/* $Id: tstRTInlineAsm.cpp 62477 2016-07-22 18:27:37Z vboxsync $ */ /** @file * IPRT Testcase - inline assembly. */ /* * Copyright (C) 2006-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include /* See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=44018. Only gcc version 4.4 * is affected. No harm for the VBox code: If the cpuid code compiles, it works * fine. */ #if defined(__GNUC__) && defined(RT_ARCH_X86) && defined(__PIC__) # if __GNUC__ == 4 && __GNUC_MINOR__ == 4 # define GCC44_32BIT_PIC # endif #endif #if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) # include # include #else # include #endif #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define CHECKVAL(val, expect, fmt) \ do \ { \ if ((val) != (expect)) \ { \ RTTestFailed(g_hTest, "%s, %d: " #val ": expected " fmt " got " fmt "\n", __FUNCTION__, __LINE__, (expect), (val)); \ } \ } while (0) #define CHECKOP(op, expect, fmt, type) \ do \ { \ type val = op; \ if (val != (type)(expect)) \ { \ RTTestFailed(g_hTest, "%s, %d: " #op ": expected " fmt " got " fmt "\n", __FUNCTION__, __LINE__, (type)(expect), val); \ } \ } while (0) /** * Calls a worker function with different worker variable storage types. */ #define DO_SIMPLE_TEST(name, type) \ do \ { \ RTTestISub(#name); \ type StackVar; \ tst ## name ## Worker(&StackVar); \ \ type *pVar = (type *)RTTestGuardedAllocHead(g_hTest, sizeof(type)); \ RTTEST_CHECK_BREAK(g_hTest, pVar); \ tst ## name ## Worker(pVar); \ RTTestGuardedFree(g_hTest, pVar); \ \ pVar = (type *)RTTestGuardedAllocTail(g_hTest, sizeof(type)); \ RTTEST_CHECK_BREAK(g_hTest, pVar); \ tst ## name ## Worker(pVar); \ RTTestGuardedFree(g_hTest, pVar); \ } while (0) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** The test instance. */ static RTTEST g_hTest; #if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) const char *getCacheAss(unsigned u) { if (u == 0) return "res0 "; if (u == 1) return "direct"; if (u >= 256) return "???"; char *pszRet; RTStrAPrintf(&pszRet, "%d way", u); /* intentional leak! */ return pszRet; } const char *getL2CacheAss(unsigned u) { switch (u) { case 0: return "off "; case 1: return "direct"; case 2: return "2 way "; case 3: return "res3 "; case 4: return "4 way "; case 5: return "res5 "; case 6: return "8 way "; case 7: return "res7 "; case 8: return "16 way"; case 9: return "res9 "; case 10: return "res10 "; case 11: return "res11 "; case 12: return "res12 "; case 13: return "res13 "; case 14: return "res14 "; case 15: return "fully "; default: return "????"; } } /** * Test and dump all possible info from the CPUID instruction. * * @remark Bits shared with the libc cpuid.c program. This all written by me, so no worries. * @todo transform the dumping into a generic runtime function. We'll need it for logging! */ void tstASMCpuId(void) { RTTestISub("ASMCpuId"); unsigned iBit; struct { uint32_t uEBX, uEAX, uEDX, uECX; } s; if (!ASMHasCpuId()) { RTTestIPrintf(RTTESTLVL_ALWAYS, "warning! CPU doesn't support CPUID\n"); return; } /* * Try the 0 function and use that for checking the ASMCpuId_* variants. */ ASMCpuId(0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); uint32_t u32; u32 = ASMCpuId_EAX(0); CHECKVAL(u32, s.uEAX, "%x"); u32 = ASMCpuId_EBX(0); CHECKVAL(u32, s.uEBX, "%x"); u32 = ASMCpuId_ECX(0); CHECKVAL(u32, s.uECX, "%x"); u32 = ASMCpuId_EDX(0); CHECKVAL(u32, s.uEDX, "%x"); uint32_t uECX2 = s.uECX - 1; uint32_t uEDX2 = s.uEDX - 1; ASMCpuId_ECX_EDX(0, &uECX2, &uEDX2); CHECKVAL(uECX2, s.uECX, "%x"); CHECKVAL(uEDX2, s.uEDX, "%x"); uint32_t uEAX2 = s.uEAX - 1; uint32_t uEBX2 = s.uEBX - 1; uECX2 = s.uECX - 1; uEDX2 = s.uEDX - 1; ASMCpuIdExSlow(0, 0, 0, 0, &uEAX2, &uEBX2, &uECX2, &uEDX2); CHECKVAL(uEAX2, s.uEAX, "%x"); CHECKVAL(uEBX2, s.uEBX, "%x"); CHECKVAL(uECX2, s.uECX, "%x"); CHECKVAL(uEDX2, s.uEDX, "%x"); /* * Done testing, dump the information. */ RTTestIPrintf(RTTESTLVL_ALWAYS, "CPUID Dump\n"); ASMCpuId(0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); const uint32_t cFunctions = s.uEAX; /* raw dump */ RTTestIPrintf(RTTESTLVL_ALWAYS, "\n" " RAW Standard CPUIDs\n" "Function eax ebx ecx edx\n"); for (unsigned iStd = 0; iStd <= cFunctions + 3; iStd++) { ASMCpuId_Idx_ECX(iStd, 0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "%08x %08x %08x %08x %08x%s\n", iStd, s.uEAX, s.uEBX, s.uECX, s.uEDX, iStd <= cFunctions ? "" : "*"); /* Leaf 04 and leaf 0d output depend on the initial value of ECX * The same seems to apply to invalid standard functions */ if (iStd > cFunctions) continue; if (iStd != 0x04 && iStd != 0x07 && iStd != 0x0b && iStd != 0x0d) { u32 = ASMCpuId_EAX(iStd); CHECKVAL(u32, s.uEAX, "%x"); uint32_t u32EbxMask = UINT32_MAX; if (iStd == 1) u32EbxMask = UINT32_C(0x00ffffff); /* Omit the local apic ID in case we're rescheduled. */ u32 = ASMCpuId_EBX(iStd); CHECKVAL(u32 & u32EbxMask, s.uEBX & u32EbxMask, "%x"); u32 = ASMCpuId_ECX(iStd); CHECKVAL(u32, s.uECX, "%x"); u32 = ASMCpuId_EDX(iStd); CHECKVAL(u32, s.uEDX, "%x"); uECX2 = s.uECX - 1; uEDX2 = s.uEDX - 1; ASMCpuId_ECX_EDX(iStd, &uECX2, &uEDX2); CHECKVAL(uECX2, s.uECX, "%x"); CHECKVAL(uEDX2, s.uEDX, "%x"); } if (iStd == 0x04) for (uint32_t uECX = 1; s.uEAX & 0x1f; uECX++) { ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX); RTTESTI_CHECK_BREAK(uECX < 128); } else if (iStd == 0x07) { uint32_t uMax = s.uEAX; for (uint32_t uECX = 1; uECX < uMax; uECX++) { ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX); RTTESTI_CHECK_BREAK(uECX < 128); } } else if (iStd == 0x0b) for (uint32_t uECX = 1; (s.uEAX & 0x1f) && (s.uEBX & 0xffff); uECX++) { ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX); RTTESTI_CHECK_BREAK(uECX < 128); } else if (iStd == 0x0d) for (uint32_t uECX = 1; s.uEAX != 0 || s.uEBX != 0 || s.uECX != 0 || s.uEDX != 0; uECX++) { ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX); RTTESTI_CHECK_BREAK(uECX < 128); } } /* * Understandable output */ ASMCpuId(0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "Name: %.04s%.04s%.04s\n" "Support: 0-%u\n", &s.uEBX, &s.uEDX, &s.uECX, s.uEAX); bool const fIntel = ASMIsIntelCpuEx(s.uEBX, s.uECX, s.uEDX); /* * Get Features. */ if (cFunctions >= 1) { static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" }; ASMCpuId(1, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "Family: %#x \tExtended: %#x \tEffective: %#x\n" "Model: %#x \tExtended: %#x \tEffective: %#x\n" "Stepping: %d\n" "Type: %d (%s)\n" "APIC ID: %#04x\n" "Logical CPUs: %d\n" "CLFLUSH Size: %d\n" "Brand ID: %#04x\n", (s.uEAX >> 8) & 0xf, (s.uEAX >> 20) & 0x7f, ASMGetCpuFamily(s.uEAX), (s.uEAX >> 4) & 0xf, (s.uEAX >> 16) & 0x0f, ASMGetCpuModel(s.uEAX, fIntel), ASMGetCpuStepping(s.uEAX), (s.uEAX >> 12) & 0x3, s_apszTypes[(s.uEAX >> 12) & 0x3], (s.uEBX >> 24) & 0xff, (s.uEBX >> 16) & 0xff, (s.uEBX >> 8) & 0xff, (s.uEBX >> 0) & 0xff); RTTestIPrintf(RTTESTLVL_ALWAYS, "Features EDX: "); if (s.uEDX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FPU"); if (s.uEDX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " VME"); if (s.uEDX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " DE"); if (s.uEDX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE"); if (s.uEDX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TSC"); if (s.uEDX & RT_BIT(5)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MSR"); if (s.uEDX & RT_BIT(6)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAE"); if (s.uEDX & RT_BIT(7)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCE"); if (s.uEDX & RT_BIT(8)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CX8"); if (s.uEDX & RT_BIT(9)) RTTestIPrintf(RTTESTLVL_ALWAYS, " APIC"); if (s.uEDX & RT_BIT(10)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 10"); if (s.uEDX & RT_BIT(11)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SEP"); if (s.uEDX & RT_BIT(12)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MTRR"); if (s.uEDX & RT_BIT(13)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PGE"); if (s.uEDX & RT_BIT(14)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCA"); if (s.uEDX & RT_BIT(15)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CMOV"); if (s.uEDX & RT_BIT(16)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAT"); if (s.uEDX & RT_BIT(17)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE36"); if (s.uEDX & RT_BIT(18)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSN"); if (s.uEDX & RT_BIT(19)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CLFSH"); if (s.uEDX & RT_BIT(20)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 20"); if (s.uEDX & RT_BIT(21)) RTTestIPrintf(RTTESTLVL_ALWAYS, " DS"); if (s.uEDX & RT_BIT(22)) RTTestIPrintf(RTTESTLVL_ALWAYS, " ACPI"); if (s.uEDX & RT_BIT(23)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MMX"); if (s.uEDX & RT_BIT(24)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FXSR"); if (s.uEDX & RT_BIT(25)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SSE"); if (s.uEDX & RT_BIT(26)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SSE2"); if (s.uEDX & RT_BIT(27)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SS"); if (s.uEDX & RT_BIT(28)) RTTestIPrintf(RTTESTLVL_ALWAYS, " HTT"); if (s.uEDX & RT_BIT(29)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 29"); if (s.uEDX & RT_BIT(30)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 30"); if (s.uEDX & RT_BIT(31)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 31"); RTTestIPrintf(RTTESTLVL_ALWAYS, "\n"); /** @todo check intel docs. */ RTTestIPrintf(RTTESTLVL_ALWAYS, "Features ECX: "); if (s.uECX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SSE3"); for (iBit = 1; iBit < 13; iBit++) if (s.uECX & RT_BIT(iBit)) RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit); if (s.uECX & RT_BIT(13)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CX16"); for (iBit = 14; iBit < 32; iBit++) if (s.uECX & RT_BIT(iBit)) RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit); RTTestIPrintf(RTTESTLVL_ALWAYS, "\n"); } /* * Extended. * Implemented after AMD specs. */ /** @todo check out the intel specs. */ ASMCpuId(0x80000000, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); if (!s.uEAX && !s.uEBX && !s.uECX && !s.uEDX) { RTTestIPrintf(RTTESTLVL_ALWAYS, "No extended CPUID info? Check the manual on how to detect this...\n"); return; } const uint32_t cExtFunctions = s.uEAX | 0x80000000; /* raw dump */ RTTestIPrintf(RTTESTLVL_ALWAYS, "\n" " RAW Extended CPUIDs\n" "Function eax ebx ecx edx\n"); for (unsigned iExt = 0x80000000; iExt <= cExtFunctions + 3; iExt++) { ASMCpuId(iExt, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "%08x %08x %08x %08x %08x%s\n", iExt, s.uEAX, s.uEBX, s.uECX, s.uEDX, iExt <= cExtFunctions ? "" : "*"); if (iExt > cExtFunctions) continue; /* Invalid extended functions seems change the value if ECX changes */ if (iExt == 0x8000001d) continue; /* Takes cache level in ecx. */ u32 = ASMCpuId_EAX(iExt); CHECKVAL(u32, s.uEAX, "%x"); u32 = ASMCpuId_EBX(iExt); CHECKVAL(u32, s.uEBX, "%x"); u32 = ASMCpuId_ECX(iExt); CHECKVAL(u32, s.uECX, "%x"); u32 = ASMCpuId_EDX(iExt); CHECKVAL(u32, s.uEDX, "%x"); uECX2 = s.uECX - 1; uEDX2 = s.uEDX - 1; ASMCpuId_ECX_EDX(iExt, &uECX2, &uEDX2); CHECKVAL(uECX2, s.uECX, "%x"); CHECKVAL(uEDX2, s.uEDX, "%x"); } /* * Understandable output */ ASMCpuId(0x80000000, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "Ext Name: %.4s%.4s%.4s\n" "Ext Supports: 0x80000000-%#010x\n", &s.uEBX, &s.uEDX, &s.uECX, s.uEAX); if (cExtFunctions >= 0x80000001) { ASMCpuId(0x80000001, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "Family: %#x \tExtended: %#x \tEffective: %#x\n" "Model: %#x \tExtended: %#x \tEffective: %#x\n" "Stepping: %d\n" "Brand ID: %#05x\n", (s.uEAX >> 8) & 0xf, (s.uEAX >> 20) & 0x7f, ASMGetCpuFamily(s.uEAX), (s.uEAX >> 4) & 0xf, (s.uEAX >> 16) & 0x0f, ASMGetCpuModel(s.uEAX, fIntel), ASMGetCpuStepping(s.uEAX), s.uEBX & 0xfff); RTTestIPrintf(RTTESTLVL_ALWAYS, "Features EDX: "); if (s.uEDX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FPU"); if (s.uEDX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " VME"); if (s.uEDX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " DE"); if (s.uEDX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE"); if (s.uEDX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TSC"); if (s.uEDX & RT_BIT(5)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MSR"); if (s.uEDX & RT_BIT(6)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAE"); if (s.uEDX & RT_BIT(7)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCE"); if (s.uEDX & RT_BIT(8)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CMPXCHG8B"); if (s.uEDX & RT_BIT(9)) RTTestIPrintf(RTTESTLVL_ALWAYS, " APIC"); if (s.uEDX & RT_BIT(10)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 10"); if (s.uEDX & RT_BIT(11)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SysCallSysRet"); if (s.uEDX & RT_BIT(12)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MTRR"); if (s.uEDX & RT_BIT(13)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PGE"); if (s.uEDX & RT_BIT(14)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCA"); if (s.uEDX & RT_BIT(15)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CMOV"); if (s.uEDX & RT_BIT(16)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAT"); if (s.uEDX & RT_BIT(17)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE36"); if (s.uEDX & RT_BIT(18)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 18"); if (s.uEDX & RT_BIT(19)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 19"); if (s.uEDX & RT_BIT(20)) RTTestIPrintf(RTTESTLVL_ALWAYS, " NX"); if (s.uEDX & RT_BIT(21)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 21"); if (s.uEDX & RT_BIT(22)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MmxExt"); if (s.uEDX & RT_BIT(23)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MMX"); if (s.uEDX & RT_BIT(24)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FXSR"); if (s.uEDX & RT_BIT(25)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FastFXSR"); if (s.uEDX & RT_BIT(26)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 26"); if (s.uEDX & RT_BIT(27)) RTTestIPrintf(RTTESTLVL_ALWAYS, " RDTSCP"); if (s.uEDX & RT_BIT(28)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 28"); if (s.uEDX & RT_BIT(29)) RTTestIPrintf(RTTESTLVL_ALWAYS, " LongMode"); if (s.uEDX & RT_BIT(30)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 3DNowExt"); if (s.uEDX & RT_BIT(31)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 3DNow"); RTTestIPrintf(RTTESTLVL_ALWAYS, "\n"); RTTestIPrintf(RTTESTLVL_ALWAYS, "Features ECX: "); if (s.uECX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " LahfSahf"); if (s.uECX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CmpLegacy"); if (s.uECX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SVM"); if (s.uECX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 3"); if (s.uECX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " AltMovCr8"); for (iBit = 5; iBit < 32; iBit++) if (s.uECX & RT_BIT(iBit)) RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit); RTTestIPrintf(RTTESTLVL_ALWAYS, "\n"); } char szString[4*4*3+1] = {0}; if (cExtFunctions >= 0x80000002) ASMCpuId(0x80000002, &szString[0 + 0], &szString[0 + 4], &szString[0 + 8], &szString[0 + 12]); if (cExtFunctions >= 0x80000003) ASMCpuId(0x80000003, &szString[16 + 0], &szString[16 + 4], &szString[16 + 8], &szString[16 + 12]); if (cExtFunctions >= 0x80000004) ASMCpuId(0x80000004, &szString[32 + 0], &szString[32 + 4], &szString[32 + 8], &szString[32 + 12]); if (cExtFunctions >= 0x80000002) RTTestIPrintf(RTTESTLVL_ALWAYS, "Full Name: %s\n", szString); if (cExtFunctions >= 0x80000005) { ASMCpuId(0x80000005, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "TLB 2/4M Instr/Uni: %s %3d entries\n" "TLB 2/4M Data: %s %3d entries\n", getCacheAss((s.uEAX >> 8) & 0xff), (s.uEAX >> 0) & 0xff, getCacheAss((s.uEAX >> 24) & 0xff), (s.uEAX >> 16) & 0xff); RTTestIPrintf(RTTESTLVL_ALWAYS, "TLB 4K Instr/Uni: %s %3d entries\n" "TLB 4K Data: %s %3d entries\n", getCacheAss((s.uEBX >> 8) & 0xff), (s.uEBX >> 0) & 0xff, getCacheAss((s.uEBX >> 24) & 0xff), (s.uEBX >> 16) & 0xff); RTTestIPrintf(RTTESTLVL_ALWAYS, "L1 Instr Cache Line Size: %d bytes\n" "L1 Instr Cache Lines Per Tag: %d\n" "L1 Instr Cache Associativity: %s\n" "L1 Instr Cache Size: %d KB\n", (s.uEDX >> 0) & 0xff, (s.uEDX >> 8) & 0xff, getCacheAss((s.uEDX >> 16) & 0xff), (s.uEDX >> 24) & 0xff); RTTestIPrintf(RTTESTLVL_ALWAYS, "L1 Data Cache Line Size: %d bytes\n" "L1 Data Cache Lines Per Tag: %d\n" "L1 Data Cache Associativity: %s\n" "L1 Data Cache Size: %d KB\n", (s.uECX >> 0) & 0xff, (s.uECX >> 8) & 0xff, getCacheAss((s.uECX >> 16) & 0xff), (s.uECX >> 24) & 0xff); } if (cExtFunctions >= 0x80000006) { ASMCpuId(0x80000006, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "L2 TLB 2/4M Instr/Uni: %s %4d entries\n" "L2 TLB 2/4M Data: %s %4d entries\n", getL2CacheAss((s.uEAX >> 12) & 0xf), (s.uEAX >> 0) & 0xfff, getL2CacheAss((s.uEAX >> 28) & 0xf), (s.uEAX >> 16) & 0xfff); RTTestIPrintf(RTTESTLVL_ALWAYS, "L2 TLB 4K Instr/Uni: %s %4d entries\n" "L2 TLB 4K Data: %s %4d entries\n", getL2CacheAss((s.uEBX >> 12) & 0xf), (s.uEBX >> 0) & 0xfff, getL2CacheAss((s.uEBX >> 28) & 0xf), (s.uEBX >> 16) & 0xfff); RTTestIPrintf(RTTESTLVL_ALWAYS, "L2 Cache Line Size: %d bytes\n" "L2 Cache Lines Per Tag: %d\n" "L2 Cache Associativity: %s\n" "L2 Cache Size: %d KB\n", (s.uEDX >> 0) & 0xff, (s.uEDX >> 8) & 0xf, getL2CacheAss((s.uEDX >> 12) & 0xf), (s.uEDX >> 16) & 0xffff); } if (cExtFunctions >= 0x80000007) { ASMCpuId(0x80000007, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "APM Features: "); if (s.uEDX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TS"); if (s.uEDX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FID"); if (s.uEDX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " VID"); if (s.uEDX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TTP"); if (s.uEDX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TM"); if (s.uEDX & RT_BIT(5)) RTTestIPrintf(RTTESTLVL_ALWAYS, " STC"); if (s.uEDX & RT_BIT(6)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 6"); if (s.uEDX & RT_BIT(7)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 7"); if (s.uEDX & RT_BIT(8)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TscInvariant"); for (iBit = 9; iBit < 32; iBit++) if (s.uEDX & RT_BIT(iBit)) RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit); RTTestIPrintf(RTTESTLVL_ALWAYS, "\n"); } if (cExtFunctions >= 0x80000008) { ASMCpuId(0x80000008, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "Physical Address Width: %d bits\n" "Virtual Address Width: %d bits\n" "Guest Physical Address Width: %d bits\n", (s.uEAX >> 0) & 0xff, (s.uEAX >> 8) & 0xff, (s.uEAX >> 16) & 0xff); RTTestIPrintf(RTTESTLVL_ALWAYS, "Physical Core Count: %d\n", ((s.uECX >> 0) & 0xff) + 1); if ((s.uECX >> 12) & 0xf) RTTestIPrintf(RTTESTLVL_ALWAYS, "ApicIdCoreIdSize: %d bits\n", (s.uECX >> 12) & 0xf); } if (cExtFunctions >= 0x8000000a) { ASMCpuId(0x8000000a, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX); RTTestIPrintf(RTTESTLVL_ALWAYS, "SVM Revision: %d (%#x)\n" "Number of Address Space IDs: %d (%#x)\n", s.uEAX & 0xff, s.uEAX & 0xff, s.uEBX, s.uEBX); } } # if 0 static void bruteForceCpuId(void) { RTTestISub("brute force CPUID leafs"); uint32_t auPrevValues[4] = { 0, 0, 0, 0}; uint32_t uLeaf = 0; do { uint32_t auValues[4]; ASMCpuIdExSlow(uLeaf, 0, 0, 0, &auValues[0], &auValues[1], &auValues[2], &auValues[3]); if ( (auValues[0] != auPrevValues[0] && auValues[0] != uLeaf) || (auValues[1] != auPrevValues[1] && auValues[1] != 0) || (auValues[2] != auPrevValues[2] && auValues[2] != 0) || (auValues[3] != auPrevValues[3] && auValues[3] != 0) || (uLeaf & (UINT32_C(0x08000000) - UINT32_C(1))) == 0) { RTTestIPrintf(RTTESTLVL_ALWAYS, "%08x: %08x %08x %08x %08x\n", uLeaf, auValues[0], auValues[1], auValues[2], auValues[3]); } auPrevValues[0] = auValues[0]; auPrevValues[1] = auValues[1]; auPrevValues[2] = auValues[2]; auPrevValues[3] = auValues[3]; //uint32_t uSubLeaf = 0; //do //{ // // //} while (false); } while (uLeaf++ < UINT32_MAX); } # endif #endif /* AMD64 || X86 */ DECLINLINE(void) tstASMAtomicXchgU8Worker(uint8_t volatile *pu8) { *pu8 = 0; CHECKOP(ASMAtomicXchgU8(pu8, 1), 0, "%#x", uint8_t); CHECKVAL(*pu8, 1, "%#x"); CHECKOP(ASMAtomicXchgU8(pu8, 0), 1, "%#x", uint8_t); CHECKVAL(*pu8, 0, "%#x"); CHECKOP(ASMAtomicXchgU8(pu8, 0xff), 0, "%#x", uint8_t); CHECKVAL(*pu8, 0xff, "%#x"); CHECKOP(ASMAtomicXchgU8(pu8, 0x87), 0xffff, "%#x", uint8_t); CHECKVAL(*pu8, 0x87, "%#x"); } static void tstASMAtomicXchgU8(void) { DO_SIMPLE_TEST(ASMAtomicXchgU8, uint8_t); } DECLINLINE(void) tstASMAtomicXchgU16Worker(uint16_t volatile *pu16) { *pu16 = 0; CHECKOP(ASMAtomicXchgU16(pu16, 1), 0, "%#x", uint16_t); CHECKVAL(*pu16, 1, "%#x"); CHECKOP(ASMAtomicXchgU16(pu16, 0), 1, "%#x", uint16_t); CHECKVAL(*pu16, 0, "%#x"); CHECKOP(ASMAtomicXchgU16(pu16, 0xffff), 0, "%#x", uint16_t); CHECKVAL(*pu16, 0xffff, "%#x"); CHECKOP(ASMAtomicXchgU16(pu16, 0x8765), 0xffff, "%#x", uint16_t); CHECKVAL(*pu16, 0x8765, "%#x"); } static void tstASMAtomicXchgU16(void) { DO_SIMPLE_TEST(ASMAtomicXchgU16, uint16_t); } DECLINLINE(void) tstASMAtomicXchgU32Worker(uint32_t volatile *pu32) { *pu32 = 0; CHECKOP(ASMAtomicXchgU32(pu32, 1), 0, "%#x", uint32_t); CHECKVAL(*pu32, 1, "%#x"); CHECKOP(ASMAtomicXchgU32(pu32, 0), 1, "%#x", uint32_t); CHECKVAL(*pu32, 0, "%#x"); CHECKOP(ASMAtomicXchgU32(pu32, ~UINT32_C(0)), 0, "%#x", uint32_t); CHECKVAL(*pu32, ~UINT32_C(0), "%#x"); CHECKOP(ASMAtomicXchgU32(pu32, 0x87654321), ~UINT32_C(0), "%#x", uint32_t); CHECKVAL(*pu32, 0x87654321, "%#x"); } static void tstASMAtomicXchgU32(void) { DO_SIMPLE_TEST(ASMAtomicXchgU32, uint32_t); } DECLINLINE(void) tstASMAtomicXchgU64Worker(uint64_t volatile *pu64) { *pu64 = 0; CHECKOP(ASMAtomicXchgU64(pu64, 1), UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(1), "%#llx"); CHECKOP(ASMAtomicXchgU64(pu64, 0), UINT64_C(1), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(0), "%#llx"); CHECKOP(ASMAtomicXchgU64(pu64, ~UINT64_C(0)), UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, ~UINT64_C(0), "%#llx"); CHECKOP(ASMAtomicXchgU64(pu64, UINT64_C(0xfedcba0987654321)), ~UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(0xfedcba0987654321), "%#llx"); } static void tstASMAtomicXchgU64(void) { DO_SIMPLE_TEST(ASMAtomicXchgU64, uint64_t); } DECLINLINE(void) tstASMAtomicXchgPtrWorker(void * volatile *ppv) { *ppv = NULL; CHECKOP(ASMAtomicXchgPtr(ppv, (void *)(~(uintptr_t)0)), NULL, "%p", void *); CHECKVAL(*ppv, (void *)(~(uintptr_t)0), "%p"); CHECKOP(ASMAtomicXchgPtr(ppv, (void *)0x87654321), (void *)(~(uintptr_t)0), "%p", void *); CHECKVAL(*ppv, (void *)0x87654321, "%p"); CHECKOP(ASMAtomicXchgPtr(ppv, NULL), (void *)0x87654321, "%p", void *); CHECKVAL(*ppv, NULL, "%p"); } static void tstASMAtomicXchgPtr(void) { DO_SIMPLE_TEST(ASMAtomicXchgPtr, void *); } DECLINLINE(void) tstASMAtomicCmpXchgU8Worker(uint8_t