/* $Id: timer-r0drv-os2.cpp 33540 2010-10-28 09:27:05Z vboxsync $ */ /** @file * IPRT - Memory Allocation, Ring-0 Driver, OS/2. */ /* * Copyright (c) 2007 knut st. osmundsen * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-os2-kernel.h" #include #include #include #include #include #include #include #include "internal/magics.h" /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * The internal representation of an OS/2 timer handle. */ typedef struct RTTIMER { /** Magic. * This is RTTIMER_MAGIC, but changes to something else before the timer * is destroyed to indicate clearly that thread should exit. */ uint32_t volatile u32Magic; /** The next timer in the timer list. */ PRTTIMER pNext; /** Flag indicating the timer is suspended. */ uint8_t volatile fSuspended; /** Cleared at the start of timer processing, set when calling pfnTimer. * If any timer changes occurs while doing the callback this will be used to resume the cycle. */ bool fDone; /** Callback. */ PFNRTTIMER pfnTimer; /** User argument. */ void *pvUser; /** The timer interval. 0 if one-shot. */ uint64_t u64NanoInterval; /** The start of the current run. * This is used to calculate when the timer ought to fire the next time. */ uint64_t volatile u64StartTS; /** The start of the current run. * This is used to calculate when the timer ought to fire the next time. */ uint64_t volatile u64NextTS; /** The current tick number (since u64StartTS). */ uint64_t volatile iTick; } RTTIMER; /******************************************************************************* * Global Variables * *******************************************************************************/ /** Spinlock protecting the timers. */ static RTSPINLOCK g_Spinlock = NIL_RTSPINLOCK; /** The timer head. */ static PRTTIMER volatile g_pTimerHead = NULL; /** The number of active timers. */ static uint32_t volatile g_cActiveTimers = 0; /** The number of active timers. */ static uint32_t volatile g_cTimers = 0; /** The change number. * This is used to detect list changes during the timer callback loop. */ static uint32_t volatile g_u32ChangeNo; /******************************************************************************* * Internal Functions * *******************************************************************************/ RT_C_DECLS_BEGIN DECLASM(void) rtTimerOs2Tick(void); DECLASM(int) rtTimerOs2Arm(void); DECLASM(int) rtTimerOs2Dearm(void); RT_C_DECLS_END RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser) { *ppTimer = NULL; /* * We don't support the fancy MP features. */ if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) return VERR_NOT_SUPPORTED; /* * Lazy initialize the spinlock. */ if (g_Spinlock == NIL_RTSPINLOCK) { RTSPINLOCK Spinlock; int rc = RTSpinlockCreate(&Spinlock); AssertRCReturn(rc, rc); //bool fRc; //ASMAtomicCmpXchgSize(&g_Spinlock, Spinlock, NIL_RTSPINLOCK, fRc); //if (!fRc) if (!ASMAtomicCmpXchgPtr((void * volatile *)&g_Spinlock, Spinlock, NIL_RTSPINLOCK)) RTSpinlockDestroy(Spinlock); } /* * Allocate and initialize the timer handle. */ PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer)); if (!pTimer) return VERR_NO_MEMORY; pTimer->u32Magic = RTTIMER_MAGIC; pTimer->pNext = NULL; pTimer->fSuspended = true; pTimer->pfnTimer = pfnTimer; pTimer->pvUser = pvUser; pTimer->u64NanoInterval = u64NanoInterval; pTimer->u64StartTS = 0; /* * Insert the timer into the list (LIFO atm). */ RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; RTSpinlockAcquireNoInts(g_Spinlock, &Tmp); g_u32ChangeNo++; pTimer->pNext = g_pTimerHead; g_pTimerHead = pTimer; g_cTimers++; RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); *ppTimer = pTimer; return VINF_SUCCESS; } /** * Validates the timer handle. * * @returns true if valid, false if invalid. * @param pTimer The handle. */ DECLINLINE(bool) rtTimerIsValid(PRTTIMER pTimer) { AssertReturn(VALID_PTR(pTimer), false); AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, false); return true; } RTDECL(int) RTTimerDestroy(PRTTIMER pTimer) { /* It's ok to pass NULL pointer. */ if (pTimer == /*NIL_RTTIMER*/ NULL) return VINF_SUCCESS; if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; /* * Remove it from the list. */ RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; RTSpinlockAcquireNoInts(g_Spinlock, &Tmp); g_u32ChangeNo++; if (g_pTimerHead == pTimer) g_pTimerHead = pTimer->pNext; else { PRTTIMER pPrev = g_pTimerHead; while (pPrev->pNext != pTimer) { pPrev = pPrev->pNext; if (RT_UNLIKELY(!pPrev)) { RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); return VERR_INVALID_HANDLE; } } pPrev->pNext = pTimer->pNext; } Assert(g_cTimers > 0); g_cTimers--; if (!pTimer->fSuspended) { Assert(g_cActiveTimers > 0); g_cActiveTimers--; if (!g_cActiveTimers) rtTimerOs2Dearm(); } RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); /* * Free the associated resources. */ pTimer->u32Magic++; RTMemFree(pTimer); return VINF_SUCCESS; } RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First) { if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; if (!pTimer->fSuspended) return VERR_TIMER_ACTIVE; /* * Calc when it should start firing and give the thread a kick so it get going. */ u64First += RTTimeNanoTS(); RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; RTSpinlockAcquireNoInts(g_Spinlock, &Tmp); g_u32ChangeNo++; if (!g_cActiveTimers) { int rc = rtTimerOs2Arm(); if (RT_FAILURE(rc)) { RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); return rc; } } g_cActiveTimers++; pTimer->fSuspended = false; pTimer->fDone = true; /* next tick, not current! */ pTimer->iTick = 0; pTimer->u64StartTS = u64First; pTimer->u64NextTS = u64First; RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); return VINF_SUCCESS; } RTDECL(int) RTTimerStop(PRTTIMER pTimer) { if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; if (pTimer->fSuspended) return VERR_TIMER_SUSPENDED; /* * Suspend the timer. */ RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; RTSpinlockAcquireNoInts(g_Spinlock, &Tmp); g_u32ChangeNo++; pTimer->fSuspended = true; Assert(g_cActiveTimers > 0); g_cActiveTimers--; if (!g_cActiveTimers) rtTimerOs2Dearm(); RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); return VINF_SUCCESS; } RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval) { if (!rtTimerIsValid(pTimer)) return VERR_INVALID_HANDLE; return VERR_NOT_SUPPORTED; } DECLASM(void) rtTimerOs2Tick(void) { /* * Query the current time and then take the lock. */ const uint64_t u64NanoTS = RTTimeNanoTS(); RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; RTSpinlockAcquireNoInts(g_Spinlock, &Tmp); /* * Clear the fDone flag. */ PRTTIMER pTimer; for (pTimer = g_pTimerHead; pTimer; pTimer = pTimer->pNext) pTimer->fDone = false; /* * Walk the timer list and do the callbacks for any active timer. */ uint32_t u32CurChangeNo = g_u32ChangeNo; pTimer = g_pTimerHead; while (pTimer) { PRTTIMER pNext = pTimer->pNext; if ( !pTimer->fSuspended && !pTimer->fDone && pTimer->u64NextTS <= u64NanoTS) { pTimer->fDone = true; pTimer->iTick++; /* calculate the next timeout */ if (!pTimer->u64NanoInterval) pTimer->fSuspended = true; else { pTimer->u64NextTS = pTimer->u64StartTS + pTimer->iTick * pTimer->u64NanoInterval; if (pTimer->u64NextTS < u64NanoTS) pTimer->u64NextTS = u64NanoTS + RTTimerGetSystemGranularity() / 2; } /* do the callout */ PFNRTTIMER pfnTimer = pTimer->pfnTimer; void *pvUser = pTimer->pvUser; RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); pfnTimer(pTimer, pvUser, pTimer->iTick); RTSpinlockAcquireNoInts(g_Spinlock, &Tmp); /* check if anything changed. */ if (u32CurChangeNo != g_u32ChangeNo) { u32CurChangeNo = g_u32ChangeNo; pNext = g_pTimerHead; } } /* next */ pTimer = pNext; } RTSpinlockReleaseNoInts(g_Spinlock, &Tmp); } RTDECL(uint32_t) RTTimerGetSystemGranularity(void) { return 32000000; /* 32ms */ } RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted) { return VERR_NOT_SUPPORTED; } RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted) { return VERR_NOT_SUPPORTED; } RTDECL(bool) RTTimerCanDoHighResolution(void) { return false; }