VirtualBox

source: vbox/trunk/src/VBox/Runtime/testcase/tstRTInlineAsm.cpp@ 62477

Last change on this file since 62477 was 62477, checked in by vboxsync, 8 years ago

(C) 2016

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 73.3 KB
Line 
1/* $Id: tstRTInlineAsm.cpp 62477 2016-07-22 18:27:37Z vboxsync $ */
2/** @file
3 * IPRT Testcase - inline assembly.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include <iprt/asm.h>
32#include <iprt/asm-math.h>
33
34/* See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=44018. Only gcc version 4.4
35 * is affected. No harm for the VBox code: If the cpuid code compiles, it works
36 * fine. */
37#if defined(__GNUC__) && defined(RT_ARCH_X86) && defined(__PIC__)
38# if __GNUC__ == 4 && __GNUC_MINOR__ == 4
39# define GCC44_32BIT_PIC
40# endif
41#endif
42
43#if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
44# include <iprt/asm-amd64-x86.h>
45# include <iprt/x86.h>
46#else
47# include <iprt/time.h>
48#endif
49#include <iprt/rand.h>
50#include <iprt/stream.h>
51#include <iprt/string.h>
52#include <iprt/param.h>
53#include <iprt/thread.h>
54#include <iprt/test.h>
55#include <iprt/time.h>
56
57
58
59/*********************************************************************************************************************************
60* Defined Constants And Macros *
61*********************************************************************************************************************************/
62#define CHECKVAL(val, expect, fmt) \
63 do \
64 { \
65 if ((val) != (expect)) \
66 { \
67 RTTestFailed(g_hTest, "%s, %d: " #val ": expected " fmt " got " fmt "\n", __FUNCTION__, __LINE__, (expect), (val)); \
68 } \
69 } while (0)
70
71#define CHECKOP(op, expect, fmt, type) \
72 do \
73 { \
74 type val = op; \
75 if (val != (type)(expect)) \
76 { \
77 RTTestFailed(g_hTest, "%s, %d: " #op ": expected " fmt " got " fmt "\n", __FUNCTION__, __LINE__, (type)(expect), val); \
78 } \
79 } while (0)
80
81/**
82 * Calls a worker function with different worker variable storage types.
83 */
84#define DO_SIMPLE_TEST(name, type) \
85 do \
86 { \
87 RTTestISub(#name); \
88 type StackVar; \
89 tst ## name ## Worker(&StackVar); \
90 \
91 type *pVar = (type *)RTTestGuardedAllocHead(g_hTest, sizeof(type)); \
92 RTTEST_CHECK_BREAK(g_hTest, pVar); \
93 tst ## name ## Worker(pVar); \
94 RTTestGuardedFree(g_hTest, pVar); \
95 \
96 pVar = (type *)RTTestGuardedAllocTail(g_hTest, sizeof(type)); \
97 RTTEST_CHECK_BREAK(g_hTest, pVar); \
98 tst ## name ## Worker(pVar); \
99 RTTestGuardedFree(g_hTest, pVar); \
100 } while (0)
101
102
103/*********************************************************************************************************************************
104* Global Variables *
105*********************************************************************************************************************************/
106/** The test instance. */
107static RTTEST g_hTest;
108
109
110
111#if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
112
113const char *getCacheAss(unsigned u)
114{
115 if (u == 0)
116 return "res0 ";
117 if (u == 1)
118 return "direct";
119 if (u >= 256)
120 return "???";
121
122 char *pszRet;
123 RTStrAPrintf(&pszRet, "%d way", u); /* intentional leak! */
124 return pszRet;
125}
126
127
128const char *getL2CacheAss(unsigned u)
129{
130 switch (u)
131 {
132 case 0: return "off ";
133 case 1: return "direct";
134 case 2: return "2 way ";
135 case 3: return "res3 ";
136 case 4: return "4 way ";
137 case 5: return "res5 ";
138 case 6: return "8 way ";
139 case 7: return "res7 ";
140 case 8: return "16 way";
141 case 9: return "res9 ";
142 case 10: return "res10 ";
143 case 11: return "res11 ";
144 case 12: return "res12 ";
145 case 13: return "res13 ";
146 case 14: return "res14 ";
147 case 15: return "fully ";
148 default:
149 return "????";
150 }
151}
152
153
154/**
155 * Test and dump all possible info from the CPUID instruction.
156 *
157 * @remark Bits shared with the libc cpuid.c program. This all written by me, so no worries.
158 * @todo transform the dumping into a generic runtime function. We'll need it for logging!
159 */
160void tstASMCpuId(void)
161{
162 RTTestISub("ASMCpuId");
163
164 unsigned iBit;
165 struct
166 {
167 uint32_t uEBX, uEAX, uEDX, uECX;
168 } s;
169 if (!ASMHasCpuId())
170 {
171 RTTestIPrintf(RTTESTLVL_ALWAYS, "warning! CPU doesn't support CPUID\n");
172 return;
173 }
174
175 /*
176 * Try the 0 function and use that for checking the ASMCpuId_* variants.
177 */
178 ASMCpuId(0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
179
180 uint32_t u32;
181
182 u32 = ASMCpuId_EAX(0);
183 CHECKVAL(u32, s.uEAX, "%x");
184 u32 = ASMCpuId_EBX(0);
185 CHECKVAL(u32, s.uEBX, "%x");
186 u32 = ASMCpuId_ECX(0);
187 CHECKVAL(u32, s.uECX, "%x");
188 u32 = ASMCpuId_EDX(0);
189 CHECKVAL(u32, s.uEDX, "%x");
190
191 uint32_t uECX2 = s.uECX - 1;
192 uint32_t uEDX2 = s.uEDX - 1;
193 ASMCpuId_ECX_EDX(0, &uECX2, &uEDX2);
194 CHECKVAL(uECX2, s.uECX, "%x");
195 CHECKVAL(uEDX2, s.uEDX, "%x");
196
197 uint32_t uEAX2 = s.uEAX - 1;
198 uint32_t uEBX2 = s.uEBX - 1;
199 uECX2 = s.uECX - 1;
200 uEDX2 = s.uEDX - 1;
201 ASMCpuIdExSlow(0, 0, 0, 0, &uEAX2, &uEBX2, &uECX2, &uEDX2);
202 CHECKVAL(uEAX2, s.uEAX, "%x");
203 CHECKVAL(uEBX2, s.uEBX, "%x");
204 CHECKVAL(uECX2, s.uECX, "%x");
205 CHECKVAL(uEDX2, s.uEDX, "%x");
206
207 /*
208 * Done testing, dump the information.
209 */
210 RTTestIPrintf(RTTESTLVL_ALWAYS, "CPUID Dump\n");
211 ASMCpuId(0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
212 const uint32_t cFunctions = s.uEAX;
213
214 /* raw dump */
215 RTTestIPrintf(RTTESTLVL_ALWAYS,
216 "\n"
217 " RAW Standard CPUIDs\n"
218 "Function eax ebx ecx edx\n");
219 for (unsigned iStd = 0; iStd <= cFunctions + 3; iStd++)
220 {
221 ASMCpuId_Idx_ECX(iStd, 0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
222 RTTestIPrintf(RTTESTLVL_ALWAYS, "%08x %08x %08x %08x %08x%s\n",
223 iStd, s.uEAX, s.uEBX, s.uECX, s.uEDX, iStd <= cFunctions ? "" : "*");
224
225 /* Leaf 04 and leaf 0d output depend on the initial value of ECX
226 * The same seems to apply to invalid standard functions */
227 if (iStd > cFunctions)
228 continue;
229 if (iStd != 0x04 && iStd != 0x07 && iStd != 0x0b && iStd != 0x0d)
230 {
231 u32 = ASMCpuId_EAX(iStd);
232 CHECKVAL(u32, s.uEAX, "%x");
233
234 uint32_t u32EbxMask = UINT32_MAX;
235 if (iStd == 1)
236 u32EbxMask = UINT32_C(0x00ffffff); /* Omit the local apic ID in case we're rescheduled. */
237 u32 = ASMCpuId_EBX(iStd);
238 CHECKVAL(u32 & u32EbxMask, s.uEBX & u32EbxMask, "%x");
239
240 u32 = ASMCpuId_ECX(iStd);
241 CHECKVAL(u32, s.uECX, "%x");
242 u32 = ASMCpuId_EDX(iStd);
243 CHECKVAL(u32, s.uEDX, "%x");
244
245 uECX2 = s.uECX - 1;
246 uEDX2 = s.uEDX - 1;
247 ASMCpuId_ECX_EDX(iStd, &uECX2, &uEDX2);
248 CHECKVAL(uECX2, s.uECX, "%x");
249 CHECKVAL(uEDX2, s.uEDX, "%x");
250 }
251
252 if (iStd == 0x04)
253 for (uint32_t uECX = 1; s.uEAX & 0x1f; uECX++)
254 {
255 ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
256 RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX);
257 RTTESTI_CHECK_BREAK(uECX < 128);
258 }
259 else if (iStd == 0x07)
260 {
261 uint32_t uMax = s.uEAX;
262 for (uint32_t uECX = 1; uECX < uMax; uECX++)
263 {
264 ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
265 RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX);
266 RTTESTI_CHECK_BREAK(uECX < 128);
267 }
268 }
269 else if (iStd == 0x0b)
270 for (uint32_t uECX = 1; (s.uEAX & 0x1f) && (s.uEBX & 0xffff); uECX++)
271 {
272 ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
273 RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX);
274 RTTESTI_CHECK_BREAK(uECX < 128);
275 }
276 else if (iStd == 0x0d)
277 for (uint32_t uECX = 1; s.uEAX != 0 || s.uEBX != 0 || s.uECX != 0 || s.uEDX != 0; uECX++)
278 {
279 ASMCpuId_Idx_ECX(iStd, uECX, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
280 RTTestIPrintf(RTTESTLVL_ALWAYS, " [%02x] %08x %08x %08x %08x\n", uECX, s.uEAX, s.uEBX, s.uECX, s.uEDX);
281 RTTESTI_CHECK_BREAK(uECX < 128);
282 }
283 }
284
285 /*
286 * Understandable output
287 */
288 ASMCpuId(0, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
289 RTTestIPrintf(RTTESTLVL_ALWAYS,
290 "Name: %.04s%.04s%.04s\n"
291 "Support: 0-%u\n",
292 &s.uEBX, &s.uEDX, &s.uECX, s.uEAX);
293 bool const fIntel = ASMIsIntelCpuEx(s.uEBX, s.uECX, s.uEDX);
294
295 /*
296 * Get Features.