volatile *pu8) { *pu8 = 0xff; CHECKOP(ASMAtomicCmpXchgU8(pu8, 0, 0), false, "%d", bool); CHECKVAL(*pu8, 0xff, "%x"); CHECKOP(ASMAtomicCmpXchgU8(pu8, 0, 0xff), true, "%d", bool); CHECKVAL(*pu8, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU8(pu8, 0x79, 0xff), false, "%d", bool); CHECKVAL(*pu8, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU8(pu8, 0x97, 0), true, "%d", bool); CHECKVAL(*pu8, 0x97, "%x"); } static void tstASMAtomicCmpXchgU8(void) { DO_SIMPLE_TEST(ASMAtomicCmpXchgU8, uint8_t); } DECLINLINE(void) tstASMAtomicCmpXchgU32Worker(uint32_t volatile *pu32) { *pu32 = UINT32_C(0xffffffff); CHECKOP(ASMAtomicCmpXchgU32(pu32, 0, 0), false, "%d", bool); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x"); CHECKOP(ASMAtomicCmpXchgU32(pu32, 0, UINT32_C(0xffffffff)), true, "%d", bool); CHECKVAL(*pu32, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU32(pu32, UINT32_C(0x8008efd), UINT32_C(0xffffffff)), false, "%d", bool); CHECKVAL(*pu32, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU32(pu32, UINT32_C(0x8008efd), 0), true, "%d", bool); CHECKVAL(*pu32, UINT32_C(0x8008efd), "%x"); } static void tstASMAtomicCmpXchgU32(void) { DO_SIMPLE_TEST(ASMAtomicCmpXchgU32, uint32_t); } DECLINLINE(void) tstASMAtomicCmpXchgU64Worker(uint64_t volatile *pu64) { *pu64 = UINT64_C(0xffffffffffffff); CHECKOP(ASMAtomicCmpXchgU64(pu64, 0, 0), false, "%d", bool); CHECKVAL(*pu64, UINT64_C(0xffffffffffffff), "%#llx"); CHECKOP(ASMAtomicCmpXchgU64(pu64, 0, UINT64_C(0xffffffffffffff)), true, "%d", bool); CHECKVAL(*pu64, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU64(pu64, UINT64_C(0x80040008008efd), UINT64_C(0xffffffff)), false, "%d", bool); CHECKVAL(*pu64, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU64(pu64, UINT64_C(0x80040008008efd), UINT64_C(0xffffffff00000000)), false, "%d", bool); CHECKVAL(*pu64, 0, "%x"); CHECKOP(ASMAtomicCmpXchgU64(pu64, UINT64_C(0x80040008008efd), 0), true, "%d", bool); CHECKVAL(*pu64, UINT64_C(0x80040008008efd), "%#llx"); } static void tstASMAtomicCmpXchgU64(void) { DO_SIMPLE_TEST(ASMAtomicCmpXchgU64, uint64_t); } DECLINLINE(void) tstASMAtomicCmpXchgExU32Worker(uint32_t volatile *pu32) { *pu32 = UINT32_C(0xffffffff); uint32_t u32Old = UINT32_C(0x80005111); CHECKOP(ASMAtomicCmpXchgExU32(pu32, 0, 0, &u32Old), false, "%d", bool); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x"); CHECKVAL(u32Old, UINT32_C(0xffffffff), "%x"); CHECKOP(ASMAtomicCmpXchgExU32(pu32, 0, UINT32_C(0xffffffff), &u32Old), true, "%d", bool); CHECKVAL(*pu32, 0, "%x"); CHECKVAL(u32Old, UINT32_C(0xffffffff), "%x"); CHECKOP(ASMAtomicCmpXchgExU32(pu32, UINT32_C(0x8008efd), UINT32_C(0xffffffff), &u32Old), false, "%d", bool); CHECKVAL(*pu32, 0, "%x"); CHECKVAL(u32Old, 0, "%x"); CHECKOP(ASMAtomicCmpXchgExU32(pu32, UINT32_C(0x8008efd), 0, &u32Old), true, "%d", bool); CHECKVAL(*pu32, UINT32_C(0x8008efd), "%x"); CHECKVAL(u32Old, 0, "%x"); CHECKOP(ASMAtomicCmpXchgExU32(pu32, 0, UINT32_C(0x8008efd), &u32Old), true, "%d", bool); CHECKVAL(*pu32, 0, "%x"); CHECKVAL(u32Old, UINT32_C(0x8008efd), "%x"); } static void tstASMAtomicCmpXchgExU32(void) { DO_SIMPLE_TEST(ASMAtomicCmpXchgExU32, uint32_t); } DECLINLINE(void) tstASMAtomicCmpXchgExU64Worker(uint64_t volatile *pu64) { *pu64 = UINT64_C(0xffffffffffffffff); uint64_t u64Old = UINT64_C(0x8000000051111111); CHECKOP(ASMAtomicCmpXchgExU64(pu64, 0, 0, &u64Old), false, "%d", bool); CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%llx"); CHECKVAL(u64Old, UINT64_C(0xffffffffffffffff), "%llx"); CHECKOP(ASMAtomicCmpXchgExU64(pu64, 0, UINT64_C(0xffffffffffffffff), &u64Old), true, "%d", bool); CHECKVAL(*pu64, UINT64_C(0), "%llx"); CHECKVAL(u64Old, UINT64_C(0xffffffffffffffff), "%llx"); CHECKOP(ASMAtomicCmpXchgExU64(pu64, UINT64_C(0x80040008008efd), 0xffffffff, &u64Old), false, "%d", bool); CHECKVAL(*pu64, UINT64_C(0), "%llx"); CHECKVAL(u64Old, UINT64_C(0), "%llx"); CHECKOP(ASMAtomicCmpXchgExU64(pu64, UINT64_C(0x80040008008efd), UINT64_C(0xffffffff00000000), &u64Old), false, "%d", bool); CHECKVAL(*pu64, UINT64_C(0), "%llx"); CHECKVAL(u64Old, UINT64_C(0), "%llx"); CHECKOP(ASMAtomicCmpXchgExU64(pu64, UINT64_C(0x80040008008efd), 0, &u64Old), true, "%d", bool); CHECKVAL(*pu64, UINT64_C(0x80040008008efd), "%llx"); CHECKVAL(u64Old, UINT64_C(0), "%llx"); CHECKOP(ASMAtomicCmpXchgExU64(pu64, 0, UINT64_C(0x80040008008efd), &u64Old), true, "%d", bool); CHECKVAL(*pu64, UINT64_C(0), "%llx"); CHECKVAL(u64Old, UINT64_C(0x80040008008efd), "%llx"); } static void tstASMAtomicCmpXchgExU64(void) { DO_SIMPLE_TEST(ASMAtomicCmpXchgExU64, uint64_t); } DECLINLINE(void) tstASMAtomicReadU64Worker(uint64_t volatile *pu64) { *pu64 = 0; CHECKOP(ASMAtomicReadU64(pu64), UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(0), "%#llx"); *pu64 = ~UINT64_C(0); CHECKOP(ASMAtomicReadU64(pu64), ~UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, ~UINT64_C(0), "%#llx"); *pu64 = UINT64_C(0xfedcba0987654321); CHECKOP(ASMAtomicReadU64(pu64), UINT64_C(0xfedcba0987654321), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(0xfedcba0987654321), "%#llx"); } static void tstASMAtomicReadU64(void) { DO_SIMPLE_TEST(ASMAtomicReadU64, uint64_t); } DECLINLINE(void) tstASMAtomicUoReadU64Worker(uint64_t volatile *pu64) { *pu64 = 0; CHECKOP(ASMAtomicUoReadU64(pu64), UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(0), "%#llx"); *pu64 = ~UINT64_C(0); CHECKOP(ASMAtomicUoReadU64(pu64), ~UINT64_C(0), "%#llx", uint64_t); CHECKVAL(*pu64, ~UINT64_C(0), "%#llx"); *pu64 = UINT64_C(0xfedcba0987654321); CHECKOP(ASMAtomicUoReadU64(pu64), UINT64_C(0xfedcba0987654321), "%#llx", uint64_t); CHECKVAL(*pu64, UINT64_C(0xfedcba0987654321), "%#llx"); } static void tstASMAtomicUoReadU64(void) { DO_SIMPLE_TEST(ASMAtomicUoReadU64, uint64_t); } DECLINLINE(void) tstASMAtomicAddS32Worker(int32_t *pi32) { int32_t i32Rc; *pi32 = 10; #define MYCHECK(op, rc, val) \ do { \ i32Rc = op; \ if (i32Rc != (rc)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %d expected %d\n", __FUNCTION__, __LINE__, #op, i32Rc, rc); \ if (*pi32 != (val)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi32=%d expected %d\n", __FUNCTION__, __LINE__, #op, *pi32, val); \ } while (0) MYCHECK(ASMAtomicAddS32(pi32, 1), 10, 11); MYCHECK(ASMAtomicAddS32(pi32, -2), 11, 9); MYCHECK(ASMAtomicAddS32(pi32, -9), 9, 0); MYCHECK(ASMAtomicAddS32(pi32, -0x7fffffff), 0, -0x7fffffff); MYCHECK(ASMAtomicAddS32(pi32, 0), -0x7fffffff, -0x7fffffff); MYCHECK(ASMAtomicAddS32(pi32, 0x7fffffff), -0x7fffffff, 0); MYCHECK(ASMAtomicAddS32(pi32, 0), 0, 0); #undef MYCHECK } static void tstASMAtomicAddS32(void) { DO_SIMPLE_TEST(ASMAtomicAddS32, int32_t); } DECLINLINE(void) tstASMAtomicUoIncU32Worker(uint32_t volatile *pu32) { *pu32 = 0; CHECKOP(ASMAtomicUoIncU32(pu32), UINT32_C(1), "%#x", uint32_t); CHECKVAL(*pu32, UINT32_C(1), "%#x"); *pu32 = ~UINT32_C(0); CHECKOP(ASMAtomicUoIncU32(pu32), 0, "%#x", uint32_t); CHECKVAL(*pu32, 0, "%#x"); *pu32 = UINT32_C(0x7fffffff); CHECKOP(ASMAtomicUoIncU32(pu32), UINT32_C(0x80000000), "%#x", uint32_t); CHECKVAL(*pu32, UINT32_C(0x80000000), "%#x"); } static void tstASMAtomicUoIncU32(void) { DO_SIMPLE_TEST(ASMAtomicUoIncU32, uint32_t); } DECLINLINE(void) tstASMAtomicUoDecU32Worker(uint32_t volatile *pu32) { *pu32 = 0; CHECKOP(ASMAtomicUoDecU32(pu32), ~UINT32_C(0), "%#x", uint32_t); CHECKVAL(*pu32, ~UINT32_C(0), "%#x"); *pu32 = ~UINT32_C(0); CHECKOP(ASMAtomicUoDecU32(pu32), UINT32_C(0xfffffffe), "%#x", uint32_t); CHECKVAL(*pu32, UINT32_C(0xfffffffe), "%#x"); *pu32 = UINT32_C(0x80000000); CHECKOP(ASMAtomicUoDecU32(pu32), UINT32_C(0x7fffffff), "%#x", uint32_t); CHECKVAL(*pu32, UINT32_C(0x7fffffff), "%#x"); } static void tstASMAtomicUoDecU32(void) { DO_SIMPLE_TEST(ASMAtomicUoDecU32, uint32_t); } DECLINLINE(void) tstASMAtomicAddS64Worker(int64_t volatile *pi64) { int64_t i64Rc; *pi64 = 10; #define MYCHECK(op, rc, val) \ do { \ i64Rc = op; \ if (i64Rc != (rc)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %llx expected %llx\n", __FUNCTION__, __LINE__, #op, i64Rc, (int64_t)rc); \ if (*pi64 != (val)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi64=%llx expected %llx\n", __FUNCTION__, __LINE__, #op, *pi64, (int64_t)(val)); \ } while (0) MYCHECK(ASMAtomicAddS64(pi64, 1), 10, 11); MYCHECK(ASMAtomicAddS64(pi64, -2), 11, 9); MYCHECK(ASMAtomicAddS64(pi64, -9), 9, 0); MYCHECK(ASMAtomicAddS64(pi64, -INT64_MAX), 0, -INT64_MAX); MYCHECK(ASMAtomicAddS64(pi64, 0), -INT64_MAX, -INT64_MAX); MYCHECK(ASMAtomicAddS64(pi64, -1), -INT64_MAX, INT64_MIN); MYCHECK(ASMAtomicAddS64(pi64, INT64_MAX), INT64_MIN, -1); MYCHECK(ASMAtomicAddS64(pi64, 1), -1, 0); MYCHECK(ASMAtomicAddS64(pi64, 0), 0, 0); #undef MYCHECK } static void tstASMAtomicAddS64(void) { DO_SIMPLE_TEST(ASMAtomicAddS64, int64_t); } DECLINLINE(void) tstASMAtomicDecIncS32Worker(int32_t volatile *pi32) { int32_t i32Rc; *pi32 = 10; #define MYCHECK(op, rc) \ do { \ i32Rc = op; \ if (i32Rc != (rc)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %d expected %d\n", __FUNCTION__, __LINE__, #op, i32Rc, rc); \ if (*pi32 != (rc)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi32=%d expected %d\n", __FUNCTION__, __LINE__, #op, *pi32, rc); \ } while (0) MYCHECK(ASMAtomicDecS32(pi32), 9); MYCHECK(ASMAtomicDecS32(pi32), 8); MYCHECK(ASMAtomicDecS32(pi32), 7); MYCHECK(ASMAtomicDecS32(pi32), 6); MYCHECK(ASMAtomicDecS32(pi32), 5); MYCHECK(ASMAtomicDecS32(pi32), 4); MYCHECK(ASMAtomicDecS32(pi32), 3); MYCHECK(ASMAtomicDecS32(pi32), 2); MYCHECK(ASMAtomicDecS32(pi32), 1); MYCHECK(ASMAtomicDecS32(pi32), 0); MYCHECK(ASMAtomicDecS32(pi32), -1); MYCHECK(ASMAtomicDecS32(pi32), -2); MYCHECK(ASMAtomicIncS32(pi32), -1); MYCHECK(ASMAtomicIncS32(pi32), 0); MYCHECK(ASMAtomicIncS32(pi32), 1); MYCHECK(ASMAtomicIncS32(pi32), 2); MYCHECK(ASMAtomicIncS32(pi32), 3); MYCHECK(ASMAtomicDecS32(pi32), 2); MYCHECK(ASMAtomicIncS32(pi32), 3); MYCHECK(ASMAtomicDecS32(pi32), 2); MYCHECK(ASMAtomicIncS32(pi32), 3); #undef MYCHECK } static void tstASMAtomicDecIncS32(void) { DO_SIMPLE_TEST(ASMAtomicDecIncS32, int32_t); } DECLINLINE(void) tstASMAtomicDecIncS64Worker(int64_t volatile *pi64) { int64_t i64Rc; *pi64 = 10; #define MYCHECK(op, rc) \ do { \ i64Rc = op; \ if (i64Rc != (rc)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %lld expected %lld\n", __FUNCTION__, __LINE__, #op, i64Rc, rc); \ if (*pi64 != (rc)) \ RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi64=%lld expected %lld\n", __FUNCTION__, __LINE__, #op, *pi64, rc); \ } while (0) MYCHECK(ASMAtomicDecS64(pi64), 9); MYCHECK(ASMAtomicDecS64(pi64), 8); MYCHECK(ASMAtomicDecS64(pi64), 7); MYCHECK(ASMAtomicDecS64(pi64), 6); MYCHECK(ASMAtomicDecS64(pi64), 5); MYCHECK(ASMAtomicDecS64(pi64), 4); MYCHECK(ASMAtomicDecS64(pi64), 3); MYCHECK(ASMAtomicDecS64(pi64), 2); MYCHECK(ASMAtomicDecS64(pi64), 1); MYCHECK(ASMAtomicDecS64(pi64), 0); MYCHECK(ASMAtomicDecS64(pi64), -1); MYCHECK(ASMAtomicDecS64(pi64), -2); MYCHECK(ASMAtomicIncS64(pi64), -1); MYCHECK(ASMAtomicIncS64(pi64), 0); MYCHECK(ASMAtomicIncS64(pi64), 1); MYCHECK(ASMAtomicIncS64(pi64), 2); MYCHECK(ASMAtomicIncS64(pi64), 3); MYCHECK(ASMAtomicDecS64(pi64), 2); MYCHECK(ASMAtomicIncS64(pi64), 3); MYCHECK(ASMAtomicDecS64(pi64), 2); MYCHECK(ASMAtomicIncS64(pi64), 3); #undef MYCHECK } static void tstASMAtomicDecIncS64(void) { DO_SIMPLE_TEST(ASMAtomicDecIncS64, int64_t); } DECLINLINE(void) tstASMAtomicAndOrU32Worker(uint32_t volatile *pu32) { *pu32 = UINT32_C(0xffffffff); ASMAtomicOrU32(pu32, UINT32_C(0xffffffff)); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x"); ASMAtomicAndU32(pu32, UINT32_C(0xffffffff)); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x"); ASMAtomicAndU32(pu32, UINT32_C(0x8f8f8f8f)); CHECKVAL(*pu32, UINT32_C(0x8f8f8f8f), "%x"); ASMAtomicOrU32(pu32, UINT32_C(0x70707070)); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x"); ASMAtomicAndU32(pu32, UINT32_C(1)); CHECKVAL(*pu32, UINT32_C(1), "%x"); ASMAtomicOrU32(pu32, UINT32_C(0x80000000)); CHECKVAL(*pu32, UINT32_C(0x80000001), "%x"); ASMAtomicAndU32(pu32, UINT32_C(0x80000000)); CHECKVAL(*pu32, UINT32_C(0x80000000), "%x"); ASMAtomicAndU32(pu32, UINT32_C(0)); CHECKVAL(*pu32, UINT32_C(0), "%x"); ASMAtomicOrU32(pu32, UINT32_C(0x42424242)); CHECKVAL(*pu32, UINT32_C(0x42424242), "%x"); } static void tstASMAtomicAndOrU32(void) { DO_SIMPLE_TEST(ASMAtomicAndOrU32, uint32_t); } DECLINLINE(void) tstASMAtomicAndOrU64Worker(uint64_t volatile *pu64) { *pu64 = UINT64_C(0xffffffff); ASMAtomicOrU64(pu64, UINT64_C(0xffffffff)); CHECKVAL(*pu64, UINT64_C(0xffffffff), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0xffffffff)); CHECKVAL(*pu64, UINT64_C(0xffffffff), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0x8f8f8f8f)); CHECKVAL(*pu64, UINT64_C(0x8f8f8f8f), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0x70707070)); CHECKVAL(*pu64, UINT64_C(0xffffffff), "%x"); ASMAtomicAndU64(pu64, UINT64_C(1)); CHECKVAL(*pu64, UINT64_C(1), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0x80000000)); CHECKVAL(*pu64, UINT64_C(0x80000001), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0x80000000)); CHECKVAL(*pu64, UINT64_C(0x80000000), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0)); CHECKVAL(*pu64, UINT64_C(0), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0x42424242)); CHECKVAL(*pu64, UINT64_C(0x42424242), "%x"); // Same as above, but now 64-bit wide. ASMAtomicAndU64(pu64, UINT64_C(0)); CHECKVAL(*pu64, UINT64_C(0), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0xffffffffffffffff)); CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0xffffffffffffffff)); CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0x8f8f8f8f8f8f8f8f)); CHECKVAL(*pu64, UINT64_C(0x8f8f8f8f8f8f8f8f), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0x7070707070707070)); CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%x"); ASMAtomicAndU64(pu64, UINT64_C(1)); CHECKVAL(*pu64, UINT64_C(1), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0x8000000000000000)); CHECKVAL(*pu64, UINT64_C(0x8000000000000001), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0x8000000000000000)); CHECKVAL(*pu64, UINT64_C(0x8000000000000000), "%x"); ASMAtomicAndU64(pu64, UINT64_C(0)); CHECKVAL(*pu64, UINT64_C(0), "%x"); ASMAtomicOrU64(pu64, UINT64_C(0x4242424242424242)); CHECKVAL(*pu64, UINT64_C(0x4242424242424242), "%x"); } static void tstASMAtomicAndOrU64(void) { DO_SIMPLE_TEST(ASMAtomicAndOrU64, uint64_t); } DECLINLINE(void) tstASMAtomicUoAndOrU32Worker(uint32_t volatile *pu32) { *pu32 = UINT32_C(0xffffffff); ASMAtomicUoOrU32(pu32, UINT32_C(0xffffffff)); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%#x"); ASMAtomicUoAndU32(pu32, UINT32_C(0xffffffff)); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%#x"); ASMAtomicUoAndU32(pu32, UINT32_C(0x8f8f8f8f)); CHECKVAL(*pu32, UINT32_C(0x8f8f8f8f), "%#x"); ASMAtomicUoOrU32(pu32, UINT32_C(0x70707070)); CHECKVAL(*pu32, UINT32_C(0xffffffff), "%#x"); ASMAtomicUoAndU32(pu32, UINT32_C(1)); CHECKVAL(*pu32, UINT32_C(1), "%#x"); ASMAtomicUoOrU32(pu32, UINT32_C(0x80000000)); CHECKVAL(*pu32, UINT32_C(0x80000001), "%#x"); ASMAtomicUoAndU32(pu32, UINT32_C(0x80000000)); CHECKVAL(*pu32, UINT32_C(0x80000000), "%#x"); ASMAtomicUoAndU32(pu32, UINT32_C(0)); CHECKVAL(*pu32, UINT32_C(0), "%#x"); ASMAtomicUoOrU32(pu32, UINT32_C(0x42424242)); CHECKVAL(*pu32, UINT32_C(0x42424242), "%#x"); } static void tstASMAtomicUoAndOrU32(void) { DO_SIMPLE_TEST(ASMAtomicUoAndOrU32, uint32_t); } typedef struct { uint8_t ab[PAGE_SIZE]; } TSTPAGE; DECLINLINE(void) tstASMMemZeroPageWorker(TSTPAGE *pPage) { for (unsigned j = 0; j < 16; j++) { memset(pPage, 0x11 * j, sizeof(*pPage)); ASMMemZeroPage(pPage); for (unsigned i = 0; i < sizeof(pPage->ab); i++) if (pPage->ab[i]) RTTestFailed(g_hTest, "ASMMemZeroPage didn't clear byte at offset %#x!\n", i); } } static void tstASMMemZeroPage(void) { DO_SIMPLE_TEST(ASMMemZeroPage, TSTPAGE); } void tstASMMemIsZeroPage(RTTEST hTest) { RTTestSub(hTest, "ASMMemIsZeroPage"); void *pvPage1 = RTTestGuardedAllocHead(hTest, PAGE_SIZE); void *pvPage2 = RTTestGuardedAllocTail(hTest, PAGE_SIZE); RTTESTI_CHECK_RETV(pvPage1 && pvPage2); memset(pvPage1, 0, PAGE_SIZE); memset(pvPage2, 0, PAGE_SIZE); RTTESTI_CHECK(ASMMemIsZeroPage(pvPage1)); RTTESTI_CHECK(ASMMemIsZeroPage(pvPage2)); memset(pvPage1, 0xff, PAGE_SIZE); memset(pvPage2, 0xff, PAGE_SIZE); RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage1)); RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage2)); memset(pvPage1, 0, PAGE_SIZE); memset(pvPage2, 0, PAGE_SIZE); for (unsigned off = 0; off < PAGE_SIZE; off++) { ((uint8_t *)pvPage1)[off] = 1; RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage1)); ((uint8_t *)pvPage1)[off] = 0; ((uint8_t *)pvPage2)[off] = 0x80; RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage2)); ((uint8_t *)pvPage2)[off] = 0; } RTTestSubDone(hTest); } void tstASMMemFirstMismatchingU8(RTTEST hTest) { RTTestSub(hTest, "ASMMemFirstMismatchingU8"); uint8_t *pbPage1 = (uint8_t *)RTTestGuardedAllocHead(hTest, PAGE_SIZE); uint8_t *pbPage2 = (uint8_t *)RTTestGuardedAllocTail(hTest, PAGE_SIZE); RTTESTI_CHECK_RETV(pbPage1 && pbPage2); memset(pbPage1, 0, PAGE_SIZE); memset(pbPage2, 0, PAGE_SIZE); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 1) == pbPage1); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 1) == pbPage2); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0x87) == pbPage1); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0x87) == pbPage2); RTTESTI_CHECK(ASMMemIsZero(pbPage1, PAGE_SIZE)); RTTESTI_CHECK(ASMMemIsZero(pbPage2, PAGE_SIZE)); RTTESTI_CHECK(ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0)); RTTESTI_CHECK(ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0)); RTTESTI_CHECK(!ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0x34)); RTTESTI_CHECK(!ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0x88)); unsigned cbSub = 32; while (cbSub-- > 0) { RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0x34) == &pbPage1[PAGE_SIZE - cbSub] || !cbSub); RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0x99) == &pbPage2[PAGE_SIZE - cbSub] || !cbSub); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0x42) == pbPage1 || !cbSub); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0x88) == pbPage2 || !cbSub); } memset(pbPage1, 0xff, PAGE_SIZE); memset(pbPage2, 0xff, PAGE_SIZE); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0xff) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0xff) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0xfe) == pbPage1); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0xfe) == pbPage2); RTTESTI_CHECK(!ASMMemIsZero(pbPage1, PAGE_SIZE)); RTTESTI_CHECK(!ASMMemIsZero(pbPage2, PAGE_SIZE)); RTTESTI_CHECK(ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0xff)); RTTESTI_CHECK(ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0xff)); RTTESTI_CHECK(!ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0)); RTTESTI_CHECK(!ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0)); cbSub = 32; while (cbSub-- > 0) { RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0xff) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0xff) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0xff) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0xff) == NULL); RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0xfe) == &pbPage1[PAGE_SIZE - cbSub] || !cbSub); RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0xfe) == &pbPage2[PAGE_SIZE - cbSub] || !cbSub); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0xfe) == pbPage1 || !cbSub); RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0xfe) == pbPage2 || !cbSub); } /* * Various alignments and sizes. */ uint8_t const bFiller1 = 0x00; uint8_t const bFiller2 = 0xf6; size_t const cbBuf = 128; uint8_t *pbBuf1 = pbPage1; uint8_t *pbBuf2 = &pbPage2[PAGE_SIZE - cbBuf]; /* Put it up against the tail guard */ memset(pbPage1, ~bFiller1, PAGE_SIZE); memset(pbPage2, ~bFiller2, PAGE_SIZE); memset(pbBuf1, bFiller1, cbBuf); memset(pbBuf2, bFiller2, cbBuf); for (size_t offNonZero = 0; offNonZero < cbBuf; offNonZero++) { uint8_t bRand = (uint8_t)RTRandU32(); pbBuf1[offNonZero] = bRand | 1; pbBuf2[offNonZero] = (0x80 | bRand) ^ 0xf6; for (size_t offStart = 0; offStart < 32; offStart++) { size_t const cbMax = cbBuf - offStart; for (size_t cb = 0; cb < cbMax; cb++) { size_t const offEnd = offStart + cb; uint8_t bSaved1, bSaved2; if (offEnd < PAGE_SIZE) { bSaved1 = pbBuf1[offEnd]; bSaved2 = pbBuf2[offEnd]; pbBuf1[offEnd] = 0xff; pbBuf2[offEnd] = 0xff; } uint8_t *pbRet = (uint8_t *)ASMMemFirstMismatchingU8(pbBuf1 + offStart, cb, bFiller1); RTTESTI_CHECK(offNonZero - offStart < cb ? pbRet == &pbBuf1[offNonZero] : pbRet == NULL); pbRet = (uint8_t *)ASMMemFirstMismatchingU8(pbBuf2 + offStart, cb, bFiller2); RTTESTI_CHECK(offNonZero - offStart < cb ? pbRet == &pbBuf2[offNonZero] : pbRet == NULL); if (offEnd < PAGE_SIZE) { pbBuf1[offEnd] = bSaved1; pbBuf2[offEnd] = bSaved2; } } } pbBuf1[offNonZero] = 0; pbBuf2[offNonZero] = 0xf6; } RTTestSubDone(hTest); } void tstASMMemZero32(void) { RTTestSub(g_hTest, "ASMMemFill32"); struct { uint64_t u64Magic1; uint8_t abPage[PAGE_SIZE - 32]; uint64_t u64Magic2; } Buf1, Buf2, Buf3; Buf1.u64Magic1 = UINT64_C(0xffffffffffffffff); memset(Buf1.abPage, 0x55, sizeof(Buf1.abPage)); Buf1.u64Magic2 = UINT64_C(0xffffffffffffffff); Buf2.u64Magic1 = UINT64_C(0xffffffffffffffff); memset(Buf2.abPage, 0x77, sizeof(Buf2.abPage)); Buf2.u64Magic2 = UINT64_C(0xffffffffffffffff); Buf3.u64Magic1 = UINT64_C(0xffffffffffffffff); memset(Buf3.abPage, 0x99, sizeof(Buf3.abPage)); Buf3.u64Magic2 = UINT64_C(0xffffffffffffffff); ASMMemZero32(Buf1.abPage, sizeof(Buf1.abPage)); ASMMemZero32(Buf2.abPage, sizeof(Buf2.abPage)); ASMMemZero32(Buf3.abPage, sizeof(Buf3.abPage)); if ( Buf1.u64Magic1 != UINT64_C(0xffffffffffffffff) || Buf1.u64Magic2 != UINT64_C(0xffffffffffffffff) || Buf2.u64Magic1 != UINT64_C(0xffffffffffffffff) || Buf2.u64Magic2 != UINT64_C(0xffffffffffffffff) || Buf3.u64Magic1 != UINT64_C(0xffffffffffffffff) || Buf3.u64Magic2 != UINT64_C(0xffffffffffffffff)) { RTTestFailed(g_hTest, "ASMMemZero32 violated one/both magic(s)!\n"); } for (unsigned i = 0; i < RT_ELEMENTS(Buf1.abPage); i++) if (Buf1.abPage[i]) RTTestFailed(g_hTest, "ASMMemZero32 didn't clear byte at offset %#x!\n", i); for (unsigned i = 0; i < RT_ELEMENTS(Buf2.abPage); i++) if (Buf2.abPage[i]) RTTestFailed(g_hTest, "ASMMemZero32 didn't clear byte at offset %#x!\n", i); for (unsigned i = 0; i < RT_ELEMENTS(Buf3.abPage); i++) if (Buf3.abPage[i]) RTTestFailed(g_hTest, "ASMMemZero32 didn't clear byte at offset %#x!\n", i); } void tstASMMemFill32(void) { RTTestSub(g_hTest, "ASMMemFill32"); struct { uint64_t u64Magic1; uint32_t au32Page[PAGE_SIZE / 4]; uint64_t u64Magic2; } Buf1; struct { uint64_t u64Magic1; uint32_t au32Page[(PAGE_SIZE / 4) - 3]; uint64_t u64Magic2; } Buf2; struct { uint64_t u64Magic1; uint32_t au32Page[(PAGE_SIZE / 4) - 1]; uint64_t u64Magic2; } Buf3; Buf1.u64Magic1 = UINT64_C(0xffffffffffffffff); memset(Buf1.au32Page, 0x55, sizeof(Buf1.au32Page)); Buf1.u64Magic2 = UINT64_C(0xffffffffffffffff); Buf2.u64Magic1 = UINT64_C(0xffffffffffffffff); memset(Buf2.au32Page, 0x77, sizeof(Buf2.au32Page)); Buf2.u64Magic2 = UINT64_C(0xffffffffffffffff); Buf3.u64Magic1 = UINT64_C(0xffffffffffffffff); memset(Buf3.au32Page, 0x99, sizeof(Buf3.au32Page)); Buf3.u64Magic2 = UINT64_C(0xffffffffffffffff); ASMMemFill32(Buf1.au32Page, sizeof(Buf1.au32Page), 0xdeadbeef); ASMMemFill32(Buf2.au32Page, sizeof(Buf2.au32Page), 0xcafeff01); ASMMemFill32(Buf3.au32Page, sizeof(Buf3.au32Page), 0xf00dd00f); if ( Buf1.u64Magic1 != UINT64_C(0xffffffffffffffff) || Buf1.u64Magic2 != UINT64_C(0xffffffffffffffff) || Buf2.u64Magic1 != UINT64_C(0xffffffffffffffff) || Buf2.u64Magic2 != UINT64_C(0xffffffffffffffff) || Buf3.u64Magic1 != UINT64_C(0xffffffffffffffff) || Buf3.u64Magic2 != UINT64_C(0xffffffffffffffff)) RTTestFailed(g_hTest, "ASMMemFill32 violated one/both magic(s)!\n"); for (unsigned i = 0; i < RT_ELEMENTS(Buf1.au32Page); i++) if (Buf1.au32Page[i] != 0xdeadbeef) RTTestFailed(g_hTest, "ASMMemFill32 %#x: %#x exepcted %#x\n", i, Buf1.au32Page[i], 0xdeadbeef); for (unsigned i = 0; i < RT_ELEMENTS(Buf2.au32Page); i++) if (Buf2.au32Page[i] != 0xcafeff01) RTTestFailed(g_hTest, "ASMMemFill32 %#x: %#x exepcted %#x\n", i, Buf2.au32Page[i], 0xcafeff01); for (unsigned i = 0; i < RT_ELEMENTS(Buf3.au32Page); i++) if (Buf3.au32Page[i] != 0xf00dd00f) RTTestFailed(g_hTest, "ASMMemFill32 %#x: %#x exepcted %#x\n", i, Buf3.au32Page[i], 0xf00dd00f); } void tstASMMath(void) { RTTestSub(g_hTest, "Math"); uint64_t u64 = ASMMult2xU32RetU64(UINT32_C(0x80000000), UINT32_C(0x10000000)); CHECKVAL(u64, UINT64_C(0x0800000000000000), "%#018RX64"); uint32_t u32 = ASMDivU64ByU32RetU32(UINT64_C(0x0800000000000000), UINT32_C(0x10000000)); CHECKVAL(u32, UINT32_C(0x80000000), "%#010RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x00000001), UINT32_C(0x00000001), UINT32_C(0x00000001)); CHECKVAL(u32, UINT32_C(0x00000001), "%#018RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x10000000), UINT32_C(0x80000000), UINT32_C(0x20000000)); CHECKVAL(u32, UINT32_C(0x40000000), "%#018RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x76543210), UINT32_C(0xffffffff), UINT32_C(0xffffffff)); CHECKVAL(u32, UINT32_C(0x76543210), "%#018RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0xffffffff), UINT32_C(0xffffffff), UINT32_C(0xffffffff)); CHECKVAL(u32, UINT32_C(0xffffffff), "%#018RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0xffffffff), UINT32_C(0xfffffff0), UINT32_C(0xffffffff)); CHECKVAL(u32, UINT32_C(0xfffffff0), "%#018RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x10359583), UINT32_C(0x58734981), UINT32_C(0xf8694045)); CHECKVAL(u32, UINT32_C(0x05c584ce), "%#018RX32"); u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x10359583), UINT32_C(0xf8694045), UINT32_C(0x58734981)); CHECKVAL(u32, UINT32_C(0x2d860795), "%#018RX32"); #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x0000000000000001), UINT32_C(0x00000001), UINT32_C(0x00000001)); CHECKVAL(u64, UINT64_C(0x0000000000000001), "%#018RX64"); u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x0000000100000000), UINT32_C(0x80000000), UINT32_C(0x00000002)); CHECKVAL(u64, UINT64_C(0x4000000000000000), "%#018RX64"); u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xfedcba9876543210), UINT32_C(0xffffffff), UINT32_C(0xffffffff)); CHECKVAL(u64, UINT64_C(0xfedcba9876543210), "%#018RX64"); u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xffffffffffffffff), UINT32_C(0xffffffff), UINT32_C(0xffffffff)); CHECKVAL(u64, UINT64_C(0xffffffffffffffff), "%#018RX64"); u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xffffffffffffffff), UINT32_C(0xfffffff0), UINT32_C(0xffffffff)); CHECKVAL(u64, UINT64_C(0xfffffff0fffffff0), "%#018RX64"); u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x3415934810359583), UINT32_C(0x58734981), UINT32_C(0xf8694045)); CHECKVAL(u64, UINT64_C(0x128b9c3d43184763), "%#018RX64"); u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x3415934810359583), UINT32_C(0xf8694045), UINT32_C(0x58734981)); CHECKVAL(u64, UINT64_C(0x924719355cd35a27), "%#018RX64"); # if 0 /* bird: question is whether this should trap or not: * * frank: Of course it must trap: * * 0xfffffff8 * 0x77d7daf8 = 0x77d7daf441412840 * * During the following division, the quotient must fit into a 32-bit register. * Therefore the smallest valid divisor is * * (0x77d7daf441412840 >> 32) + 1 = 0x77d7daf5 * * which is definitely greater than 0x3b9aca00. * * bird: No, the C version does *not* crash. So, the question is whether there's any * code depending on it not crashing. * * Of course the assembly versions of the code crash right now for the reasons you've * given, but the 32-bit MSC version does not crash. * * frank: The C version does not crash but delivers incorrect results for this case. * The reason is * * u.s.Hi = (unsigned long)(u64Hi / u32C); * * Here the division is actually 64-bit by 64-bit but the 64-bit result is truncated * to 32 bit. If using this (optimized and fast) function we should just be sure that * the operands are in a valid range. */ u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xfffffff8c65d6731), UINT32_C(0x77d7daf8), UINT32_C(0x3b9aca00)); CHECKVAL(u64, UINT64_C(0x02b8f9a2aa74e3dc), "%#018RX64"); # endif #endif /* AMD64 || X86 */ u32 = ASMModU64ByU32RetU32(UINT64_C(0x0ffffff8c65d6731), UINT32_C(0x77d7daf8)); CHECKVAL(u32, UINT32_C(0x3B642451), "%#010RX32"); int32_t i32; i32 = ASMModS64ByS32RetS32(INT64_C(-11), INT32_C(-2)); CHECKVAL(i32, INT32_C(-1), "%010RI32"); i32 = ASMModS64ByS32RetS32(INT64_C(-11), INT32_C(2)); CHECKVAL(i32, INT32_C(-1), "%010RI32"); i32 = ASMModS64ByS32RetS32(INT64_C(11), INT32_C(-2)); CHECKVAL(i32, INT32_C(1), "%010RI32"); i32 = ASMModS64ByS32RetS32(INT64_C(92233720368547758), INT32_C(2147483647)); CHECKVAL(i32, INT32_C(2104533974), "%010RI32"); i32 = ASMModS64ByS32RetS32(INT64_C(-92233720368547758), INT32_C(2147483647)); CHECKVAL(i32, INT32_C(-2104533974), "%010RI32"); } void tstASMByteSwap(void) { RTTestSub(g_hTest, "ASMByteSwap*"); uint64_t u64In = UINT64_C(0x0011223344556677); uint64_t u64Out = ASMByteSwapU64(u64In); CHECKVAL(u64In, UINT64_C(0x0011223344556677), "%#018RX64"); CHECKVAL(u64Out, UINT64_C(0x7766554433221100), "%#018RX64"); u64Out = ASMByteSwapU64(u64Out); CHECKVAL(u64Out, u64In, "%#018RX64"); u64In = UINT64_C(0x0123456789abcdef); u64Out = ASMByteSwapU64(u64In); CHECKVAL(u64In, UINT64_C(0x0123456789abcdef), "%#018RX64"); CHECKVAL(u64Out, UINT64_C(0xefcdab8967452301), "%#018RX64"); u64Out = ASMByteSwapU64(u64Out); CHECKVAL(u64Out, u64In, "%#018RX64"); u64In = 0; u64Out = ASMByteSwapU64(u64In); CHECKVAL(u64Out, u64In, "%#018RX64"); u64In = ~(uint64_t)0; u64Out = ASMByteSwapU64(u64In); CHECKVAL(u64Out, u64In, "%#018RX64"); uint32_t u32In = UINT32_C(0x00112233); uint32_t u32Out = ASMByteSwapU32(u32In); CHECKVAL(u32In, UINT32_C(0x00112233), "%#010RX32"); CHECKVAL(u32Out, UINT32_C(0x33221100), "%#010RX32"); u32Out = ASMByteSwapU32(u32Out); CHECKVAL(u32Out, u32In, "%#010RX32"); u32In = UINT32_C(0x12345678); u32Out = ASMByteSwapU32(u32In); CHECKVAL(u32In, UINT32_C(0x12345678), "%#010RX32"); CHECKVAL(u32Out, UINT32_C(0x78563412), "%#010RX32"); u32Out = ASMByteSwapU32(u32Out); CHECKVAL(u32Out, u32In, "%#010RX32"); u32In = 0; u32Out = ASMByteSwapU32(u32In); CHECKVAL(u32Out, u32In, "%#010RX32"); u32In = ~(uint32_t)0; u32Out = ASMByteSwapU32(u32In); CHECKVAL(u32Out, u32In, "%#010RX32"); uint16_t u16In = UINT16_C(0x0011); uint16_t u16Out = ASMByteSwapU16(u16In); CHECKVAL(u16In, UINT16_C(0x0011), "%#06RX16"); CHECKVAL(u16Out, UINT16_C(0x1100), "%#06RX16"); u16Out = ASMByteSwapU16(u16Out); CHECKVAL(u16Out, u16In, "%#06RX16"); u16In = UINT16_C(0x1234); u16Out = ASMByteSwapU16(u16In); CHECKVAL(u16In, UINT16_C(0x1234), "%#06RX16"); CHECKVAL(u16Out, UINT16_C(0x3412), "%#06RX16"); u16Out = ASMByteSwapU16(u16Out); CHECKVAL(u16Out, u16In, "%#06RX16"); u16In = 0; u16Out = ASMByteSwapU16(u16In); CHECKVAL(u16Out, u16In, "%#06RX16"); u16In = ~(uint16_t)0; u16Out = ASMByteSwapU16(u16In); CHECKVAL(u16Out, u16In, "%#06RX16"); } void tstASMBench(void) { /* * Make this static. We don't want to have this located on the stack. */ static uint8_t volatile s_u8; static int8_t volatile s_i8; static uint16_t volatile s_u16; static int16_t volatile s_i16; static uint32_t volatile s_u32; static int32_t volatile s_i32; static uint64_t volatile s_u64; static int64_t volatile s_i64; register unsigned i; const unsigned cRounds = _2M; /* Must be multiple of 8 */ register uint64_t u64Elapsed; RTTestSub(g_hTest, "Benchmarking"); #if 0 && !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) # define BENCH(op, str) \ do { \ RTThreadYield(); \ u64Elapsed = ASMReadTSC(); \ for (i = cRounds; i > 0; i--) \ op; \ u64Elapsed = ASMReadTSC() - u64Elapsed; \ RTTestValue(g_hTest, str, u64Elapsed / cRounds, RTTESTUNIT_TICKS_PER_CALL); \ } while (0) #else # define BENCH(op, str) \ do { \ RTThreadYield(); \ u64Elapsed = RTTimeNanoTS(); \ for (i = cRounds / 8; i > 0; i--) \ { \ op; \ op; \ op; \ op; \ op; \ op; \ op; \ op; \ } \ u64Elapsed = RTTimeNanoTS() - u64Elapsed; \ RTTestValue(g_hTest, str, u64Elapsed / cRounds, RTTESTUNIT_NS_PER_CALL); \ } while (0) #endif #if (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) && !defined(GCC44_32BIT_PIC) # define BENCH_TSC(op, str) \ do { \ RTThreadYield(); \ u64Elapsed = ASMReadTSC(); \ for (i = cRounds / 8; i > 0; i--) \ { \ op; \ op; \ op; \ op; \ op; \ op; \ op; \ op; \ } \ u64Elapsed = ASMReadTSC() - u64Elapsed; \ RTTestValue(g_hTest, str, u64Elapsed / cRounds, /*RTTESTUNIT_TICKS_PER_CALL*/ RTTESTUNIT_NONE); \ } while (0) #else # define BENCH_TSC(op, str) BENCH(op, str) #endif BENCH(s_u32 = 0, "s_u32 = 0"); BENCH(ASMAtomicUoReadU8(&s_u8), "ASMAtomicUoReadU8"); BENCH(ASMAtomicUoReadS8(&s_i8), "ASMAtomicUoReadS8"); BENCH(ASMAtomicUoReadU16(&s_u16), "ASMAtomicUoReadU16"); BENCH(ASMAtomicUoReadS16(&s_i16), "ASMAtomicUoReadS16"); BENCH(ASMAtomicUoReadU32(&s_u32), "ASMAtomicUoReadU32"); BENCH(ASMAtomicUoReadS32(&s_i32), "ASMAtomicUoReadS32"); BENCH(ASMAtomicUoReadU64(&s_u64), "ASMAtomicUoReadU64"); BENCH(ASMAtomicUoReadS64(&s_i64), "ASMAtomicUoReadS64"); BENCH(ASMAtomicReadU8(&s_u8), "ASMAtomicReadU8"); BENCH(ASMAtomicReadS8(&s_i8), "ASMAtomicReadS8"); BENCH(ASMAtomicReadU16(&s_u16), "ASMAtomicReadU16"); BENCH(ASMAtomicReadS16(&s_i16), "ASMAtomicReadS16"); BENCH(ASMAtomicReadU32(&s_u32), "ASMAtomicReadU32"); BENCH(ASMAtomicReadS32(&s_i32), "ASMAtomicReadS32"); BENCH(ASMAtomicReadU64(&s_u64), "ASMAtomicReadU64"); BENCH(ASMAtomicReadS64(&s_i64), "ASMAtomicReadS64"); BENCH(ASMAtomicUoWriteU8(&s_u8, 0), "ASMAtomicUoWriteU8"); BENCH(ASMAtomicUoWriteS8(&s_i8, 0), "ASMAtomicUoWriteS8"); BENCH(ASMAtomicUoWriteU16(&s_u16, 0), "ASMAtomicUoWriteU16"); BENCH(ASMAtomicUoWriteS16(&s_i16, 0), "ASMAtomicUoWriteS16"); BENCH(ASMAtomicUoWriteU32(&s_u32, 0), "ASMAtomicUoWriteU32"); BENCH(ASMAtomicUoWriteS32(&s_i32, 0), "ASMAtomicUoWriteS32"); BENCH(ASMAtomicUoWriteU64(&s_u64, 0), "ASMAtomicUoWriteU64"); BENCH(ASMAtomicUoWriteS64(&s_i64, 0), "ASMAtomicUoWriteS64"); BENCH(ASMAtomicWriteU8(&s_u8, 0), "ASMAtomicWriteU8"); BENCH(ASMAtomicWriteS8(&s_i8, 0), "ASMAtomicWriteS8"); BENCH(ASMAtomicWriteU16(&s_u16, 0), "ASMAtomicWriteU16"); BENCH(ASMAtomicWriteS16(&s_i16, 0), "ASMAtomicWriteS16"); BENCH(ASMAtomicWriteU32(&s_u32, 0), "ASMAtomicWriteU32"); BENCH(ASMAtomicWriteS32(&s_i32, 0), "ASMAtomicWriteS32"); BENCH(ASMAtomicWriteU64(&s_u64, 0), "ASMAtomicWriteU64"); BENCH(ASMAtomicWriteS64(&s_i64, 0), "ASMAtomicWriteS64"); BENCH(ASMAtomicXchgU8(&s_u8, 0), "ASMAtomicXchgU8"); BENCH(ASMAtomicXchgS8(&s_i8, 0), "ASMAtomicXchgS8"); BENCH(ASMAtomicXchgU16(&s_u16, 0), "ASMAtomicXchgU16"); BENCH(ASMAtomicXchgS16(&s_i16, 0), "ASMAtomicXchgS16"); BENCH(ASMAtomicXchgU32(&s_u32, 0), "ASMAtomicXchgU32"); BENCH(ASMAtomicXchgS32(&s_i32, 0), "ASMAtomicXchgS32"); BENCH(ASMAtomicXchgU64(&s_u64, 0), "ASMAtomicXchgU64"); BENCH(ASMAtomicXchgS64(&s_i64, 0), "ASMAtomicXchgS64"); BENCH(ASMAtomicCmpXchgU32(&s_u32, 0, 0), "ASMAtomicCmpXchgU32"); BENCH(ASMAtomicCmpXchgS32(&s_i32, 0, 0), "ASMAtomicCmpXchgS32"); BENCH(ASMAtomicCmpXchgU64(&s_u64, 0, 0), "ASMAtomicCmpXchgU64"); BENCH(ASMAtomicCmpXchgS64(&s_i64, 0, 0), "ASMAtomicCmpXchgS64"); BENCH(ASMAtomicCmpXchgU32(&s_u32, 0, 1), "ASMAtomicCmpXchgU32/neg"); BENCH(ASMAtomicCmpXchgS32(&s_i32, 0, 1), "ASMAtomicCmpXchgS32/neg"); BENCH(ASMAtomicCmpXchgU64(&s_u64, 0, 1), "ASMAtomicCmpXchgU64/neg"); BENCH(ASMAtomicCmpXchgS64(&s_i64, 0, 1), "ASMAtomicCmpXchgS64/neg"); BENCH(ASMAtomicIncU32(&s_u32), "ASMAtomicIncU32"); BENCH(ASMAtomicIncS32(&s_i32), "ASMAtomicIncS32"); BENCH(ASMAtomicDecU32(&s_u32), "ASMAtomicDecU32"); BENCH(ASMAtomicDecS32(&s_i32), "ASMAtomicDecS32"); BENCH(ASMAtomicAddU32(&s_u32, 5), "ASMAtomicAddU32"); BENCH(ASMAtomicAddS32(&s_i32, 5), "ASMAtomicAddS32"); BENCH(ASMAtomicUoIncU32(&s_u32), "ASMAtomicUoIncU32"); BENCH(ASMAtomicUoDecU32(&s_u32), "ASMAtomicUoDecU32"); BENCH(ASMAtomicUoAndU32(&s_u32, 0xffffffff), "ASMAtomicUoAndU32"); BENCH(ASMAtomicUoOrU32(&s_u32, 0xffffffff), "ASMAtomicUoOrU32"); BENCH_TSC(ASMSerializeInstructionCpuId(), "ASMSerializeInstructionCpuId"); BENCH_TSC(ASMSerializeInstructionIRet(), "ASMSerializeInstructionIRet"); /* The Darwin gcc does not like this ... */ #if !defined(RT_OS_DARWIN) && !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) BENCH(s_u8 = ASMGetApicId(), "ASMGetApicId"); #endif #if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) uint32_t uAux; if ( ASMHasCpuId() && ASMIsValidExtRange(ASMCpuId_EAX(0x80000000)) && (ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) ) { BENCH_TSC(ASMSerializeInstructionRdTscp(), "ASMSerializeInstructionRdTscp"); BENCH(s_u64 = ASMReadTscWithAux(&uAux), "ASMReadTscWithAux"); } BENCH(s_u64 = ASMReadTSC(), "ASMReadTSC"); union { uint64_t u64[2]; RTIDTR Unaligned; struct { uint16_t abPadding[3]; RTIDTR Aligned; } s; } uBuf; Assert(((uintptr_t)&uBuf.Unaligned.pIdt & (sizeof(uintptr_t) - 1)) != 0); BENCH(ASMGetIDTR(&uBuf.Unaligned), "ASMGetIDTR/unaligned"); Assert(((uintptr_t)&uBuf.s.Aligned.pIdt & (sizeof(uintptr_t) - 1)) == 0); BENCH(ASMGetIDTR(&uBuf.s.Aligned), "ASMGetIDTR/aligned"); #endif #undef BENCH } int main(int argc, char *argv[]) { int rc = RTTestInitAndCreate("tstRTInlineAsm", &g_hTest); if (rc) return rc; RTTestBanner(g_hTest); /* * Execute the tests. */ #if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) tstASMCpuId(); //bruteForceCpuId(); #endif #if 1 tstASMAtomicXchgU8(); tstASMAtomicXchgU16(); tstASMAtomicXchgU32(); tstASMAtomicXchgU64(); tstASMAtomicXchgPtr(); tstASMAtomicCmpXchgU8(); tstASMAtomicCmpXchgU32(); tstASMAtomicCmpXchgU64(); tstASMAtomicCmpXchgExU32(); tstASMAtomicCmpXchgExU64(); tstASMAtomicReadU64(); tstASMAtomicUoReadU64(); tstASMAtomicAddS32(); tstASMAtomicAddS64(); tstASMAtomicDecIncS32(); tstASMAtomicDecIncS64(); tstASMAtomicAndOrU32(); tstASMAtomicAndOrU64(); tstASMAtomicUoIncU32(); tstASMAtomicUoDecU32(); tstASMAtomicUoAndOrU32(); tstASMMemZeroPage(); tstASMMemIsZeroPage(g_hTest); tstASMMemFirstMismatchingU8(g_hTest); tstASMMemZero32(); tstASMMemFill32(); tstASMMath(); tstASMByteSwap(); tstASMBench(); #endif /* * Show the result. */ return RTTestSummaryAndDestroy(g_hTest); }