1 | /* $Id: timesup.cpp 2981 2007-06-01 16:01:28Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * innotek Portable Runtime - Time using SUPLib.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2007 innotek GmbH
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License as published by the Free Software Foundation,
|
---|
13 | * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
|
---|
14 | * distribution. VirtualBox OSE is distributed in the hope that it will
|
---|
15 | * be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * If you received this file as part of a commercial VirtualBox
|
---|
18 | * distribution, then only the terms of your commercial VirtualBox
|
---|
19 | * license agreement apply instead of the previous paragraph.
|
---|
20 | */
|
---|
21 |
|
---|
22 |
|
---|
23 | /*******************************************************************************
|
---|
24 | * Header Files *
|
---|
25 | *******************************************************************************/
|
---|
26 | #define LOG_GROUP RTLOGGROUP_TIME
|
---|
27 | #include <iprt/time.h>
|
---|
28 | #include <iprt/asm.h>
|
---|
29 | #include <iprt/assert.h>
|
---|
30 | #include <iprt/err.h>
|
---|
31 | #include <VBox/sup.h>
|
---|
32 | #include "internal/time.h"
|
---|
33 |
|
---|
34 |
|
---|
35 | /*******************************************************************************
|
---|
36 | * Global Variables *
|
---|
37 | *******************************************************************************/
|
---|
38 | #ifndef IN_GUEST
|
---|
39 | /** The previously returned nano TS.
|
---|
40 | * This handles TSC drift on SMP systems and expired interval.
|
---|
41 | * This is a valid range u64NanoTS to u64NanoTS + 1000000000 (ie. 1sec).
|
---|
42 | */
|
---|
43 | static uint64_t volatile s_u64PrevNanoTS = 0;
|
---|
44 | /**
|
---|
45 | * Number of times we've had to resort to 1ns walking. */
|
---|
46 | static uint32_t volatile g_c1nsSteps = 0;
|
---|
47 | #endif
|
---|
48 |
|
---|
49 |
|
---|
50 | /**
|
---|
51 | * Calculate NanoTS using the information in the global information page (GIP)
|
---|
52 | * which the support library (SUPLib) exports.
|
---|
53 | *
|
---|
54 | * This function guarantees that the returned timestamp is later (in time) than
|
---|
55 | * any previous calls in the same thread.
|
---|
56 | *
|
---|
57 | * @returns Nanosecond timestamp.
|
---|
58 | *
|
---|
59 | * @remark The way the ever increasing time guarantee is currently implemented means
|
---|
60 | * that if you call this function at a freqency higher than 1GHz you're in for
|
---|
61 | * trouble. We currently assume that no idiot will do that for real life purposes.
|
---|
62 | */
|
---|
63 | DECLINLINE(uint64_t) rtTimeNanoTSInternal(void)
|
---|
64 | {
|
---|
65 | #ifndef IN_GUEST
|
---|
66 | uint64_t u64Delta;
|
---|
67 | uint32_t u32NanoTSFactor0;
|
---|
68 | uint64_t u64TSC;
|
---|
69 | uint64_t u64NanoTS;
|
---|
70 | uint32_t u32UpdateIntervalTSC;
|
---|
71 | uint32_t u32TransactionId;
|
---|
72 | PCSUPGLOBALINFOPAGE pGip;
|
---|
73 |
|
---|
74 | /*
|
---|
75 | * Read the data.