297 */
298 if (cFunctions >= 1)
299 {
300 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
301 ASMCpuId(1, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
302 RTTestIPrintf(RTTESTLVL_ALWAYS,
303 "Family: %#x \tExtended: %#x \tEffective: %#x\n"
304 "Model: %#x \tExtended: %#x \tEffective: %#x\n"
305 "Stepping: %d\n"
306 "Type: %d (%s)\n"
307 "APIC ID: %#04x\n"
308 "Logical CPUs: %d\n"
309 "CLFLUSH Size: %d\n"
310 "Brand ID: %#04x\n",
311 (s.uEAX >> 8) & 0xf, (s.uEAX >> 20) & 0x7f, ASMGetCpuFamily(s.uEAX),
312 (s.uEAX >> 4) & 0xf, (s.uEAX >> 16) & 0x0f, ASMGetCpuModel(s.uEAX, fIntel),
313 ASMGetCpuStepping(s.uEAX),
314 (s.uEAX >> 12) & 0x3, s_apszTypes[(s.uEAX >> 12) & 0x3],
315 (s.uEBX >> 24) & 0xff,
316 (s.uEBX >> 16) & 0xff,
317 (s.uEBX >> 8) & 0xff,
318 (s.uEBX >> 0) & 0xff);
319
320 RTTestIPrintf(RTTESTLVL_ALWAYS, "Features EDX: ");
321 if (s.uEDX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FPU");
322 if (s.uEDX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " VME");
323 if (s.uEDX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " DE");
324 if (s.uEDX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE");
325 if (s.uEDX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TSC");
326 if (s.uEDX & RT_BIT(5)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MSR");
327 if (s.uEDX & RT_BIT(6)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAE");
328 if (s.uEDX & RT_BIT(7)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCE");
329 if (s.uEDX & RT_BIT(8)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CX8");
330 if (s.uEDX & RT_BIT(9)) RTTestIPrintf(RTTESTLVL_ALWAYS, " APIC");
331 if (s.uEDX & RT_BIT(10)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 10");
332 if (s.uEDX & RT_BIT(11)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SEP");
333 if (s.uEDX & RT_BIT(12)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MTRR");
334 if (s.uEDX & RT_BIT(13)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PGE");
335 if (s.uEDX & RT_BIT(14)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCA");
336 if (s.uEDX & RT_BIT(15)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CMOV");
337 if (s.uEDX & RT_BIT(16)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAT");
338 if (s.uEDX & RT_BIT(17)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE36");
339 if (s.uEDX & RT_BIT(18)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSN");
340 if (s.uEDX & RT_BIT(19)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CLFSH");
341 if (s.uEDX & RT_BIT(20)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 20");
342 if (s.uEDX & RT_BIT(21)) RTTestIPrintf(RTTESTLVL_ALWAYS, " DS");
343 if (s.uEDX & RT_BIT(22)) RTTestIPrintf(RTTESTLVL_ALWAYS, " ACPI");
344 if (s.uEDX & RT_BIT(23)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MMX");
345 if (s.uEDX & RT_BIT(24)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FXSR");
346 if (s.uEDX & RT_BIT(25)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SSE");
347 if (s.uEDX & RT_BIT(26)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SSE2");
348 if (s.uEDX & RT_BIT(27)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SS");
349 if (s.uEDX & RT_BIT(28)) RTTestIPrintf(RTTESTLVL_ALWAYS, " HTT");
350 if (s.uEDX & RT_BIT(29)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 29");
351 if (s.uEDX & RT_BIT(30)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 30");
352 if (s.uEDX & RT_BIT(31)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 31");
353 RTTestIPrintf(RTTESTLVL_ALWAYS, "\n");
354
355 /** @todo check intel docs. */
356 RTTestIPrintf(RTTESTLVL_ALWAYS, "Features ECX: ");
357 if (s.uECX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SSE3");
358 for (iBit = 1; iBit < 13; iBit++)
359 if (s.uECX & RT_BIT(iBit))
360 RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit);
361 if (s.uECX & RT_BIT(13)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CX16");
362 for (iBit = 14; iBit < 32; iBit++)
363 if (s.uECX & RT_BIT(iBit))
364 RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit);
365 RTTestIPrintf(RTTESTLVL_ALWAYS, "\n");
366 }
367
368 /*
369 * Extended.
370 * Implemented after AMD specs.
371 */
372 /** @todo check out the intel specs. */
373 ASMCpuId(0x80000000, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
374 if (!s.uEAX && !s.uEBX && !s.uECX && !s.uEDX)
375 {
376 RTTestIPrintf(RTTESTLVL_ALWAYS, "No extended CPUID info? Check the manual on how to detect this...\n");
377 return;
378 }
379 const uint32_t cExtFunctions = s.uEAX | 0x80000000;
380
381 /* raw dump */
382 RTTestIPrintf(RTTESTLVL_ALWAYS,
383 "\n"
384 " RAW Extended CPUIDs\n"
385 "Function eax ebx ecx edx\n");
386 for (unsigned iExt = 0x80000000; iExt <= cExtFunctions + 3; iExt++)
387 {
388 ASMCpuId(iExt, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
389 RTTestIPrintf(RTTESTLVL_ALWAYS, "%08x %08x %08x %08x %08x%s\n",
390 iExt, s.uEAX, s.uEBX, s.uECX, s.uEDX, iExt <= cExtFunctions ? "" : "*");
391
392 if (iExt > cExtFunctions)
393 continue; /* Invalid extended functions seems change the value if ECX changes */
394 if (iExt == 0x8000001d)
395 continue; /* Takes cache level in ecx. */
396
397 u32 = ASMCpuId_EAX(iExt);
398 CHECKVAL(u32, s.uEAX, "%x");
399 u32 = ASMCpuId_EBX(iExt);
400 CHECKVAL(u32, s.uEBX, "%x");
401 u32 = ASMCpuId_ECX(iExt);
402 CHECKVAL(u32, s.uECX, "%x");
403 u32 = ASMCpuId_EDX(iExt);
404 CHECKVAL(u32, s.uEDX, "%x");
405
406 uECX2 = s.uECX - 1;
407 uEDX2 = s.uEDX - 1;
408 ASMCpuId_ECX_EDX(iExt, &uECX2, &uEDX2);
409 CHECKVAL(uECX2, s.uECX, "%x");
410 CHECKVAL(uEDX2, s.uEDX, "%x");
411 }
412
413 /*
414 * Understandable output
415 */
416 ASMCpuId(0x80000000, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
417 RTTestIPrintf(RTTESTLVL_ALWAYS,
418 "Ext Name: %.4s%.4s%.4s\n"
419 "Ext Supports: 0x80000000-%#010x\n",
420 &s.uEBX, &s.uEDX, &s.uECX, s.uEAX);
421
422 if (cExtFunctions >= 0x80000001)
423 {
424 ASMCpuId(0x80000001, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
425 RTTestIPrintf(RTTESTLVL_ALWAYS,
426 "Family: %#x \tExtended: %#x \tEffective: %#x\n"
427 "Model: %#x \tExtended: %#x \tEffective: %#x\n"
428 "Stepping: %d\n"
429 "Brand ID: %#05x\n",
430 (s.uEAX >> 8) & 0xf, (s.uEAX >> 20) & 0x7f, ASMGetCpuFamily(s.uEAX),
431 (s.uEAX >> 4) & 0xf, (s.uEAX >> 16) & 0x0f, ASMGetCpuModel(s.uEAX, fIntel),
432 ASMGetCpuStepping(s.uEAX),
433 s.uEBX & 0xfff);
434
435 RTTestIPrintf(RTTESTLVL_ALWAYS, "Features EDX: ");
436 if (s.uEDX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FPU");
437 if (s.uEDX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " VME");
438 if (s.uEDX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " DE");
439 if (s.uEDX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE");
440 if (s.uEDX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TSC");
441 if (s.uEDX & RT_BIT(5)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MSR");
442 if (s.uEDX & RT_BIT(6)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAE");
443 if (s.uEDX & RT_BIT(7)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCE");
444 if (s.uEDX & RT_BIT(8)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CMPXCHG8B");
445 if (s.uEDX & RT_BIT(9)) RTTestIPrintf(RTTESTLVL_ALWAYS, " APIC");
446 if (s.uEDX & RT_BIT(10)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 10");
447 if (s.uEDX & RT_BIT(11)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SysCallSysRet");
448 if (s.uEDX & RT_BIT(12)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MTRR");
449 if (s.uEDX & RT_BIT(13)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PGE");
450 if (s.uEDX & RT_BIT(14)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MCA");
451 if (s.uEDX & RT_BIT(15)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CMOV");
452 if (s.uEDX & RT_BIT(16)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PAT");
453 if (s.uEDX & RT_BIT(17)) RTTestIPrintf(RTTESTLVL_ALWAYS, " PSE36");
454 if (s.uEDX & RT_BIT(18)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 18");
455 if (s.uEDX & RT_BIT(19)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 19");
456 if (s.uEDX & RT_BIT(20)) RTTestIPrintf(RTTESTLVL_ALWAYS, " NX");
457 if (s.uEDX & RT_BIT(21)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 21");
458 if (s.uEDX & RT_BIT(22)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MmxExt");
459 if (s.uEDX & RT_BIT(23)) RTTestIPrintf(RTTESTLVL_ALWAYS, " MMX");
460 if (s.uEDX & RT_BIT(24)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FXSR");
461 if (s.uEDX & RT_BIT(25)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FastFXSR");
462 if (s.uEDX & RT_BIT(26)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 26");
463 if (s.uEDX & RT_BIT(27)) RTTestIPrintf(RTTESTLVL_ALWAYS, " RDTSCP");
464 if (s.uEDX & RT_BIT(28)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 28");
465 if (s.uEDX & RT_BIT(29)) RTTestIPrintf(RTTESTLVL_ALWAYS, " LongMode");
466 if (s.uEDX & RT_BIT(30)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 3DNowExt");
467 if (s.uEDX & RT_BIT(31)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 3DNow");
468 RTTestIPrintf(RTTESTLVL_ALWAYS, "\n");
469
470 RTTestIPrintf(RTTESTLVL_ALWAYS, "Features ECX: ");
471 if (s.uECX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " LahfSahf");
472 if (s.uECX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " CmpLegacy");
473 if (s.uECX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " SVM");
474 if (s.uECX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 3");
475 if (s.uECX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " AltMovCr8");
476 for (iBit = 5; iBit < 32; iBit++)
477 if (s.uECX & RT_BIT(iBit))
478 RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit);
479 RTTestIPrintf(RTTESTLVL_ALWAYS, "\n");
480 }
481
482 char szString[4*4*3+1] = {0};
483 if (cExtFunctions >= 0x80000002)
484 ASMCpuId(0x80000002, &szString[0 + 0], &szString[0 + 4], &szString[0 + 8], &szString[0 + 12]);
485 if (cExtFunctions >= 0x80000003)
486 ASMCpuId(0x80000003, &szString[16 + 0], &szString[16 + 4], &szString[16 + 8], &szString[16 + 12]);
487 if (cExtFunctions >= 0x80000004)
488 ASMCpuId(0x80000004, &szString[32 + 0], &szString[32 + 4], &szString[32 + 8], &szString[32 + 12]);
489 if (cExtFunctions >= 0x80000002)
490 RTTestIPrintf(RTTESTLVL_ALWAYS, "Full Name: %s\n", szString);
491
492 if (cExtFunctions >= 0x80000005)
493 {
494 ASMCpuId(0x80000005, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
495 RTTestIPrintf(RTTESTLVL_ALWAYS,
496 "TLB 2/4M Instr/Uni: %s %3d entries\n"
497 "TLB 2/4M Data: %s %3d entries\n",
498 getCacheAss((s.uEAX >> 8) & 0xff), (s.uEAX >> 0) & 0xff,
499 getCacheAss((s.uEAX >> 24) & 0xff), (s.uEAX >> 16) & 0xff);
500 RTTestIPrintf(RTTESTLVL_ALWAYS,
501 "TLB 4K Instr/Uni: %s %3d entries\n"
502 "TLB 4K Data: %s %3d entries\n",
503 getCacheAss((s.uEBX >> 8) & 0xff), (s.uEBX >> 0) & 0xff,
504 getCacheAss((s.uEBX >> 24) & 0xff), (s.uEBX >> 16) & 0xff);
505 RTTestIPrintf(RTTESTLVL_ALWAYS,
506 "L1 Instr Cache Line Size: %d bytes\n"
507 "L1 Instr Cache Lines Per Tag: %d\n"
508 "L1 Instr Cache Associativity: %s\n"
509 "L1 Instr Cache Size: %d KB\n",
510 (s.uEDX >> 0) & 0xff,
511 (s.uEDX >> 8) & 0xff,
512 getCacheAss((s.uEDX >> 16) & 0xff),
513 (s.uEDX >> 24) & 0xff);
514 RTTestIPrintf(RTTESTLVL_ALWAYS,
515 "L1 Data Cache Line Size: %d bytes\n"
516 "L1 Data Cache Lines Per Tag: %d\n"
517 "L1 Data Cache Associativity: %s\n"
518 "L1 Data Cache Size: %d KB\n",
519 (s.uECX >> 0) & 0xff,
520 (s.uECX >> 8) & 0xff,
521 getCacheAss((s.uECX >> 16) & 0xff),
522 (s.uECX >> 24) & 0xff);
523 }
524
525 if (cExtFunctions >= 0x80000006)
526 {
527 ASMCpuId(0x80000006, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
528 RTTestIPrintf(RTTESTLVL_ALWAYS,
529 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
530 "L2 TLB 2/4M Data: %s %4d entries\n",
531 getL2CacheAss((s.uEAX >> 12) & 0xf), (s.uEAX >> 0) & 0xfff,
532 getL2CacheAss((s.uEAX >> 28) & 0xf), (s.uEAX >> 16) & 0xfff);
533 RTTestIPrintf(RTTESTLVL_ALWAYS,
534 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
535 "L2 TLB 4K Data: %s %4d entries\n",
536 getL2CacheAss((s.uEBX >> 12) & 0xf), (s.uEBX >> 0) & 0xfff,
537 getL2CacheAss((s.uEBX >> 28) & 0xf), (s.uEBX >> 16) & 0xfff);
538 RTTestIPrintf(RTTESTLVL_ALWAYS,
539 "L2 Cache Line Size: %d bytes\n"
540 "L2 Cache Lines Per Tag: %d\n"
541 "L2 Cache Associativity: %s\n"
542 "L2 Cache Size: %d KB\n",
543 (s.uEDX >> 0) & 0xff,
544 (s.uEDX >> 8) & 0xf,
545 getL2CacheAss((s.uEDX >> 12) & 0xf),
546 (s.uEDX >> 16) & 0xffff);
547 }
548
549 if (cExtFunctions >= 0x80000007)
550 {
551 ASMCpuId(0x80000007, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
552 RTTestIPrintf(RTTESTLVL_ALWAYS, "APM Features: ");
553 if (s.uEDX & RT_BIT(0)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TS");
554 if (s.uEDX & RT_BIT(1)) RTTestIPrintf(RTTESTLVL_ALWAYS, " FID");
555 if (s.uEDX & RT_BIT(2)) RTTestIPrintf(RTTESTLVL_ALWAYS, " VID");
556 if (s.uEDX & RT_BIT(3)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TTP");
557 if (s.uEDX & RT_BIT(4)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TM");
558 if (s.uEDX & RT_BIT(5)) RTTestIPrintf(RTTESTLVL_ALWAYS, " STC");
559 if (s.uEDX & RT_BIT(6)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 6");
560 if (s.uEDX & RT_BIT(7)) RTTestIPrintf(RTTESTLVL_ALWAYS, " 7");
561 if (s.uEDX & RT_BIT(8)) RTTestIPrintf(RTTESTLVL_ALWAYS, " TscInvariant");
562 for (iBit = 9; iBit < 32; iBit++)
563 if (s.uEDX & RT_BIT(iBit))
564 RTTestIPrintf(RTTESTLVL_ALWAYS, " %d", iBit);
565 RTTestIPrintf(RTTESTLVL_ALWAYS, "\n");
566 }
567
568 if (cExtFunctions >= 0x80000008)
569 {
570 ASMCpuId(0x80000008, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
571 RTTestIPrintf(RTTESTLVL_ALWAYS,
572 "Physical Address Width: %d bits\n"
573 "Virtual Address Width: %d bits\n"
574 "Guest Physical Address Width: %d bits\n",
575 (s.uEAX >> 0) & 0xff,
576 (s.uEAX >> 8) & 0xff,
577 (s.uEAX >> 16) & 0xff);
578 RTTestIPrintf(RTTESTLVL_ALWAYS,
579 "Physical Core Count: %d\n",
580 ((s.uECX >> 0) & 0xff) + 1);
581 if ((s.uECX >> 12) & 0xf)
582 RTTestIPrintf(RTTESTLVL_ALWAYS, "ApicIdCoreIdSize: %d bits\n", (s.uECX >> 12) & 0xf);
583 }
584
585 if (cExtFunctions >= 0x8000000a)
586 {
587 ASMCpuId(0x8000000a, &s.uEAX, &s.uEBX, &s.uECX, &s.uEDX);
588 RTTestIPrintf(RTTESTLVL_ALWAYS,
589 "SVM Revision: %d (%#x)\n"
590 "Number of Address Space IDs: %d (%#x)\n",
591 s.uEAX & 0xff, s.uEAX & 0xff,
592 s.uEBX, s.uEBX);
593 }
594}
595
596# if 0
597static void bruteForceCpuId(void)
598{
599 RTTestISub("brute force CPUID leafs");
600 uint32_t auPrevValues[4] = { 0, 0, 0, 0};
601 uint32_t uLeaf = 0;
602 do
603 {
604 uint32_t auValues[4];
605 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &auValues[0], &auValues[1], &auValues[2], &auValues[3]);
606 if ( (auValues[0] != auPrevValues[0] && auValues[0] != uLeaf)
607 || (auValues[1] != auPrevValues[1] && auValues[1] != 0)
608 || (auValues[2] != auPrevValues[2] && auValues[2] != 0)
609 || (auValues[3] != auPrevValues[3] && auValues[3] != 0)
610 || (uLeaf & (UINT32_C(0x08000000) - UINT32_C(1))) == 0)
611 {
612 RTTestIPrintf(RTTESTLVL_ALWAYS,
613 "%08x: %08x %08x %08x %08x\n", uLeaf,
614 auValues[0], auValues[1], auValues[2], auValues[3]);
615 }
616 auPrevValues[0] = auValues[0];
617 auPrevValues[1] = auValues[1];
618 auPrevValues[2] = auValues[2];
619 auPrevValues[3] = auValues[3];
620
621 //uint32_t uSubLeaf = 0;
622 //do
623 //{
624 //
625 //
626 //} while (false);
627 } while (uLeaf++ < UINT32_MAX);
628}
629# endif
630
631#endif /* AMD64 || X86 */
632
633DECLINLINE(void) tstASMAtomicXchgU8Worker(uint8_t volatile *pu8)
634{
635 *pu8 = 0;
636 CHECKOP(ASMAtomicXchgU8(pu8, 1), 0, "%#x", uint8_t);
637 CHECKVAL(*pu8, 1, "%#x");
638
639 CHECKOP(ASMAtomicXchgU8(pu8, 0), 1, "%#x", uint8_t);
640 CHECKVAL(*pu8, 0, "%#x");
641
642 CHECKOP(ASMAtomicXchgU8(pu8, 0xff), 0, "%#x", uint8_t);
643 CHECKVAL(*pu8, 0xff, "%#x");
644
645 CHECKOP(ASMAtomicXchgU8(pu8, 0x87), 0xffff, "%#x", uint8_t);
646 CHECKVAL(*pu8, 0x87, "%#x");
647}
648
649
650static void tstASMAtomicXchgU8(void)
651{
652 DO_SIMPLE_TEST(ASMAtomicXchgU8, uint8_t);
653}
654
655
656DECLINLINE(void) tstASMAtomicXchgU16Worker(uint16_t volatile *pu16)
657{
658 *pu16 = 0;
659
660 CHECKOP(ASMAtomicXchgU16(pu16, 1), 0, "%#x", uint16_t);
661 CHECKVAL(*pu16, 1, "%#x");
662
663 CHECKOP(ASMAtomicXchgU16(pu16, 0), 1, "%#x", uint16_t);
664 CHECKVAL(*pu16, 0, "%#x");
665
666 CHECKOP(ASMAtomicXchgU16(pu16, 0xffff), 0, "%#x", uint16_t);
667 CHECKVAL(*pu16, 0xffff, "%#x");
668
669 CHECKOP(ASMAtomicXchgU16(pu16, 0x8765), 0xffff, "%#x", uint16_t);
670 CHECKVAL(*pu16, 0x8765, "%#x");
671}
672
673
674static void tstASMAtomicXchgU16(void)
675{
676 DO_SIMPLE_TEST(ASMAtomicXchgU16, uint16_t);
677}
678
679
680DECLINLINE(void) tstASMAtomicXchgU32Worker(uint32_t volatile *pu32)
681{
682 *pu32 = 0;
683
684 CHECKOP(ASMAtomicXchgU32(pu32, 1), 0, "%#x", uint32_t);
685 CHECKVAL(*pu32, 1, "%#x");
686
687 CHECKOP(ASMAtomicXchgU32(pu32, 0), 1, "%#x", uint32_t);
688 CHECKVAL(*pu32, 0, "%#x");
689
690 CHECKOP(ASMAtomicXchgU32(pu32, ~UINT32_C(0)), 0, "%#x", uint32_t);
691 CHECKVAL(*pu32, ~UINT32_C(0), "%#x");
692
693 CHECKOP(ASMAtomicXchgU32(pu32, 0x87654321), ~UINT32_C(0), "%#x", uint32_t);
694 CHECKVAL(*pu32, 0x87654321, "%#x");
695}
696
697
698static void tstASMAtomicXchgU32(void)
699{
700 DO_SIMPLE_TEST(ASMAtomicXchgU32, uint32_t);
701}
702
703
704DECLINLINE(void) tstASMAtomicXchgU64Worker(uint64_t volatile *pu64)
705{
706 *pu64 = 0;
707
708 CHECKOP(ASMAtomicXchgU64(pu64, 1), UINT64_C(0), "%#llx", uint64_t);
709 CHECKVAL(*pu64, UINT64_C(1), "%#llx");
710
711 CHECKOP(ASMAtomicXchgU64(pu64, 0), UINT64_C(1), "%#llx", uint64_t);
712 CHECKVAL(*pu64, UINT64_C(0), "%#llx");
713
714 CHECKOP(ASMAtomicXchgU64(pu64, ~UINT64_C(0)), UINT64_C(0), "%#llx", uint64_t);
715 CHECKVAL(*pu64, ~UINT64_C(0), "%#llx");
716
717 CHECKOP(ASMAtomicXchgU64(pu64, UINT64_C(0xfedcba0987654321)), ~UINT64_C(0), "%#llx", uint64_t);
718 CHECKVAL(*pu64, UINT64_C(0xfedcba0987654321), "%#llx");
719}
720
721
722static void tstASMAtomicXchgU64(void)
723{
724 DO_SIMPLE_TEST(ASMAtomicXchgU64, uint64_t);
725}
726
727
728DECLINLINE(void) tstASMAtomicXchgPtrWorker(void * volatile *ppv)
729{
730 *ppv = NULL;
731
732 CHECKOP(ASMAtomicXchgPtr(ppv, (void *)(~(uintptr_t)0)), NULL, "%p", void *);
733 CHECKVAL(*ppv, (void *)(~(uintptr_t)0), "%p");
734
735 CHECKOP(ASMAtomicXchgPtr(ppv, (void *)0x87654321), (void *)(~(uintptr_t)0), "%p", void *);
736 CHECKVAL(*ppv, (void *)0x87654321, "%p");
737
738 CHECKOP(ASMAtomicXchgPtr(ppv, NULL), (void *)0x87654321, "%p", void *);
739 CHECKVAL(*ppv, NULL, "%p");
740}
741
742
743static void tstASMAtomicXchgPtr(void)
744{
745 DO_SIMPLE_TEST(ASMAtomicXchgPtr, void *);
746}
747
748
749DECLINLINE(void) tstASMAtomicCmpXchgU8Worker(uint8_t volatile *pu8)
750{
751 *pu8 = 0xff;
752
753 CHECKOP(ASMAtomicCmpXchgU8(pu8, 0, 0), false, "%d", bool);
754 CHECKVAL(*pu8, 0xff, "%x");
755
756 CHECKOP(ASMAtomicCmpXchgU8(pu8, 0, 0xff), true, "%d", bool);
757 CHECKVAL(*pu8, 0, "%x");
758
759 CHECKOP(ASMAtomicCmpXchgU8(pu8, 0x79, 0xff), false, "%d", bool);
760 CHECKVAL(*pu8, 0, "%x");
761
762 CHECKOP(ASMAtomicCmpXchgU8(pu8, 0x97, 0), true, "%d", bool);
763 CHECKVAL(*pu8, 0x97, "%x");
764}
765
766
767static void tstASMAtomicCmpXchgU8(void)
768{
769 DO_SIMPLE_TEST(ASMAtomicCmpXchgU8, uint8_t);
770}
771
772
773DECLINLINE(void) tstASMAtomicCmpXchgU32Worker(uint32_t volatile *pu32)
774{
775 *pu32 = UINT32_C(0xffffffff);
776
777 CHECKOP(ASMAtomicCmpXchgU32(pu32, 0, 0), false, "%d", bool);
778 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x");
779
780 CHECKOP(ASMAtomicCmpXchgU32(pu32, 0, UINT32_C(0xffffffff)), true, "%d", bool);
781 CHECKVAL(*pu32, 0, "%x");
782
783 CHECKOP(ASMAtomicCmpXchgU32(pu32, UINT32_C(0x8008efd), UINT32_C(0xffffffff)), false, "%d", bool);
784 CHECKVAL(*pu32, 0, "%x");
785
786 CHECKOP(ASMAtomicCmpXchgU32(pu32, UINT32_C(0x8008efd), 0), true, "%d", bool);
787 CHECKVAL(*pu32, UINT32_C(0x8008efd), "%x");
788}
789
790
791static void tstASMAtomicCmpXchgU32(void)
792{
793 DO_SIMPLE_TEST(ASMAtomicCmpXchgU32, uint32_t);
794}
795
796
797
798DECLINLINE(void) tstASMAtomicCmpXchgU64Worker(uint64_t volatile *pu64)
799{
800 *pu64 = UINT64_C(0xffffffffffffff);
801
802 CHECKOP(ASMAtomicCmpXchgU64(pu64, 0, 0), false, "%d", bool);
803 CHECKVAL(*pu64, UINT64_C(0xffffffffffffff), "%#llx");
804
805 CHECKOP(ASMAtomicCmpXchgU64(pu64, 0, UINT64_C(0xffffffffffffff)), true, "%d", bool);
806 CHECKVAL(*pu64, 0, "%x");
807
808 CHECKOP(ASMAtomicCmpXchgU64(pu64, UINT64_C(0x80040008008efd), UINT64_C(0xffffffff)), false, "%d", bool);
809 CHECKVAL(*pu64, 0, "%x");
810
811 CHECKOP(ASMAtomicCmpXchgU64(pu64, UINT64_C(0x80040008008efd), UINT64_C(0xffffffff00000000)), false, "%d", bool);
812 CHECKVAL(*pu64, 0, "%x");
813
814 CHECKOP(ASMAtomicCmpXchgU64(pu64, UINT64_C(0x80040008008efd), 0), true, "%d", bool);
815 CHECKVAL(*pu64, UINT64_C(0x80040008008efd), "%#llx");
816}
817
818
819static void tstASMAtomicCmpXchgU64(void)
820{
821 DO_SIMPLE_TEST(ASMAtomicCmpXchgU64, uint64_t);
822}
823
824
825DECLINLINE(void) tstASMAtomicCmpXchgExU32Worker(uint32_t volatile *pu32)
826{
827 *pu32 = UINT32_C(0xffffffff);
828 uint32_t u32Old = UINT32_C(0x80005111);
829
830 CHECKOP(ASMAtomicCmpXchgExU32(pu32, 0, 0, &u32Old), false, "%d", bool);
831 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x");
832 CHECKVAL(u32Old, UINT32_C(0xffffffff), "%x");
833
834 CHECKOP(ASMAtomicCmpXchgExU32(pu32, 0, UINT32_C(0xffffffff), &u32Old), true, "%d", bool);
835 CHECKVAL(*pu32, 0, "%x");
836 CHECKVAL(u32Old, UINT32_C(0xffffffff), "%x");
837
838 CHECKOP(ASMAtomicCmpXchgExU32(pu32, UINT32_C(0x8008efd), UINT32_C(0xffffffff), &u32Old), false, "%d", bool);
839 CHECKVAL(*pu32, 0, "%x");
840 CHECKVAL(u32Old, 0, "%x");
841
842 CHECKOP(ASMAtomicCmpXchgExU32(pu32, UINT32_C(0x8008efd), 0, &u32Old), true, "%d", bool);
843 CHECKVAL(*pu32, UINT32_C(0x8008efd), "%x");
844 CHECKVAL(u32Old, 0, "%x");
845
846 CHECKOP(ASMAtomicCmpXchgExU32(pu32, 0, UINT32_C(0x8008efd), &u32Old), true, "%d", bool);
847 CHECKVAL(*pu32, 0, "%x");
848 CHECKVAL(u32Old, UINT32_C(0x8008efd), "%x");
849}
850
851
852static void tstASMAtomicCmpXchgExU32(void)
853{
854 DO_SIMPLE_TEST(ASMAtomicCmpXchgExU32, uint32_t);
855}
856
857
858DECLINLINE(void) tstASMAtomicCmpXchgExU64Worker(uint64_t volatile *pu64)
859{
860 *pu64 = UINT64_C(0xffffffffffffffff);
861 uint64_t u64Old = UINT64_C(0x8000000051111111);
862
863 CHECKOP(ASMAtomicCmpXchgExU64(pu64, 0, 0, &u64Old), false, "%d", bool);
864 CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%llx");
865 CHECKVAL(u64Old, UINT64_C(0xffffffffffffffff), "%llx");
866
867 CHECKOP(ASMAtomicCmpXchgExU64(pu64, 0, UINT64_C(0xffffffffffffffff), &u64Old), true, "%d", bool);
868 CHECKVAL(*pu64, UINT64_C(0), "%llx");
869 CHECKVAL(u64Old, UINT64_C(0xffffffffffffffff), "%llx");
870
871 CHECKOP(ASMAtomicCmpXchgExU64(pu64, UINT64_C(0x80040008008efd), 0xffffffff, &u64Old), false, "%d", bool);
872 CHECKVAL(*pu64, UINT64_C(0), "%llx");
873 CHECKVAL(u64Old, UINT64_C(0), "%llx");
874
875 CHECKOP(ASMAtomicCmpXchgExU64(pu64, UINT64_C(0x80040008008efd), UINT64_C(0xffffffff00000000), &u64Old), false, "%d", bool);
876 CHECKVAL(*pu64, UINT64_C(0), "%llx");
877 CHECKVAL(u64Old, UINT64_C(0), "%llx");
878
879 CHECKOP(ASMAtomicCmpXchgExU64(pu64, UINT64_C(0x80040008008efd), 0, &u64Old), true, "%d", bool);
880 CHECKVAL(*pu64, UINT64_C(0x80040008008efd), "%llx");
881 CHECKVAL(u64Old, UINT64_C(0), "%llx");
882
883 CHECKOP(ASMAtomicCmpXchgExU64(pu64, 0, UINT64_C(0x80040008008efd), &u64Old), true, "%d", bool);
884 CHECKVAL(*pu64, UINT64_C(0), "%llx");
885 CHECKVAL(u64Old, UINT64_C(0x80040008008efd), "%llx");
886}
887
888
889static void tstASMAtomicCmpXchgExU64(void)
890{
891 DO_SIMPLE_TEST(ASMAtomicCmpXchgExU64, uint64_t);
892}
893
894
895DECLINLINE(void) tstASMAtomicReadU64Worker(uint64_t volatile *pu64)
896{
897 *pu64 = 0;
898
899 CHECKOP(ASMAtomicReadU64(pu64), UINT64_C(0), "%#llx", uint64_t);
900 CHECKVAL(*pu64, UINT64_C(0), "%#llx");
901
902 *pu64 = ~UINT64_C(0);
903 CHECKOP(ASMAtomicReadU64(pu64), ~UINT64_C(0), "%#llx", uint64_t);
904 CHECKVAL(*pu64, ~UINT64_C(0), "%#llx");
905
906 *pu64 = UINT64_C(0xfedcba0987654321);
907 CHECKOP(ASMAtomicReadU64(pu64), UINT64_C(0xfedcba0987654321), "%#llx", uint64_t);
908 CHECKVAL(*pu64, UINT64_C(0xfedcba0987654321), "%#llx");
909}
910
911
912static void tstASMAtomicReadU64(void)
913{
914 DO_SIMPLE_TEST(ASMAtomicReadU64, uint64_t);
915}
916
917
918DECLINLINE(void) tstASMAtomicUoReadU64Worker(uint64_t volatile *pu64)
919{
920 *pu64 = 0;
921
922 CHECKOP(ASMAtomicUoReadU64(pu64), UINT64_C(0), "%#llx", uint64_t);
923 CHECKVAL(*pu64, UINT64_C(0), "%#llx");
924
925 *pu64 = ~UINT64_C(0);
926 CHECKOP(ASMAtomicUoReadU64(pu64), ~UINT64_C(0), "%#llx", uint64_t);
927 CHECKVAL(*pu64, ~UINT64_C(0), "%#llx");
928
929 *pu64 = UINT64_C(0xfedcba0987654321);
930 CHECKOP(ASMAtomicUoReadU64(pu64), UINT64_C(0xfedcba0987654321), "%#llx", uint64_t);
931 CHECKVAL(*pu64, UINT64_C(0xfedcba0987654321), "%#llx");
932}
933
934
935static void tstASMAtomicUoReadU64(void)
936{
937 DO_SIMPLE_TEST(ASMAtomicUoReadU64, uint64_t);
938}
939
940
941DECLINLINE(void) tstASMAtomicAddS32Worker(int32_t *pi32)
942{
943 int32_t i32Rc;
944 *pi32 = 10;
945#define MYCHECK(op, rc, val) \
946 do { \
947 i32Rc = op; \
948 if (i32Rc != (rc)) \
949 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %d expected %d\n", __FUNCTION__, __LINE__, #op, i32Rc, rc); \
950 if (*pi32 != (val)) \
951 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi32=%d expected %d\n", __FUNCTION__, __LINE__, #op, *pi32, val); \
952 } while (0)
953 MYCHECK(ASMAtomicAddS32(pi32, 1), 10, 11);
954 MYCHECK(ASMAtomicAddS32(pi32, -2), 11, 9);
955 MYCHECK(ASMAtomicAddS32(pi32, -9), 9, 0);
956 MYCHECK(ASMAtomicAddS32(pi32, -0x7fffffff), 0, -0x7fffffff);
957 MYCHECK(ASMAtomicAddS32(pi32, 0), -0x7fffffff, -0x7fffffff);
958 MYCHECK(ASMAtomicAddS32(pi32, 0x7fffffff), -0x7fffffff, 0);
959 MYCHECK(ASMAtomicAddS32(pi32, 0), 0, 0);
960#undef MYCHECK
961}
962
963
964static void tstASMAtomicAddS32(void)
965{
966 DO_SIMPLE_TEST(ASMAtomicAddS32, int32_t);
967}
968
969
970DECLINLINE(void) tstASMAtomicUoIncU32Worker(uint32_t volatile *pu32)
971{
972 *pu32 = 0;
973
974 CHECKOP(ASMAtomicUoIncU32(pu32), UINT32_C(1), "%#x", uint32_t);
975 CHECKVAL(*pu32, UINT32_C(1), "%#x");
976
977 *pu32 = ~UINT32_C(0);
978 CHECKOP(ASMAtomicUoIncU32(pu32), 0, "%#x", uint32_t);
979 CHECKVAL(*pu32, 0, "%#x");
980
981 *pu32 = UINT32_C(0x7fffffff);
982 CHECKOP(ASMAtomicUoIncU32(pu32), UINT32_C(0x80000000), "%#x", uint32_t);
983 CHECKVAL(*pu32, UINT32_C(0x80000000), "%#x");
984}
985
986
987static void tstASMAtomicUoIncU32(void)
988{
989 DO_SIMPLE_TEST(ASMAtomicUoIncU32, uint32_t);
990}
991
992
993DECLINLINE(void) tstASMAtomicUoDecU32Worker(uint32_t volatile *pu32)
994{
995 *pu32 = 0;
996
997 CHECKOP(ASMAtomicUoDecU32(pu32), ~UINT32_C(0), "%#x", uint32_t);
998 CHECKVAL(*pu32, ~UINT32_C(0), "%#x");
999
1000 *pu32 = ~UINT32_C(0);
1001 CHECKOP(ASMAtomicUoDecU32(pu32), UINT32_C(0xfffffffe), "%#x", uint32_t);
1002 CHECKVAL(*pu32, UINT32_C(0xfffffffe), "%#x");
1003
1004 *pu32 = UINT32_C(0x80000000);
1005 CHECKOP(ASMAtomicUoDecU32(pu32), UINT32_C(0x7fffffff), "%#x", uint32_t);
1006 CHECKVAL(*pu32, UINT32_C(0x7fffffff), "%#x");
1007}
1008
1009
1010static void tstASMAtomicUoDecU32(void)
1011{
1012 DO_SIMPLE_TEST(ASMAtomicUoDecU32, uint32_t);
