VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/os2/memobj-r0drv-os2.cpp@ 26430

Last change on this file since 26430 was 26430, checked in by vboxsync, 15 years ago

Introducing RTR0MemObjAllocPhysEx

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 18.2 KB
Line 
1/* $Id: memobj-r0drv-os2.cpp 26430 2010-02-11 14:23:01Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, OS/2.
4 */
5
6/*
7 * Copyright (c) 2007 knut st. osmundsen <bird-src-spam@anduin.net>
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-os2-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/mem.h>
39#include <iprt/err.h>
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/param.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * The OS/2 version of the memory object structure.
52 */
53typedef struct RTR0MEMOBJDARWIN
54{
55 /** The core structure. */
56 RTR0MEMOBJINTERNAL Core;
57 /** Lock for the ring-3 / ring-0 pinned objectes.
58 * This member might not be allocated for some object types. */
59 KernVMLock_t Lock;
60 /** Array of physical pages.
61 * This array can be 0 in length for some object types. */
62 KernPageList_t aPages[1];
63} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
70
71
72int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
73{
74 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
75 int rc;
76
77 switch (pMemOs2->Core.enmType)
78 {
79 case RTR0MEMOBJTYPE_PHYS_NC:
80 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
81 return VERR_INTERNAL_ERROR;
82 break;
83
84 case RTR0MEMOBJTYPE_PHYS:
85 if (!pMemOs2->Core.pv)
86 break;
87
88 case RTR0MEMOBJTYPE_MAPPING:
89 if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
90 break;
91
92 /* fall thru */
93 case RTR0MEMOBJTYPE_PAGE:
94 case RTR0MEMOBJTYPE_LOW:
95 case RTR0MEMOBJTYPE_CONT:
96 rc = KernVMFree(pMemOs2->Core.pv);
97 AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
98 break;
99
100 case RTR0MEMOBJTYPE_LOCK:
101 rc = KernVMUnlock(&pMemOs2->Lock);
102 AssertMsg(!rc, ("rc=%d\n", rc));
103 break;
104
105 case RTR0MEMOBJTYPE_RES_VIRT:
106 default:
107 AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
108 return VERR_INTERNAL_ERROR;
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
116{
117 NOREF(fExecutable);
118
119 /* create the object. */
120 const ULONG cPages = cb >> PAGE_SHIFT;
121 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
122 if (!pMemOs2)
123 return VERR_NO_MEMORY;
124
125 /* do the allocation. */
126 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
127 if (!rc)
128 {
129 ULONG cPagesRet = cPages;
130 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
131 if (!rc)
132 {
133 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
134 *ppMem = &pMemOs2->Core;
135 return VINF_SUCCESS;
136 }
137 KernVMFree(pMemOs2->Core.pv);
138 }
139 rtR0MemObjDelete(&pMemOs2->Core);
140 return RTErrConvertFromOS2(rc);
141}
142
143
144int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
145{
146 NOREF(fExecutable);
147
148 /* create the object. */
149 const ULONG cPages = cb >> PAGE_SHIFT;
150 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
151 if (!pMemOs2)
152 return VERR_NO_MEMORY;
153
154 /* do the allocation. */
155 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
156 if (!rc)
157 {
158 ULONG cPagesRet = cPages;
159 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
160 if (!rc)
161 {
162 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
163 *ppMem = &pMemOs2->Core;
164 return VINF_SUCCESS;
165 }
166 KernVMFree(pMemOs2->Core.pv);
167 }
168 rtR0MemObjDelete(&pMemOs2->Core);
169 return RTErrConvertFromOS2(rc);
170}
171
172
173int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
174{
175 NOREF(fExecutable);
176
177 /* create the object. */
178 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
179 if (!pMemOs2)
180 return VERR_NO_MEMORY;
181
182 /* do the allocation. */
183 ULONG ulPhys = ~0UL;
184 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
185 if (!rc)
186 {
187 Assert(ulPhys != ~0UL);
188 pMemOs2->Core.u.Cont.Phys = ulPhys;
189 *ppMem = &pMemOs2->Core;
190 return VINF_SUCCESS;
191 }
192 rtR0MemObjDelete(&pMemOs2->Core);
193 return RTErrConvertFromOS2(rc);
194}
195
196
197int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
198{
199 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
200
201 /** @todo */
202 if ( uAlignment != 0
203 && uAlignment != PAGE_SIZE)
204 return VERR_NOT_SUPPORTED;
205
206 /* create the object. */
207 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
208 if (!pMemOs2)
209 return VERR_NO_MEMORY;
210
211 /* do the allocation. */
212 ULONG ulPhys = ~0UL;
213 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
214 if (!rc)
215 {
216 Assert(ulPhys != ~0UL);
217 pMemOs2->Core.u.Phys.fAllocated = true;
218 pMemOs2->Core.u.Phys.PhysBase = ulPhys;
219 *ppMem = &pMemOs2->Core;
220 return VINF_SUCCESS;
221 }
222 rtR0MemObjDelete(&pMemOs2->Core);
223 return RTErrConvertFromOS2(rc);
224}
225
226
227int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
228{
229 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
230 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest);
231}
232
233
234int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
235{
236 /* create the object. */
237 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
238 if (!pMemOs2)
239 return VERR_NO_MEMORY;
240
241 /* there is no allocation here, right? it needs to be mapped somewhere first. */
242 pMemOs2->Core.u.Phys.fAllocated = false;
243 pMemOs2->Core.u.Phys.PhysBase = Phys;
244 *ppMem = &pMemOs2->Core;
245 return VINF_SUCCESS;
246}
247
248
249int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
250{
251 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
252
253 /* create the object. */
254 const ULONG cPages = cb >> PAGE_SHIFT;
255 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
256 if (!pMemOs2)
257 return VERR_NO_MEMORY;
258
259 /* lock it. */
260 ULONG cPagesRet = cPages;
261 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
262 (void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
263 if (!rc)
264 {
265 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
266 Assert(cb == pMemOs2->Core.cb);
267 Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
268 pMemOs2->Core.u.Lock.R0Process = R0Process;
269 *ppMem = &pMemOs2->Core;
270 return VINF_SUCCESS;
271 }
272 rtR0MemObjDelete(&pMemOs2->Core);
273 return RTErrConvertFromOS2(rc);
274}
275
276
277int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
278{
279 /* create the object. */
280 const ULONG cPages = cb >> PAGE_SHIFT;
281 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
282 if (!pMemOs2)
283 return VERR_NO_MEMORY;
284
285 /* lock it. */
286 ULONG cPagesRet = cPages;
287 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
288 pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
289 if (!rc)
290 {
291 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
292 pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
293 *ppMem = &pMemOs2->Core;
294 return VINF_SUCCESS;
295 }
296 rtR0MemObjDelete(&pMemOs2->Core);
297 return RTErrConvertFromOS2(rc);
298}
299
300
301int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
302{
303 return VERR_NOT_IMPLEMENTED;
304}
305
306
307int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
308{
309 return VERR_NOT_IMPLEMENTED;
310}
311
312
313int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
314 unsigned fProt, size_t offSub, size_t cbSub)
315{
316 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
317 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
318
319 /*
320 * Check that the specified alignment is supported.
321 */
322 if (uAlignment > PAGE_SIZE)
323 return VERR_NOT_SUPPORTED;
324
325
326/** @todo finish the implementation. */
327
328 int rc;
329 void *pvR0 = NULL;
330 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
331 switch (pMemToMapOs2->Core.enmType)
332 {
333 /*
334 * These has kernel mappings.
335 */
336 case RTR0MEMOBJTYPE_PAGE:
337 case RTR0MEMOBJTYPE_LOW:
338 case RTR0MEMOBJTYPE_CONT:
339 pvR0 = pMemToMapOs2->Core.pv;
340 break;
341
342 case RTR0MEMOBJTYPE_PHYS:
343 pvR0 = pMemToMapOs2->Core.pv;
344 if (!pvR0)
345 {
346 /* no ring-0 mapping, so allocate a mapping in the process. */
347 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
348 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
349 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
350 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
351 if (rc)
352 return RTErrConvertFromOS2(rc);
353 pMemToMapOs2->Core.pv = pvR0;
354 }
355 break;
356
357 case RTR0MEMOBJTYPE_PHYS_NC:
358 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
359 return VERR_NOT_IMPLEMENTED;
360 break;
361
362 case RTR0MEMOBJTYPE_LOCK:
363 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
364 return VERR_NOT_SUPPORTED; /** @todo implement this... */
365 pvR0 = pMemToMapOs2->Core.pv;
366 break;
367
368 case RTR0MEMOBJTYPE_RES_VIRT:
369 case RTR0MEMOBJTYPE_MAPPING:
370 default:
371 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
372 return VERR_INTERNAL_ERROR;
373 }
374
375 /*
376 * Create a dummy mapping object for it.
377 *
378 * All mappings are read/write/execute in OS/2 and there isn't
379 * any cache options, so sharing is ok. And the main memory object
380 * isn't actually freed until all the mappings have been freed up
381 * (reference counting).
382 */
383 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
384 if (pMemOs2)
385 {
386 pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
387 *ppMem = &pMemOs2->Core;
388 return VINF_SUCCESS;
389 }
390 return VERR_NO_MEMORY;
391}
392
393
394int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
395{
396 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
397 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
398 if (uAlignment > PAGE_SIZE)
399 return VERR_NOT_SUPPORTED;
400
401 int rc;
402 void *pvR0;
403 void *pvR3 = NULL;
404 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
405 switch (pMemToMapOs2->Core.enmType)
406 {
407 /*
408 * These has kernel mappings.
409 */
410 case RTR0MEMOBJTYPE_PAGE:
411 case RTR0MEMOBJTYPE_LOW:
412 case RTR0MEMOBJTYPE_CONT:
413 pvR0 = pMemToMapOs2->Core.pv;
414 break;
415
416 case RTR0MEMOBJTYPE_PHYS:
417 pvR0 = pMemToMapOs2->Core.pv;
418#if 0/* this is wrong. */
419 if (!pvR0)
420 {
421 /* no ring-0 mapping, so allocate a mapping in the process. */
422 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
423 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
424 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
425 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
426 if (rc)
427 return RTErrConvertFromOS2(rc);
428 }
429 break;
430#endif
431 return VERR_NOT_SUPPORTED;
432
433 case RTR0MEMOBJTYPE_PHYS_NC:
434 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
435 return VERR_NOT_IMPLEMENTED;
436 break;
437
438 case RTR0MEMOBJTYPE_LOCK:
439 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
440 return VERR_NOT_SUPPORTED; /** @todo implement this... */
441 pvR0 = pMemToMapOs2->Core.pv;
442 break;
443
444 case RTR0MEMOBJTYPE_RES_VIRT:
445 case RTR0MEMOBJTYPE_MAPPING:
446 default:
447 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
448 return VERR_INTERNAL_ERROR;
449 }
450
451 /*
452 * Map the ring-0 memory into the current process.
453 */
454 if (!pvR3)
455 {
456 Assert(pvR0);
457 ULONG flFlags = 0;
458 if (uAlignment == PAGE_SIZE)
459 flFlags |= VMDHGP_4MB;
460 if (fProt & RTMEM_PROT_WRITE)
461 flFlags |= VMDHGP_WRITE;
462 rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
463 if (rc)
464 return RTErrConvertFromOS2(rc);
465 }
466 Assert(pvR3);
467
468 /*
469 * Create a mapping object for it.
470 */
471 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
472 if (pMemOs2)
473 {
474 Assert(pMemOs2->Core.pv == pvR3);
475 pMemOs2->Core.u.Mapping.R0Process = R0Process;
476 *ppMem = &pMemOs2->Core;
477 return VINF_SUCCESS;
478 }
479 KernVMFree(pvR3);
480 return VERR_NO_MEMORY;
481}
482
483
484int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
485{
486 NOREF(pMem);
487 NOREF(offSub);
488 NOREF(cbSub);
489 NOREF(fProt);
490 return VERR_NOT_SUPPORTED;
491}
492
493
494RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
495{
496 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
497
498 switch (pMemOs2->Core.enmType)
499 {
500 case RTR0MEMOBJTYPE_PAGE:
501 case RTR0MEMOBJTYPE_LOW:
502 case RTR0MEMOBJTYPE_LOCK:
503 case RTR0MEMOBJTYPE_PHYS_NC:
504 return pMemOs2->aPages[iPage].Addr;
505
506 case RTR0MEMOBJTYPE_CONT:
507 return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
508
509 case RTR0MEMOBJTYPE_PHYS:
510 return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
511
512 case RTR0MEMOBJTYPE_RES_VIRT:
513 case RTR0MEMOBJTYPE_MAPPING:
514 default:
515 return NIL_RTHCPHYS;
516 }
517}
518
519
520/**
521 * Expands the page list so we can index pages directly.
522 *
523 * @param paPages The page list array to fix.
524 * @param cPages The number of pages that's supposed to go into the list.
525 * @param cPagesRet The actual number of pages in the list.
526 */
527static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
528{
529 Assert(cPages >= cPagesRet);
530 if (cPages != cPagesRet)
531 {
532 ULONG iIn = cPagesRet;
533 ULONG iOut = cPages;
534 do
535 {
536 iIn--;
537 iOut--;
538 Assert(iIn <= iOut);
539
540 KernPageList_t Page = paPages[iIn];
541 Assert(!(Page.Addr & PAGE_OFFSET_MASK));
542 Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
543
544 if (Page.Size > PAGE_SIZE)
545 {
546 do
547 {
548 Page.Size -= PAGE_SIZE;
549 paPages[iOut].Addr = Page.Addr + Page.Size;
550 paPages[iOut].Size = PAGE_SIZE;
551 iOut--;
552 } while (Page.Size > PAGE_SIZE);
553 }
554
555 paPages[iOut].Addr = Page.Addr;
556 paPages[iOut].Size = PAGE_SIZE;
557 } while ( iIn != iOut
558 && iIn > 0);
559 }
560}
561
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette