/* $Id: QCOW.cpp 90802 2021-08-23 19:08:27Z vboxsync $ */ /** @file * QCOW - QCOW Disk image. */ /* * Copyright (C) 2011-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_VD_QCOW #include #include #include #include #include #include #include #include #include #include #include "VDBackends.h" #include "VDBackendsInline.h" /** @page pg_storage_qcow QCOW Storage Backend * The QCOW backend implements support for the qemu copy on write format (short QCOW). * * The official specification for qcow is available at * https://github.com/qemu/qemu/blob/master/docs/interop/qcow2.txt version 2 and 3. * For version 1 there is no official specification available but the format is described * at http://people.gnome.org/~markmc/qcow-image-format-version-1.html. * * Missing things to implement: * - v2 image creation and handling of the reference count table. (Blocker to enable support for V2 images) * - cluster encryption * - cluster compression * - compaction * - resizing */ /********************************************************************************************************************************* * Structures in a QCOW image, big endian * *********************************************************************************************************************************/ #pragma pack(1) /* Completely unnecessary. */ typedef struct QCowHeader { /** Magic value. */ uint32_t u32Magic; /** Version of the image. */ uint32_t u32Version; /** Version dependent data. */ union { /** Version 1. */ struct { /** Backing file offset. */ uint64_t u64BackingFileOffset; /** Size of the backing file. */ uint32_t u32BackingFileSize; /** mtime (Modification time?) - can be ignored. */ uint32_t u32MTime; /** Logical size of the image in bytes. */ uint64_t u64Size; /** Number of bits in the virtual offset used as a cluster offset. */ uint8_t u8ClusterBits; /** Number of bits in the virtual offset used for the L2 index. */ uint8_t u8L2Bits; /** Padding because the header is not packed in the original source. */ uint16_t u16Padding; /** Used cryptographic method. */ uint32_t u32CryptMethod; /** Offset of the L1 table in the image in bytes. */ uint64_t u64L1TableOffset; } v1; /** Version 2 (and also containing extensions for version 3). */ struct { /** Backing file offset. */ uint64_t u64BackingFileOffset; /** Size of the backing file. */ uint32_t u32BackingFileSize; /** Number of bits in the virtual offset used as a cluster offset. */ uint32_t u32ClusterBits; /** Logical size of the image. */ uint64_t u64Size; /** Used cryptographic method. */ uint32_t u32CryptMethod; /** Size of the L1 table in entries (each 8bytes big). */ uint32_t u32L1Size; /** Offset of the L1 table in the image in bytes. */ uint64_t u64L1TableOffset; /** Start of the refcount table in the image. */ uint64_t u64RefcountTableOffset; /** Size of the refcount table in clusters. */ uint32_t u32RefcountTableClusters; /** Number of snapshots in the image. */ uint32_t u32NbSnapshots; /** Offset of the first snapshot header in the image. */ uint64_t u64SnapshotsOffset; /** Version 3 additional data. */ struct { /** Incompatible features. */ uint64_t u64IncompatFeat; /** Compatible features. */ uint64_t u64CompatFeat; /** Autoclear features. */ uint64_t u64AutoClrFeat; /** Width in bits of a reference count block. */ uint32_t u32RefCntWidth; /** Lenght of the header structure in bytes (for the header extensions). */ uint32_t u32HdrLenBytes; } v3; } v2; } Version; } QCowHeader; #pragma pack() /** Pointer to a on disk QCOW header. */ typedef QCowHeader *PQCowHeader; /** QCOW magic value. */ #define QCOW_MAGIC UINT32_C(0x514649fb) /* QFI\0xfb */ /** Size of the V1 header. */ #define QCOW_V1_HDR_SIZE (48) /** Size of the V2 header. */ #define QCOW_V2_HDR_SIZE (72) /** Cluster is compressed flag for QCOW images. */ #define QCOW_V1_COMPRESSED_FLAG RT_BIT_64(63) /** Copied flag for QCOW2 images. */ #define QCOW_V2_COPIED_FLAG RT_BIT_64(63) /** Cluster is compressed flag for QCOW2 images. */ #define QCOW_V2_COMPRESSED_FLAG RT_BIT_64(62) /** The mask for extracting the offset from either the L1 or L2 table. */ #define QCOW_V2_TBL_OFFSET_MASK UINT64_C(0x00fffffffffffe00) /** Incompatible feature: Dirty bit, reference count may be inconsistent. */ #define QCOW_V3_INCOMPAT_FEAT_F_DIRTY RT_BIT_64(0) /** Incompatible feature: Image is corrupt and needs repair. */ #define QCOW_V3_INCOMPAT_FEAT_F_CORRUPT RT_BIT_64(1) /** Incompatible feature: External data file. */ #define QCOW_V3_INCOMPAT_FEAT_F_EXTERNAL_DATA RT_BIT_64(2) /** The incompatible features we support currently. */ #define QCOW_V3_INCOMPAT_FEAT_SUPPORTED_MASK UINT64_C(0x0) /** Compatible feature: Lazy reference counters. */ #define QCOW_V3_COMPAT_FEAT_F_LAZY_REF_COUNT RT_BIT_64(0) /** The compatible features we support currently. */ #define QCOW_V3_COMPAT_FEAT_SUPPORTED_MASK UINT64_C(0x0) /** Auto clear feature: Bitmaps extension. */ #define QCOW_V3_AUTOCLR_FEAT_F_BITMAPS RT_BIT_64(0) /** Auto clear feature: The external data file is raw image which can be accessed standalone. */ #define QCOW_V3_AUTOCLR_FEAT_F_EXT_RAW_DATA RT_BIT_64(1) /** The autoclear features we support currently. */ #define QCOW_V3_AUTOCLR_FEAT_SUPPORTED_MASK UINT64_C(0x0) /********************************************************************************************************************************* * Constants And Macros, Structures and Typedefs * *********************************************************************************************************************************/ /** * QCOW L2 cache entry. */ typedef struct QCOWL2CACHEENTRY { /** List node for the search list. */ RTLISTNODE NodeSearch; /** List node for the LRU list. */ RTLISTNODE NodeLru; /** Reference counter. */ uint32_t cRefs; /** The offset of the L2 table, used as search key. */ uint64_t offL2Tbl; /** Pointer to the cached L2 table. */ uint64_t *paL2Tbl; } QCOWL2CACHEENTRY, *PQCOWL2CACHEENTRY; /** Maximum amount of memory the cache is allowed to use. */ #define QCOW_L2_CACHE_MEMORY_MAX (2*_1M) /** QCOW default cluster size for image version 2. */ #define QCOW2_CLUSTER_SIZE_DEFAULT (64*_1K) /** QCOW default cluster size for image version 1. */ #define QCOW_CLUSTER_SIZE_DEFAULT (4*_1K) /** QCOW default L2 table size in clusters. */ #define QCOW_L2_CLUSTERS_DEFAULT (1) /** * QCOW image data structure. */ typedef struct QCOWIMAGE { /** Image name. */ const char *pszFilename; /** Storage handle. */ PVDIOSTORAGE pStorage; /** Pointer to the per-disk VD interface list. */ PVDINTERFACE pVDIfsDisk; /** Pointer to the per-image VD interface list. */ PVDINTERFACE pVDIfsImage; /** Error interface. */ PVDINTERFACEERROR pIfError; /** I/O interface. */ PVDINTERFACEIOINT pIfIo; /** Open flags passed by VBoxHD layer. */ unsigned uOpenFlags; /** Image flags defined during creation or determined during open. */ unsigned uImageFlags; /** Total size of the image. */ uint64_t cbSize; /** Physical geometry of this image. */ VDGEOMETRY PCHSGeometry; /** Logical geometry of this image. */ VDGEOMETRY LCHSGeometry; /** Image version. */ unsigned uVersion; /** MTime field - used only to preserve value in opened images, unmodified otherwise. */ uint32_t MTime; /** Filename of the backing file if any. */ char *pszBackingFilename; /** Offset of the filename in the image. */ uint64_t offBackingFilename; /** Size of the backing filename excluding \0. */ uint32_t cbBackingFilename; /** Next offset of a new cluster, aligned to sector size. */ uint64_t offNextCluster; /** Cluster size in bytes. */ uint32_t cbCluster; /** Number of bits in the virtual offset used as the cluster offset. */ uint32_t cClusterBits; /** Bitmask to extract the offset from a compressed cluster descriptor. */ uint64_t fMaskCompressedClusterOffset; /** Bitmask to extract the sector count from a compressed cluster descriptor. */ uint64_t fMaskCompressedClusterSectors; /** Number of bits to shift the sector count to the right to get the final value. */ uint32_t cBitsShiftRCompressedClusterSectors; /** Number of entries in the L1 table. */ uint32_t cL1TableEntries; /** Size of an L1 rounded to the next cluster size. */ uint32_t cbL1Table; /** Pointer to the L1 table. */ uint64_t *paL1Table; /** Offset of the L1 table. */ uint64_t offL1Table; /** Size of the L2 table in bytes. */ uint32_t cbL2Table; /** Number of entries in the L2 table. */ uint32_t cL2TableEntries; /** Memory occupied by the L2 table cache. */ size_t cbL2Cache; /** The sorted L2 entry list used for searching. */ RTLISTNODE ListSearch; /** The LRU L2 entry list used for eviction. */ RTLISTNODE ListLru; /** Offset of the refcount table. */ uint64_t offRefcountTable; /** Size of the refcount table in bytes. */ uint32_t cbRefcountTable; /** Number of entries in the refcount table. */ uint32_t cRefcountTableEntries; /** Pointer to the refcount table. */ uint64_t *paRefcountTable; /** Offset mask for a cluster. */ uint64_t fOffsetMask; /** Number of bits to shift to get the L1 index. */ uint32_t cL1Shift; /** L2 table mask to get the L2 index. */ uint64_t fL2Mask; /** Number of bits to shift to get the L2 index. */ uint32_t cL2Shift; /** Size of compressed cluster buffer. */ size_t cbCompCluster; /** Compressed cluster buffer. */ void *pvCompCluster; /** Buffer to hold the uncompressed data. */ void *pvCluster; /** Pointer to the L2 table we are currently allocating * (can be only one at a time). */ PQCOWL2CACHEENTRY pL2TblAlloc; /** The static region list. */ VDREGIONLIST RegionList; } QCOWIMAGE, *PQCOWIMAGE; /** * State of the async cluster allocation. */ typedef enum QCOWCLUSTERASYNCALLOCSTATE { /** Invalid. */ QCOWCLUSTERASYNCALLOCSTATE_INVALID = 0, /** L2 table allocation. */ QCOWCLUSTERASYNCALLOCSTATE_L2_ALLOC, /** Link L2 table into L1. */ QCOWCLUSTERASYNCALLOCSTATE_L2_LINK, /** Allocate user data cluster. */ QCOWCLUSTERASYNCALLOCSTATE_USER_ALLOC, /** Link user data cluster. */ QCOWCLUSTERASYNCALLOCSTATE_USER_LINK, /** 32bit blowup. */ QCOWCLUSTERASYNCALLOCSTATE_32BIT_HACK = 0x7fffffff } QCOWCLUSTERASYNCALLOCSTATE, *PQCOWCLUSTERASYNCALLOCSTATE; /** * Data needed to track async cluster allocation. */ typedef struct QCOWCLUSTERASYNCALLOC { /** The state of the cluster allocation. */ QCOWCLUSTERASYNCALLOCSTATE enmAllocState; /** Old image size to rollback in case of an error. */ uint64_t offNextClusterOld; /** L1 index to link if any. */ uint32_t idxL1; /** L2 index to link, required in any case. */ uint32_t idxL2; /** Start offset of the allocated cluster. */ uint64_t offClusterNew; /** L2 cache entry if a L2 table is allocated. */ PQCOWL2CACHEENTRY pL2Entry; /** Number of bytes to write. */ size_t cbToWrite; } QCOWCLUSTERASYNCALLOC, *PQCOWCLUSTERASYNCALLOC; /********************************************************************************************************************************* * Static Variables * *********************************************************************************************************************************/ /** NULL-terminated array of supported file extensions. */ static const VDFILEEXTENSION s_aQCowFileExtensions[] = { {"qcow", VDTYPE_HDD}, {"qcow2", VDTYPE_HDD}, {NULL, VDTYPE_INVALID} }; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ /** * Return power of 2 or 0 if num error. * * @returns The power of 2 or 0 if the given number is not a power of 2. * @param u32 The number. */ static uint32_t qcowGetPowerOfTwo(uint32_t u32) { if (u32 == 0) return 0; uint32_t uPower2 = 0; while ((u32 & 1) == 0) { u32 >>= 1; uPower2++; } return u32 == 1 ? uPower2 : 0; } /** * Converts the image header to the host endianess and performs basic checks. * * @returns Whether the given header is valid or not. * @param pHeader Pointer to the header to convert. */ static bool qcowHdrConvertToHostEndianess(PQCowHeader pHeader) { pHeader->u32Magic = RT_BE2H_U32(pHeader->u32Magic); pHeader->u32Version = RT_BE2H_U32(pHeader->u32Version); if (pHeader->u32Magic != QCOW_MAGIC) return false; if (pHeader->u32Version == 1) { pHeader->Version.v1.u64BackingFileOffset = RT_BE2H_U64(pHeader->Version.v1.u64BackingFileOffset); pHeader->Version.v1.u32BackingFileSize = RT_BE2H_U32(pHeader->Version.v1.u32BackingFileSize); pHeader->Version.v1.u32MTime = RT_BE2H_U32(pHeader->Version.v1.u32MTime); pHeader->Version.v1.u64Size = RT_BE2H_U64(pHeader->Version.v1.u64Size); pHeader->Version.v1.u32CryptMethod = RT_BE2H_U32(pHeader->Version.v1.u32CryptMethod); pHeader->Version.v1.u64L1TableOffset = RT_BE2H_U64(pHeader->Version.v1.u64L1TableOffset); } else if (pHeader->u32Version == 2 || pHeader->u32Version == 3) { pHeader->Version.v2.u64BackingFileOffset = RT_BE2H_U64(pHeader->Version.v2.u64BackingFileOffset); pHeader->Version.v2.u32BackingFileSize = RT_BE2H_U32(pHeader->Version.v2.u32BackingFileSize); pHeader->Version.v2.u32ClusterBits = RT_BE2H_U32(pHeader->Version.v2.u32ClusterBits); pHeader->Version.v2.u64Size = RT_BE2H_U64(pHeader->Version.v2.u64Size); pHeader->Version.v2.u32CryptMethod = RT_BE2H_U32(pHeader->Version.v2.u32CryptMethod); pHeader->Version.v2.u32L1Size = RT_BE2H_U32(pHeader->Version.v2.u32L1Size); pHeader->Version.v2.u64L1TableOffset = RT_BE2H_U64(pHeader->Version.v2.u64L1TableOffset); pHeader->Version.v2.u64RefcountTableOffset = RT_BE2H_U64(pHeader->Version.v2.u64RefcountTableOffset); pHeader->Version.v2.u32RefcountTableClusters = RT_BE2H_U32(pHeader->Version.v2.u32RefcountTableClusters); pHeader->Version.v2.u32NbSnapshots = RT_BE2H_U32(pHeader->Version.v2.u32NbSnapshots); pHeader->Version.v2.u64SnapshotsOffset = RT_BE2H_U64(pHeader->Version.v2.u64SnapshotsOffset); if (pHeader->u32Version == 3) { pHeader->Version.v2.v3.u64IncompatFeat = RT_BE2H_U64(pHeader->Version.v2.v3.u64IncompatFeat); pHeader->Version.v2.v3.u64CompatFeat = RT_BE2H_U64(pHeader->Version.v2.v3.u64CompatFeat); pHeader->Version.v2.v3.u64AutoClrFeat = RT_BE2H_U64(pHeader->Version.v2.v3.u64AutoClrFeat); pHeader->Version.v2.v3.u32RefCntWidth = RT_BE2H_U32(pHeader->Version.v2.v3.u32RefCntWidth); pHeader->Version.v2.v3.u32HdrLenBytes = RT_BE2H_U32(pHeader->Version.v2.v3.u32HdrLenBytes); } } else return false; return true; } /** * Creates a QCOW header from the given image state. * * @returns nothing. * @param pImage Image instance data. * @param pHeader Pointer to the header to convert. * @param pcbHeader Where to store the size of the header to write. */ static void qcowHdrConvertFromHostEndianess(PQCOWIMAGE pImage, PQCowHeader pHeader, size_t *pcbHeader) { memset(pHeader, 0, sizeof(QCowHeader)); pHeader->u32Magic = RT_H2BE_U32(QCOW_MAGIC); pHeader->u32Version = RT_H2BE_U32(pImage->uVersion); if (pImage->uVersion == 1) { pHeader->Version.v1.u64BackingFileOffset = RT_H2BE_U64(pImage->offBackingFilename); pHeader->Version.v1.u32BackingFileSize = RT_H2BE_U32(pImage->cbBackingFilename); pHeader->Version.v1.u32MTime = RT_H2BE_U32(pImage->MTime); pHeader->Version.v1.u64Size = RT_H2BE_U64(pImage->cbSize); pHeader->Version.v1.u8ClusterBits = (uint8_t)qcowGetPowerOfTwo(pImage->cbCluster); pHeader->Version.v1.u8L2Bits = (uint8_t)qcowGetPowerOfTwo(pImage->cL2TableEntries); pHeader->Version.v1.u32CryptMethod = RT_H2BE_U32(0); pHeader->Version.v1.u64L1TableOffset = RT_H2BE_U64(pImage->offL1Table); *pcbHeader = QCOW_V1_HDR_SIZE; } else if (pImage->uVersion == 2) { pHeader->Version.v2.u64BackingFileOffset = RT_H2BE_U64(pImage->offBackingFilename); pHeader->Version.v2.u32BackingFileSize = RT_H2BE_U32(pImage->cbBackingFilename); pHeader->Version.v2.u32ClusterBits = RT_H2BE_U32(qcowGetPowerOfTwo(pImage->cbCluster)); pHeader->Version.v2.u64Size = RT_H2BE_U64(pImage->cbSize); pHeader->Version.v2.u32CryptMethod = RT_H2BE_U32(0); pHeader->Version.v2.u32L1Size = RT_H2BE_U32(pImage->cL1TableEntries); pHeader->Version.v2.u64L1TableOffset = RT_H2BE_U64(pImage->offL1Table); pHeader->Version.v2.u64RefcountTableOffset = RT_H2BE_U64(pImage->offRefcountTable); pHeader->Version.v2.u32RefcountTableClusters = RT_H2BE_U32(pImage->cbRefcountTable / pImage->cbCluster); pHeader->Version.v2.u32NbSnapshots = RT_H2BE_U32(0); pHeader->Version.v2.u64SnapshotsOffset = RT_H2BE_U64((uint64_t)0); *pcbHeader = QCOW_V2_HDR_SIZE; } else AssertMsgFailed(("Invalid version of the QCOW image format %d\n", pImage->uVersion)); } /** * Convert table entries from little endian to host endianess. * * @returns nothing. * @param paTbl Pointer to the table. * @param cEntries Number of entries in the table. */ static void qcowTableConvertToHostEndianess(uint64_t *paTbl, uint32_t cEntries) { while(cEntries-- > 0) { *paTbl = RT_BE2H_U64(*paTbl); paTbl++; } } /** * Convert table entries from host to little endian format. * * @returns nothing. * @param paTblImg Pointer to the table which will store the little endian table. * @param paTbl The source table to convert. * @param cEntries Number of entries in the table. */ static void qcowTableConvertFromHostEndianess(uint64_t *paTblImg, uint64_t *paTbl, uint32_t cEntries) { while(cEntries-- > 0) { *paTblImg = RT_H2BE_U64(*paTbl); paTbl++; paTblImg++; } } /** * Creates the L2 table cache. * * @returns VBox status code. * @param pImage The image instance data. */ static int qcowL2TblCacheCreate(PQCOWIMAGE pImage) { pImage->cbL2Cache = 0; RTListInit(&pImage->ListSearch); RTListInit(&pImage->ListLru); return VINF_SUCCESS; } /** * Destroys the L2 table cache. * * @returns nothing. * @param pImage The image instance data. */ static void qcowL2TblCacheDestroy(PQCOWIMAGE pImage) { PQCOWL2CACHEENTRY pL2Entry; PQCOWL2CACHEENTRY pL2Next; RTListForEachSafe(&pImage->ListSearch, pL2Entry, pL2Next, QCOWL2CACHEENTRY, NodeSearch) { Assert(!pL2Entry->cRefs); RTListNodeRemove(&pL2Entry->NodeSearch); RTMemPageFree(pL2Entry->paL2Tbl, pImage->cbL2Table); RTMemFree(pL2Entry); } pImage->cbL2Cache = 0; RTListInit(&pImage->ListSearch); RTListInit(&pImage->ListLru); } /** * Returns the L2 table matching the given offset or NULL if none could be found. * * @returns Pointer to the L2 table cache entry or NULL. * @param pImage The image instance data. * @param offL2Tbl Offset of the L2 table to search for. */ static PQCOWL2CACHEENTRY qcowL2TblCacheRetain(PQCOWIMAGE pImage, uint64_t offL2Tbl) { if ( pImage->pL2TblAlloc && pImage->pL2TblAlloc->offL2Tbl == offL2Tbl) { pImage->pL2TblAlloc->cRefs++; return pImage->pL2TblAlloc; } PQCOWL2CACHEENTRY pL2Entry; RTListForEach(&pImage->ListSearch, pL2Entry, QCOWL2CACHEENTRY, NodeSearch) { if (pL2Entry->offL2Tbl == offL2Tbl) break; } if (!RTListNodeIsDummy(&pImage->ListSearch, pL2Entry, QCOWL2CACHEENTRY, NodeSearch)) { /* Update LRU list. */ RTListNodeRemove(&pL2Entry->NodeLru); RTListPrepend(&pImage->ListLru, &pL2Entry->NodeLru); pL2Entry->cRefs++; return pL2Entry; } return NULL; } /** * Releases a L2 table cache entry. * * @returns nothing. * @param pL2Entry The L2 cache entry. */ static void qcowL2TblCacheEntryRelease(PQCOWL2CACHEENTRY pL2Entry) { Assert(pL2Entry->cRefs > 0); pL2Entry->cRefs--; } /** * Allocates a new L2 table from the cache evicting old entries if required. * * @returns Pointer to the L2 cache entry or NULL. * @param pImage The image instance data. */ static PQCOWL2CACHEENTRY qcowL2TblCacheEntryAlloc(PQCOWIMAGE pImage) { PQCOWL2CACHEENTRY pL2Entry = NULL; if (pImage->cbL2Cache + pImage->cbL2Table <= QCOW_L2_CACHE_MEMORY_MAX) { /* Add a new entry. */ pL2Entry = (PQCOWL2CACHEENTRY)RTMemAllocZ(sizeof(QCOWL2CACHEENTRY)); if (pL2Entry) { pL2Entry->paL2Tbl = (uint64_t *)RTMemPageAllocZ(pImage->cbL2Table); if (RT_UNLIKELY(!pL2Entry->paL2Tbl)) { RTMemFree(pL2Entry); pL2Entry = NULL; } else { pL2Entry->cRefs = 1; pImage->cbL2Cache += pImage->cbL2Table; } } } else { /* Evict the last not in use entry and use it */ Assert(!RTListIsEmpty(&pImage->ListLru)); RTListForEachReverse(&pImage->ListLru, pL2Entry, QCOWL2CACHEENTRY, NodeLru) { if (!pL2Entry->cRefs) break; } if (!RTListNodeIsDummy(&pImage->ListSearch, pL2Entry, QCOWL2CACHEENTRY, NodeSearch)) { RTListNodeRemove(&pL2Entry->NodeSearch); RTListNodeRemove(&pL2Entry->NodeLru); pL2Entry->offL2Tbl = 0; pL2Entry->cRefs = 1; } else pL2Entry = NULL; } return pL2Entry; } /** * Frees a L2 table cache entry. * * @returns nothing. * @param pImage The image instance data. * @param pL2Entry The L2 cache entry to free. */ static void qcowL2TblCacheEntryFree(PQCOWIMAGE pImage, PQCOWL2CACHEENTRY pL2Entry) { Assert(!pL2Entry->cRefs); RTMemPageFree(pL2Entry->paL2Tbl, pImage->cbL2Table); RTMemFree(pL2Entry); pImage->cbL2Cache -= pImage->cbL2Table; } /** * Inserts an entry in the L2 table cache. * * @returns nothing. * @param pImage The image instance data. * @param pL2Entry The L2 cache entry to insert. */ static void qcowL2TblCacheEntryInsert(PQCOWIMAGE pImage, PQCOWL2CACHEENTRY pL2Entry) { Assert(pL2Entry->offL2Tbl > 0); /* Insert at the top of the LRU list. */ RTListPrepend(&pImage->ListLru, &pL2Entry->NodeLru); if (RTListIsEmpty(&pImage->ListSearch)) { RTListAppend(&pImage->ListSearch, &pL2Entry->NodeSearch); } else { /* Insert into search list. */ PQCOWL2CACHEENTRY pIt; pIt = RTListGetFirst(&pImage->ListSearch, QCOWL2CACHEENTRY, NodeSearch); if (pIt->offL2Tbl > pL2Entry->offL2Tbl) RTListPrepend(&pImage->ListSearch, &pL2Entry->NodeSearch); else { bool fInserted = false; RTListForEach(&pImage->ListSearch, pIt, QCOWL2CACHEENTRY, NodeSearch) { Assert(pIt->offL2Tbl != pL2Entry->offL2Tbl); if (pIt->offL2Tbl < pL2Entry->offL2Tbl) { RTListNodeInsertAfter(&pIt->NodeSearch, &pL2Entry->NodeSearch); fInserted = true; break; } } Assert(fInserted); } } } /** * Fetches the L2 from the given offset trying the LRU cache first and * reading it from the image after a cache miss. * * @returns VBox status code. * @param pImage Image instance data. * @param pIoCtx The I/O context. * @param offL2Tbl The offset of the L2 table in the image. * @param ppL2Entry Where to store the L2 table on success. */ static int qcowL2TblCacheFetch(PQCOWIMAGE pImage, PVDIOCTX pIoCtx, uint64_t offL2Tbl, PQCOWL2CACHEENTRY *ppL2Entry) { int rc = VINF_SUCCESS; /* Try to fetch the L2 table from the cache first. */ PQCOWL2CACHEENTRY pL2Entry = qcowL2TblCacheRetain(pImage, offL2Tbl); if (!pL2Entry) { pL2Entry = qcowL2TblCacheEntryAlloc(pImage); if (pL2Entry) { /* Read from the image. */ PVDMETAXFER pMetaXfer; pL2Entry->offL2Tbl = offL2Tbl; rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pImage->pStorage, offL2Tbl, pL2Entry->paL2Tbl, pImage->cbL2Table, pIoCtx, &pMetaXfer, NULL, NULL); if (RT_SUCCESS(rc)) { vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer); #if defined(RT_LITTLE_ENDIAN) qcowTableConvertToHostEndianess(pL2Entry->paL2Tbl, pImage->cL2TableEntries); #endif qcowL2TblCacheEntryInsert(pImage, pL2Entry); } else { qcowL2TblCacheEntryRelease(pL2Entry); qcowL2TblCacheEntryFree(pImage, pL2Entry); } } else rc = VERR_NO_MEMORY; } if (RT_SUCCESS(rc)) *ppL2Entry = pL2Entry; return rc; } /** * Sets the L1, L2 and offset bitmasks and L1 and L2 bit shift members. * * @returns nothing. * @param pImage The image instance data. */ static void qcowTableMasksInit(PQCOWIMAGE pImage) { uint32_t cClusterBits, cL2TableBits; cClusterBits = qcowGetPowerOfTwo(pImage->cbCluster); cL2TableBits = qcowGetPowerOfTwo(pImage->cL2TableEntries); Assert(cClusterBits + cL2TableBits < 64); pImage->fOffsetMask = ((uint64_t)pImage->cbCluster - 1); pImage->fL2Mask = ((uint64_t)pImage->cL2TableEntries - 1) << cClusterBits; pImage->cL2Shift = cClusterBits; pImage->cL1Shift = cClusterBits + cL2TableBits; } /** * Converts a given logical offset into the * * @returns nothing. * @param pImage The image instance data. * @param off The logical offset to convert. * @param pidxL1 Where to store the index in the L1 table on success. * @param pidxL2 Where to store the index in the L2 table on success. * @param poffCluster Where to store the offset in the cluster on success. */ DECLINLINE(void) qcowConvertLogicalOffset(PQCOWIMAGE pImage, uint64_t off, uint32_t *pidxL1, uint32_t *pidxL2, uint32_t *poffCluster) { AssertPtr(pidxL1); AssertPtr(pidxL2); AssertPtr(poffCluster); *poffCluster = off & pImage->fOffsetMask; *pidxL1 = off >> pImage->cL1Shift; *pidxL2 = (off & pImage->fL2Mask) >> pImage->cL2Shift; } /** * Converts Cluster size to a byte size. * * @returns Number of bytes derived from the given number of clusters. * @param pImage The image instance data. * @param cClusters The clusters to convert. */ DECLINLINE(uint64_t) qcowCluster2Byte(PQCOWIMAGE pImage, uint64_t cClusters) { return cClusters * pImage->cbCluster; } /** * Converts number of bytes to cluster size rounding to the next cluster. * * @returns Number of bytes derived from the given number of clusters. * @param pImage The image instance data. * @param cb Number of bytes to convert. */ DECLINLINE(uint64_t) qcowByte2Cluster(PQCOWIMAGE pImage, uint64_t cb) { return cb / pImage->cbCluster + (cb % pImage->cbCluster ? 1 : 0); } /** * Allocates a new cluster in the image. * * @returns The start offset of the new cluster in the image. * @param pImage The image instance data. * @param cClusters Number of clusters to allocate. */ DECLINLINE(uint64_t) qcowClusterAllocate(PQCOWIMAGE pImage, uint32_t cClusters) { uint64_t offCluster; offCluster = pImage->offNextCluster; pImage->offNextCluster += cClusters*pImage->cbCluster; return offCluster; } /** * Returns the real image offset for a given cluster or an error if the cluster is not * yet allocated. * * @returns VBox status code. * VERR_VD_BLOCK_FREE if the cluster is not yet allocated. * @param pImage The image instance data. * @param pIoCtx The I/O context. * @param idxL1 The L1 index. * @param idxL2 The L2 index. * @param offCluster Offset inside the cluster. * @param poffImage Where to store the image offset on success. * @param pfCompressed Where to store the flag whether the cluster is compressed on success. * @param pcbCompressed Where to store the size of the compressed cluster in bytes on success. * Only valid when the cluster comrpessed flag is true. */ static int qcowConvertToImageOffset(PQCOWIMAGE pImage, PVDIOCTX pIoCtx, uint32_t idxL1, uint32_t idxL2, uint32_t offCluster, uint64_t *poffImage, bool *pfCompressed, size_t *pcbCompressed) { int rc = VERR_VD_BLOCK_FREE; AssertReturn(idxL1 < pImage->cL1TableEntries, VERR_INVALID_PARAMETER); AssertReturn(idxL2 < pImage->cL2TableEntries, VERR_INVALID_PARAMETER); if (pImage->paL1Table[idxL1]) { PQCOWL2CACHEENTRY pL2Entry; uint64_t offL2Tbl = pImage->paL1Table[idxL1]; if (pImage->uVersion == 2) offL2Tbl &= QCOW_V2_TBL_OFFSET_MASK; rc = qcowL2TblCacheFetch(pImage, pIoCtx, offL2Tbl, &pL2Entry); if (RT_SUCCESS(rc)) { /* Get real file offset. */ if (pL2Entry->paL2Tbl[idxL2]) { uint64_t off = pL2Entry->paL2Tbl[idxL2]; /* Strip flags */ if (pImage->uVersion == 2) { if (RT_UNLIKELY(off & QCOW_V2_COMPRESSED_FLAG)) { size_t cCompressedClusterSectors = ((off & pImage->fMaskCompressedClusterSectors) >> pImage->cBitsShiftRCompressedClusterSectors); uint64_t offImage = off & pImage->fMaskCompressedClusterOffset; *pfCompressed = true; *poffImage = offImage; *pcbCompressed = (cCompressedClusterSectors + 1) * 512 - (offImage & 511ULL); } else { off &= QCOW_V2_TBL_OFFSET_MASK; *pfCompressed = false; *poffImage = off + offCluster; } } else { if (RT_UNLIKELY(off & QCOW_V1_COMPRESSED_FLAG)) { size_t cCompressedClusterSectors = (off & pImage->fMaskCompressedClusterSectors) >> pImage->cBitsShiftRCompressedClusterSectors; *pfCompressed = true; *poffImage = off & pImage->fMaskCompressedClusterOffset; *pcbCompressed = cCompressedClusterSectors * 512; /* Only additional sectors */ /* Add remaining bytes of the sector the offset starts in. */ *pcbCompressed += 512 - RT_ALIGN_64(*poffImage, 512) - *poffImage; } else { off &= ~QCOW_V1_COMPRESSED_FLAG; *pfCompressed = false; *poffImage = off + offCluster; } } } else rc = VERR_VD_BLOCK_FREE; qcowL2TblCacheEntryRelease(pL2Entry); } } return rc; } /** * Write the given table to image converting to the image endianess if required. * * @returns VBox status code. * @param pImage The image instance data. * @param pIoCtx The I/O context. * @param offTbl The offset the table should be written to. * @param paTbl The table to write. * @param cbTbl Size of the table in bytes. * @param cTblEntries Number entries in the table. * @param pfnComplete Callback called when the write completes. * @param pvUser Opaque user data to pass in the completion callback. */ static int qcowTblWrite(PQCOWIMAGE pImage, PVDIOCTX pIoCtx, uint64_t offTbl, uint64_t *paTbl, size_t cbTbl, unsigned cTblEntries, PFNVDXFERCOMPLETED pfnComplete, void *pvUser) { int rc = VINF_SUCCESS; #if defined(RT_LITTLE_ENDIAN) uint64_t *paTblImg = (uint64_t *)RTMemAllocZ(cbTbl); if (paTblImg) { qcowTableConvertFromHostEndianess(paTblImg, paTbl, cTblEntries); rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage, offTbl, paTblImg, cbTbl, pIoCtx, pfnComplete, pvUser); RTMemFree(paTblImg); } else rc = VERR_NO_MEMORY; #else /* Write table directly. */ RT_NOREF(cTblEntries); rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage, offTbl, paTbl, cbTbl, pIoCtx, pfnComplete, pvUser); #endif return rc; } /** * Internal. Flush image data to disk. */ static int qcowFlushImage(PQCOWIMAGE pImage) { int rc = VINF_SUCCESS; if ( pImage->pStorage && !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) && pImage->cbL1Table) { QCowHeader Header; #if defined(RT_LITTLE_ENDIAN) uint64_t *paL1TblImg = (uint64_t *)RTMemAllocZ(pImage->cbL1Table); if (paL1TblImg) { qcowTableConvertFromHostEndianess(paL1TblImg, pImage->paL1Table, pImage->cL1TableEntries); rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->offL1Table, paL1TblImg, pImage->cbL1Table); RTMemFree(paL1TblImg); } else rc = VERR_NO_MEMORY; #else /* Write L1 table directly. */ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->offL1Table, pImage->paL1Table, pImage->cbL1Table); #endif if (RT_SUCCESS(rc)) { /* Write header. */ size_t cbHeader = 0; qcowHdrConvertFromHostEndianess(pImage, &Header, &cbHeader); rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, 0, &Header, cbHeader); if (RT_SUCCESS(rc)) rc = vdIfIoIntFileFlushSync(pImage->pIfIo, pImage->pStorage); } } return rc; } /** * Internal. Free all allocated space for representing an image except pImage, * and optionally delete the image from disk. */ static int qcowFreeImage(PQCOWIMAGE pImage, bool fDelete) { int rc = VINF_SUCCESS; /* Freeing a never allocated image (e.g. because the open failed) is * not signalled as an error. After all nothing bad happens. */ if (pImage) { if (pImage->pStorage) { /* No point updating the file that is deleted anyway. */ if (!fDelete) qcowFlushImage(pImage); rc = vdIfIoIntFileClose(pImage->pIfIo, pImage->pStorage); pImage->pStorage = NULL; } if (pImage->paRefcountTable) RTMemFree(pImage->paRefcountTable); pImage->paRefcountTable = NULL; if (pImage->paL1Table) RTMemFree(pImage->paL1Table); if (pImage->pszBackingFilename) { RTStrFree(pImage->pszBackingFilename); pImage->pszBackingFilename = NULL; } if (pImage->pvCompCluster) { RTMemFree(pImage->pvCompCluster); pImage->pvCompCluster = NULL; pImage->cbCompCluster = 0; } if (pImage->pvCluster) { RTMemFree(pImage->pvCluster); pImage->pvCluster = NULL; } qcowL2TblCacheDestroy(pImage); if (fDelete && pImage->pszFilename) vdIfIoIntFileDelete(pImage->pIfIo, pImage->pszFilename); } LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** * Validates the header. * * @returns VBox status code. * @param pImage Image backend instance data. * @param pHdr The header to validate. * @param cbFile The image file size in bytes. */ static int qcowHdrValidate(PQCOWIMAGE pImage, PQCowHeader pHdr, uint64_t cbFile) { if (pHdr->u32Version == 1) { /* Check that the backing filename is contained in the file. */ if (pHdr->Version.v1.u64BackingFileOffset + pHdr->Version.v1.u32BackingFileSize > cbFile) return vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: Backing file offset and size exceed size of image '%s' (%u vs %u)"), pImage->pszFilename, pHdr->Version.v1.u64BackingFileOffset + pHdr->Version.v1.u32BackingFileSize, cbFile); /* Check that the cluster bits indicate at least a 512byte sector size. */ if (RT_BIT_32(pHdr->Version.v1.u8ClusterBits) < 512) return vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: Cluster size is too small for image '%s' (%u vs %u)"), pImage->pszFilename, RT_BIT_32(pHdr->Version.v1.u8ClusterBits), 512); /* * Check for possible overflow when multiplying cluster size and L2 entry count because it is used * to calculate the number of L1 table entries later on. */ if (RT_BIT_32(pHdr->Version.v1.u8L2Bits) * RT_BIT_32(pHdr->Version.v1.u8ClusterBits) == 0) return vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: Overflow during L1 table size calculation for image '%s'"), pImage->pszFilename); } else if (pHdr->u32Version == 2 || pHdr->u32Version == 3) { /* Check that the backing filename is contained in the file. */ if (pHdr->Version.v2.u64BackingFileOffset + pHdr->Version.v2.u32BackingFileSize > cbFile) return vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: Backing file offset and size exceed size of image '%s' (%u vs %u)"), pImage->pszFilename, pHdr->Version.v2.u64BackingFileOffset + pHdr->Version.v2.u32BackingFileSize, cbFile); /* Check that the cluster bits indicate at least a 512byte sector size. */ if (RT_BIT_32(pHdr->Version.v2.u32ClusterBits) < 512) return vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: Cluster size is too small for image '%s' (%u vs %u)"), pImage->pszFilename, RT_BIT_32(pHdr->Version.v2.u32ClusterBits), 512); /* Some additional checks for v3 images. */ if (pHdr->u32Version == 3) { if (pHdr->Version.v2.v3.u32RefCntWidth > 6) return vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: Reference count width too big for image '%s' (%u vs %u)"), pImage->pszFilename, RT_BIT_32(pHdr->Version.v2.v3.u32RefCntWidth), 6); } } else return vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, N_("QCOW: Version %u in image '%s' is not supported"), pHdr->u32Version, pImage->pszFilename); return VINF_SUCCESS; } /** * Internal: Open an image, constructing all necessary data structures. */ static int qcowOpenImage(PQCOWIMAGE pImage, unsigned uOpenFlags) { pImage->uOpenFlags = uOpenFlags; pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk); pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage); AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER); int rc = qcowL2TblCacheCreate(pImage); if (RT_SUCCESS(rc)) { /* Open the image. */ rc = vdIfIoIntFileOpen(pImage->pIfIo, pImage->pszFilename, VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */), &pImage->pStorage); if (RT_SUCCESS(rc)) { uint64_t cbFile; rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pStorage, &cbFile); if ( RT_SUCCESS(rc) && cbFile > sizeof(QCowHeader)) { QCowHeader Header; rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, 0, &Header, sizeof(Header)); if ( RT_SUCCESS(rc) && qcowHdrConvertToHostEndianess(&Header)) { pImage->offNextCluster = RT_ALIGN_64(cbFile, 512); /* Align image to sector boundary. */ Assert(pImage->offNextCluster >= cbFile); rc = qcowHdrValidate(pImage, &Header, cbFile); if (RT_SUCCESS(rc)) { if (Header.u32Version == 1) { if (!Header.Version.v1.u32CryptMethod) { pImage->uVersion = 1; pImage->offBackingFilename = Header.Version.v1.u64BackingFileOffset; pImage->cbBackingFilename = Header.Version.v1.u32BackingFileSize; pImage->MTime = Header.Version.v1.u32MTime; pImage->cbSize = Header.Version.v1.u64Size; pImage->cClusterBits = Header.Version.v1.u8ClusterBits; pImage->cbCluster = RT_BIT_32(Header.Version.v1.u8ClusterBits); pImage->cL2TableEntries = RT_BIT_32(Header.Version.v1.u8L2Bits); pImage->cbL2Table = RT_ALIGN_64(pImage->cL2TableEntries * sizeof(uint64_t), pImage->cbCluster); pImage->offL1Table = Header.Version.v1.u64L1TableOffset; pImage->cL1TableEntries = pImage->cbSize / (pImage->cbCluster * pImage->cL2TableEntries); if (pImage->cbSize % (pImage->cbCluster * pImage->cL2TableEntries)) pImage->cL1TableEntries++; } else rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, N_("QCow: Encrypted image '%s' is not supported"), pImage->pszFilename); } else if (Header.u32Version == 2 || Header.u32Version == 3) { if (Header.Version.v2.u32CryptMethod) rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, N_("QCow: Encrypted image '%s' is not supported"), pImage->pszFilename); else if (Header.Version.v2.u32NbSnapshots) rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, N_("QCow: Image '%s' contains snapshots which is not supported"), pImage->pszFilename); else { pImage->uVersion = 2; pImage->offBackingFilename = Header.Version.v2.u64BackingFileOffset; pImage->cbBackingFilename = Header.Version.v2.u32BackingFileSize; pImage->cbSize = Header.Version.v2.u64Size; pImage->cClusterBits = Header.Version.v2.u32ClusterBits; pImage->cbCluster = RT_BIT_32(Header.Version.v2.u32ClusterBits); pImage->cL2TableEntries = pImage->cbCluster / sizeof(uint64_t); pImage->cbL2Table = pImage->cbCluster; pImage->offL1Table = Header.Version.v2.u64L1TableOffset; pImage->cL1TableEntries = Header.Version.v2.u32L1Size; pImage->offRefcountTable = Header.Version.v2.u64RefcountTableOffset; pImage->cbRefcountTable = qcowCluster2Byte(pImage, Header.Version.v2.u32RefcountTableClusters); pImage->cRefcountTableEntries = pImage->cbRefcountTable / sizeof(uint64_t); /* Init the masks to extract offset and sector count from a compressed cluster descriptor. */ uint32_t cBitsCompressedClusterOffset = 62 - (pImage->cClusterBits - 8); pImage->fMaskCompressedClusterOffset = RT_BIT_64(cBitsCompressedClusterOffset) - 1; pImage->fMaskCompressedClusterSectors = (RT_BIT_64(62) - 1) & ~pImage->fMaskCompressedClusterOffset; pImage->cBitsShiftRCompressedClusterSectors = cBitsCompressedClusterOffset; if (Header.u32Version == 3) { if (Header.Version.v2.v3.u64IncompatFeat & ~QCOW_V3_INCOMPAT_FEAT_SUPPORTED_MASK) rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, N_("QCow: Image '%s' contains unsupported incompatible features (%llx vs %llx)"), pImage->pszFilename, Header.Version.v2.v3.u64IncompatFeat, QCOW_V3_INCOMPAT_FEAT_SUPPORTED_MASK); /** @todo Auto clear features need to be reset as soon as write support is added. */ } } } else rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, N_("QCow: Image '%s' uses version %u which is not supported"), pImage->pszFilename, Header.u32Version); if (RT_SUCCESS(rc)) { pImage->cbL1Table = RT_ALIGN_64(pImage->cL1TableEntries * sizeof(uint64_t), pImage->cbCluster); if ((uint64_t)pImage->cbL1Table != RT_ALIGN_64(pImage->cL1TableEntries * sizeof(uint64_t), pImage->cbCluster)) rc = vdIfError(pImage->pIfError, VERR_INVALID_STATE, RT_SRC_POS, N_("QCOW: L1 table size overflow in image '%s'"), pImage->pszFilename); } } /** @todo Check that there are no compressed clusters in the image * (by traversing the L2 tables and checking each offset). * Refuse to open such images. */ if ( RT_SUCCESS(rc) && pImage->cbBackingFilename && pImage->offBackingFilename) { /* Load backing filename from image. */ pImage->pszBackingFilename = RTStrAlloc(pImage->cbBackingFilename + 1); /* +1 for \0 terminator. */ if (pImage->pszBackingFilename) { RT_BZERO(pImage->pszBackingFilename, pImage->cbBackingFilename + 1); rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, pImage->offBackingFilename, pImage->pszBackingFilename, pImage->cbBackingFilename); if (RT_SUCCESS(rc)) rc = RTStrValidateEncoding(pImage->pszBackingFilename); } else rc = VERR_NO_STR_MEMORY; } if ( RT_SUCCESS(rc) && pImage->cbRefcountTable && pImage->offRefcountTable) { /* Load refcount table. */ Assert(pImage->cRefcountTableEntries); pImage->paRefcountTable = (uint64_t *)RTMemAllocZ(pImage->cbRefcountTable); if (RT_LIKELY(pImage->paRefcountTable)) { rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, pImage->offRefcountTable, pImage->paRefcountTable, pImage->cbRefcountTable); if (RT_SUCCESS(rc)) qcowTableConvertToHostEndianess(pImage->paRefcountTable, pImage->cRefcountTableEntries); else rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("QCow: Reading refcount table of image '%s' failed"), pImage->pszFilename); } else rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("QCow: Allocating memory for refcount table of image '%s' failed"), pImage->pszFilename); } if (RT_SUCCESS(rc)) { qcowTableMasksInit(pImage); /* Allocate L1 table. */ pImage->paL1Table = (uint64_t *)RTMemAllocZ(pImage->cbL1Table); if (pImage->paL1Table) { /* Read from the image. */ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, pImage->offL1Table, pImage->paL1Table, pImage->cbL1Table); if (RT_SUCCESS(rc)) qcowTableConvertToHostEndianess(pImage->paL1Table, pImage->cL1TableEntries); else rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("QCow: Reading the L1 table for image '%s' failed"), pImage->pszFilename); } else rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("QCow: Out of memory allocating L1 table for image '%s'"), pImage->pszFilename); } } else if (RT_SUCCESS(rc)) rc = VERR_VD_GEN_INVALID_HEADER; } else if (RT_SUCCESS(rc)) rc = VERR_VD_GEN_INVALID_HEADER; } /* else: Do NOT signal an appropriate error here, as the VD layer has the * choice of retrying the open if it failed. */ } else rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("Qcow: Creating the L2 table cache for image '%s' failed"), pImage->pszFilename); if (RT_SUCCESS(rc)) { PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0]; pImage->RegionList.fFlags = 0; pImage->RegionList.cRegions = 1; pRegion->offRegion = 0; /* Disk start. */ pRegion->cbBlock = 512; pRegion->enmDataForm = VDREGIONDATAFORM_RAW; pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE; pRegion->cbData = 512; pRegion->cbMetadata = 0; pRegion->cRegionBlocksOrBytes = pImage->cbSize; } else qcowFreeImage(pImage, false); return rc; } /** * Internal: Create a qcow image. */ static int qcowCreateImage(PQCOWIMAGE pImage, uint64_t cbSize, unsigned uImageFlags, const char *pszComment, PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry, unsigned uOpenFlags, PVDINTERFACEPROGRESS pIfProgress, unsigned uPercentStart, unsigned uPercentSpan) { RT_NOREF1(pszComment); int rc; int32_t fOpen; if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED)) { rc = qcowL2TblCacheCreate(pImage); if (RT_SUCCESS(rc)) { pImage->uOpenFlags = uOpenFlags & ~VD_OPEN_FLAGS_READONLY; pImage->uImageFlags = uImageFlags; pImage->PCHSGeometry = *pPCHSGeometry; pImage->LCHSGeometry = *pLCHSGeometry; pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk); pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage); AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER); /* Create image file. */ fOpen = VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */); rc = vdIfIoIntFileOpen(pImage->pIfIo, pImage->pszFilename, fOpen, &pImage->pStorage); if (RT_SUCCESS(rc)) { /* Init image state. */ pImage->uVersion = 1; /* We create only version 1 images at the moment. */ pImage->cbSize = cbSize; pImage->cbCluster = QCOW_CLUSTER_SIZE_DEFAULT; pImage->cbL2Table = qcowCluster2Byte(pImage, QCOW_L2_CLUSTERS_DEFAULT); pImage->cL2TableEntries = pImage->cbL2Table / sizeof(uint64_t); pImage->cL1TableEntries = cbSize / (pImage->cbCluster * pImage->cL2TableEntries); if (cbSize % (pImage->cbCluster * pImage->cL2TableEntries)) pImage->cL1TableEntries++; pImage->cbL1Table = RT_ALIGN_64(pImage->cL1TableEntries * sizeof(uint64_t), pImage->cbCluster); pImage->offL1Table = QCOW_V1_HDR_SIZE; pImage->cbBackingFilename = 0; pImage->offBackingFilename = 0; pImage->offNextCluster = RT_ALIGN_64(QCOW_V1_HDR_SIZE + pImage->cbL1Table, pImage->cbCluster); qcowTableMasksInit(pImage); /* Init L1 table. */ pImage->paL1Table = (uint64_t *)RTMemAllocZ(pImage->cbL1Table); if (RT_LIKELY(pImage->paL1Table)) { if (RT_SUCCESS(rc)) vdIfProgress(pIfProgress, uPercentStart + uPercentSpan * 98 / 100); rc = qcowFlushImage(pImage); if (RT_SUCCESS(rc)) rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage, pImage->offNextCluster); } else rc = vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("QCow: cannot allocate memory for L1 table of image '%s'"), pImage->pszFilename); } else rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("QCow: cannot create image '%s'"), pImage->pszFilename); } else rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("QCow: Failed to create L2 cache for image '%s'"), pImage->pszFilename); } else rc = vdIfError(pImage->pIfError, VERR_VD_INVALID_TYPE, RT_SRC_POS, N_("QCow: cannot create fixed image '%s'"), pImage->pszFilename); if (RT_SUCCESS(rc)) vdIfProgress(pIfProgress, uPercentStart + uPercentSpan); if (RT_SUCCESS(rc)) { PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0]; pImage->RegionList.fFlags = 0; pImage->RegionList.cRegions = 1; pRegion->offRegion = 0; /* Disk start. */ pRegion->cbBlock = 512; pRegion->enmDataForm = VDREGIONDATAFORM_RAW; pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE; pRegion->cbData = 512; pRegion->cbMetadata = 0; pRegion->cRegionBlocksOrBytes = pImage->cbSize; } else qcowFreeImage(pImage, rc != VERR_ALREADY_EXISTS); return rc; } /** * Rollback anything done during async cluster allocation. * * @returns VBox status code. * @param pImage The image instance data. * @param pIoCtx The I/O context. * @param pClusterAlloc The cluster allocation to rollback. */ static int qcowAsyncClusterAllocRollback(PQCOWIMAGE pImage, PVDIOCTX pIoCtx, PQCOWCLUSTERASYNCALLOC pClusterAlloc) { RT_NOREF1(pIoCtx); int rc = VINF_SUCCESS; switch (pClusterAlloc->enmAllocState) { case QCOWCLUSTERASYNCALLOCSTATE_L2_ALLOC: case QCOWCLUSTERASYNCALLOCSTATE_L2_LINK: { /* Revert the L1 table entry */ pImage->paL1Table[pClusterAlloc->idxL1] = 0; pImage->pL2TblAlloc = NULL; /* Assumption right now is that the L1 table is not modified on storage if the link fails. */ rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage, pClusterAlloc->offNextClusterOld); qcowL2TblCacheEntryRelease(pClusterAlloc->pL2Entry); /* Release L2 cache entry. */ Assert(!pClusterAlloc->pL2Entry->cRefs); qcowL2TblCacheEntryFree(pImage, pClusterAlloc->pL2Entry); /* Free it, it is not in the cache yet. */ break; } case QCOWCLUSTERASYNCALLOCSTATE_USER_ALLOC: case QCOWCLUSTERASYNCALLOCSTATE_USER_LINK: { /* Assumption right now is that the L2 table is not modified if the link fails. */ pClusterAlloc->pL2Entry->paL2Tbl[pClusterAlloc->idxL2] = 0; rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage, pClusterAlloc->offNextClusterOld); qcowL2TblCacheEntryRelease(pClusterAlloc->pL2Entry); /* Release L2 cache entry. */ break; } default: AssertMsgFailed(("Invalid cluster allocation state %d\n", pClusterAlloc->enmAllocState)); rc = VERR_INVALID_STATE; } RTMemFree(pClusterAlloc); return rc; } /** * Updates the state of the async cluster allocation. * * @returns VBox status code. * @param pBackendData The opaque backend data. * @param pIoCtx I/O context associated with this request. * @param pvUser Opaque user data passed during a read/write request. * @param rcReq Status code for the completed request. */ static DECLCALLBACK(int) qcowAsyncClusterAllocUpdate(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq) { int rc = VINF_SUCCESS; PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; PQCOWCLUSTERASYNCALLOC pClusterAlloc = (PQCOWCLUSTERASYNCALLOC)pvUser; if (RT_FAILURE(rcReq)) return qcowAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc); AssertPtr(pClusterAlloc->pL2Entry); switch (pClusterAlloc->enmAllocState) { case QCOWCLUSTERASYNCALLOCSTATE_L2_ALLOC: { /* Update the link in the in memory L1 table now. */ pImage->paL1Table[pClusterAlloc->idxL1] = pClusterAlloc->pL2Entry->offL2Tbl; /* Update the link in the on disk L1 table now. */ pClusterAlloc->enmAllocState = QCOWCLUSTERASYNCALLOCSTATE_L2_LINK; rc = qcowTblWrite(pImage, pIoCtx, pImage->offL1Table, pImage->paL1Table, pImage->cbL1Table, pImage->cL1TableEntries, qcowAsyncClusterAllocUpdate, pClusterAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) break; else if (RT_FAILURE(rc)) { /* Rollback. */ qcowAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc); break; } /* Success, fall through. */ } RT_FALL_THRU(); case QCOWCLUSTERASYNCALLOCSTATE_L2_LINK: { /* L2 link updated in L1 , save L2 entry in cache and allocate new user data cluster. */ uint64_t offData = qcowClusterAllocate(pImage, 1); pImage->pL2TblAlloc = NULL; qcowL2TblCacheEntryInsert(pImage, pClusterAlloc->pL2Entry); pClusterAlloc->enmAllocState = QCOWCLUSTERASYNCALLOCSTATE_USER_ALLOC; pClusterAlloc->offNextClusterOld = offData; pClusterAlloc->offClusterNew = offData; /* Write data. */ rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pImage->pStorage, offData, pIoCtx, pClusterAlloc->cbToWrite, qcowAsyncClusterAllocUpdate, pClusterAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) break; else if (RT_FAILURE(rc)) { qcowAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc); RTMemFree(pClusterAlloc); break; } } RT_FALL_THRU(); case QCOWCLUSTERASYNCALLOCSTATE_USER_ALLOC: { pClusterAlloc->enmAllocState = QCOWCLUSTERASYNCALLOCSTATE_USER_LINK; pClusterAlloc->pL2Entry->paL2Tbl[pClusterAlloc->idxL2] = pClusterAlloc->offClusterNew; /* Link L2 table and update it. */ rc = qcowTblWrite(pImage, pIoCtx, pImage->paL1Table[pClusterAlloc->idxL1], pClusterAlloc->pL2Entry->paL2Tbl, pImage->cbL2Table, pImage->cL2TableEntries, qcowAsyncClusterAllocUpdate, pClusterAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) break; else if (RT_FAILURE(rc)) { qcowAsyncClusterAllocRollback(pImage, pIoCtx, pClusterAlloc); RTMemFree(pClusterAlloc); break; } } RT_FALL_THRU(); case QCOWCLUSTERASYNCALLOCSTATE_USER_LINK: { /* Everything done without errors, signal completion. */ qcowL2TblCacheEntryRelease(pClusterAlloc->pL2Entry); RTMemFree(pClusterAlloc); rc = VINF_SUCCESS; break; } default: AssertMsgFailed(("Invalid async cluster allocation state %d\n", pClusterAlloc->enmAllocState)); } return rc; } /** * Reads a compressed cluster, inflates it and copies the amount of data requested * into the given I/O context. * * @returns VBox status code. * @param pImage The image instance data. * @param pIoCtx The I/O context. * @param offCluster Where to start reading in the uncompressed cluster. * @param cbToRead How much to read in the uncomrpessed cluster. * @param offFile Offset where the compressed cluster is stored in the image. * @param cbCompressedCluster Size of the comrpessed cluster in bytes. */ static int qcowReadCompressedCluster(PQCOWIMAGE pImage, PVDIOCTX pIoCtx, uint32_t offCluster, size_t cbToRead, uint64_t offFile, size_t cbCompressedCluster) { int rc = VINF_SUCCESS; AssertReturn(!(pImage->uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO), VERR_NOT_SUPPORTED); /* Only synchronous I/O supported so far. */ if (cbCompressedCluster > pImage->cbCompCluster) { void *pvCompClusterNew = RTMemRealloc(pImage->pvCompCluster, cbCompressedCluster); if (RT_LIKELY(pvCompClusterNew)) { pImage->pvCompCluster = pvCompClusterNew; pImage->cbCompCluster = cbCompressedCluster; } else rc = VERR_NO_MEMORY; } if (RT_SUCCESS(rc)) { rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pImage->pStorage, offFile, pImage->pvCompCluster, cbCompressedCluster, NULL, NULL, NULL, NULL); if (RT_SUCCESS(rc)) { if (!pImage->pvCluster) { pImage->pvCluster = RTMemAllocZ(pImage->cbCluster); if (!pImage->pvCluster) rc = VERR_NO_MEMORY; } if (RT_SUCCESS(rc)) { size_t cbDecomp = 0; rc = RTZipBlockDecompress(RTZIPTYPE_ZLIB_NO_HEADER, 0 /*fFlags*/, pImage->pvCompCluster, cbCompressedCluster, NULL, pImage->pvCluster, pImage->cbCluster, &cbDecomp); if (RT_SUCCESS(rc)) { Assert(cbDecomp == pImage->cbCluster); vdIfIoIntIoCtxCopyTo(pImage->pIfIo, pIoCtx, (uint8_t *)pImage->pvCluster + offCluster, cbToRead); } } } } return rc; } /** @copydoc VDIMAGEBACKEND::pfnProbe */ static DECLCALLBACK(int) qcowProbe(const char *pszFilename, PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, VDTYPE enmDesiredType, VDTYPE *penmType) { RT_NOREF(pVDIfsDisk, enmDesiredType); LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p\n", pszFilename, pVDIfsDisk, pVDIfsImage)); PVDIOSTORAGE pStorage = NULL; uint64_t cbFile; int rc = VINF_SUCCESS; /* Get I/O interface. */ PVDINTERFACEIOINT pIfIo = VDIfIoIntGet(pVDIfsImage); AssertPtrReturn(pIfIo, VERR_INVALID_PARAMETER); AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); /* * Open the file and read the footer. */ rc = vdIfIoIntFileOpen(pIfIo, pszFilename, VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_READONLY, false /* fCreate */), &pStorage); if (RT_SUCCESS(rc)) { rc = vdIfIoIntFileGetSize(pIfIo, pStorage, &cbFile); if ( RT_SUCCESS(rc) && cbFile > sizeof(QCowHeader)) { QCowHeader Header; rc = vdIfIoIntFileReadSync(pIfIo, pStorage, 0, &Header, sizeof(Header)); if ( RT_SUCCESS(rc) && qcowHdrConvertToHostEndianess(&Header)) *penmType = VDTYPE_HDD; else rc = VERR_VD_GEN_INVALID_HEADER; } else rc = VERR_VD_GEN_INVALID_HEADER; } if (pStorage) vdIfIoIntFileClose(pIfIo, pStorage); LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnOpen */ static DECLCALLBACK(int) qcowOpen(const char *pszFilename, unsigned uOpenFlags, PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, VDTYPE enmType, void **ppBackendData) { RT_NOREF1(enmType); /**< @todo r=klaus make use of the type info. */ LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p enmType=%u ppBackendData=%#p\n", pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, enmType, ppBackendData)); int rc; /* Check open flags. All valid flags are supported. */ AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER); AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); PQCOWIMAGE pImage = (PQCOWIMAGE)RTMemAllocZ(RT_UOFFSETOF(QCOWIMAGE, RegionList.aRegions[1])); if (RT_LIKELY(pImage)) { pImage->pszFilename = pszFilename; pImage->pStorage = NULL; pImage->pVDIfsDisk = pVDIfsDisk; pImage->pVDIfsImage = pVDIfsImage; rc = qcowOpenImage(pImage, uOpenFlags); if (RT_SUCCESS(rc)) *ppBackendData = pImage; else RTMemFree(pImage); } else rc = VERR_NO_MEMORY; LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnCreate */ static DECLCALLBACK(int) qcowCreate(const char *pszFilename, uint64_t cbSize, unsigned uImageFlags, const char *pszComment, PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid, unsigned uOpenFlags, unsigned uPercentStart, unsigned uPercentSpan, PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, PVDINTERFACE pVDIfsOperation, VDTYPE enmType, void **ppBackendData) { RT_NOREF1(pUuid); LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p enmType=%u ppBackendData=%#p\n", pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, enmType, ppBackendData)); int rc; /* Check the VD container type. */ if (enmType != VDTYPE_HDD) return VERR_VD_INVALID_TYPE; /* Check open flags. All valid flags are supported. */ AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER); AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); AssertPtrReturn(pPCHSGeometry, VERR_INVALID_POINTER); AssertPtrReturn(pLCHSGeometry, VERR_INVALID_POINTER); PQCOWIMAGE pImage = (PQCOWIMAGE)RTMemAllocZ(RT_UOFFSETOF(QCOWIMAGE, RegionList.aRegions[1])); if (RT_LIKELY(pImage)) { PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation); pImage->pszFilename = pszFilename; pImage->pStorage = NULL; pImage->pVDIfsDisk = pVDIfsDisk; pImage->pVDIfsImage = pVDIfsImage; rc = qcowCreateImage(pImage, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, uOpenFlags, pIfProgress, uPercentStart, uPercentSpan); if (RT_SUCCESS(rc)) { /* So far the image is opened in read/write mode. Make sure the * image is opened in read-only mode if the caller requested that. */ if (uOpenFlags & VD_OPEN_FLAGS_READONLY) { qcowFreeImage(pImage, false); rc = qcowOpenImage(pImage, uOpenFlags); } if (RT_SUCCESS(rc)) *ppBackendData = pImage; } if (RT_FAILURE(rc)) RTMemFree(pImage); } else rc = VERR_NO_MEMORY; LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnRename */ static DECLCALLBACK(int) qcowRename(void *pBackendData, const char *pszFilename) { LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename)); int rc = VINF_SUCCESS; PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; /* Check arguments. */ AssertReturn((pImage && pszFilename && *pszFilename), VERR_INVALID_PARAMETER); /* Close the image. */ rc = qcowFreeImage(pImage, false); if (RT_SUCCESS(rc)) { /* Rename the file. */ rc = vdIfIoIntFileMove(pImage->pIfIo, pImage->pszFilename, pszFilename, 0); if (RT_SUCCESS(rc)) { /* Update pImage with the new information. */ pImage->pszFilename = pszFilename; /* Open the old image with new name. */ rc = qcowOpenImage(pImage, pImage->uOpenFlags); } else { /* The move failed, try to reopen the original image. */ int rc2 = qcowOpenImage(pImage, pImage->uOpenFlags); if (RT_FAILURE(rc2)) rc = rc2; } } LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnClose */ static DECLCALLBACK(int) qcowClose(void *pBackendData, bool fDelete) { LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = qcowFreeImage(pImage, fDelete); RTMemFree(pImage); LogFlowFunc(("returns %Rrc\n", rc)); return rc; } static DECLCALLBACK(int) qcowRead(void *pBackendData, uint64_t uOffset, size_t cbToRead, PVDIOCTX pIoCtx, size_t *pcbActuallyRead) { LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToRead=%zu pcbActuallyRead=%#p\n", pBackendData, uOffset, pIoCtx, cbToRead, pcbActuallyRead)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; uint32_t offCluster = 0; uint32_t idxL1 = 0; uint32_t idxL2 = 0; uint64_t offFile = 0; int rc; AssertPtr(pImage); Assert(uOffset % 512 == 0); Assert(cbToRead % 512 == 0); AssertPtrReturn(pIoCtx, VERR_INVALID_POINTER); AssertReturn(cbToRead, VERR_INVALID_PARAMETER); AssertReturn(uOffset + cbToRead <= pImage->cbSize, VERR_INVALID_PARAMETER); qcowConvertLogicalOffset(pImage, uOffset, &idxL1, &idxL2, &offCluster); /* Clip read size to remain in the cluster. */ cbToRead = RT_MIN(cbToRead, pImage->cbCluster - offCluster); /* Get offset in image. */ bool fCompressedCluster = false; size_t cbCompressedCluster = 0; rc = qcowConvertToImageOffset(pImage, pIoCtx, idxL1, idxL2, offCluster, &offFile, &fCompressedCluster, &cbCompressedCluster); if (RT_SUCCESS(rc)) { if (!fCompressedCluster) rc = vdIfIoIntFileReadUser(pImage->pIfIo, pImage->pStorage, offFile, pIoCtx, cbToRead); else rc = qcowReadCompressedCluster(pImage, pIoCtx, offCluster, cbToRead, offFile, cbCompressedCluster); } if ( ( RT_SUCCESS(rc) || rc == VERR_VD_BLOCK_FREE || rc == VERR_VD_ASYNC_IO_IN_PROGRESS) && pcbActuallyRead) *pcbActuallyRead = cbToRead; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } static DECLCALLBACK(int) qcowWrite(void *pBackendData, uint64_t uOffset, size_t cbToWrite, PVDIOCTX pIoCtx, size_t *pcbWriteProcess, size_t *pcbPreRead, size_t *pcbPostRead, unsigned fWrite) { LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n", pBackendData, uOffset, pIoCtx, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; uint32_t offCluster = 0; uint32_t idxL1 = 0; uint32_t idxL2 = 0; uint64_t offImage = 0; int rc = VINF_SUCCESS; AssertPtr(pImage); Assert(!(uOffset % 512)); Assert(!(cbToWrite % 512)); AssertPtrReturn(pIoCtx, VERR_INVALID_POINTER); AssertReturn(cbToWrite, VERR_INVALID_PARAMETER); AssertReturn(uOffset + cbToWrite <= pImage->cbSize, VERR_INVALID_PARAMETER); if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { /* Convert offset to L1, L2 index and cluster offset. */ qcowConvertLogicalOffset(pImage, uOffset, &idxL1, &idxL2, &offCluster); /* Clip write size to remain in the cluster. */ cbToWrite = RT_MIN(cbToWrite, pImage->cbCluster - offCluster); Assert(!(cbToWrite % 512)); /* Get offset in image. */ bool fCompressedCluster = false; size_t cbCompressedCluster = 0; rc = qcowConvertToImageOffset(pImage, pIoCtx, idxL1, idxL2, offCluster, &offImage, &fCompressedCluster, &cbCompressedCluster); if (RT_SUCCESS(rc)) { if (!fCompressedCluster) rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pImage->pStorage, offImage, pIoCtx, cbToWrite, NULL, NULL); else rc = VERR_NOT_SUPPORTED; /** @todo Support writing compressed clusters */ } else if (rc == VERR_VD_BLOCK_FREE) { if ( cbToWrite == pImage->cbCluster && !(fWrite & VD_WRITE_NO_ALLOC)) { PQCOWL2CACHEENTRY pL2Entry = NULL; /* Full cluster write to previously unallocated cluster. * Allocate cluster and write data. */ Assert(!offCluster); do { /* Check if we have to allocate a new cluster for L2 tables. */ if (!pImage->paL1Table[idxL1]) { uint64_t offL2Tbl; PQCOWCLUSTERASYNCALLOC pL2ClusterAlloc = NULL; /* Allocate new async cluster allocation state. */ pL2ClusterAlloc = (PQCOWCLUSTERASYNCALLOC)RTMemAllocZ(sizeof(QCOWCLUSTERASYNCALLOC)); if (RT_UNLIKELY(!pL2ClusterAlloc)) { rc = VERR_NO_MEMORY; break; } pL2Entry = qcowL2TblCacheEntryAlloc(pImage); if (!pL2Entry) { rc = VERR_NO_MEMORY; RTMemFree(pL2ClusterAlloc); break; } offL2Tbl = qcowClusterAllocate(pImage, qcowByte2Cluster(pImage, pImage->cbL2Table)); pL2Entry->offL2Tbl = offL2Tbl; memset(pL2Entry->paL2Tbl, 0, pImage->cbL2Table); pL2ClusterAlloc->enmAllocState = QCOWCLUSTERASYNCALLOCSTATE_L2_ALLOC; pL2ClusterAlloc->offNextClusterOld = offL2Tbl; pL2ClusterAlloc->offClusterNew = offL2Tbl; pL2ClusterAlloc->idxL1 = idxL1; pL2ClusterAlloc->idxL2 = idxL2; pL2ClusterAlloc->cbToWrite = cbToWrite; pL2ClusterAlloc->pL2Entry = pL2Entry; pImage->pL2TblAlloc = pL2Entry; LogFlowFunc(("Allocating new L2 table at cluster offset %llu\n", offL2Tbl)); /* * Write the L2 table first and link to the L1 table afterwards. * If something unexpected happens the worst case which can happen * is a leak of some clusters. */ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage, offL2Tbl, pL2Entry->paL2Tbl, pImage->cbL2Table, pIoCtx, qcowAsyncClusterAllocUpdate, pL2ClusterAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) break; else if (RT_FAILURE(rc)) { RTMemFree(pL2ClusterAlloc); qcowL2TblCacheEntryFree(pImage, pL2Entry); break; } rc = qcowAsyncClusterAllocUpdate(pImage, pIoCtx, pL2ClusterAlloc, rc); } else { LogFlowFunc(("Fetching L2 table at cluster offset %llu\n", pImage->paL1Table[idxL1])); rc = qcowL2TblCacheFetch(pImage, pIoCtx, pImage->paL1Table[idxL1], &pL2Entry); if (RT_SUCCESS(rc)) { PQCOWCLUSTERASYNCALLOC pDataClusterAlloc = NULL; /* Allocate new async cluster allocation state. */ pDataClusterAlloc = (PQCOWCLUSTERASYNCALLOC)RTMemAllocZ(sizeof(QCOWCLUSTERASYNCALLOC)); if (RT_UNLIKELY(!pDataClusterAlloc)) { rc = VERR_NO_MEMORY; break; } /* Allocate new cluster for the data. */ uint64_t offData = qcowClusterAllocate(pImage, 1); pDataClusterAlloc->enmAllocState = QCOWCLUSTERASYNCALLOCSTATE_USER_ALLOC; pDataClusterAlloc->offNextClusterOld = offData; pDataClusterAlloc->offClusterNew = offData; pDataClusterAlloc->idxL1 = idxL1; pDataClusterAlloc->idxL2 = idxL2; pDataClusterAlloc->cbToWrite = cbToWrite; pDataClusterAlloc->pL2Entry = pL2Entry; /* Write data. */ rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pImage->pStorage, offData, pIoCtx, cbToWrite, qcowAsyncClusterAllocUpdate, pDataClusterAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) break; else if (RT_FAILURE(rc)) { RTMemFree(pDataClusterAlloc); break; } rc = qcowAsyncClusterAllocUpdate(pImage, pIoCtx, pDataClusterAlloc, rc); } } } while (0); *pcbPreRead = 0; *pcbPostRead = 0; } else { /* Trying to do a partial write to an unallocated cluster. Don't do * anything except letting the upper layer know what to do. */ *pcbPreRead = offCluster; *pcbPostRead = pImage->cbCluster - cbToWrite - *pcbPreRead; } } if (pcbWriteProcess) *pcbWriteProcess = cbToWrite; } else rc = VERR_VD_IMAGE_READ_ONLY; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } static DECLCALLBACK(int) qcowFlush(void *pBackendData, PVDIOCTX pIoCtx) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = VINF_SUCCESS; AssertPtr(pImage); AssertPtrReturn(pIoCtx, VERR_INVALID_PARAMETER); if ( pImage->pStorage && !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { QCowHeader Header; rc = qcowTblWrite(pImage, pIoCtx, pImage->offL1Table, pImage->paL1Table, pImage->cbL1Table, pImage->cL1TableEntries, NULL, NULL); if (RT_SUCCESS(rc) || rc == VERR_VD_ASYNC_IO_IN_PROGRESS) { /* Write header. */ size_t cbHeader = 0; qcowHdrConvertFromHostEndianess(pImage, &Header, &cbHeader); rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage, 0, &Header, cbHeader, pIoCtx, NULL, NULL); if (RT_SUCCESS(rc) || rc == VERR_VD_ASYNC_IO_IN_PROGRESS) rc = vdIfIoIntFileFlush(pImage->pIfIo, pImage->pStorage, pIoCtx, NULL, NULL); } } LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnGetVersion */ static DECLCALLBACK(unsigned) qcowGetVersion(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; AssertPtrReturn(pImage, 0); return pImage->uVersion; } /** @copydoc VDIMAGEBACKEND::pfnGetFileSize */ static DECLCALLBACK(uint64_t) qcowGetFileSize(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; uint64_t cb = 0; AssertPtrReturn(pImage, 0); uint64_t cbFile; if (pImage->pStorage) { int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pStorage, &cbFile); if (RT_SUCCESS(rc)) cb += cbFile; } LogFlowFunc(("returns %lld\n", cb)); return cb; } /** @copydoc VDIMAGEBACKEND::pfnGetPCHSGeometry */ static DECLCALLBACK(int) qcowGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry) { LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = VINF_SUCCESS; AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); if (pImage->PCHSGeometry.cCylinders) *pPCHSGeometry = pImage->PCHSGeometry; else rc = VERR_VD_GEOMETRY_NOT_SET; LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnSetPCHSGeometry */ static DECLCALLBACK(int) qcowSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry) { LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n", pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = VINF_SUCCESS; AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) rc = VERR_VD_IMAGE_READ_ONLY; else pImage->PCHSGeometry = *pPCHSGeometry; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnGetLCHSGeometry */ static DECLCALLBACK(int) qcowGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry) { LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = VINF_SUCCESS; AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); if (pImage->LCHSGeometry.cCylinders) *pLCHSGeometry = pImage->LCHSGeometry; else rc = VERR_VD_GEOMETRY_NOT_SET; LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnSetLCHSGeometry */ static DECLCALLBACK(int) qcowSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry) { LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n", pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = VINF_SUCCESS; AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) rc = VERR_VD_IMAGE_READ_ONLY; else pImage->LCHSGeometry = *pLCHSGeometry; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnQueryRegions */ static DECLCALLBACK(int) qcowQueryRegions(void *pBackendData, PCVDREGIONLIST *ppRegionList) { LogFlowFunc(("pBackendData=%#p ppRegionList=%#p\n", pBackendData, ppRegionList)); PQCOWIMAGE pThis = (PQCOWIMAGE)pBackendData; AssertPtrReturn(pThis, VERR_VD_NOT_OPENED); *ppRegionList = &pThis->RegionList; LogFlowFunc(("returns %Rrc\n", VINF_SUCCESS)); return VINF_SUCCESS; } /** @copydoc VDIMAGEBACKEND::pfnRegionListRelease */ static DECLCALLBACK(void) qcowRegionListRelease(void *pBackendData, PCVDREGIONLIST pRegionList) { RT_NOREF1(pRegionList); LogFlowFunc(("pBackendData=%#p pRegionList=%#p\n", pBackendData, pRegionList)); PQCOWIMAGE pThis = (PQCOWIMAGE)pBackendData; AssertPtr(pThis); RT_NOREF(pThis); /* Nothing to do here. */ } /** @copydoc VDIMAGEBACKEND::pfnGetImageFlags */ static DECLCALLBACK(unsigned) qcowGetImageFlags(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; AssertPtrReturn(pImage, 0); LogFlowFunc(("returns %#x\n", pImage->uImageFlags)); return pImage->uImageFlags; } /** @copydoc VDIMAGEBACKEND::pfnGetOpenFlags */ static DECLCALLBACK(unsigned) qcowGetOpenFlags(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; AssertPtrReturn(pImage, 0); LogFlowFunc(("returns %#x\n", pImage->uOpenFlags)); return pImage->uOpenFlags; } /** @copydoc VDIMAGEBACKEND::pfnSetOpenFlags */ static DECLCALLBACK(int) qcowSetOpenFlags(void *pBackendData, unsigned uOpenFlags) { LogFlowFunc(("pBackendData=%#p\n uOpenFlags=%#x", pBackendData, uOpenFlags)); PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; int rc = VINF_SUCCESS; /* Image must be opened and the new flags must be valid. */ if (!pImage || (uOpenFlags & ~( VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE | VD_OPEN_FLAGS_SEQUENTIAL | VD_OPEN_FLAGS_SKIP_CONSISTENCY_CHECKS))) rc = VERR_INVALID_PARAMETER; else { /* Implement this operation via reopening the image. */ rc = qcowFreeImage(pImage, false); if (RT_SUCCESS(rc)) rc = qcowOpenImage(pImage, uOpenFlags); } LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnGetComment */ VD_BACKEND_CALLBACK_GET_COMMENT_DEF_NOT_SUPPORTED(qcowGetComment); /** @copydoc VDIMAGEBACKEND::pfnSetComment */ VD_BACKEND_CALLBACK_SET_COMMENT_DEF_NOT_SUPPORTED(qcowSetComment, PQCOWIMAGE); /** @copydoc VDIMAGEBACKEND::pfnGetUuid */ VD_BACKEND_CALLBACK_GET_UUID_DEF_NOT_SUPPORTED(qcowGetUuid); /** @copydoc VDIMAGEBACKEND::pfnSetUuid */ VD_BACKEND_CALLBACK_SET_UUID_DEF_NOT_SUPPORTED(qcowSetUuid, PQCOWIMAGE); /** @copydoc VDIMAGEBACKEND::pfnGetModificationUuid */ VD_BACKEND_CALLBACK_GET_UUID_DEF_NOT_SUPPORTED(qcowGetModificationUuid); /** @copydoc VDIMAGEBACKEND::pfnSetModificationUuid */ VD_BACKEND_CALLBACK_SET_UUID_DEF_NOT_SUPPORTED(qcowSetModificationUuid, PQCOWIMAGE); /** @copydoc VDIMAGEBACKEND::pfnGetParentUuid */ VD_BACKEND_CALLBACK_GET_UUID_DEF_NOT_SUPPORTED(qcowGetParentUuid); /** @copydoc VDIMAGEBACKEND::pfnSetParentUuid */ VD_BACKEND_CALLBACK_SET_UUID_DEF_NOT_SUPPORTED(qcowSetParentUuid, PQCOWIMAGE); /** @copydoc VDIMAGEBACKEND::pfnGetParentModificationUuid */ VD_BACKEND_CALLBACK_GET_UUID_DEF_NOT_SUPPORTED(qcowGetParentModificationUuid); /** @copydoc VDIMAGEBACKEND::pfnSetParentModificationUuid */ VD_BACKEND_CALLBACK_SET_UUID_DEF_NOT_SUPPORTED(qcowSetParentModificationUuid, PQCOWIMAGE); /** @copydoc VDIMAGEBACKEND::pfnDump */ static DECLCALLBACK(void) qcowDump(void *pBackendData) { PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; AssertPtrReturnVoid(pImage); vdIfErrorMessage(pImage->pIfError, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%llu\n", pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors, pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors, pImage->cbSize / 512); } /** @copydoc VDIMAGEBACKEND::pfnGetParentFilename */ static DECLCALLBACK(int) qcowGetParentFilename(void *pBackendData, char **ppszParentFilename) { int rc = VINF_SUCCESS; PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; AssertPtr(pImage); if (pImage) if (pImage->pszBackingFilename) *ppszParentFilename = RTStrDup(pImage->pszBackingFilename); else rc = VERR_NOT_SUPPORTED; else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VDIMAGEBACKEND::pfnSetParentFilename */ static DECLCALLBACK(int) qcowSetParentFilename(void *pBackendData, const char *pszParentFilename) { int rc = VINF_SUCCESS; PQCOWIMAGE pImage = (PQCOWIMAGE)pBackendData; AssertPtr(pImage); if (pImage) { if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) rc = VERR_VD_IMAGE_READ_ONLY; else if ( pImage->pszBackingFilename && (strlen(pszParentFilename) > pImage->cbBackingFilename)) rc = VERR_NOT_SUPPORTED; /* The new filename is longer than the old one. */ else { if (pImage->pszBackingFilename) RTStrFree(pImage->pszBackingFilename); pImage->pszBackingFilename = RTStrDup(pszParentFilename); if (!pImage->pszBackingFilename) rc = VERR_NO_STR_MEMORY; else { if (!pImage->offBackingFilename) { /* Allocate new cluster. */ uint64_t offData = qcowClusterAllocate(pImage, 1); Assert((offData & UINT32_MAX) == offData); pImage->offBackingFilename = (uint32_t)offData; pImage->cbBackingFilename = (uint32_t)strlen(pszParentFilename); rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage, offData + pImage->cbCluster); } if (RT_SUCCESS(rc)) rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->offBackingFilename, pImage->pszBackingFilename, strlen(pImage->pszBackingFilename)); } } } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } const VDIMAGEBACKEND g_QCowBackend = { /* u32Version */ VD_IMGBACKEND_VERSION, /* pszBackendName */ "QCOW", /* uBackendCaps */ VD_CAP_FILE | VD_CAP_VFS | VD_CAP_CREATE_DYNAMIC | VD_CAP_DIFF | VD_CAP_ASYNC, /* paFileExtensions */ s_aQCowFileExtensions, /* paConfigInfo */ NULL, /* pfnProbe */ qcowProbe, /* pfnOpen */ qcowOpen, /* pfnCreate */ qcowCreate, /* pfnRename */ qcowRename, /* pfnClose */ qcowClose, /* pfnRead */ qcowRead, /* pfnWrite */ qcowWrite, /* pfnFlush */ qcowFlush, /* pfnDiscard */ NULL, /* pfnGetVersion */ qcowGetVersion, /* pfnGetFileSize */ qcowGetFileSize, /* pfnGetPCHSGeometry */ qcowGetPCHSGeometry, /* pfnSetPCHSGeometry */ qcowSetPCHSGeometry, /* pfnGetLCHSGeometry */ qcowGetLCHSGeometry, /* pfnSetLCHSGeometry */ qcowSetLCHSGeometry, /* pfnQueryRegions */ qcowQueryRegions, /* pfnRegionListRelease */ qcowRegionListRelease, /* pfnGetImageFlags */ qcowGetImageFlags, /* pfnGetOpenFlags */ qcowGetOpenFlags, /* pfnSetOpenFlags */ qcowSetOpenFlags, /* pfnGetComment */ qcowGetComment, /* pfnSetComment */ qcowSetComment, /* pfnGetUuid */ qcowGetUuid, /* pfnSetUuid */ qcowSetUuid, /* pfnGetModificationUuid */ qcowGetModificationUuid, /* pfnSetModificationUuid */ qcowSetModificationUuid, /* pfnGetParentUuid */ qcowGetParentUuid, /* pfnSetParentUuid */ qcowSetParentUuid, /* pfnGetParentModificationUuid */ qcowGetParentModificationUuid, /* pfnSetParentModificationUuid */ qcowSetParentModificationUuid, /* pfnDump */ qcowDump, /* pfnGetTimestamp */ NULL, /* pfnGetParentTimestamp */ NULL, /* pfnSetParentTimestamp */ NULL, /* pfnGetParentFilename */ qcowGetParentFilename, /* pfnSetParentFilename */ qcowSetParentFilename, /* pfnComposeLocation */ genericFileComposeLocation, /* pfnComposeName */ genericFileComposeName, /* pfnCompact */ NULL, /* pfnResize */ NULL, /* pfnRepair */ NULL, /* pfnTraverseMetadata */ NULL, /* u32VersionEnd */ VD_IMGBACKEND_VERSION };