1013}
1014
1015
1016DECLINLINE(void) tstASMAtomicAddS64Worker(int64_t volatile *pi64)
1017{
1018 int64_t i64Rc;
1019 *pi64 = 10;
1020#define MYCHECK(op, rc, val) \
1021 do { \
1022 i64Rc = op; \
1023 if (i64Rc != (rc)) \
1024 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %llx expected %llx\n", __FUNCTION__, __LINE__, #op, i64Rc, (int64_t)rc); \
1025 if (*pi64 != (val)) \
1026 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi64=%llx expected %llx\n", __FUNCTION__, __LINE__, #op, *pi64, (int64_t)(val)); \
1027 } while (0)
1028 MYCHECK(ASMAtomicAddS64(pi64, 1), 10, 11);
1029 MYCHECK(ASMAtomicAddS64(pi64, -2), 11, 9);
1030 MYCHECK(ASMAtomicAddS64(pi64, -9), 9, 0);
1031 MYCHECK(ASMAtomicAddS64(pi64, -INT64_MAX), 0, -INT64_MAX);
1032 MYCHECK(ASMAtomicAddS64(pi64, 0), -INT64_MAX, -INT64_MAX);
1033 MYCHECK(ASMAtomicAddS64(pi64, -1), -INT64_MAX, INT64_MIN);
1034 MYCHECK(ASMAtomicAddS64(pi64, INT64_MAX), INT64_MIN, -1);
1035 MYCHECK(ASMAtomicAddS64(pi64, 1), -1, 0);
1036 MYCHECK(ASMAtomicAddS64(pi64, 0), 0, 0);
1037#undef MYCHECK
1038}
1039
1040
1041static void tstASMAtomicAddS64(void)
1042{
1043 DO_SIMPLE_TEST(ASMAtomicAddS64, int64_t);
1044}
1045
1046
1047DECLINLINE(void) tstASMAtomicDecIncS32Worker(int32_t volatile *pi32)
1048{
1049 int32_t i32Rc;
1050 *pi32 = 10;
1051#define MYCHECK(op, rc) \
1052 do { \
1053 i32Rc = op; \
1054 if (i32Rc != (rc)) \
1055 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %d expected %d\n", __FUNCTION__, __LINE__, #op, i32Rc, rc); \
1056 if (*pi32 != (rc)) \
1057 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi32=%d expected %d\n", __FUNCTION__, __LINE__, #op, *pi32, rc); \
1058 } while (0)
1059 MYCHECK(ASMAtomicDecS32(pi32), 9);
1060 MYCHECK(ASMAtomicDecS32(pi32), 8);
1061 MYCHECK(ASMAtomicDecS32(pi32), 7);
1062 MYCHECK(ASMAtomicDecS32(pi32), 6);
1063 MYCHECK(ASMAtomicDecS32(pi32), 5);
1064 MYCHECK(ASMAtomicDecS32(pi32), 4);
1065 MYCHECK(ASMAtomicDecS32(pi32), 3);
1066 MYCHECK(ASMAtomicDecS32(pi32), 2);
1067 MYCHECK(ASMAtomicDecS32(pi32), 1);
1068 MYCHECK(ASMAtomicDecS32(pi32), 0);
1069 MYCHECK(ASMAtomicDecS32(pi32), -1);
1070 MYCHECK(ASMAtomicDecS32(pi32), -2);
1071 MYCHECK(ASMAtomicIncS32(pi32), -1);
1072 MYCHECK(ASMAtomicIncS32(pi32), 0);
1073 MYCHECK(ASMAtomicIncS32(pi32), 1);
1074 MYCHECK(ASMAtomicIncS32(pi32), 2);
1075 MYCHECK(ASMAtomicIncS32(pi32), 3);
1076 MYCHECK(ASMAtomicDecS32(pi32), 2);
1077 MYCHECK(ASMAtomicIncS32(pi32), 3);
1078 MYCHECK(ASMAtomicDecS32(pi32), 2);
1079 MYCHECK(ASMAtomicIncS32(pi32), 3);
1080#undef MYCHECK
1081}
1082
1083
1084static void tstASMAtomicDecIncS32(void)
1085{
1086 DO_SIMPLE_TEST(ASMAtomicDecIncS32, int32_t);
1087}
1088
1089
1090DECLINLINE(void) tstASMAtomicDecIncS64Worker(int64_t volatile *pi64)
1091{
1092 int64_t i64Rc;
1093 *pi64 = 10;
1094#define MYCHECK(op, rc) \
1095 do { \
1096 i64Rc = op; \
1097 if (i64Rc != (rc)) \
1098 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s -> %lld expected %lld\n", __FUNCTION__, __LINE__, #op, i64Rc, rc); \
1099 if (*pi64 != (rc)) \
1100 RTTestFailed(g_hTest, "%s, %d: FAILURE: %s => *pi64=%lld expected %lld\n", __FUNCTION__, __LINE__, #op, *pi64, rc); \
1101 } while (0)
1102 MYCHECK(ASMAtomicDecS64(pi64), 9);
1103 MYCHECK(ASMAtomicDecS64(pi64), 8);
1104 MYCHECK(ASMAtomicDecS64(pi64), 7);
1105 MYCHECK(ASMAtomicDecS64(pi64), 6);
1106 MYCHECK(ASMAtomicDecS64(pi64), 5);
1107 MYCHECK(ASMAtomicDecS64(pi64), 4);
1108 MYCHECK(ASMAtomicDecS64(pi64), 3);
1109 MYCHECK(ASMAtomicDecS64(pi64), 2);
1110 MYCHECK(ASMAtomicDecS64(pi64), 1);
1111 MYCHECK(ASMAtomicDecS64(pi64), 0);
1112 MYCHECK(ASMAtomicDecS64(pi64), -1);
1113 MYCHECK(ASMAtomicDecS64(pi64), -2);
1114 MYCHECK(ASMAtomicIncS64(pi64), -1);
1115 MYCHECK(ASMAtomicIncS64(pi64), 0);
1116 MYCHECK(ASMAtomicIncS64(pi64), 1);
1117 MYCHECK(ASMAtomicIncS64(pi64), 2);
1118 MYCHECK(ASMAtomicIncS64(pi64), 3);
1119 MYCHECK(ASMAtomicDecS64(pi64), 2);
1120 MYCHECK(ASMAtomicIncS64(pi64), 3);
1121 MYCHECK(ASMAtomicDecS64(pi64), 2);
1122 MYCHECK(ASMAtomicIncS64(pi64), 3);
1123#undef MYCHECK
1124}
1125
1126
1127static void tstASMAtomicDecIncS64(void)
1128{
1129 DO_SIMPLE_TEST(ASMAtomicDecIncS64, int64_t);
1130}
1131
1132
1133DECLINLINE(void) tstASMAtomicAndOrU32Worker(uint32_t volatile *pu32)
1134{
1135 *pu32 = UINT32_C(0xffffffff);
1136
1137 ASMAtomicOrU32(pu32, UINT32_C(0xffffffff));
1138 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x");
1139
1140 ASMAtomicAndU32(pu32, UINT32_C(0xffffffff));
1141 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x");
1142
1143 ASMAtomicAndU32(pu32, UINT32_C(0x8f8f8f8f));
1144 CHECKVAL(*pu32, UINT32_C(0x8f8f8f8f), "%x");
1145
1146 ASMAtomicOrU32(pu32, UINT32_C(0x70707070));
1147 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%x");
1148
1149 ASMAtomicAndU32(pu32, UINT32_C(1));
1150 CHECKVAL(*pu32, UINT32_C(1), "%x");
1151
1152 ASMAtomicOrU32(pu32, UINT32_C(0x80000000));
1153 CHECKVAL(*pu32, UINT32_C(0x80000001), "%x");
1154
1155 ASMAtomicAndU32(pu32, UINT32_C(0x80000000));
1156 CHECKVAL(*pu32, UINT32_C(0x80000000), "%x");
1157
1158 ASMAtomicAndU32(pu32, UINT32_C(0));
1159 CHECKVAL(*pu32, UINT32_C(0), "%x");
1160
1161 ASMAtomicOrU32(pu32, UINT32_C(0x42424242));
1162 CHECKVAL(*pu32, UINT32_C(0x42424242), "%x");
1163}
1164
1165
1166static void tstASMAtomicAndOrU32(void)
1167{
1168 DO_SIMPLE_TEST(ASMAtomicAndOrU32, uint32_t);
1169}
1170
1171
1172DECLINLINE(void) tstASMAtomicAndOrU64Worker(uint64_t volatile *pu64)
1173{
1174 *pu64 = UINT64_C(0xffffffff);
1175
1176 ASMAtomicOrU64(pu64, UINT64_C(0xffffffff));
1177 CHECKVAL(*pu64, UINT64_C(0xffffffff), "%x");
1178
1179 ASMAtomicAndU64(pu64, UINT64_C(0xffffffff));
1180 CHECKVAL(*pu64, UINT64_C(0xffffffff), "%x");
1181
1182 ASMAtomicAndU64(pu64, UINT64_C(0x8f8f8f8f));
1183 CHECKVAL(*pu64, UINT64_C(0x8f8f8f8f), "%x");
1184
1185 ASMAtomicOrU64(pu64, UINT64_C(0x70707070));
1186 CHECKVAL(*pu64, UINT64_C(0xffffffff), "%x");
1187
1188 ASMAtomicAndU64(pu64, UINT64_C(1));
1189 CHECKVAL(*pu64, UINT64_C(1), "%x");
1190
1191 ASMAtomicOrU64(pu64, UINT64_C(0x80000000));
1192 CHECKVAL(*pu64, UINT64_C(0x80000001), "%x");
1193
1194 ASMAtomicAndU64(pu64, UINT64_C(0x80000000));
1195 CHECKVAL(*pu64, UINT64_C(0x80000000), "%x");
1196
1197 ASMAtomicAndU64(pu64, UINT64_C(0));
1198 CHECKVAL(*pu64, UINT64_C(0), "%x");
1199
1200 ASMAtomicOrU64(pu64, UINT64_C(0x42424242));
1201 CHECKVAL(*pu64, UINT64_C(0x42424242), "%x");
1202
1203 // Same as above, but now 64-bit wide.
1204 ASMAtomicAndU64(pu64, UINT64_C(0));
1205 CHECKVAL(*pu64, UINT64_C(0), "%x");
1206
1207 ASMAtomicOrU64(pu64, UINT64_C(0xffffffffffffffff));
1208 CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%x");
1209
1210 ASMAtomicAndU64(pu64, UINT64_C(0xffffffffffffffff));
1211 CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%x");
1212
1213 ASMAtomicAndU64(pu64, UINT64_C(0x8f8f8f8f8f8f8f8f));
1214 CHECKVAL(*pu64, UINT64_C(0x8f8f8f8f8f8f8f8f), "%x");
1215
1216 ASMAtomicOrU64(pu64, UINT64_C(0x7070707070707070));
1217 CHECKVAL(*pu64, UINT64_C(0xffffffffffffffff), "%x");
1218
1219 ASMAtomicAndU64(pu64, UINT64_C(1));
1220 CHECKVAL(*pu64, UINT64_C(1), "%x");
1221
1222 ASMAtomicOrU64(pu64, UINT64_C(0x8000000000000000));
1223 CHECKVAL(*pu64, UINT64_C(0x8000000000000001), "%x");
1224
1225 ASMAtomicAndU64(pu64, UINT64_C(0x8000000000000000));
1226 CHECKVAL(*pu64, UINT64_C(0x8000000000000000), "%x");
1227
1228 ASMAtomicAndU64(pu64, UINT64_C(0));
1229 CHECKVAL(*pu64, UINT64_C(0), "%x");
1230
1231 ASMAtomicOrU64(pu64, UINT64_C(0x4242424242424242));
1232 CHECKVAL(*pu64, UINT64_C(0x4242424242424242), "%x");
1233}
1234
1235
1236static void tstASMAtomicAndOrU64(void)
1237{
1238 DO_SIMPLE_TEST(ASMAtomicAndOrU64, uint64_t);
1239}
1240
1241
1242DECLINLINE(void) tstASMAtomicUoAndOrU32Worker(uint32_t volatile *pu32)
1243{
1244 *pu32 = UINT32_C(0xffffffff);
1245
1246 ASMAtomicUoOrU32(pu32, UINT32_C(0xffffffff));
1247 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%#x");
1248
1249 ASMAtomicUoAndU32(pu32, UINT32_C(0xffffffff));
1250 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%#x");
1251
1252 ASMAtomicUoAndU32(pu32, UINT32_C(0x8f8f8f8f));
1253 CHECKVAL(*pu32, UINT32_C(0x8f8f8f8f), "%#x");
1254
1255 ASMAtomicUoOrU32(pu32, UINT32_C(0x70707070));
1256 CHECKVAL(*pu32, UINT32_C(0xffffffff), "%#x");
1257
1258 ASMAtomicUoAndU32(pu32, UINT32_C(1));
1259 CHECKVAL(*pu32, UINT32_C(1), "%#x");
1260
1261 ASMAtomicUoOrU32(pu32, UINT32_C(0x80000000));
1262 CHECKVAL(*pu32, UINT32_C(0x80000001), "%#x");
1263
1264 ASMAtomicUoAndU32(pu32, UINT32_C(0x80000000));
1265 CHECKVAL(*pu32, UINT32_C(0x80000000), "%#x");
1266
1267 ASMAtomicUoAndU32(pu32, UINT32_C(0));
1268 CHECKVAL(*pu32, UINT32_C(0), "%#x");
1269
1270 ASMAtomicUoOrU32(pu32, UINT32_C(0x42424242));
1271 CHECKVAL(*pu32, UINT32_C(0x42424242), "%#x");
1272}
1273
1274
1275static void tstASMAtomicUoAndOrU32(void)
1276{
1277 DO_SIMPLE_TEST(ASMAtomicUoAndOrU32, uint32_t);
1278}
1279
1280
1281typedef struct
1282{
1283 uint8_t ab[PAGE_SIZE];
1284} TSTPAGE;
1285
1286
1287DECLINLINE(void) tstASMMemZeroPageWorker(TSTPAGE *pPage)
1288{
1289 for (unsigned j = 0; j < 16; j++)
1290 {
1291 memset(pPage, 0x11 * j, sizeof(*pPage));
1292 ASMMemZeroPage(pPage);
1293 for (unsigned i = 0; i < sizeof(pPage->ab); i++)
1294 if (pPage->ab[i])
1295 RTTestFailed(g_hTest, "ASMMemZeroPage didn't clear byte at offset %#x!\n", i);
1296 }
1297}
1298
1299
1300static void tstASMMemZeroPage(void)
1301{
1302 DO_SIMPLE_TEST(ASMMemZeroPage, TSTPAGE);
1303}
1304
1305
1306void tstASMMemIsZeroPage(RTTEST hTest)
1307{
1308 RTTestSub(hTest, "ASMMemIsZeroPage");
1309
1310 void *pvPage1 = RTTestGuardedAllocHead(hTest, PAGE_SIZE);
1311 void *pvPage2 = RTTestGuardedAllocTail(hTest, PAGE_SIZE);
1312 RTTESTI_CHECK_RETV(pvPage1 && pvPage2);
1313
1314 memset(pvPage1, 0, PAGE_SIZE);
1315 memset(pvPage2, 0, PAGE_SIZE);
1316 RTTESTI_CHECK(ASMMemIsZeroPage(pvPage1));
1317 RTTESTI_CHECK(ASMMemIsZeroPage(pvPage2));
1318
1319 memset(pvPage1, 0xff, PAGE_SIZE);
1320 memset(pvPage2, 0xff, PAGE_SIZE);
1321 RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage1));
1322 RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage2));
1323
1324 memset(pvPage1, 0, PAGE_SIZE);
1325 memset(pvPage2, 0, PAGE_SIZE);
1326 for (unsigned off = 0; off < PAGE_SIZE; off++)
1327 {
1328 ((uint8_t *)pvPage1)[off] = 1;
1329 RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage1));
1330 ((uint8_t *)pvPage1)[off] = 0;
1331
1332 ((uint8_t *)pvPage2)[off] = 0x80;
1333 RTTESTI_CHECK(!ASMMemIsZeroPage(pvPage2));
1334 ((uint8_t *)pvPage2)[off] = 0;
1335 }
1336
1337 RTTestSubDone(hTest);
1338}
1339
1340
1341void tstASMMemFirstMismatchingU8(RTTEST hTest)
1342{
1343 RTTestSub(hTest, "ASMMemFirstMismatchingU8");
1344
1345 uint8_t *pbPage1 = (uint8_t *)RTTestGuardedAllocHead(hTest, PAGE_SIZE);
1346 uint8_t *pbPage2 = (uint8_t *)RTTestGuardedAllocTail(hTest, PAGE_SIZE);
1347 RTTESTI_CHECK_RETV(pbPage1 && pbPage2);
1348
1349 memset(pbPage1, 0, PAGE_SIZE);
1350 memset(pbPage2, 0, PAGE_SIZE);
1351 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0) == NULL);
1352 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0) == NULL);
1353 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 1) == pbPage1);
1354 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 1) == pbPage2);
1355 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0x87) == pbPage1);
1356 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0x87) == pbPage2);
1357 RTTESTI_CHECK(ASMMemIsZero(pbPage1, PAGE_SIZE));
1358 RTTESTI_CHECK(ASMMemIsZero(pbPage2, PAGE_SIZE));
1359 RTTESTI_CHECK(ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0));
1360 RTTESTI_CHECK(ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0));
1361 RTTESTI_CHECK(!ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0x34));
1362 RTTESTI_CHECK(!ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0x88));
1363 unsigned cbSub = 32;
1364 while (cbSub-- > 0)
1365 {
1366 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0) == NULL);
1367 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0) == NULL);
1368 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0) == NULL);
1369 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0) == NULL);
1370
1371 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0x34) == &pbPage1[PAGE_SIZE - cbSub] || !cbSub);
1372 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0x99) == &pbPage2[PAGE_SIZE - cbSub] || !cbSub);
1373 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0x42) == pbPage1 || !cbSub);
1374 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0x88) == pbPage2 || !cbSub);
1375 }
1376
1377 memset(pbPage1, 0xff, PAGE_SIZE);
1378 memset(pbPage2, 0xff, PAGE_SIZE);
1379 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0xff) == NULL);
1380 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0xff) == NULL);
1381 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, PAGE_SIZE, 0xfe) == pbPage1);
1382 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, PAGE_SIZE, 0xfe) == pbPage2);
1383 RTTESTI_CHECK(!ASMMemIsZero(pbPage1, PAGE_SIZE));
1384 RTTESTI_CHECK(!ASMMemIsZero(pbPage2, PAGE_SIZE));
1385 RTTESTI_CHECK(ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0xff));
1386 RTTESTI_CHECK(ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0xff));
1387 RTTESTI_CHECK(!ASMMemIsAllU8(pbPage1, PAGE_SIZE, 0));
1388 RTTESTI_CHECK(!ASMMemIsAllU8(pbPage2, PAGE_SIZE, 0));
1389 cbSub = 32;
1390 while (cbSub-- > 0)
1391 {
1392 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0xff) == NULL);
1393 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0xff) == NULL);
1394 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0xff) == NULL);
1395 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0xff) == NULL);
1396
1397 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage1[PAGE_SIZE - cbSub], cbSub, 0xfe) == &pbPage1[PAGE_SIZE - cbSub] || !cbSub);
1398 RTTESTI_CHECK(ASMMemFirstMismatchingU8(&pbPage2[PAGE_SIZE - cbSub], cbSub, 0xfe) == &pbPage2[PAGE_SIZE - cbSub] || !cbSub);
1399 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage1, cbSub, 0xfe) == pbPage1 || !cbSub);
1400 RTTESTI_CHECK(ASMMemFirstMismatchingU8(pbPage2, cbSub, 0xfe) == pbPage2 || !cbSub);
1401 }
1402
1403
1404 /*
1405 * Various alignments and sizes.
1406 */
1407 uint8_t const bFiller1 = 0x00;
1408 uint8_t const bFiller2 = 0xf6;
1409 size_t const cbBuf = 128;
1410 uint8_t *pbBuf1 = pbPage1;
1411 uint8_t *pbBuf2 = &pbPage2[PAGE_SIZE - cbBuf]; /* Put it up against the tail guard */
1412 memset(pbPage1, ~bFiller1, PAGE_SIZE);
1413 memset(pbPage2, ~bFiller2, PAGE_SIZE);
1414 memset(pbBuf1, bFiller1, cbBuf);
1415 memset(pbBuf2, bFiller2, cbBuf);
1416 for (size_t offNonZero = 0; offNonZero < cbBuf; offNonZero++)
1417 {
1418 uint8_t bRand = (uint8_t)RTRandU32();
1419 pbBuf1[offNonZero] = bRand | 1;
1420 pbBuf2[offNonZero] = (0x80 | bRand) ^ 0xf6;
1421
1422 for (size_t offStart = 0; offStart < 32; offStart++)
1423 {
1424 size_t const cbMax = cbBuf - offStart;
1425 for (size_t cb = 0; cb < cbMax; cb++)
1426 {
1427 size_t const offEnd = offStart + cb;
1428 uint8_t bSaved1, bSaved2;
1429 if (offEnd < PAGE_SIZE)
1430 {
1431 bSaved1 = pbBuf1[offEnd];
1432 bSaved2 = pbBuf2[offEnd];
1433 pbBuf1[offEnd] = 0xff;
1434 pbBuf2[offEnd] = 0xff;
1435 }
1436
1437 uint8_t *pbRet = (uint8_t *)ASMMemFirstMismatchingU8(pbBuf1 + offStart, cb, bFiller1);
1438 RTTESTI_CHECK(offNonZero - offStart < cb ? pbRet == &pbBuf1[offNonZero] : pbRet == NULL);
1439
1440 pbRet = (uint8_t *)ASMMemFirstMismatchingU8(pbBuf2 + offStart, cb, bFiller2);
1441 RTTESTI_CHECK(offNonZero - offStart < cb ? pbRet == &pbBuf2[offNonZero] : pbRet == NULL);
1442
1443 if (offEnd < PAGE_SIZE)
1444 {
1445 pbBuf1[offEnd] = bSaved1;
1446 pbBuf2[offEnd] = bSaved2;
1447 }
1448 }
1449 }
1450
1451 pbBuf1[offNonZero] = 0;
1452 pbBuf2[offNonZero] = 0xf6;
1453 }
1454
1455 RTTestSubDone(hTest);
1456}
1457
1458
1459void tstASMMemZero32(void)
1460{
1461 RTTestSub(g_hTest, "ASMMemFill32");
1462
1463 struct
1464 {
1465 uint64_t u64Magic1;
1466 uint8_t abPage[PAGE_SIZE - 32];
1467 uint64_t u64Magic2;
1468 } Buf1, Buf2, Buf3;
1469
1470 Buf1.u64Magic1 = UINT64_C(0xffffffffffffffff);
1471 memset(Buf1.abPage, 0x55, sizeof(Buf1.abPage));
1472 Buf1.u64Magic2 = UINT64_C(0xffffffffffffffff);
1473 Buf2.u64Magic1 = UINT64_C(0xffffffffffffffff);
1474 memset(Buf2.abPage, 0x77, sizeof(Buf2.abPage));
1475 Buf2.u64Magic2 = UINT64_C(0xffffffffffffffff);
1476 Buf3.u64Magic1 = UINT64_C(0xffffffffffffffff);
1477 memset(Buf3.abPage, 0x99, sizeof(Buf3.abPage));
1478 Buf3.u64Magic2 = UINT64_C(0xffffffffffffffff);
1479 ASMMemZero32(Buf1.abPage, sizeof(Buf1.abPage));
1480 ASMMemZero32(Buf2.abPage, sizeof(Buf2.abPage));
1481 ASMMemZero32(Buf3.abPage, sizeof(Buf3.abPage));
1482 if ( Buf1.u64Magic1 != UINT64_C(0xffffffffffffffff)
1483 || Buf1.u64Magic2 != UINT64_C(0xffffffffffffffff)
1484 || Buf2.u64Magic1 != UINT64_C(0xffffffffffffffff)
1485 || Buf2.u64Magic2 != UINT64_C(0xffffffffffffffff)
1486 || Buf3.u64Magic1 != UINT64_C(0xffffffffffffffff)
1487 || Buf3.u64Magic2 != UINT64_C(0xffffffffffffffff))
1488 {
1489 RTTestFailed(g_hTest, "ASMMemZero32 violated one/both magic(s)!\n");
1490 }
1491 for (unsigned i = 0; i < RT_ELEMENTS(Buf1.abPage); i++)
1492 if (Buf1.abPage[i])
1493 RTTestFailed(g_hTest, "ASMMemZero32 didn't clear byte at offset %#x!\n", i);
1494 for (unsigned i = 0; i < RT_ELEMENTS(Buf2.abPage); i++)
1495 if (Buf2.abPage[i])
1496 RTTestFailed(g_hTest, "ASMMemZero32 didn't clear byte at offset %#x!\n", i);
1497 for (unsigned i = 0; i < RT_ELEMENTS(Buf3.abPage); i++)
1498 if (Buf3.abPage[i])
1499 RTTestFailed(g_hTest, "ASMMemZero32 didn't clear byte at offset %#x!\n", i);
1500}
1501
1502
1503void tstASMMemFill32(void)
1504{
1505 RTTestSub(g_hTest, "ASMMemFill32");
1506
1507 struct
1508 {
1509 uint64_t u64Magic1;
1510 uint32_t au32Page[PAGE_SIZE / 4];
1511 uint64_t u64Magic2;
1512 } Buf1;
1513 struct
1514 {
1515 uint64_t u64Magic1;
1516 uint32_t au32Page[(PAGE_SIZE / 4) - 3];
1517 uint64_t u64Magic2;
1518 } Buf2;
1519 struct
1520 {
1521 uint64_t u64Magic1;
1522 uint32_t au32Page[(PAGE_SIZE / 4) - 1];
1523 uint64_t u64Magic2;
1524 } Buf3;
1525
1526 Buf1.u64Magic1 = UINT64_C(0xffffffffffffffff);
1527 memset(Buf1.au32Page, 0x55, sizeof(Buf1.au32Page));
1528 Buf1.u64Magic2 = UINT64_C(0xffffffffffffffff);
1529 Buf2.u64Magic1 = UINT64_C(0xffffffffffffffff);
1530 memset(Buf2.au32Page, 0x77, sizeof(Buf2.au32Page));
1531 Buf2.u64Magic2 = UINT64_C(0xffffffffffffffff);
1532 Buf3.u64Magic1 = UINT64_C(0xffffffffffffffff);
1533 memset(Buf3.au32Page, 0x99, sizeof(Buf3.au32Page));
1534 Buf3.u64Magic2 = UINT64_C(0xffffffffffffffff);
1535 ASMMemFill32(Buf1.au32Page, sizeof(Buf1.au32Page), 0xdeadbeef);
1536 ASMMemFill32(Buf2.au32Page, sizeof(Buf2.au32Page), 0xcafeff01);
1537 ASMMemFill32(Buf3.au32Page, sizeof(Buf3.au32Page), 0xf00dd00f);
1538 if ( Buf1.u64Magic1 != UINT64_C(0xffffffffffffffff)
1539 || Buf1.u64Magic2 != UINT64_C(0xffffffffffffffff)
1540 || Buf2.u64Magic1 != UINT64_C(0xffffffffffffffff)
1541 || Buf2.u64Magic2 != UINT64_C(0xffffffffffffffff)
1542 || Buf3.u64Magic1 != UINT64_C(0xffffffffffffffff)
1543 || Buf3.u64Magic2 != UINT64_C(0xffffffffffffffff))
1544 RTTestFailed(g_hTest, "ASMMemFill32 violated one/both magic(s)!\n");
1545 for (unsigned i = 0; i < RT_ELEMENTS(Buf1.au32Page); i++)
1546 if (Buf1.au32Page[i] != 0xdeadbeef)
1547 RTTestFailed(g_hTest, "ASMMemFill32 %#x: %#x exepcted %#x\n", i, Buf1.au32Page[i], 0xdeadbeef);
1548 for (unsigned i = 0; i < RT_ELEMENTS(Buf2.au32Page); i++)
1549 if (Buf2.au32Page[i] != 0xcafeff01)
1550 RTTestFailed(g_hTest, "ASMMemFill32 %#x: %#x exepcted %#x\n", i, Buf2.au32Page[i], 0xcafeff01);
1551 for (unsigned i = 0; i < RT_ELEMENTS(Buf3.au32Page); i++)
1552 if (Buf3.au32Page[i] != 0xf00dd00f)
1553 RTTestFailed(g_hTest, "ASMMemFill32 %#x: %#x exepcted %#x\n", i, Buf3.au32Page[i], 0xf00dd00f);
1554}
1555
1556
1557
1558void tstASMMath(void)
1559{
1560 RTTestSub(g_hTest, "Math");
1561
1562 uint64_t u64 = ASMMult2xU32RetU64(UINT32_C(0x80000000), UINT32_C(0x10000000));
1563 CHECKVAL(u64, UINT64_C(0x0800000000000000), "%#018RX64");
1564
1565 uint32_t u32 = ASMDivU64ByU32RetU32(UINT64_C(0x0800000000000000), UINT32_C(0x10000000));
1566 CHECKVAL(u32, UINT32_C(0x80000000), "%#010RX32");
1567
1568 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x00000001), UINT32_C(0x00000001), UINT32_C(0x00000001));
1569 CHECKVAL(u32, UINT32_C(0x00000001), "%#018RX32");
1570 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x10000000), UINT32_C(0x80000000), UINT32_C(0x20000000));
1571 CHECKVAL(u32, UINT32_C(0x40000000), "%#018RX32");
1572 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x76543210), UINT32_C(0xffffffff), UINT32_C(0xffffffff));
1573 CHECKVAL(u32, UINT32_C(0x76543210), "%#018RX32");
1574 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0xffffffff), UINT32_C(0xffffffff), UINT32_C(0xffffffff));
1575 CHECKVAL(u32, UINT32_C(0xffffffff), "%#018RX32");
1576 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0xffffffff), UINT32_C(0xfffffff0), UINT32_C(0xffffffff));
1577 CHECKVAL(u32, UINT32_C(0xfffffff0), "%#018RX32");
1578 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x10359583), UINT32_C(0x58734981), UINT32_C(0xf8694045));
1579 CHECKVAL(u32, UINT32_C(0x05c584ce), "%#018RX32");
1580 u32 = ASMMultU32ByU32DivByU32(UINT32_C(0x10359583), UINT32_C(0xf8694045), UINT32_C(0x58734981));
1581 CHECKVAL(u32, UINT32_C(0x2d860795), "%#018RX32");
1582
1583#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1584 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x0000000000000001), UINT32_C(0x00000001), UINT32_C(0x00000001));
1585 CHECKVAL(u64, UINT64_C(0x0000000000000001), "%#018RX64");
1586 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x0000000100000000), UINT32_C(0x80000000), UINT32_C(0x00000002));
1587 CHECKVAL(u64, UINT64_C(0x4000000000000000), "%#018RX64");
1588 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xfedcba9876543210), UINT32_C(0xffffffff), UINT32_C(0xffffffff));
1589 CHECKVAL(u64, UINT64_C(0xfedcba9876543210), "%#018RX64");
1590 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xffffffffffffffff), UINT32_C(0xffffffff), UINT32_C(0xffffffff));
1591 CHECKVAL(u64, UINT64_C(0xffffffffffffffff), "%#018RX64");
1592 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xffffffffffffffff), UINT32_C(0xfffffff0), UINT32_C(0xffffffff));
1593 CHECKVAL(u64, UINT64_C(0xfffffff0fffffff0), "%#018RX64");
1594 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x3415934810359583), UINT32_C(0x58734981), UINT32_C(0xf8694045));
1595 CHECKVAL(u64, UINT64_C(0x128b9c3d43184763), "%#018RX64");
1596 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0x3415934810359583), UINT32_C(0xf8694045), UINT32_C(0x58734981));
1597 CHECKVAL(u64, UINT64_C(0x924719355cd35a27), "%#018RX64");
1598
1599# if 0 /* bird: question is whether this should trap or not:
1600 *
1601 * frank: Of course it must trap:
1602 *
1603 * 0xfffffff8 * 0x77d7daf8 = 0x77d7daf441412840
1604 *
1605 * During the following division, the quotient must fit into a 32-bit register.
1606 * Therefore the smallest valid divisor is
1607 *
1608 * (0x77d7daf441412840 >> 32) + 1 = 0x77d7daf5
1609 *
1610 * which is definitely greater than 0x3b9aca00.
1611 *
1612 * bird: No, the C version does *not* crash. So, the question is whether there's any
1613 * code depending on it not crashing.
1614 *
1615 * Of course the assembly versions of the code crash right now for the reasons you've
1616 * given, but the 32-bit MSC version does not crash.
1617 *
1618 * frank: The C version does not crash but delivers incorrect results for this case.
1619 * The reason is
1620 *
1621 * u.s.Hi = (unsigned long)(u64Hi / u32C);
1622 *
1623 * Here the division is actually 64-bit by 64-bit but the 64-bit result is truncated
1624 * to 32 bit. If using this (optimized and fast) function we should just be sure that
1625 * the operands are in a valid range.
1626 */
1627 u64 = ASMMultU64ByU32DivByU32(UINT64_C(0xfffffff8c65d6731), UINT32_C(0x77d7daf8), UINT32_C(0x3b9aca00));
1628 CHECKVAL(u64, UINT64_C(0x02b8f9a2aa74e3dc), "%#018RX64");
1629# endif
1630#endif /* AMD64 || X86 */
1631
1632 u32 = ASMModU64ByU32RetU32(UINT64_C(0x0ffffff8c65d6731), UINT32_C(0x77d7daf8));
1633 CHECKVAL(u32, UINT32_C(0x3B642451), "%#010RX32");
1634
1635 int32_t i32;
1636 i32 = ASMModS64ByS32RetS32(INT64_C(-11), INT32_C(-2));
1637 CHECKVAL(i32, INT32_C(-1), "%010RI32");
1638 i32 = ASMModS64ByS32RetS32(INT64_C(-11), INT32_C(2));
1639 CHECKVAL(i32, INT32_C(-1), "%010RI32");
1640 i32 = ASMModS64ByS32RetS32(INT64_C(11), INT32_C(-2));
1641 CHECKVAL(i32, INT32_C(1), "%010RI32");
1642
1643 i32 = ASMModS64ByS32RetS32(INT64_C(92233720368547758), INT32_C(2147483647));
1644 CHECKVAL(i32, INT32_C(2104533974), "%010RI32");
1645 i32 = ASMModS64ByS32RetS32(INT64_C(-92233720368547758), INT32_C(2147483647));
1646 CHECKVAL(i32, INT32_C(-2104533974), "%010RI32");
1647}
1648
1649
1650void tstASMByteSwap(void)
1651{
1652 RTTestSub(g_hTest, "ASMByteSwap*");
1653
1654 uint64_t u64In = UINT64_C(0x0011223344556677);
1655 uint64_t u64Out = ASMByteSwapU64(u64In);
1656 CHECKVAL(u64In, UINT64_C(0x0011223344556677), "%#018RX64");
1657 CHECKVAL(u64Out, UINT64_C(0x7766554433221100), "%#018RX64");
1658 u64Out = ASMByteSwapU64(u64Out);
1659 CHECKVAL(u64Out, u64In, "%#018RX64");
1660 u64In = UINT64_C(0x0123456789abcdef);
1661 u64Out = ASMByteSwapU64(u64In);
1662 CHECKVAL(u64In, UINT64_C(0x0123456789abcdef), "%#018RX64");
1663 CHECKVAL(u64Out, UINT64_C(0xefcdab8967452301), "%#018RX64");
1664 u64Out = ASMByteSwapU64(u64Out);
1665 CHECKVAL(u64Out, u64In, "%#018RX64");
1666 u64In = 0;
1667 u64Out = ASMByteSwapU64(u64In);
1668 CHECKVAL(u64Out, u64In, "%#018RX64");
1669 u64In = ~(uint64_t)0;
1670 u64Out = ASMByteSwapU64(u64In);
1671 CHECKVAL(u64Out, u64In, "%#018RX64");
1672
1673 uint32_t u32In = UINT32_C(0x00112233);
1674 uint32_t u32Out = ASMByteSwapU32(u32In);
1675 CHECKVAL(u32In, UINT32_C(0x00112233), "%#010RX32");
1676 CHECKVAL(u32Out, UINT32_C(0x33221100), "%#010RX32");
1677 u32Out = ASMByteSwapU32(u32Out);
1678 CHECKVAL(u32Out, u32In, "%#010RX32");
1679 u32In = UINT32_C(0x12345678);
1680 u32Out = ASMByteSwapU32(u32In);
1681 CHECKVAL(u32In, UINT32_C(0x12345678), "%#010RX32");
1682 CHECKVAL(u32Out, UINT32_C(0x78563412), "%#010RX32");
1683 u32Out = ASMByteSwapU32(u32Out);
1684 CHECKVAL(u32Out, u32In, "%#010RX32");
1685 u32In = 0;
1686 u32Out = ASMByteSwapU32(u32In);
1687 CHECKVAL(u32Out, u32In, "%#010RX32");
1688 u32In = ~(uint32_t)0;
1689 u32Out = ASMByteSwapU32(u32In);
1690 CHECKVAL(u32Out, u32In, "%#010RX32");
1691
1692 uint16_t u16In = UINT16_C(0x0011);
1693 uint16_t u16Out = ASMByteSwapU16(u16In);
1694 CHECKVAL(u16In, UINT16_C(0x0011), "%#06RX16");
1695 CHECKVAL(u16Out, UINT16_C(0x1100), "%#06RX16");
1696 u16Out = ASMByteSwapU16(u16Out);
1697 CHECKVAL(u16Out, u16In, "%#06RX16");
1698 u16In = UINT16_C(0x1234);
1699 u16Out = ASMByteSwapU16(u16In);
1700 CHECKVAL(u16In, UINT16_C(0x1234), "%#06RX16");
1701 CHECKVAL(u16Out, UINT16_C(0x3412), "%#06RX16");
1702 u16Out = ASMByteSwapU16(u16Out);
1703 CHECKVAL(u16Out, u16In, "%#06RX16");
1704 u16In = 0;
1705 u16Out = ASMByteSwapU16(u16In);
1706 CHECKVAL(u16Out, u16In, "%#06RX16");
1707 u16In = ~(uint16_t)0;
1708 u16Out = ASMByteSwapU16(u16In);
1709 CHECKVAL(u16Out, u16In, "%#06RX16");
1710}
1711
1712
1713void tstASMBench(void)
1714{
1715 /*
1716 * Make this static. We don't want to have this located on the stack.
1717 */
1718 static uint8_t volatile s_u8;
1719 static int8_t volatile s_i8;
1720 static uint16_t volatile s_u16;
1721 static int16_t volatile s_i16;
1722 static uint32_t volatile s_u32;
1723 static int32_t volatile s_i32;
1724 static uint64_t volatile s_u64;
1725 static int64_t volatile s_i64;
1726 register unsigned i;
1727 const unsigned cRounds = _2M; /* Must be multiple of 8 */
1728 register uint64_t u64Elapsed;
1729
1730 RTTestSub(g_hTest, "Benchmarking");
1731
1732#if 0 && !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
1733# define BENCH(op, str) \
1734 do { \
1735 RTThreadYield(); \
1736 u64Elapsed = ASMReadTSC(); \
1737 for (i = cRounds; i > 0; i--) \
1738 op; \
1739 u64Elapsed = ASMReadTSC() - u64Elapsed; \
1740 RTTestValue(g_hTest, str, u64Elapsed / cRounds, RTTESTUNIT_TICKS_PER_CALL); \
1741 } while (0)
1742#else
1743# define BENCH(op, str) \
1744 do { \
1745 RTThreadYield(); \
1746 u64Elapsed = RTTimeNanoTS(); \
1747 for (i = cRounds / 8; i > 0; i--) \
1748 { \
1749 op; \
1750 op; \
1751 op; \
1752 op; \
1753 op; \
1754 op; \
1755 op; \
1756 op; \
1757 } \
1758 u64Elapsed = RTTimeNanoTS() - u64Elapsed; \
1759 RTTestValue(g_hTest, str, u64Elapsed / cRounds, RTTESTUNIT_NS_PER_CALL); \
1760 } while (0)
1761#endif
1762#if (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) && !defined(GCC44_32BIT_PIC)
1763# define BENCH_TSC(op, str) \
1764 do { \
1765 RTThreadYield(); \
1766 u64Elapsed = ASMReadTSC(); \
1767 for (i = cRounds / 8; i > 0; i--) \
1768 { \
1769 op; \
1770 op; \
1771 op; \
1772 op; \
1773 op; \
1774 op; \
1775 op; \
1776 op; \
1777 } \
1778 u64Elapsed = ASMReadTSC() - u64Elapsed; \
1779 RTTestValue(g_hTest, str, u64Elapsed / cRounds, /*RTTESTUNIT_TICKS_PER_CALL*/ RTTESTUNIT_NONE); \
1780 } while (0)
1781#else
1782# define BENCH_TSC(op, str) BENCH(op, str)
1783#endif
1784
1785 BENCH(s_u32 = 0, "s_u32 = 0");
1786 BENCH(ASMAtomicUoReadU8(&s_u8), "ASMAtomicUoReadU8");
1787 BENCH(ASMAtomicUoReadS8(&s_i8), "ASMAtomicUoReadS8");
1788 BENCH(ASMAtomicUoReadU16(&s_u16), "ASMAtomicUoReadU16");
1789 BENCH(ASMAtomicUoReadS16(&s_i16), "ASMAtomicUoReadS16");
1790 BENCH(ASMAtomicUoReadU32(&s_u32), "ASMAtomicUoReadU32");
1791 BENCH(ASMAtomicUoReadS32(&s_i32), "ASMAtomicUoReadS32");
1792 BENCH(ASMAtomicUoReadU64(&s_u64), "ASMAtomicUoReadU64");
1793 BENCH(ASMAtomicUoReadS64(&s_i64), "ASMAtomicUoReadS64");
1794 BENCH(ASMAtomicReadU8(&s_u8), "ASMAtomicReadU8");
1795 BENCH(ASMAtomicReadS8(&s_i8), "ASMAtomicReadS8");
1796 BENCH(ASMAtomicReadU16(&s_u16), "ASMAtomicReadU16");
1797 BENCH(ASMAtomicReadS16(&s_i16), "ASMAtomicReadS16");
1798 BENCH(ASMAtomicReadU32(&s_u32), "ASMAtomicReadU32");
1799 BENCH(ASMAtomicReadS32(&s_i32), "ASMAtomicReadS32");
1800 BENCH(ASMAtomicReadU64(&s_u64), "ASMAtomicReadU64");
1801 BENCH(ASMAtomicReadS64(&s_i64), "ASMAtomicReadS64");
1802 BENCH(ASMAtomicUoWriteU8(&s_u8, 0), "ASMAtomicUoWriteU8");
1803 BENCH(ASMAtomicUoWriteS8(&s_i8, 0), "ASMAtomicUoWriteS8");
1804 BENCH(ASMAtomicUoWriteU16(&s_u16, 0), "ASMAtomicUoWriteU16");
1805 BENCH(ASMAtomicUoWriteS16(&s_i16, 0), "ASMAtomicUoWriteS16");
1806 BENCH(ASMAtomicUoWriteU32(&s_u32, 0), "ASMAtomicUoWriteU32");
1807 BENCH(ASMAtomicUoWriteS32(&s_i32, 0), "ASMAtomicUoWriteS32");
1808 BENCH(ASMAtomicUoWriteU64(&s_u64, 0), "ASMAtomicUoWriteU64");
1809 BENCH(ASMAtomicUoWriteS64(&s_i64, 0), "ASMAtomicUoWriteS64");
1810 BENCH(ASMAtomicWriteU8(&s_u8, 0), "ASMAtomicWriteU8");
1811 BENCH(ASMAtomicWriteS8(&s_i8, 0), "ASMAtomicWriteS8");
1812 BENCH(ASMAtomicWriteU16(&s_u16, 0), "ASMAtomicWriteU16");
1813 BENCH(ASMAtomicWriteS16(&s_i16, 0), "ASMAtomicWriteS16");
1814 BENCH(ASMAtomicWriteU32(&s_u32, 0), "ASMAtomicWriteU32");
1815 BENCH(ASMAtomicWriteS32(&s_i32, 0), "ASMAtomicWriteS32");
1816 BENCH(ASMAtomicWriteU64(&s_u64, 0), "ASMAtomicWriteU64");
1817 BENCH(ASMAtomicWriteS64(&s_i64, 0), "ASMAtomicWriteS64");
1818 BENCH(ASMAtomicXchgU8(&s_u8, 0), "ASMAtomicXchgU8");
1819 BENCH(ASMAtomicXchgS8(&s_i8, 0), "ASMAtomicXchgS8");
1820 BENCH(ASMAtomicXchgU16(&s_u16, 0), "ASMAtomicXchgU16");
1821 BENCH(ASMAtomicXchgS16(&s_i16, 0), "ASMAtomicXchgS16");
1822 BENCH(ASMAtomicXchgU32(&s_u32, 0), "ASMAtomicXchgU32");
1823 BENCH(ASMAtomicXchgS32(&s_i32, 0), "ASMAtomicXchgS32");
1824 BENCH(ASMAtomicXchgU64(&s_u64, 0), "ASMAtomicXchgU64");
1825 BENCH(ASMAtomicXchgS64(&s_i64, 0), "ASMAtomicXchgS64");
1826 BENCH(ASMAtomicCmpXchgU32(&s_u32, 0, 0), "ASMAtomicCmpXchgU32");
1827 BENCH(ASMAtomicCmpXchgS32(&s_i32, 0, 0), "ASMAtomicCmpXchgS32");
1828 BENCH(ASMAtomicCmpXchgU64(&s_u64, 0, 0), "ASMAtomicCmpXchgU64");
1829 BENCH(ASMAtomicCmpXchgS64(&s_i64, 0, 0), "ASMAtomicCmpXchgS64");
1830 BENCH(ASMAtomicCmpXchgU32(&s_u32, 0, 1), "ASMAtomicCmpXchgU32/neg");
1831 BENCH(ASMAtomicCmpXchgS32(&s_i32, 0, 1), "ASMAtomicCmpXchgS32/neg");
1832 BENCH(ASMAtomicCmpXchgU64(&s_u64, 0, 1), "ASMAtomicCmpXchgU64/neg");
1833 BENCH(ASMAtomicCmpXchgS64(&s_i64, 0, 1), "ASMAtomicCmpXchgS64/neg");
1834 BENCH(ASMAtomicIncU32(&s_u32), "ASMAtomicIncU32");
1835 BENCH(ASMAtomicIncS32(&s_i32), "ASMAtomicIncS32");
1836 BENCH(ASMAtomicDecU32(&s_u32), "ASMAtomicDecU32");
1837 BENCH(ASMAtomicDecS32(&s_i32), "ASMAtomicDecS32");
1838 BENCH(ASMAtomicAddU32(&s_u32, 5), "ASMAtomicAddU32");
1839 BENCH(ASMAtomicAddS32(&s_i32, 5), "ASMAtomicAddS32");
1840 BENCH(ASMAtomicUoIncU32(&s_u32), "ASMAtomicUoIncU32");
1841 BENCH(ASMAtomicUoDecU32(&s_u32), "ASMAtomicUoDecU32");
1842 BENCH(ASMAtomicUoAndU32(&s_u32, 0xffffffff), "ASMAtomicUoAndU32");
1843 BENCH(ASMAtomicUoOrU32(&s_u32, 0xffffffff), "ASMAtomicUoOrU32");
1844 BENCH_TSC(ASMSerializeInstructionCpuId(), "ASMSerializeInstructionCpuId");
1845 BENCH_TSC(ASMSerializeInstructionIRet(), "ASMSerializeInstructionIRet");
1846
1847 /* The Darwin gcc does not like this ... */
1848#if !defined(RT_OS_DARWIN) && !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
1849 BENCH(s_u8 = ASMGetApicId(), "ASMGetApicId");
1850#endif
1851#if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
1852 uint32_t uAux;
1853 if ( ASMHasCpuId()
1854 && ASMIsValidExtRange(ASMCpuId_EAX(0x80000000))
1855 && (ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
1856 {
1857 BENCH_TSC(ASMSerializeInstructionRdTscp(), "ASMSerializeInstructionRdTscp");
1858 BENCH(s_u64 = ASMReadTscWithAux(&uAux), "ASMReadTscWithAux");
1859 }
1860 BENCH(s_u64 = ASMReadTSC(), "ASMReadTSC");
1861 union
1862 {
1863 uint64_t u64[2];
1864 RTIDTR Unaligned;
1865 struct
1866 {
1867 uint16_t abPadding[3];
1868 RTIDTR Aligned;
1869 } s;
1870 } uBuf;
1871 Assert(((uintptr_t)&uBuf.Unaligned.pIdt & (sizeof(uintptr_t) - 1)) != 0);
1872 BENCH(ASMGetIDTR(&uBuf.Unaligned), "ASMGetIDTR/unaligned");
1873 Assert(((uintptr_t)&uBuf.s.Aligned.pIdt & (sizeof(uintptr_t) - 1)) == 0);
1874 BENCH(ASMGetIDTR(&uBuf.s.Aligned), "ASMGetIDTR/aligned");
1875#endif
1876
1877#undef BENCH
1878}
1879
1880
1881int main(int argc, char *argv[])
1882{
1883 int rc = RTTestInitAndCreate("tstRTInlineAsm", &g_hTest);
1884 if (rc)
1885 return rc;
1886 RTTestBanner(g_hTest);
1887
1888 /*
1889 * Execute the tests.
1890 */
1891#if !defined(GCC44_32BIT_PIC) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
1892 tstASMCpuId();
1893 //bruteForceCpuId();
1894#endif
1895#if 1
1896 tstASMAtomicXchgU8();
1897 tstASMAtomicXchgU16();
1898 tstASMAtomicXchgU32();
1899 tstASMAtomicXchgU64();
1900 tstASMAtomicXchgPtr();
1901 tstASMAtomicCmpXchgU8();
1902 tstASMAtomicCmpXchgU32();
1903 tstASMAtomicCmpXchgU64();
1904 tstASMAtomicCmpXchgExU32();
1905 tstASMAtomicCmpXchgExU64();
1906 tstASMAtomicReadU64();
1907 tstASMAtomicUoReadU64();
1908
1909 tstASMAtomicAddS32();
1910 tstASMAtomicAddS64();
1911 tstASMAtomicDecIncS32();
1912 tstASMAtomicDecIncS64();
1913 tstASMAtomicAndOrU32();
1914 tstASMAtomicAndOrU64();
1915
1916 tstASMAtomicUoIncU32();
1917 tstASMAtomicUoDecU32();
1918 tstASMAtomicUoAndOrU32();
1919
1920 tstASMMemZeroPage();
1921 tstASMMemIsZeroPage(g_hTest);
1922 tstASMMemFirstMismatchingU8(g_hTest);
1923 tstASMMemZero32();
1924 tstASMMemFill32();
1925
1926 tstASMMath();
1927
1928 tstASMByteSwap();
1929
1930 tstASMBench();
1931#endif
1932
1933 /*
1934 * Show the result.
1935 */
1936 return RTTestSummaryAndDestroy(g_hTest);
1937}
1938
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette