExtMax >= 6)
2063 {
2064 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
2065 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
2066 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
2067
2068 pHlp->pfnPrintf(pHlp,
2069 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
2070 "L2 TLB 2/4M Data: %s %4d entries\n",
2071 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
2072 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
2073 pHlp->pfnPrintf(pHlp,
2074 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
2075 "L2 TLB 4K Data: %s %4d entries\n",
2076 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
2077 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
2078 pHlp->pfnPrintf(pHlp,
2079 "L2 Cache Line Size: %d bytes\n"
2080 "L2 Cache Lines Per Tag: %d\n"
2081 "L2 Cache Associativity: %s\n"
2082 "L2 Cache Size: %d KB\n",
2083 (uEDX >> 0) & 0xff,
2084 (uEDX >> 8) & 0xf,
2085 getL2CacheAss((uEDX >> 12) & 0xf),
2086 (uEDX >> 16) & 0xffff);
2087 }
2088
2089 if (iVerbosity && cExtMax >= 7)
2090 {
2091 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
2092
2093 pHlp->pfnPrintf(pHlp, "APM Features: ");
2094 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
2095 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
2096 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
2097 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
2098 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
2099 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
2100 for (unsigned iBit = 6; iBit < 32; iBit++)
2101 if (uEDX & RT_BIT(iBit))
2102 pHlp->pfnPrintf(pHlp, " %d", iBit);
2103 pHlp->pfnPrintf(pHlp, "\n");
2104 }
2105
2106 if (iVerbosity && cExtMax >= 8)
2107 {
2108 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
2109 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
2110
2111 pHlp->pfnPrintf(pHlp,
2112 "Physical Address Width: %d bits\n"
2113 "Virtual Address Width: %d bits\n",
2114 (uEAX >> 0) & 0xff,
2115 (uEAX >> 8) & 0xff);
2116 pHlp->pfnPrintf(pHlp,
2117 "Physical Core Count: %d\n",
2118 (uECX >> 0) & 0xff);
2119 }
2120
2121
2122 /*
2123 * Centaur.
2124 */
2125 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
2126
2127 pHlp->pfnPrintf(pHlp,
2128 "\n"
2129 " RAW Centaur CPUIDs\n"
2130 " Function eax ebx ecx edx\n");
2131 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
2132 {
2133 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
2134 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2135
2136 pHlp->pfnPrintf(pHlp,
2137 "Gst: %08x %08x %08x %08x %08x%s\n"
2138 "Hst: %08x %08x %08x %08x\n",
2139 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2140 i <= cCentaurMax ? "" : "*",
2141 Host.eax, Host.ebx, Host.ecx, Host.edx);
2142 }
2143
2144 /*
2145 * Understandable output
2146 */
2147 if (iVerbosity)
2148 {
2149 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
2150 pHlp->pfnPrintf(pHlp,
2151 "Centaur Supports: 0xc0000000-%#010x\n",
2152 Guest.eax);
2153 }
2154
2155 if (iVerbosity && cCentaurMax >= 1)
2156 {
2157 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2158 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
2159 uint32_t uEdxHst = Host.edx;
2160
2161 if (iVerbosity == 1)
2162 {
2163 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
2164 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
2165 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
2166 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
2167 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
2168 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
2169 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
2170 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
2171 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
2172 /* possibly indicating MM/HE and MM/HE-E on older chips... */
2173 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
2174 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
2175 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
2176 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
2177 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
2178 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
2179 for (unsigned iBit = 14; iBit < 32; iBit++)
2180 if (uEdxGst & RT_BIT(iBit))
2181 pHlp->pfnPrintf(pHlp, " %d", iBit);
2182 pHlp->pfnPrintf(pHlp, "\n");
2183 }
2184 else
2185 {
2186 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2187 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
2188 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
2189 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
2190 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
2191 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
2192 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
2193 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
2194 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
2195 /* possibly indicating MM/HE and MM/HE-E on older chips... */
2196 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
2197 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
2198 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
2199 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
2200 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
2201 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
2202 for (unsigned iBit = 14; iBit < 32; iBit++)
2203 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
2204 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
2205 pHlp->pfnPrintf(pHlp, "\n");
2206 }
2207 }
2208}
2209
2210
2211/**
2212 * Structure used when disassembling and instructions in DBGF.
2213 * This is used so the reader function can get the stuff it needs.
2214 */
2215typedef struct CPUMDISASSTATE
2216{
2217 /** Pointer to the CPU structure. */
2218 PDISCPUSTATE pCpu;
2219 /** The VM handle. */
2220 PVM pVM;
2221 /** The VMCPU handle. */
2222 PVMCPU pVCpu;
2223 /** Pointer to the first byte in the segemnt. */
2224 RTGCUINTPTR GCPtrSegBase;
2225 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
2226 RTGCUINTPTR GCPtrSegEnd;
2227 /** The size of the segment minus 1. */
2228 RTGCUINTPTR cbSegLimit;
2229 /** Pointer to the current page - R3 Ptr. */
2230 void const *pvPageR3;
2231 /** Pointer to the current page - GC Ptr. */
2232 RTGCPTR pvPageGC;
2233 /** The lock information that PGMPhysReleasePageMappingLock needs. */
2234 PGMPAGEMAPLOCK PageMapLock;
2235 /** Whether the PageMapLock is valid or not. */
2236 bool fLocked;
2237 /** 64 bits mode or not. */
2238 bool f64Bits;
2239} CPUMDISASSTATE, *PCPUMDISASSTATE;
2240
2241
2242/**
2243 * Instruction reader.
2244 *
2245 * @returns VBox status code.
2246 * @param PtrSrc Address to read from.
2247 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
2248 * @param pu8Dst Where to store the bytes.
2249 * @param cbRead Number of bytes to read.
2250 * @param uDisCpu Pointer to the disassembler cpu state.
2251 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
2252 */
2253static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
2254{
2255 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
2256 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
2257 Assert(cbRead > 0);
2258 for (;;)
2259 {
2260 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
2261
2262 /* Need to update the page translation? */
2263 if ( !pState->pvPageR3
2264 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
2265 {
2266 int rc = VINF_SUCCESS;
2267
2268 /* translate the address */
2269 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
2270 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
2271 && !HWACCMIsEnabled(pState->pVM))
2272 {
2273 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
2274 if (!pState->pvPageR3)
2275 rc = VERR_INVALID_POINTER;
2276 }
2277 else
2278 {
2279 /* Release mapping lock previously acquired. */
2280 if (pState->fLocked)
2281 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
2282 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
2283 pState->fLocked = RT_SUCCESS_NP(rc);
2284 }
2285 if (RT_FAILURE(rc))
2286 {
2287 pState->pvPageR3 = NULL;
2288 return rc;
2289 }
2290 }
2291
2292 /* check the segemnt limit */
2293 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
2294 return VERR_OUT_OF_SELECTOR_BOUNDS;
2295
2296 /* calc how much we can read */
2297 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
2298 if (!pState->f64Bits)
2299 {
2300 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
2301 if (cb > cbSeg && cbSeg)
2302 cb = cbSeg;
2303 }
2304 if (cb > cbRead)
2305 cb = cbRead;
2306
2307 /* read and advance */
2308 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
2309 cbRead -= cb;
2310 if (!cbRead)
2311 return VINF_SUCCESS;
2312 pu8Dst += cb;
2313 PtrSrc += cb;
2314 }
2315}
2316
2317
2318/**
2319 * Disassemble an instruction and return the information in the provided structure.
2320 *
2321 * @returns VBox status code.
2322 * @param pVM VM Handle
2323 * @param pVCpu VMCPU Handle
2324 * @param pCtx CPU context
2325 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
2326 * @param pCpu Disassembly state
2327 * @param pszPrefix String prefix for logging (debug only)
2328 *
2329 */
2330VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
2331{
2332 CPUMDISASSTATE State;
2333 int rc;
2334
2335 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
2336 State.pCpu = pCpu;
2337 State.pvPageGC = 0;
2338 State.pvPageR3 = NULL;
2339 State.pVM = pVM;
2340 State.pVCpu = pVCpu;
2341 State.fLocked = false;
2342 State.f64Bits = false;
2343
2344 /*
2345 * Get selector information.
2346 */
2347 if ( (pCtx->cr0 & X86_CR0_PE)
2348 && pCtx->eflags.Bits.u1VM == 0)
2349 {
2350 if (CPUMAreHiddenSelRegsValid(pVM))
2351 {
2352 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
2353 State.GCPtrSegBase = pCtx->csHid.u64Base;
2354 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
2355 State.cbSegLimit = pCtx->csHid.u32Limit;
2356 pCpu->mode = (State.f64Bits)
2357 ? CPUMODE_64BIT
2358 : pCtx->csHid.Attr.n.u1DefBig
2359 ? CPUMODE_32BIT
2360 : CPUMODE_16BIT;
2361 }
2362 else
2363 {
2364 DBGFSELINFO SelInfo;
2365
2366 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
2367 if (RT_FAILURE(rc))
2368 {
2369 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
2370 return rc;
2371 }
2372
2373 /*
2374 * Validate the selector.
2375 */
2376 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
2377 if (RT_FAILURE(rc))
2378 {
2379 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
2380 return rc;
2381 }
2382 State.GCPtrSegBase = SelInfo.GCPtrBase;
2383 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
2384 State.cbSegLimit = SelInfo.cbLimit;
2385 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
2386 }
2387 }
2388 else
2389 {
2390 /* real or V86 mode */
2391 pCpu->mode = CPUMODE_16BIT;
2392 State.GCPtrSegBase = pCtx->cs * 16;
2393 State.GCPtrSegEnd = 0xFFFFFFFF;
2394 State.cbSegLimit = 0xFFFFFFFF;
2395 }
2396
2397 /*
2398 * Disassemble the instruction.
2399 */
2400 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
2401 pCpu->apvUserData[0] = &State;
2402
2403 uint32_t cbInstr;
2404#ifndef LOG_ENABLED
2405 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
2406 if (RT_SUCCESS(rc))
2407 {
2408#else
2409 char szOutput[160];
2410 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
2411 if (RT_SUCCESS(rc))
2412 {
2413 /* log it */
2414 if (pszPrefix)
2415 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
2416 else
2417 Log(("%s", szOutput));
2418#endif
2419 rc = VINF_SUCCESS;
2420 }
2421 else
2422 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
2423
2424 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
2425 if (State.fLocked)
2426 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
2427
2428 return rc;
2429}
2430
2431#ifdef DEBUG
2432
2433/**
2434 * Disassemble an instruction and dump it to the log
2435 *
2436 * @returns VBox status code.
2437 * @param pVM VM Handle
2438 * @param pVCpu VMCPU Handle
2439 * @param pCtx CPU context
2440 * @param pc GC instruction pointer
2441 * @param pszPrefix String prefix for logging
2442 *
2443 * @deprecated Use DBGFR3DisasInstrCurrentLog().
2444 */
2445VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
2446{
2447 DISCPUSTATE Cpu;
2448 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
2449}
2450
2451
2452/**
2453 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
2454 *
2455 * @internal
2456 */
2457VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
2458{
2459 /* @todo SMP support!! */
2460 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
2461}
2462
2463#endif /* DEBUG */
2464
2465/**
2466 * API for controlling a few of the CPU features found in CR4.
2467 *
2468 * Currently only X86_CR4_TSD is accepted as input.
2469 *
2470 * @returns VBox status code.
2471 *
2472 * @param pVM The VM handle.
2473 * @param fOr The CR4 OR mask.
2474 * @param fAnd The CR4 AND mask.
2475 */
2476VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
2477{
2478 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
2479 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
2480
2481 pVM->cpum.s.CR4.OrMask &= fAnd;
2482 pVM->cpum.s.CR4.OrMask |= fOr;
2483
2484 return VINF_SUCCESS;
2485}
2486
2487
2488/**
2489 * Gets a pointer to the array of standard CPUID leafs.
2490 *
2491 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
2492 *
2493 * @returns Pointer to the standard CPUID leafs (read-only).
2494 * @param pVM The VM handle.
2495 * @remark Intended for PATM.
2496 */
2497VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
2498{
2499 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
2500}
2501
2502
2503/**
2504 * Gets a pointer to the array of extended CPUID leafs.
2505 *
2506 * CPUMGetGuestCpuIdExtMax() give the size of the array.
2507 *
2508 * @returns Pointer to the extended CPUID leafs (read-only).
2509 * @param pVM The VM handle.
2510 * @remark Intended for PATM.
2511 */
2512VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
2513{
2514 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
2515}
2516
2517
2518/**
2519 * Gets a pointer to the array of centaur CPUID leafs.
2520 *
2521 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
2522 *
2523 * @returns Pointer to the centaur CPUID leafs (read-only).
2524 * @param pVM The VM handle.
2525 * @remark Intended for PATM.
2526 */
2527VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
2528{
2529 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
2530}
2531
2532
2533/**
2534 * Gets a pointer to the default CPUID leaf.
2535 *
2536 * @returns Pointer to the default CPUID leaf (read-only).
2537 * @param pVM The VM handle.
2538 * @remark Intended for PATM.
2539 */
2540VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
2541{
2542 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
2543}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette