/* $Id: socket.cpp 62477 2016-07-22 18:27:37Z vboxsync $ */ /** @file * IPRT - Network Sockets. */ /* * Copyright (C) 2006-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #ifdef RT_OS_WINDOWS # include # include #else /* !RT_OS_WINDOWS */ # include # include # include # include # include # include # include # ifdef IPRT_WITH_TCPIP_V6 # include # endif # include # include # include # include # include #endif /* !RT_OS_WINDOWS */ #include #include "internal/iprt.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal/magics.h" #include "internal/socket.h" #include "internal/string.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /* non-standard linux stuff (it seems). */ #ifndef MSG_NOSIGNAL # define MSG_NOSIGNAL 0 #endif /* Windows has different names for SHUT_XXX. */ #ifndef SHUT_RDWR # ifdef SD_BOTH # define SHUT_RDWR SD_BOTH # else # define SHUT_RDWR 2 # endif #endif #ifndef SHUT_WR # ifdef SD_SEND # define SHUT_WR SD_SEND # else # define SHUT_WR 1 # endif #endif #ifndef SHUT_RD # ifdef SD_RECEIVE # define SHUT_RD SD_RECEIVE # else # define SHUT_RD 0 # endif #endif /* fixup backlevel OSes. */ #if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) # define socklen_t int #endif /** How many pending connection. */ #define RTTCP_SERVER_BACKLOG 10 /* Limit read and write sizes on Windows and OS/2. */ #ifdef RT_OS_WINDOWS # define RTSOCKET_MAX_WRITE (INT_MAX / 2) # define RTSOCKET_MAX_READ (INT_MAX / 2) #elif defined(RT_OS_OS2) # define RTSOCKET_MAX_WRITE 0x10000 # define RTSOCKET_MAX_READ 0x10000 #endif /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Socket handle data. * * This is mainly required for implementing RTPollSet on Windows. */ typedef struct RTSOCKETINT { /** Magic number (RTSOCKET_MAGIC). */ uint32_t u32Magic; /** Exclusive user count. * This is used to prevent two threads from accessing the handle concurrently. * It can be higher than 1 if this handle is reference multiple times in a * polling set (Windows). */ uint32_t volatile cUsers; /** The native socket handle. */ RTSOCKETNATIVE hNative; /** Indicates whether the handle has been closed or not. */ bool volatile fClosed; /** Indicates whether the socket is operating in blocking or non-blocking mode * currently. */ bool fBlocking; #if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2) /** The pollset currently polling this socket. This is NIL if no one is * polling. */ RTPOLLSET hPollSet; #endif #ifdef RT_OS_WINDOWS /** The event semaphore we've associated with the socket handle. * This is WSA_INVALID_EVENT if not done. */ WSAEVENT hEvent; /** The events we're polling for. */ uint32_t fPollEvts; /** The events we're currently subscribing to with WSAEventSelect. * This is ZERO if we're currently not subscribing to anything. */ uint32_t fSubscribedEvts; /** Saved events which are only posted once. */ uint32_t fEventsSaved; #endif /* RT_OS_WINDOWS */ } RTSOCKETINT; /** * Address union used internally for things like getpeername and getsockname. */ typedef union RTSOCKADDRUNION { struct sockaddr Addr; struct sockaddr_in IPv4; #ifdef IPRT_WITH_TCPIP_V6 struct sockaddr_in6 IPv6; #endif } RTSOCKADDRUNION; /** * Get the last error as an iprt status code. * * @returns IPRT status code. */ DECLINLINE(int) rtSocketError(void) { #ifdef RT_OS_WINDOWS return RTErrConvertFromWin32(WSAGetLastError()); #else return RTErrConvertFromErrno(errno); #endif } /** * Resets the last error. */ DECLINLINE(void) rtSocketErrorReset(void) { #ifdef RT_OS_WINDOWS WSASetLastError(0); #else errno = 0; #endif } /** * Get the last resolver error as an iprt status code. * * @returns iprt status code. */ DECLHIDDEN(int) rtSocketResolverError(void) { #ifdef RT_OS_WINDOWS return RTErrConvertFromWin32(WSAGetLastError()); #else switch (h_errno) { case HOST_NOT_FOUND: return VERR_NET_HOST_NOT_FOUND; case NO_DATA: return VERR_NET_ADDRESS_NOT_AVAILABLE; case NO_RECOVERY: return VERR_IO_GEN_FAILURE; case TRY_AGAIN: return VERR_TRY_AGAIN; default: return VERR_UNRESOLVED_ERROR; } #endif } /** * Converts from a native socket address to a generic IPRT network address. * * @returns IPRT status code. * @param pSrc The source address. * @param cbSrc The size of the source address. * @param pAddr Where to return the generic IPRT network * address. */ static int rtSocketNetAddrFromAddr(RTSOCKADDRUNION const *pSrc, size_t cbSrc, PRTNETADDR pAddr) { /* * Convert the address. */ if ( cbSrc == sizeof(struct sockaddr_in) && pSrc->Addr.sa_family == AF_INET) { RT_ZERO(*pAddr); pAddr->enmType = RTNETADDRTYPE_IPV4; pAddr->uPort = RT_N2H_U16(pSrc->IPv4.sin_port); pAddr->uAddr.IPv4.u = pSrc->IPv4.sin_addr.s_addr; } #ifdef IPRT_WITH_TCPIP_V6 else if ( cbSrc == sizeof(struct sockaddr_in6) && pSrc->Addr.sa_family == AF_INET6) { RT_ZERO(*pAddr); pAddr->enmType = RTNETADDRTYPE_IPV6; pAddr->uPort = RT_N2H_U16(pSrc->IPv6.sin6_port); pAddr->uAddr.IPv6.au32[0] = pSrc->IPv6.sin6_addr.s6_addr32[0]; pAddr->uAddr.IPv6.au32[1] = pSrc->IPv6.sin6_addr.s6_addr32[1]; pAddr->uAddr.IPv6.au32[2] = pSrc->IPv6.sin6_addr.s6_addr32[2]; pAddr->uAddr.IPv6.au32[3] = pSrc->IPv6.sin6_addr.s6_addr32[3]; } #endif else return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED; return VINF_SUCCESS; } /** * Converts from a generic IPRT network address to a native socket address. * * @returns IPRT status code. * @param pAddr Pointer to the generic IPRT network address. * @param pDst The source address. * @param cbDst The size of the source address. * @param pcbAddr Where to store the size of the returned address. * Optional */ static int rtSocketAddrFromNetAddr(PCRTNETADDR pAddr, RTSOCKADDRUNION *pDst, size_t cbDst, int *pcbAddr) { RT_BZERO(pDst, cbDst); if ( pAddr->enmType == RTNETADDRTYPE_IPV4 && cbDst >= sizeof(struct sockaddr_in)) { pDst->Addr.sa_family = AF_INET; pDst->IPv4.sin_port = RT_H2N_U16(pAddr->uPort); pDst->IPv4.sin_addr.s_addr = pAddr->uAddr.IPv4.u; if (pcbAddr) *pcbAddr = sizeof(pDst->IPv4); } #ifdef IPRT_WITH_TCPIP_V6 else if ( pAddr->enmType == RTNETADDRTYPE_IPV6 && cbDst >= sizeof(struct sockaddr_in6)) { pDst->Addr.sa_family = AF_INET6; pDst->IPv6.sin6_port = RT_H2N_U16(pAddr->uPort); pSrc->IPv6.sin6_addr.s6_addr32[0] = pAddr->uAddr.IPv6.au32[0]; pSrc->IPv6.sin6_addr.s6_addr32[1] = pAddr->uAddr.IPv6.au32[1]; pSrc->IPv6.sin6_addr.s6_addr32[2] = pAddr->uAddr.IPv6.au32[2]; pSrc->IPv6.sin6_addr.s6_addr32[3] = pAddr->uAddr.IPv6.au32[3]; if (pcbAddr) *pcbAddr = sizeof(pDst->IPv6); } #endif else return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED; return VINF_SUCCESS; } /** * Tries to lock the socket for exclusive usage by the calling thread. * * Call rtSocketUnlock() to unlock. * * @returns @c true if locked, @c false if not. * @param pThis The socket structure. */ DECLINLINE(bool) rtSocketTryLock(RTSOCKETINT *pThis) { return ASMAtomicCmpXchgU32(&pThis->cUsers, 1, 0); } /** * Unlocks the socket. * * @param pThis The socket structure. */ DECLINLINE(void) rtSocketUnlock(RTSOCKETINT *pThis) { ASMAtomicCmpXchgU32(&pThis->cUsers, 0, 1); } /** * The slow path of rtSocketSwitchBlockingMode that does the actual switching. * * @returns IPRT status code. * @param pThis The socket structure. * @param fBlocking The desired mode of operation. * @remarks Do not call directly. */ static int rtSocketSwitchBlockingModeSlow(RTSOCKETINT *pThis, bool fBlocking) { #ifdef RT_OS_WINDOWS u_long uBlocking = fBlocking ? 0 : 1; if (ioctlsocket(pThis->hNative, FIONBIO, &uBlocking)) return rtSocketError(); #else int fFlags = fcntl(pThis->hNative, F_GETFL, 0); if (fFlags == -1) return rtSocketError(); if (fBlocking) fFlags &= ~O_NONBLOCK; else fFlags |= O_NONBLOCK; if (fcntl(pThis->hNative, F_SETFL, fFlags) == -1) return rtSocketError(); #endif pThis->fBlocking = fBlocking; return VINF_SUCCESS; } /** * Switches the socket to the desired blocking mode if necessary. * * The socket must be locked. * * @returns IPRT status code. * @param pThis The socket structure. * @param fBlocking The desired mode of operation. */ DECLINLINE(int) rtSocketSwitchBlockingMode(RTSOCKETINT *pThis, bool fBlocking) { if (pThis->fBlocking != fBlocking) return rtSocketSwitchBlockingModeSlow(pThis, fBlocking); return VINF_SUCCESS; } /** * Creates an IPRT socket handle for a native one. * * @returns IPRT status code. * @param ppSocket Where to return the IPRT socket handle. * @param hNative The native handle. */ DECLHIDDEN(int) rtSocketCreateForNative(RTSOCKETINT **ppSocket, RTSOCKETNATIVE hNative) { RTSOCKETINT *pThis = (RTSOCKETINT *)RTMemPoolAlloc(RTMEMPOOL_DEFAULT, sizeof(*pThis)); if (!pThis) return VERR_NO_MEMORY; pThis->u32Magic = RTSOCKET_MAGIC; pThis->cUsers = 0; pThis->hNative = hNative; pThis->fClosed = false; pThis->fBlocking = true; #if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2) pThis->hPollSet = NIL_RTPOLLSET; #endif #ifdef RT_OS_WINDOWS pThis->hEvent = WSA_INVALID_EVENT; pThis->fPollEvts = 0; pThis->fSubscribedEvts = 0; pThis->fEventsSaved = 0; #endif *ppSocket = pThis; return VINF_SUCCESS; } RTDECL(int) RTSocketFromNative(PRTSOCKET phSocket, RTHCINTPTR uNative) { AssertReturn(uNative != NIL_RTSOCKETNATIVE, VERR_INVALID_PARAMETER); #ifndef RT_OS_WINDOWS AssertReturn(uNative >= 0, VERR_INVALID_PARAMETER); #endif AssertPtrReturn(phSocket, VERR_INVALID_POINTER); return rtSocketCreateForNative(phSocket, uNative); } /** * Wrapper around socket(). * * @returns IPRT status code. * @param phSocket Where to store the handle to the socket on * success. * @param iDomain The protocol family (PF_XXX). * @param iType The socket type (SOCK_XXX). * @param iProtocol Socket parameter, usually 0. */ DECLHIDDEN(int) rtSocketCreate(PRTSOCKET phSocket, int iDomain, int iType, int iProtocol) { /* * Create the socket. */ RTSOCKETNATIVE hNative = socket(iDomain, iType, iProtocol); if (hNative == NIL_RTSOCKETNATIVE) return rtSocketError(); /* * Wrap it. */ int rc = rtSocketCreateForNative(phSocket, hNative); if (RT_FAILURE(rc)) { #ifdef RT_OS_WINDOWS closesocket(hNative); #else close(hNative); #endif } return rc; } RTDECL(uint32_t) RTSocketRetain(RTSOCKET hSocket) { RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, UINT32_MAX); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX); return RTMemPoolRetain(pThis); } /** * Worker for RTSocketRelease and RTSocketClose. * * @returns IPRT status code. * @param pThis The socket handle instance data. * @param fDestroy Whether we're reaching ref count zero. */ static int rtSocketCloseIt(RTSOCKETINT *pThis, bool fDestroy) { /* * Invalidate the handle structure on destroy. */ if (fDestroy) { Assert(ASMAtomicReadU32(&pThis->u32Magic) == RTSOCKET_MAGIC); ASMAtomicWriteU32(&pThis->u32Magic, RTSOCKET_MAGIC_DEAD); } int rc = VINF_SUCCESS; if (ASMAtomicCmpXchgBool(&pThis->fClosed, true, false)) { /* * Close the native handle. */ RTSOCKETNATIVE hNative = pThis->hNative; if (hNative != NIL_RTSOCKETNATIVE) { pThis->hNative = NIL_RTSOCKETNATIVE; #ifdef RT_OS_WINDOWS if (closesocket(hNative)) #else if (close(hNative)) #endif { rc = rtSocketError(); #ifdef RT_OS_WINDOWS AssertMsgFailed(("closesocket(%p) -> %Rrc\n", (uintptr_t)hNative, rc)); #else AssertMsgFailed(("close(%d) -> %Rrc\n", hNative, rc)); #endif } } #ifdef RT_OS_WINDOWS /* * Close the event. */ WSAEVENT hEvent = pThis->hEvent; if (hEvent == WSA_INVALID_EVENT) { pThis->hEvent = WSA_INVALID_EVENT; WSACloseEvent(hEvent); } #endif } return rc; } RTDECL(uint32_t) RTSocketRelease(RTSOCKET hSocket) { RTSOCKETINT *pThis = hSocket; if (pThis == NIL_RTSOCKET) return 0; AssertPtrReturn(pThis, UINT32_MAX); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX); /* get the refcount without killing it... */ uint32_t cRefs = RTMemPoolRefCount(pThis); AssertReturn(cRefs != UINT32_MAX, UINT32_MAX); if (cRefs == 1) rtSocketCloseIt(pThis, true); return RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis); } RTDECL(int) RTSocketClose(RTSOCKET hSocket) { RTSOCKETINT *pThis = hSocket; if (pThis == NIL_RTSOCKET) return VINF_SUCCESS; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); uint32_t cRefs = RTMemPoolRefCount(pThis); AssertReturn(cRefs != UINT32_MAX, UINT32_MAX); int rc = rtSocketCloseIt(pThis, cRefs == 1); RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis); return rc; } RTDECL(RTHCUINTPTR) RTSocketToNative(RTSOCKET hSocket) { RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, RTHCUINTPTR_MAX); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, RTHCUINTPTR_MAX); return (RTHCUINTPTR)pThis->hNative; } RTDECL(int) RTSocketSetInheritance(RTSOCKET hSocket, bool fInheritable) { RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE); int rc = VINF_SUCCESS; #ifdef RT_OS_WINDOWS if (!SetHandleInformation((HANDLE)pThis->hNative, HANDLE_FLAG_INHERIT, fInheritable ? HANDLE_FLAG_INHERIT : 0)) rc = RTErrConvertFromWin32(GetLastError()); #else if (fcntl(pThis->hNative, F_SETFD, fInheritable ? 0 : FD_CLOEXEC) < 0) rc = RTErrConvertFromErrno(errno); #endif return rc; } static bool rtSocketIsIPv4Numerical(const char *pszAddress, PRTNETADDRIPV4 pAddr) { /* Empty address resolves to the INADDR_ANY address (good for bind). */ if (!pszAddress || !*pszAddress) { pAddr->u = INADDR_ANY; return true; } /* Four quads? */ char *psz = (char *)pszAddress; for (int i = 0; i < 4; i++) { uint8_t u8; int rc = RTStrToUInt8Ex(psz, &psz, 0, &u8); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS) return false; if (*psz != (i < 3 ? '.' : '\0')) return false; psz++; pAddr->au8[i] = u8; /* big endian */ } return true; } RTDECL(int) RTSocketParseInetAddress(const char *pszAddress, unsigned uPort, PRTNETADDR pAddr) { int rc; /* * Validate input. */ AssertReturn(uPort > 0, VERR_INVALID_PARAMETER); AssertPtrNullReturn(pszAddress, VERR_INVALID_POINTER); #ifdef RT_OS_WINDOWS /* * Initialize WinSock and check version. */ WORD wVersionRequested = MAKEWORD(1, 1); WSADATA wsaData; rc = WSAStartup(wVersionRequested, &wsaData); if (wsaData.wVersion != wVersionRequested) { AssertMsgFailed(("Wrong winsock version\n")); return VERR_NOT_SUPPORTED; } #endif /* * Resolve the address. Pretty crude at the moment, but we have to make * sure to not ask the NT 4 gethostbyname about an IPv4 address as it may * give a wrong answer. */ /** @todo this only supports IPv4, and IPv6 support needs to be added. * It probably needs to be converted to getaddrinfo(). */ RTNETADDRIPV4 IPv4Quad; if (rtSocketIsIPv4Numerical(pszAddress, &IPv4Quad)) { Log3(("rtSocketIsIPv4Numerical: %s -> %#x (%RTnaipv4)\n", pszAddress, IPv4Quad.u, IPv4Quad)); RT_ZERO(*pAddr); pAddr->enmType = RTNETADDRTYPE_IPV4; pAddr->uPort = uPort; pAddr->uAddr.IPv4 = IPv4Quad; return VINF_SUCCESS; } struct hostent *pHostEnt; pHostEnt = gethostbyname(pszAddress); if (!pHostEnt) { rc = rtSocketResolverError(); AssertMsgFailed(("Could not resolve '%s', rc=%Rrc\n", pszAddress, rc)); return rc; } if (pHostEnt->h_addrtype == AF_INET) { RT_ZERO(*pAddr); pAddr->enmType = RTNETADDRTYPE_IPV4; pAddr->uPort = uPort; pAddr->uAddr.IPv4.u = ((struct in_addr *)pHostEnt->h_addr)->s_addr; Log3(("gethostbyname: %s -> %#x (%RTnaipv4)\n", pszAddress, pAddr->uAddr.IPv4.u, pAddr->uAddr.IPv4)); } else return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED; return VINF_SUCCESS; } /* * New function to allow both ipv4 and ipv6 addresses to be resolved. * Breaks compatibility with windows before 2000. */ RTDECL(int) RTSocketQueryAddressStr(const char *pszHost, char *pszResult, size_t *pcbResult, PRTNETADDRTYPE penmAddrType) { AssertPtrReturn(pszHost, VERR_INVALID_POINTER); AssertPtrReturn(pcbResult, VERR_INVALID_POINTER); AssertPtrNullReturn(penmAddrType, VERR_INVALID_POINTER); AssertPtrNullReturn(pszResult, VERR_INVALID_POINTER); #if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) /** @todo dynamically resolve the APIs not present in NT4! */ return VERR_NOT_SUPPORTED; #else int rc; if (*pcbResult < 16) return VERR_NET_ADDRESS_NOT_AVAILABLE; /* Setup the hint. */ struct addrinfo grHints; RT_ZERO(grHints); grHints.ai_socktype = 0; grHints.ai_flags = 0; grHints.ai_protocol = 0; grHints.ai_family = AF_UNSPEC; if (penmAddrType) { switch (*penmAddrType) { case RTNETADDRTYPE_INVALID: /*grHints.ai_family = AF_UNSPEC;*/ break; case RTNETADDRTYPE_IPV4: grHints.ai_family = AF_INET; break; case RTNETADDRTYPE_IPV6: grHints.ai_family = AF_INET6; break; default: AssertFailedReturn(VERR_INVALID_PARAMETER); } } # ifdef RT_OS_WINDOWS /* * Winsock2 init */ /** @todo someone should check if we really need 2, 2 here */ WORD wVersionRequested = MAKEWORD(2, 2); WSADATA wsaData; rc = WSAStartup(wVersionRequested, &wsaData); if (wsaData.wVersion != wVersionRequested) { AssertMsgFailed(("Wrong winsock version\n")); return VERR_NOT_SUPPORTED; } # endif /** @todo r=bird: getaddrinfo and freeaddrinfo breaks the additions on NT4. */ struct addrinfo *pgrResults = NULL; rc = getaddrinfo(pszHost, "", &grHints, &pgrResults); if (rc != 0) return VERR_NET_ADDRESS_NOT_AVAILABLE; // return data // on multiple matches return only the first one if (!pgrResults) return VERR_NET_ADDRESS_NOT_AVAILABLE; struct addrinfo const *pgrResult = pgrResults->ai_next; if (!pgrResult) { freeaddrinfo(pgrResults); return VERR_NET_ADDRESS_NOT_AVAILABLE; } uint8_t const *pbDummy; RTNETADDRTYPE enmAddrType = RTNETADDRTYPE_INVALID; size_t cchIpAddress; char szIpAddress[48]; if (pgrResult->ai_family == AF_INET) { struct sockaddr_in const *pgrSa = (struct sockaddr_in const *)pgrResult->ai_addr; cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress), "%RTnaipv4", pgrSa->sin_addr.s_addr); Assert(cchIpAddress >= 7 && cchIpAddress < sizeof(szIpAddress) - 1); enmAddrType = RTNETADDRTYPE_IPV4; rc = VINF_SUCCESS; } else if (pgrResult->ai_family == AF_INET6) { struct sockaddr_in6 const *pgrSa6 = (struct sockaddr_in6 const *)pgrResult->ai_addr; cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress), "%RTnaipv6", (PRTNETADDRIPV6)&pgrSa6->sin6_addr); enmAddrType = RTNETADDRTYPE_IPV6; rc = VINF_SUCCESS; } else { rc = VERR_NET_ADDRESS_NOT_AVAILABLE; szIpAddress[0] = '\0'; cchIpAddress = 0; } freeaddrinfo(pgrResults); /* * Copy out the result. */ size_t const cbResult = *pcbResult; *pcbResult = cchIpAddress + 1; if (cchIpAddress < cbResult) memcpy(pszResult, szIpAddress, cchIpAddress + 1); else { RT_BZERO(pszResult, cbResult); if (RT_SUCCESS(rc)) rc = VERR_BUFFER_OVERFLOW; } if (penmAddrType && RT_SUCCESS(rc)) *penmAddrType = enmAddrType; return rc; #endif /* !RT_OS_OS2 */ } RTDECL(int) RTSocketRead(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER); AssertPtr(pvBuffer); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */); if (RT_FAILURE(rc)) return rc; /* * Read loop. * If pcbRead is NULL we have to fill the entire buffer! */ size_t cbRead = 0; size_t cbToRead = cbBuffer; for (;;) { rtSocketErrorReset(); #ifdef RTSOCKET_MAX_READ int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead; #else size_t cbNow = cbToRead; #endif ssize_t cbBytesRead = recv(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL); if (cbBytesRead <= 0) { rc = rtSocketError(); Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0); if (RT_SUCCESS_NP(rc)) { if (!pcbRead) rc = VERR_NET_SHUTDOWN; else { *pcbRead = 0; rc = VINF_SUCCESS; } } break; } if (pcbRead) { /* return partial data */ *pcbRead = cbBytesRead; break; } /* read more? */ cbRead += cbBytesRead; if (cbRead == cbBuffer) break; /* next */ cbToRead = cbBuffer - cbRead; } rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketReadFrom(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead, PRTNETADDR pSrcAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER); AssertPtr(pvBuffer); AssertPtr(pcbRead); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */); if (RT_FAILURE(rc)) return rc; /* * Read data. */ size_t cbRead = 0; size_t cbToRead = cbBuffer; rtSocketErrorReset(); RTSOCKADDRUNION u; #ifdef RTSOCKET_MAX_READ int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead; int cbAddr = sizeof(u); #else size_t cbNow = cbToRead; socklen_t cbAddr = sizeof(u); #endif ssize_t cbBytesRead = recvfrom(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL, &u.Addr, &cbAddr); if (cbBytesRead <= 0) { rc = rtSocketError(); Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0); if (RT_SUCCESS_NP(rc)) { *pcbRead = 0; rc = VINF_SUCCESS; } } else { if (pSrcAddr) rc = rtSocketNetAddrFromAddr(&u, cbAddr, pSrcAddr); *pcbRead = cbBytesRead; } rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketWrite(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */); if (RT_FAILURE(rc)) return rc; /* * Try write all at once. */ #ifdef RTSOCKET_MAX_WRITE int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer; #else size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer; #endif ssize_t cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL); if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0)) rc = VINF_SUCCESS; else if (cbWritten < 0) rc = rtSocketError(); else { /* * Unfinished business, write the remainder of the request. Must ignore * VERR_INTERRUPTED here if we've managed to send something. */ size_t cbSentSoFar = 0; for (;;) { /* advance */ cbBuffer -= (size_t)cbWritten; if (!cbBuffer) break; cbSentSoFar += (size_t)cbWritten; pvBuffer = (char const *)pvBuffer + cbWritten; /* send */ #ifdef RTSOCKET_MAX_WRITE cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer; #else cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer; #endif cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL); if (cbWritten >= 0) AssertMsg(cbBuffer >= (size_t)cbWritten, ("Wrote more than we requested!!! cbWritten=%zu cbBuffer=%zu rtSocketError()=%d\n", cbWritten, cbBuffer, rtSocketError())); else { rc = rtSocketError(); if (rc != VERR_INTERNAL_ERROR || cbSentSoFar == 0) break; cbWritten = 0; rc = VINF_SUCCESS; } } } rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketWriteTo(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); /* no locking since UDP reads may be done concurrently to writes, and * this is the normal use case of this code. */ int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */); if (RT_FAILURE(rc)) return rc; /* Figure out destination address. */ struct sockaddr *pSA = NULL; #ifdef RT_OS_WINDOWS int cbSA = 0; #else socklen_t cbSA = 0; #endif RTSOCKADDRUNION u; if (pAddr) { rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL); if (RT_FAILURE(rc)) return rc; pSA = &u.Addr; cbSA = sizeof(u); } /* * Must write all at once, otherwise it is a failure. */ #ifdef RT_OS_WINDOWS int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer; #else size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer; #endif ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA); if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0)) rc = VINF_SUCCESS; else if (cbWritten < 0) rc = rtSocketError(); else rc = VERR_TOO_MUCH_DATA; rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketWriteToNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); /* no locking since UDP reads may be done concurrently to writes, and * this is the normal use case of this code. */ int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */); if (RT_FAILURE(rc)) return rc; /* Figure out destination address. */ struct sockaddr *pSA = NULL; #ifdef RT_OS_WINDOWS int cbSA = 0; #else socklen_t cbSA = 0; #endif RTSOCKADDRUNION u; if (pAddr) { rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL); if (RT_FAILURE(rc)) return rc; pSA = &u.Addr; cbSA = sizeof(u); } /* * Must write all at once, otherwise it is a failure. */ #ifdef RT_OS_WINDOWS int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer; #else size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer; #endif ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA); if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0)) rc = VINF_SUCCESS; else if (cbWritten < 0) rc = rtSocketError(); else rc = VERR_TOO_MUCH_DATA; rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketSgWrite(RTSOCKET hSocket, PCRTSGBUF pSgBuf) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER); AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */); if (RT_FAILURE(rc)) return rc; /* * Construct message descriptor (translate pSgBuf) and send it. */ rc = VERR_NO_TMP_MEMORY; #ifdef RT_OS_WINDOWS AssertCompileSize(WSABUF, sizeof(RTSGSEG)); AssertCompileMemberSize(WSABUF, buf, RT_SIZEOFMEMB(RTSGSEG, pvSeg)); LPWSABUF paMsg = (LPWSABUF)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(WSABUF)); if (paMsg) { for (unsigned i = 0; i < pSgBuf->cSegs; i++) { paMsg[i].buf = (char *)pSgBuf->paSegs[i].pvSeg; paMsg[i].len = (u_long)pSgBuf->paSegs[i].cbSeg; } DWORD dwSent; int hrc = WSASend(pThis->hNative, paMsg, pSgBuf->cSegs, &dwSent, MSG_NOSIGNAL, NULL, NULL); if (!hrc) rc = VINF_SUCCESS; /** @todo check for incomplete writes */ else rc = rtSocketError(); RTMemTmpFree(paMsg); } #else /* !RT_OS_WINDOWS */ AssertCompileSize(struct iovec, sizeof(RTSGSEG)); AssertCompileMemberSize(struct iovec, iov_base, RT_SIZEOFMEMB(RTSGSEG, pvSeg)); AssertCompileMemberSize(struct iovec, iov_len, RT_SIZEOFMEMB(RTSGSEG, cbSeg)); struct iovec *paMsg = (struct iovec *)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(struct iovec)); if (paMsg) { for (unsigned i = 0; i < pSgBuf->cSegs; i++) { paMsg[i].iov_base = pSgBuf->paSegs[i].pvSeg; paMsg[i].iov_len = pSgBuf->paSegs[i].cbSeg; } struct msghdr msgHdr; RT_ZERO(msgHdr); msgHdr.msg_iov = paMsg; msgHdr.msg_iovlen = pSgBuf->cSegs; ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL); if (RT_LIKELY(cbWritten >= 0)) rc = VINF_SUCCESS; /** @todo check for incomplete writes */ else rc = rtSocketError(); RTMemTmpFree(paMsg); } #endif /* !RT_OS_WINDOWS */ rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketSgWriteL(RTSOCKET hSocket, size_t cSegs, ...) { va_list va; va_start(va, cSegs); int rc = RTSocketSgWriteLV(hSocket, cSegs, va); va_end(va); return rc; } RTDECL(int) RTSocketSgWriteLV(RTSOCKET hSocket, size_t cSegs, va_list va) { /* * Set up a S/G segment array + buffer on the stack and pass it * on to RTSocketSgWrite. */ Assert(cSegs <= 16); PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG)); AssertReturn(paSegs, VERR_NO_TMP_MEMORY); for (size_t i = 0; i < cSegs; i++) { paSegs[i].pvSeg = va_arg(va, void *); paSegs[i].cbSeg = va_arg(va, size_t); } RTSGBUF SgBuf; RTSgBufInit(&SgBuf, paSegs, cSegs); return RTSocketSgWrite(hSocket, &SgBuf); } RTDECL(int) RTSocketReadNB(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER); AssertPtr(pvBuffer); AssertPtrReturn(pcbRead, VERR_INVALID_PARAMETER); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */); if (RT_FAILURE(rc)) return rc; rtSocketErrorReset(); #ifdef RTSOCKET_MAX_READ int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer; #else size_t cbNow = cbBuffer; #endif #ifdef RT_OS_WINDOWS int cbRead = recv(pThis->hNative, (char *)pvBuffer, cbNow, MSG_NOSIGNAL); if (cbRead >= 0) { *pcbRead = cbRead; rc = VINF_SUCCESS; } else { rc = rtSocketError(); if (rc == VERR_TRY_AGAIN) { *pcbRead = 0; rc = VINF_TRY_AGAIN; } } #else ssize_t cbRead = recv(pThis->hNative, pvBuffer, cbNow, MSG_NOSIGNAL); if (cbRead >= 0) *pcbRead = cbRead; else if ( errno == EAGAIN # ifdef EWOULDBLOCK # if EWOULDBLOCK != EAGAIN || errno == EWOULDBLOCK # endif # endif ) { *pcbRead = 0; rc = VINF_TRY_AGAIN; } else rc = rtSocketError(); #endif rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketWriteNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, size_t *pcbWritten) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */); if (RT_FAILURE(rc)) return rc; rtSocketErrorReset(); #ifdef RTSOCKET_MAX_WRITE int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer; #else size_t cbNow = cbBuffer; #endif #ifdef RT_OS_WINDOWS int cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL); if (cbWritten >= 0) { *pcbWritten = cbWritten; rc = VINF_SUCCESS; } else { rc = rtSocketError(); if (rc == VERR_TRY_AGAIN) { *pcbWritten = 0; rc = VINF_TRY_AGAIN; } } #else ssize_t cbWritten = send(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL); if (cbWritten >= 0) *pcbWritten = cbWritten; else if ( errno == EAGAIN # ifdef EWOULDBLOCK # if EWOULDBLOCK != EAGAIN || errno == EWOULDBLOCK # endif # endif ) { *pcbWritten = 0; rc = VINF_TRY_AGAIN; } else rc = rtSocketError(); #endif rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketSgWriteNB(RTSOCKET hSocket, PCRTSGBUF pSgBuf, size_t *pcbWritten) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER); AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER); AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */); if (RT_FAILURE(rc)) return rc; unsigned cSegsToSend = 0; rc = VERR_NO_TMP_MEMORY; #ifdef RT_OS_WINDOWS LPWSABUF paMsg = NULL; RTSgBufMapToNative(paMsg, pSgBuf, WSABUF, buf, char *, len, u_long, cSegsToSend); if (paMsg) { DWORD dwSent = 0; int hrc = WSASend(pThis->hNative, paMsg, cSegsToSend, &dwSent, MSG_NOSIGNAL, NULL, NULL); if (!hrc) rc = VINF_SUCCESS; else rc = rtSocketError(); *pcbWritten = dwSent; RTMemTmpFree(paMsg); } #else /* !RT_OS_WINDOWS */ struct iovec *paMsg = NULL; RTSgBufMapToNative(paMsg, pSgBuf, struct iovec, iov_base, void *, iov_len, size_t, cSegsToSend); if (paMsg) { struct msghdr msgHdr; RT_ZERO(msgHdr); msgHdr.msg_iov = paMsg; msgHdr.msg_iovlen = cSegsToSend; ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL); if (RT_LIKELY(cbWritten >= 0)) { rc = VINF_SUCCESS; *pcbWritten = cbWritten; } else rc = rtSocketError(); RTMemTmpFree(paMsg); } #endif /* !RT_OS_WINDOWS */ rtSocketUnlock(pThis); return rc; } RTDECL(int) RTSocketSgWriteLNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, ...) { va_list va; va_start(va, pcbWritten); int rc = RTSocketSgWriteLVNB(hSocket, cSegs, pcbWritten, va); va_end(va); return rc; } RTDECL(int) RTSocketSgWriteLVNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, va_list va) { /* * Set up a S/G segment array + buffer on the stack and pass it * on to RTSocketSgWrite. */ Assert(cSegs <= 16); PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG)); AssertReturn(paSegs, VERR_NO_TMP_MEMORY); for (size_t i = 0; i < cSegs; i++) { paSegs[i].pvSeg = va_arg(va, void *); paSegs[i].cbSeg = va_arg(va, size_t); } RTSGBUF SgBuf; RTSgBufInit(&SgBuf, paSegs, cSegs); return RTSocketSgWriteNB(hSocket, &SgBuf, pcbWritten); } RTDECL(int) RTSocketSelectOne(RTSOCKET hSocket, RTMSINTERVAL cMillies) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE); int const fdMax = (int)pThis->hNative + 1; AssertReturn((RTSOCKETNATIVE)(fdMax - 1) == pThis->hNative, VERR_INTERNAL_ERROR_5); /* * Set up the file descriptor sets and do the select. */ fd_set fdsetR; FD_ZERO(&fdsetR); FD_SET(pThis->hNative, &fdsetR); fd_set fdsetE = fdsetR; int rc; if (cMillies == RT_INDEFINITE_WAIT) rc = select(fdMax, &fdsetR, NULL, &fdsetE, NULL); else { struct timeval timeout; timeout.tv_sec = cMillies / 1000; timeout.tv_usec = (cMillies % 1000) * 1000; rc = select(fdMax, &fdsetR, NULL, &fdsetE, &timeout); } if (rc > 0) rc = VINF_SUCCESS; else if (rc == 0) rc = VERR_TIMEOUT; else rc = rtSocketError(); return rc; } RTDECL(int) RTSocketSelectOneEx(RTSOCKET hSocket, uint32_t fEvents, uint32_t *pfEvents, RTMSINTERVAL cMillies) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pfEvents, VERR_INVALID_PARAMETER); AssertReturn(!(fEvents & ~RTSOCKET_EVT_VALID_MASK), VERR_INVALID_PARAMETER); AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE); int const fdMax = (int)pThis->hNative + 1; AssertReturn((RTSOCKETNATIVE)(fdMax - 1) == pThis->hNative, VERR_INTERNAL_ERROR_5); *pfEvents = 0; /* * Set up the file descriptor sets and do the select. */ fd_set fdsetR; fd_set fdsetW; fd_set fdsetE; FD_ZERO(&fdsetR); FD_ZERO(&fdsetW); FD_ZERO(&fdsetE); if (fEvents & RTSOCKET_EVT_READ) FD_SET(pThis->hNative, &fdsetR); if (fEvents & RTSOCKET_EVT_WRITE) FD_SET(pThis->hNative, &fdsetW); if (fEvents & RTSOCKET_EVT_ERROR) FD_SET(pThis->hNative, &fdsetE); int rc; if (cMillies == RT_INDEFINITE_WAIT) rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, NULL); else { struct timeval timeout; timeout.tv_sec = cMillies / 1000; timeout.tv_usec = (cMillies % 1000) * 1000; rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, &timeout); } if (rc > 0) { if (FD_ISSET(pThis->hNative, &fdsetR)) *pfEvents |= RTSOCKET_EVT_READ; if (FD_ISSET(pThis->hNative, &fdsetW)) *pfEvents |= RTSOCKET_EVT_WRITE; if (FD_ISSET(pThis->hNative, &fdsetE)) *pfEvents |= RTSOCKET_EVT_ERROR; rc = VINF_SUCCESS; } else if (rc == 0) rc = VERR_TIMEOUT; else rc = rtSocketError(); return rc; } RTDECL(int) RTSocketShutdown(RTSOCKET hSocket, bool fRead, bool fWrite) { /* * Validate input, don't lock it because we might want to interrupt a call * active on a different thread. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE); AssertReturn(fRead || fWrite, VERR_INVALID_PARAMETER); /* * Do the job. */ int rc = VINF_SUCCESS; int fHow; if (fRead && fWrite) fHow = SHUT_RDWR; else if (fRead) fHow = SHUT_RD; else fHow = SHUT_WR; if (shutdown(pThis->hNative, fHow) == -1) rc = rtSocketError(); return rc; } RTDECL(int) RTSocketGetLocalAddress(RTSOCKET hSocket, PRTNETADDR pAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE); /* * Get the address and convert it. */ int rc; RTSOCKADDRUNION u; #ifdef RT_OS_WINDOWS int cbAddr = sizeof(u); #else socklen_t cbAddr = sizeof(u); #endif RT_ZERO(u); if (getsockname(pThis->hNative, &u.Addr, &cbAddr) == 0) rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr); else rc = rtSocketError(); return rc; } RTDECL(int) RTSocketGetPeerAddress(RTSOCKET hSocket, PRTNETADDR pAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE); /* * Get the address and convert it. */ int rc; RTSOCKADDRUNION u; #ifdef RT_OS_WINDOWS int cbAddr = sizeof(u); #else socklen_t cbAddr = sizeof(u); #endif RT_ZERO(u); if (getpeername(pThis->hNative, &u.Addr, &cbAddr) == 0) rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr); else rc = rtSocketError(); return rc; } /** * Wrapper around bind. * * @returns IPRT status code. * @param hSocket The socket handle. * @param pAddr The address to bind to. */ DECLHIDDEN(int) rtSocketBind(RTSOCKET hSocket, PCRTNETADDR pAddr) { RTSOCKADDRUNION u; int cbAddr; int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr); if (RT_SUCCESS(rc)) rc = rtSocketBindRawAddr(hSocket, &u.Addr, cbAddr); return rc; } /** * Very thin wrapper around bind. * * @returns IPRT status code. * @param hSocket The socket handle. * @param pvAddr The address to bind to (struct sockaddr and * friends). * @param cbAddr The size of the address. */ DECLHIDDEN(int) rtSocketBindRawAddr(RTSOCKET hSocket, void const *pvAddr, size_t cbAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pvAddr, VERR_INVALID_POINTER); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc; if (bind(pThis->hNative, (struct sockaddr const *)pvAddr, (int)cbAddr) == 0) rc = VINF_SUCCESS; else rc = rtSocketError(); rtSocketUnlock(pThis); return rc; } /** * Wrapper around listen. * * @returns IPRT status code. * @param hSocket The socket handle. * @param cMaxPending The max number of pending connections. */ DECLHIDDEN(int) rtSocketListen(RTSOCKET hSocket, int cMaxPending) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = VINF_SUCCESS; if (listen(pThis->hNative, cMaxPending) != 0) rc = rtSocketError(); rtSocketUnlock(pThis); return rc; } /** * Wrapper around accept. * * @returns IPRT status code. * @param hSocket The socket handle. * @param phClient Where to return the client socket handle on * success. * @param pAddr Where to return the client address. * @param pcbAddr On input this gives the size buffer size of what * @a pAddr point to. On return this contains the * size of what's stored at @a pAddr. */ DECLHIDDEN(int) rtSocketAccept(RTSOCKET hSocket, PRTSOCKET phClient, struct sockaddr *pAddr, size_t *pcbAddr) { /* * Validate input. * Only lock the socket temporarily while we get the native handle, so that * we can safely shutdown and destroy the socket from a different thread. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); /* * Call accept(). */ rtSocketErrorReset(); int rc = VINF_SUCCESS; #ifdef RT_OS_WINDOWS int cbAddr = (int)*pcbAddr; #else socklen_t cbAddr = *pcbAddr; #endif RTSOCKETNATIVE hNativeClient = accept(pThis->hNative, pAddr, &cbAddr); if (hNativeClient != NIL_RTSOCKETNATIVE) { *pcbAddr = cbAddr; /* * Wrap the client socket. */ rc = rtSocketCreateForNative(phClient, hNativeClient); if (RT_FAILURE(rc)) { #ifdef RT_OS_WINDOWS closesocket(hNativeClient); #else close(hNativeClient); #endif } } else rc = rtSocketError(); rtSocketUnlock(pThis); return rc; } /** * Wrapper around connect. * * @returns IPRT status code. * @param hSocket The socket handle. * @param pAddr The socket address to connect to. * @param cMillies Number of milliseconds to wait for the connect attempt to complete. * Use RT_INDEFINITE_WAIT to wait for ever. * Use RT_TCPCLIENTCONNECT_DEFAULT_WAIT to wait for the default time * configured on the running system. */ DECLHIDDEN(int) rtSocketConnect(RTSOCKET hSocket, PCRTNETADDR pAddr, RTMSINTERVAL cMillies) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); RTSOCKADDRUNION u; int cbAddr; int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr); if (RT_SUCCESS(rc)) { if (cMillies == RT_SOCKETCONNECT_DEFAULT_WAIT) { if (connect(pThis->hNative, &u.Addr, cbAddr) != 0) rc = rtSocketError(); } else { /* * Switch the socket to nonblocking mode, initiate the connect * and wait for the socket to become writable or until the timeout * expires. */ rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */); if (RT_SUCCESS(rc)) { if (connect(pThis->hNative, &u.Addr, cbAddr) != 0) { rc = rtSocketError(); if (rc == VERR_TRY_AGAIN || rc == VERR_NET_IN_PROGRESS) { int rcSock = 0; fd_set FdSetWriteable; struct timeval TvTimeout; TvTimeout.tv_sec = cMillies / RT_MS_1SEC; TvTimeout.tv_usec = (cMillies % RT_MS_1SEC) * RT_US_1MS; FD_ZERO(&FdSetWriteable); FD_SET(pThis->hNative, &FdSetWriteable); do { rcSock = select(pThis->hNative + 1, NULL, &FdSetWriteable, NULL, cMillies == RT_INDEFINITE_WAIT || cMillies >= INT_MAX ? NULL : &TvTimeout); if (rcSock > 0) { int iSockError = 0; socklen_t cbSockOpt = sizeof(iSockError); rcSock = getsockopt(pThis->hNative, SOL_SOCKET, SO_ERROR, (char *)&iSockError, &cbSockOpt); if (rcSock == 0) { if (iSockError == 0) rc = VINF_SUCCESS; else { #ifdef RT_OS_WINDOWS rc = RTErrConvertFromWin32(iSockError); #else rc = RTErrConvertFromErrno(iSockError); #endif } } else rc = rtSocketError(); } else if (rcSock == 0) rc = VERR_TIMEOUT; else rc = rtSocketError(); } while (rc == VERR_INTERRUPTED); } } rtSocketSwitchBlockingMode(pThis, true /* fBlocking */); } } } rtSocketUnlock(pThis); return rc; } /** * Wrapper around connect, raw address, no timeout. * * @returns IPRT status code. * @param hSocket The socket handle. * @param pvAddr The raw socket address to connect to. * @param cbAddr The size of the raw address. */ DECLHIDDEN(int) rtSocketConnectRaw(RTSOCKET hSocket, void const *pvAddr, size_t cbAddr) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc; if (connect(pThis->hNative, (const struct sockaddr *)pvAddr, (int)cbAddr) == 0) rc = VINF_SUCCESS; else rc = rtSocketError(); rtSocketUnlock(pThis); return rc; } /** * Wrapper around setsockopt. * * @returns IPRT status code. * @param hSocket The socket handle. * @param iLevel The protocol level, e.g. IPPORTO_TCP. * @param iOption The option, e.g. TCP_NODELAY. * @param pvValue The value buffer. * @param cbValue The size of the value pointed to by pvValue. */ DECLHIDDEN(int) rtSocketSetOpt(RTSOCKET hSocket, int iLevel, int iOption, void const *pvValue, int cbValue) { /* * Validate input. */ RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = VINF_SUCCESS; if (setsockopt(pThis->hNative, iLevel, iOption, (const char *)pvValue, cbValue) != 0) rc = rtSocketError(); rtSocketUnlock(pThis); return rc; } /** * Internal RTPollSetAdd helper that returns the handle that should be added to * the pollset. * * @returns Valid handle on success, INVALID_HANDLE_VALUE on failure. * @param hSocket The socket handle. * @param fEvents The events we're polling for. * @param phNative Where to put the primary handle. */ DECLHIDDEN(int) rtSocketPollGetHandle(RTSOCKET hSocket, uint32_t fEvents, PRTHCINTPTR phNative) { RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE); #ifdef RT_OS_WINDOWS AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS); int rc = VINF_SUCCESS; if (pThis->hEvent != WSA_INVALID_EVENT) *phNative = (RTHCINTPTR)pThis->hEvent; else { pThis->hEvent = WSACreateEvent(); *phNative = (RTHCINTPTR)pThis->hEvent; if (pThis->hEvent == WSA_INVALID_EVENT) rc = rtSocketError(); } rtSocketUnlock(pThis); return rc; #else /* !RT_OS_WINDOWS */ *phNative = (RTHCUINTPTR)pThis->hNative; return VINF_SUCCESS; #endif /* !RT_OS_WINDOWS */ } #ifdef RT_OS_WINDOWS /** * Undos the harm done by WSAEventSelect. * * @returns IPRT status code. * @param pThis The socket handle. */ static int rtSocketPollClearEventAndRestoreBlocking(RTSOCKETINT *pThis) { int rc = VINF_SUCCESS; if (pThis->fSubscribedEvts) { if (WSAEventSelect(pThis->hNative, WSA_INVALID_EVENT, 0) == 0) { pThis->fSubscribedEvts = 0; /* * Switch back to blocking mode if that was the state before the * operation. */ if (pThis->fBlocking) { u_long fNonBlocking = 0; int rc2 = ioctlsocket(pThis->hNative, FIONBIO, &fNonBlocking); if (rc2 != 0) { rc = rtSocketError(); AssertMsgFailed(("%Rrc; rc2=%d\n", rc, rc2)); } } } else { rc = rtSocketError(); AssertMsgFailed(("%Rrc\n", rc)); } } return rc; } /** * Updates the mask of events we're subscribing to. * * @returns IPRT status code. * @param pThis The socket handle. * @param fEvents The events we want to subscribe to. */ static int rtSocketPollUpdateEvents(RTSOCKETINT *pThis, uint32_t fEvents) { LONG fNetworkEvents = 0; if (fEvents & RTPOLL_EVT_READ) fNetworkEvents |= FD_READ; if (fEvents & RTPOLL_EVT_WRITE) fNetworkEvents |= FD_WRITE; if (fEvents & RTPOLL_EVT_ERROR) fNetworkEvents |= FD_CLOSE; LogFlowFunc(("fNetworkEvents=%#x\n", fNetworkEvents)); if (WSAEventSelect(pThis->hNative, pThis->hEvent, fNetworkEvents) == 