|
---|
76 | */
|
---|
77 | for (;;)
|
---|
78 | {
|
---|
79 | pGip = g_pSUPGlobalInfoPage;
|
---|
80 | #ifdef IN_RING3
|
---|
81 | if (!pGip || pGip->u32Magic != SUPGLOBALINFOPAGE_MAGIC)
|
---|
82 | return RTTimeSystemNanoTS();
|
---|
83 | #endif
|
---|
84 |
|
---|
85 | if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
|
---|
86 | {
|
---|
87 | u32TransactionId = pGip->aCPUs[0].u32TransactionId;
|
---|
88 | #ifdef __L4__
|
---|
89 | Assert((u32TransactionId & 1) == 0);
|
---|
90 | #endif
|
---|
91 | u32UpdateIntervalTSC = pGip->aCPUs[0].u32UpdateIntervalTSC;
|
---|
92 | u64NanoTS = pGip->aCPUs[0].u64NanoTS;
|
---|
93 | u64TSC = pGip->aCPUs[0].u64TSC;
|
---|
94 | u32NanoTSFactor0 = pGip->u32UpdateIntervalNS;
|
---|
95 | u64Delta = ASMReadTSC();
|
---|
96 | if (RT_UNLIKELY( pGip->aCPUs[0].u32TransactionId != u32TransactionId
|
---|
97 | || (u32TransactionId & 1)))
|
---|
98 | continue;
|
---|
99 | }
|
---|
100 | else
|
---|
101 | {
|
---|
102 | /* SUPGIPMODE_ASYNC_TSC */
|
---|
103 | PCSUPGIPCPU pGipCpu;
|
---|
104 |
|
---|
105 | uint8_t u8ApicId = ASMGetApicId();
|
---|
106 | if (RT_LIKELY(u8ApicId < RT_ELEMENTS(pGip->aCPUs)))
|
---|
107 | pGipCpu = &pGip->aCPUs[u8ApicId];
|
---|
108 | else
|
---|
109 | {
|
---|
110 | AssertMsgFailed(("%x\n", u8ApicId));
|
---|
111 | pGipCpu = &pGip->aCPUs[0];
|
---|
112 | }
|
---|
113 |
|
---|
114 | u32TransactionId = pGipCpu->u32TransactionId;
|
---|
115 | #ifdef __L4__
|
---|
116 | Assert((u32TransactionId & 1) == 0);
|
---|
117 | #endif
|
---|
118 | u32UpdateIntervalTSC = pGipCpu->u32UpdateIntervalTSC;
|
---|
119 | u64NanoTS = pGipCpu->u64NanoTS;
|
---|
120 | u64TSC = pGipCpu->u64TSC;
|
---|
121 | u32NanoTSFactor0 = pGip->u32UpdateIntervalNS;
|
---|
122 | u64Delta = ASMReadTSC();
|
---|
123 | if (RT_UNLIKELY(u8ApicId != ASMGetApicId()))
|
---|
124 | continue;
|
---|
125 | if (RT_UNLIKELY( pGipCpu->u32TransactionId != u32TransactionId
|
---|
126 | || (u32TransactionId & 1)))
|
---|
127 | continue;
|
---|
128 | }
|
---|
129 | break;
|
---|
130 | }
|
---|
131 |
|
---|
132 | /*
|
---|
133 | * Calc NanoTS delta.
|
---|
134 | */
|
---|
135 | u64Delta -= u64TSC;
|
---|
136 | if (u64Delta > u32UpdateIntervalTSC)
|
---|
137 | {
|
---|
138 | /*
|
---|
139 | * We've expired the interval. Do 1ns per call until we've
|
---|
140 | * got valid TSC deltas again (s_u64PrevNanoTS takes care of this).
|
---|
141 | */
|
---|
142 | u64Delta = u32UpdateIntervalTSC;
|
---|
143 | }
|
---|
144 | #if !defined(_MSC_VER) || defined(__AMD64__) /* GCC makes very pretty code from these two inline calls, while MSC cannot. */
|
---|
145 | u64Delta = ASMMult2xU32RetU64((uint32_t)u64Delta, u32NanoTSFactor0);
|
---|
146 | u64Delta = ASMDivU64ByU32RetU32(u64Delta, u32UpdateIntervalTSC);
|
---|
147 | #else
|
---|
148 | __asm
|
---|
149 | {
|
---|
150 | mov eax, dword ptr [u64Delta]
|
---|
151 | mul dword ptr [u32NanoTSFactor0]
|
---|
152 | div dword ptr [u32UpdateIntervalTSC]
|
---|
153 | mov dword ptr [u64Delta], eax
|
---|
154 | xor edx, edx
|
---|
155 | mov dword ptr [u64Delta + 4], edx
|
---|
156 | }
|
---|
157 | #endif
|
---|
158 |
|
---|
159 | /*
|
---|
160 | * The most frequent case is that the delta is either too old
|
---|
161 | * or that our timestamp is higher (relative to u64NanoTS) than it.
|
---|
162 | */
|
---|
163 | uint64_t u64;
|
---|
164 | uint64_t u64PrevNanoTS = ASMAtomicReadU64(&s_u64PrevNanoTS);
|
---|
165 | uint64_t u64DeltaPrev = u64PrevNanoTS - u64NanoTS;
|
---|
166 | if ( u64DeltaPrev > 1000000000 /* (invalid prev) */
|
---|
167 | || (uint32_t)u64DeltaPrev < (uint32_t)u64Delta) /* (we're later) */
|
---|
168 | {
|
---|
169 | u64 = u64Delta + u64NanoTS;
|
---|
170 | if (ASMAtomicCmpXchgU64(&s_u64PrevNanoTS, u64, u64PrevNanoTS))
|
---|
171 | return u64;
|
---|
172 | }
|
---|
173 | else
|
---|
174 | {
|
---|
175 | /*
|
---|
176 | * Our timestamp is lower than the last returned timestamp;
|
---|
177 | * advance 1ns beyond that.
|
---|
178 | */
|
---|
179 | u64Delta = u64DeltaPrev + 1;
|
---|
180 | u64 = u64Delta + u64NanoTS;
|
---|
181 | ASMAtomicIncU32(&g_c1nsSteps);
|
---|
182 | }
|
---|
183 |
|
---|
184 | /*
|
---|
185 | * Attempt updating the previous value.
|
---|
186 | * u64 == timestamp, u64Delta == delta relative to u64NanoTS.
|
---|
187 | */
|
---|
188 | for (int cTries = 100;;)
|
---|
189 | {
|
---|
190 | u64PrevNanoTS = ASMAtomicReadU64(&s_u64PrevNanoTS);
|
---|
191 | u64DeltaPrev = u64PrevNanoTS - u64NanoTS;
|
---|
192 | if (u64DeltaPrev > u64Delta)
|
---|
193 | break;
|
---|
194 | if (ASMAtomicCmpXchgU64(&s_u64PrevNanoTS, u64, u64PrevNanoTS))
|
---|
195 | break;
|
---|
196 | if (--cTries <= 0)
|
---|
197 | {
|
---|
198 | AssertBreakpoint(); /* (recursion) */
|
---|
199 | break;
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | return u64;
|
---|
204 | #else /* IN_GUEST */
|
---|
205 | return RTTimeSystemNanoTS();
|
---|
206 | #endif /* IN_GUEST */
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Gets the current nanosecond timestamp.
|
---|
212 | *
|
---|
213 | * @returns nanosecond timestamp.
|
---|
214 | */
|
---|
215 | RTDECL(uint64_t) RTTimeNanoTS(void)
|
---|
216 | {
|
---|
217 | return rtTimeNanoTSInternal();
|
---|
218 | }
|
---|
219 |
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Gets the current millisecond timestamp.
|
---|
223 | *
|
---|
224 | * @returns millisecond timestamp.
|
---|
225 | */
|
---|
226 | RTDECL(uint64_t) RTTimeMilliTS(void)
|
---|
227 | {
|
---|
228 | return rtTimeNanoTSInternal() / 1000000;
|
---|
229 | }
|
---|
230 |
|
---|
231 |
|
---|
232 | #ifndef IN_GUEST
|
---|
233 | /**
|
---|
234 | * Debugging the time api.
|
---|
235 | *
|
---|
236 | * @returns the number of 1ns steps which has been applied by rtTimeNanoTSInternal().
|
---|
237 | */
|
---|
238 | RTDECL(uint32_t) RTTime1nsSteps(void)
|
---|
239 | {
|
---|
240 | return g_c1nsSteps;
|
---|
241 | }
|
---|
242 | #endif
|
---|