0) { pThis->fSubscribedEvts = fEvents; return VINF_SUCCESS; } int rc = rtSocketError(); AssertMsgFailed(("fNetworkEvents=%#x rc=%Rrc\n", fNetworkEvents, rtSocketError())); return rc; } #endif /* RT_OS_WINDOWS */ #if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2) /** * Checks for pending events. * * @returns Event mask or 0. * @param pThis The socket handle. * @param fEvents The desired events. */ static uint32_t rtSocketPollCheck(RTSOCKETINT *pThis, uint32_t fEvents) { uint32_t fRetEvents = 0; LogFlowFunc(("pThis=%#p fEvents=%#x\n", pThis, fEvents)); # ifdef RT_OS_WINDOWS /* Make sure WSAEnumNetworkEvents returns what we want. */ int rc = VINF_SUCCESS; if ((pThis->fSubscribedEvts & fEvents) != fEvents) rc = rtSocketPollUpdateEvents(pThis, pThis->fSubscribedEvts | fEvents); /* Get the event mask, ASSUMES that WSAEnumNetworkEvents doesn't clear stuff. */ WSANETWORKEVENTS NetEvts; RT_ZERO(NetEvts); if (WSAEnumNetworkEvents(pThis->hNative, pThis->hEvent, &NetEvts) == 0) { if ( (NetEvts.lNetworkEvents & FD_READ) && (fEvents & RTPOLL_EVT_READ) && NetEvts.iErrorCode[FD_READ_BIT] == 0) fRetEvents |= RTPOLL_EVT_READ; if ( (NetEvts.lNetworkEvents & FD_WRITE) && (fEvents & RTPOLL_EVT_WRITE) && NetEvts.iErrorCode[FD_WRITE_BIT] == 0) fRetEvents |= RTPOLL_EVT_WRITE; if (fEvents & RTPOLL_EVT_ERROR) { if (NetEvts.lNetworkEvents & FD_CLOSE) fRetEvents |= RTPOLL_EVT_ERROR; else for (uint32_t i = 0; i < FD_MAX_EVENTS; i++) if ( (NetEvts.lNetworkEvents & (1L << i)) && NetEvts.iErrorCode[i] != 0) fRetEvents |= RTPOLL_EVT_ERROR; } } else rc = rtSocketError(); /* Fall back on select if we hit an error above. */ if (RT_FAILURE(rc)) { } #else /* RT_OS_OS2 */ int aFds[4] = { pThis->hNative, pThis->hNative, pThis->hNative, -1 }; int rc = os2_select(aFds, 1, 1, 1, 0); if (rc > 0) { if (aFds[0] == pThis->hNative) fRetEvents |= RTPOLL_EVT_READ; if (aFds[1] == pThis->hNative) fRetEvents |= RTPOLL_EVT_WRITE; if (aFds[2] == pThis->hNative) fRetEvents |= RTPOLL_EVT_ERROR; fRetEvents &= fEvents; } #endif /* RT_OS_OS2 */ LogFlowFunc(("fRetEvents=%#x\n", fRetEvents)); return fRetEvents; } /** * Internal RTPoll helper that polls the socket handle and, if @a fNoWait is * clear, starts whatever actions we've got running during the poll call. * * @returns 0 if no pending events, actions initiated if @a fNoWait is clear. * Event mask (in @a fEvents) and no actions if the handle is ready * already. * UINT32_MAX (asserted) if the socket handle is busy in I/O or a * different poll set. * * @param hSocket The socket handle. * @param hPollSet The poll set handle (for access checks). * @param fEvents The events we're polling for. * @param fFinalEntry Set if this is the final entry for this handle * in this poll set. This can be used for dealing * with duplicate entries. * @param fNoWait Set if it's a zero-wait poll call. Clear if * we'll wait for an event to occur. * * @remarks There is a potential race wrt duplicate handles when @a fNoWait is * @c true, we don't currently care about that oddity... */ DECLHIDDEN(uint32_t) rtSocketPollStart(RTSOCKET hSocket, RTPOLLSET hPollSet, uint32_t fEvents, bool fFinalEntry, bool fNoWait) { RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, UINT32_MAX); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX); /** @todo This isn't quite sane. Replace by critsect and open up concurrent * reads and writes! */ if (rtSocketTryLock(pThis)) pThis->hPollSet = hPollSet; else { AssertReturn(pThis->hPollSet == hPollSet, UINT32_MAX); ASMAtomicIncU32(&pThis->cUsers); } /* (rtSocketPollCheck will reset the event object). */ # ifdef RT_OS_WINDOWS uint32_t fRetEvents = pThis->fEventsSaved; pThis->fEventsSaved = 0; /* Reset */ fRetEvents |= rtSocketPollCheck(pThis, fEvents); if ( !fRetEvents && !fNoWait) { pThis->fPollEvts |= fEvents; if ( fFinalEntry && pThis->fSubscribedEvts != pThis->fPollEvts) { int rc = rtSocketPollUpdateEvents(pThis, pThis->fPollEvts); if (RT_FAILURE(rc)) { pThis->fPollEvts = 0; fRetEvents = UINT32_MAX; } } } # else uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents); # endif if (fRetEvents || fNoWait) { if (pThis->cUsers == 1) { # ifdef RT_OS_WINDOWS rtSocketPollClearEventAndRestoreBlocking(pThis); # endif pThis->hPollSet = NIL_RTPOLLSET; } ASMAtomicDecU32(&pThis->cUsers); } return fRetEvents; } /** * Called after a WaitForMultipleObjects returned in order to check for pending * events and stop whatever actions that rtSocketPollStart() initiated. * * @returns Event mask or 0. * * @param hSocket The socket handle. * @param fEvents The events we're polling for. * @param fFinalEntry Set if this is the final entry for this handle * in this poll set. This can be used for dealing * with duplicate entries. Only keep in mind that * this method is called in reverse order, so the * first call will have this set (when the entire * set was processed). * @param fHarvestEvents Set if we should check for pending events. */ DECLHIDDEN(uint32_t) rtSocketPollDone(RTSOCKET hSocket, uint32_t fEvents, bool fFinalEntry, bool fHarvestEvents) { RTSOCKETINT *pThis = hSocket; AssertPtrReturn(pThis, 0); AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, 0); Assert(pThis->cUsers > 0); Assert(pThis->hPollSet != NIL_RTPOLLSET); /* Harvest events and clear the event mask for the next round of polling. */ uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents); # ifdef RT_OS_WINDOWS pThis->fPollEvts = 0; /* * Save the write event if required. * It is only posted once and might get lost if the another source in the * pollset with a higher priority has pending events. */ if ( !fHarvestEvents && fRetEvents) { pThis->fEventsSaved = fRetEvents; fRetEvents = 0; } # endif /* Make the socket blocking again and unlock the handle. */ if (pThis->cUsers == 1) { # ifdef RT_OS_WINDOWS rtSocketPollClearEventAndRestoreBlocking(pThis); # endif pThis->hPollSet = NIL_RTPOLLSET; } ASMAtomicDecU32(&pThis->cUsers); return fRetEvents; } #endif /* RT_OS_WINDOWS || RT_OS_OS2 */