VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/os2/memobj-r0drv-os2.cpp@ 13476

Last change on this file since 13476 was 8245, checked in by vboxsync, 17 years ago

rebranding: IPRT files again.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 17.6 KB
Line 
1/* $Id: memobj-r0drv-os2.cpp 8245 2008-04-21 17:24:28Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, OS/2.
4 */
5
6/*
7 * Copyright (c) 2007 knut st. osmundsen <bird-src-spam@anduin.net>
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-os2-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/mem.h>
39#include <iprt/err.h>
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/param.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * The OS/2 version of the memory object structure.
52 */
53typedef struct RTR0MEMOBJDARWIN
54{
55 /** The core structure. */
56 RTR0MEMOBJINTERNAL Core;
57 /** Lock for the ring-3 / ring-0 pinned objectes.
58 * This member might not be allocated for some object types. */
59 KernVMLock_t Lock;
60 /** Array of physical pages.
61 * This array can be 0 in length for some object types. */
62 KernPageList_t aPages[1];
63} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
70
71
72int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
73{
74 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
75 int rc;
76
77 switch (pMemOs2->Core.enmType)
78 {
79 case RTR0MEMOBJTYPE_PHYS_NC:
80 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
81 return VERR_INTERNAL_ERROR;
82 break;
83
84 case RTR0MEMOBJTYPE_PHYS:
85 if (!pMemOs2->Core.pv)
86 break;
87
88 case RTR0MEMOBJTYPE_MAPPING:
89 if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
90 break;
91
92 /* fall thru */
93 case RTR0MEMOBJTYPE_PAGE:
94 case RTR0MEMOBJTYPE_LOW:
95 case RTR0MEMOBJTYPE_CONT:
96 rc = KernVMFree(pMemOs2->Core.pv);
97 AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
98 break;
99
100 case RTR0MEMOBJTYPE_LOCK:
101 rc = KernVMUnlock(&pMemOs2->Lock);
102 AssertMsg(!rc, ("rc=%d\n", rc));
103 break;
104
105 case RTR0MEMOBJTYPE_RES_VIRT:
106 default:
107 AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
108 return VERR_INTERNAL_ERROR;
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
116{
117 NOREF(fExecutable);
118
119 /* create the object. */
120 const ULONG cPages = cb >> PAGE_SHIFT;
121 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
122 if (!pMemOs2)
123 return VERR_NO_MEMORY;
124
125 /* do the allocation. */
126 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
127 if (!rc)
128 {
129 ULONG cPagesRet = cPages;
130 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
131 if (!rc)
132 {
133 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
134 *ppMem = &pMemOs2->Core;
135 return VINF_SUCCESS;
136 }
137 KernVMFree(pMemOs2->Core.pv);
138 }
139 rtR0MemObjDelete(&pMemOs2->Core);
140 return RTErrConvertFromOS2(rc);
141}
142
143
144int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
145{
146 NOREF(fExecutable);
147
148 /* create the object. */
149 const ULONG cPages = cb >> PAGE_SHIFT;
150 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
151 if (!pMemOs2)
152 return VERR_NO_MEMORY;
153
154 /* do the allocation. */
155 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
156 if (!rc)
157 {
158 ULONG cPagesRet = cPages;
159 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
160 if (!rc)
161 {
162 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
163 *ppMem = &pMemOs2->Core;
164 return VINF_SUCCESS;
165 }
166 KernVMFree(pMemOs2->Core.pv);
167 }
168 rtR0MemObjDelete(&pMemOs2->Core);
169 return RTErrConvertFromOS2(rc);
170}
171
172
173int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
174{
175 NOREF(fExecutable);
176
177 /* create the object. */
178 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
179 if (!pMemOs2)
180 return VERR_NO_MEMORY;
181
182 /* do the allocation. */
183 ULONG ulPhys = ~0UL;
184 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
185 if (!rc)
186 {
187 Assert(ulPhys != ~0UL);
188 pMemOs2->Core.u.Cont.Phys = ulPhys;
189 *ppMem = &pMemOs2->Core;
190 return VINF_SUCCESS;
191 }
192 rtR0MemObjDelete(&pMemOs2->Core);
193 return RTErrConvertFromOS2(rc);
194}
195
196
197int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
198{
199 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%VHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
200
201 /* create the object. */
202 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
203 if (!pMemOs2)
204 return VERR_NO_MEMORY;
205
206 /* do the allocation. */
207 ULONG ulPhys = ~0UL;
208 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
209 if (!rc)
210 {
211 Assert(ulPhys != ~0UL);
212 pMemOs2->Core.u.Phys.fAllocated = true;
213 pMemOs2->Core.u.Phys.PhysBase = ulPhys;
214 *ppMem = &pMemOs2->Core;
215 return VINF_SUCCESS;
216 }
217 rtR0MemObjDelete(&pMemOs2->Core);
218 return RTErrConvertFromOS2(rc);
219}
220
221
222int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
223{
224 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
225 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest);
226}
227
228
229int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
230{
231 /* create the object. */
232 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
233 if (!pMemOs2)
234 return VERR_NO_MEMORY;
235
236 /* there is no allocation here, right? it needs to be mapped somewhere first. */
237 pMemOs2->Core.u.Phys.fAllocated = false;
238 pMemOs2->Core.u.Phys.PhysBase = Phys;
239 *ppMem = &pMemOs2->Core;
240 return VINF_SUCCESS;
241}
242
243
244int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
245{
246 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
247
248 /* create the object. */
249 const ULONG cPages = cb >> PAGE_SHIFT;
250 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
251 if (!pMemOs2)
252 return VERR_NO_MEMORY;
253
254 /* lock it. */
255 ULONG cPagesRet = cPages;
256 int rc = KernVMLock(VMDHL_LONG | VMDHL_WRITE, (void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
257 if (!rc)
258 {
259 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
260 Assert(cb == pMemOs2->Core.cb);
261 Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
262 pMemOs2->Core.u.Lock.R0Process = R0Process;
263 *ppMem = &pMemOs2->Core;
264 return VINF_SUCCESS;
265 }
266 rtR0MemObjDelete(&pMemOs2->Core);
267 return RTErrConvertFromOS2(rc);
268}
269
270
271int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
272{
273 /* create the object. */
274 const ULONG cPages = cb >> PAGE_SHIFT;
275 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
276 if (!pMemOs2)
277 return VERR_NO_MEMORY;
278
279 /* lock it. */
280 ULONG cPagesRet = cPages;
281 int rc = KernVMLock(VMDHL_LONG | VMDHL_WRITE, pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
282 if (!rc)
283 {
284 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
285 pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
286 *ppMem = &pMemOs2->Core;
287 return VINF_SUCCESS;
288 }
289 rtR0MemObjDelete(&pMemOs2->Core);
290 return RTErrConvertFromOS2(rc);
291}
292
293
294int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
295{
296 return VERR_NOT_IMPLEMENTED;
297}
298
299
300int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
301{
302 return VERR_NOT_IMPLEMENTED;
303}
304
305
306int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt)
307{
308 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
309
310/** @todo finish the implementation. */
311
312 int rc;
313 void *pvR0 = NULL;
314 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
315 switch (pMemToMapOs2->Core.enmType)
316 {
317 /*
318 * These has kernel mappings.
319 */
320 case RTR0MEMOBJTYPE_PAGE:
321 case RTR0MEMOBJTYPE_LOW:
322 case RTR0MEMOBJTYPE_CONT:
323 pvR0 = pMemToMapOs2->Core.pv;
324 break;
325
326 case RTR0MEMOBJTYPE_PHYS:
327 pvR0 = pMemToMapOs2->Core.pv;
328 if (!pvR0)
329 {
330 /* no ring-0 mapping, so allocate a mapping in the process. */
331 AssertMsgReturn(uAlignment == PAGE_SIZE, ("%#zx\n", uAlignment), VERR_NOT_SUPPORTED);
332 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
333 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
334 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
335 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
336 if (rc)
337 return RTErrConvertFromOS2(rc);
338 pMemToMapOs2->Core.pv = pvR0;
339 }
340 break;
341
342 case RTR0MEMOBJTYPE_PHYS_NC:
343 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
344 return VERR_NOT_IMPLEMENTED;
345 break;
346
347 case RTR0MEMOBJTYPE_LOCK:
348 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
349 return VERR_NOT_SUPPORTED; /** @todo implement this... */
350 pvR0 = pMemToMapOs2->Core.pv;
351 break;
352
353 case RTR0MEMOBJTYPE_RES_VIRT:
354 case RTR0MEMOBJTYPE_MAPPING:
355 default:
356 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
357 return VERR_INTERNAL_ERROR;
358 }
359
360 /*
361 * Create a dummy mapping object for it.
362 *
363 * All mappings are read/write/execute in OS/2 and there isn't
364 * any cache options, so sharing is ok. And the main memory object
365 * isn't actually freed until all the mappings have been freed up
366 * (reference counting).
367 */
368 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
369 if (pMemOs2)
370 {
371 pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
372 *ppMem = &pMemOs2->Core;
373 return VINF_SUCCESS;
374 }
375 return VERR_NO_MEMORY;
376}
377
378
379int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
380{
381 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
382 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
383
384 int rc;
385 void *pvR0;
386 void *pvR3 = NULL;
387 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
388 switch (pMemToMapOs2->Core.enmType)
389 {
390 /*
391 * These has kernel mappings.
392 */
393 case RTR0MEMOBJTYPE_PAGE:
394 case RTR0MEMOBJTYPE_LOW:
395 case RTR0MEMOBJTYPE_CONT:
396 pvR0 = pMemToMapOs2->Core.pv;
397 break;
398
399 case RTR0MEMOBJTYPE_PHYS:
400 pvR0 = pMemToMapOs2->Core.pv;
401#if 0/* this is wrong. */
402 if (!pvR0)
403 {
404 /* no ring-0 mapping, so allocate a mapping in the process. */
405 AssertMsgReturn(uAlignment == PAGE_SIZE, ("%#zx\n", uAlignment), VERR_NOT_SUPPORTED);
406 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
407 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
408 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
409 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
410 if (rc)
411 return RTErrConvertFromOS2(rc);
412 }
413 break;
414#endif
415 return VERR_NOT_SUPPORTED;
416
417 case RTR0MEMOBJTYPE_PHYS_NC:
418 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
419 return VERR_NOT_IMPLEMENTED;
420 break;
421
422 case RTR0MEMOBJTYPE_LOCK:
423 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
424 return VERR_NOT_SUPPORTED; /** @todo implement this... */
425 pvR0 = pMemToMapOs2->Core.pv;
426 break;
427
428 case RTR0MEMOBJTYPE_RES_VIRT:
429 case RTR0MEMOBJTYPE_MAPPING:
430 default:
431 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
432 return VERR_INTERNAL_ERROR;
433 }
434
435 /*
436 * Map the ring-0 memory into the current process.
437 */
438 if (!pvR3)
439 {
440 Assert(pvR0);
441 ULONG flFlags = 0;
442 if (uAlignment == PAGE_SIZE)
443 flFlags |= VMDHGP_4MB;
444 if (fProt & RTMEM_PROT_WRITE)
445 flFlags |= VMDHGP_WRITE;
446 rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
447 if (rc)
448 return RTErrConvertFromOS2(rc);
449 }
450 Assert(pvR3);
451
452 /*
453 * Create a mapping object for it.
454 */
455 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
456 if (pMemOs2)
457 {
458 Assert(pMemOs2->Core.pv == pvR3);
459 pMemOs2->Core.u.Mapping.R0Process = R0Process;
460 *ppMem = &pMemOs2->Core;
461 return VINF_SUCCESS;
462 }
463 KernVMFree(pvR3);
464 return VERR_NO_MEMORY;
465}
466
467
468RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
469{
470 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
471
472 switch (pMemOs2->Core.enmType)
473 {
474 case RTR0MEMOBJTYPE_PAGE:
475 case RTR0MEMOBJTYPE_LOW:
476 case RTR0MEMOBJTYPE_LOCK:
477 case RTR0MEMOBJTYPE_PHYS_NC:
478 return pMemOs2->aPages[iPage].Addr;
479
480 case RTR0MEMOBJTYPE_CONT:
481 return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
482
483 case RTR0MEMOBJTYPE_PHYS:
484 return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
485
486 case RTR0MEMOBJTYPE_RES_VIRT:
487 case RTR0MEMOBJTYPE_MAPPING:
488 default:
489 return NIL_RTHCPHYS;
490 }
491}
492
493
494/**
495 * Expands the page list so we can index pages directly.
496 *
497 * @param paPages The page list array to fix.
498 * @param cPages The number of pages that's supposed to go into the list.
499 * @param cPagesRet The actual number of pages in the list.
500 */
501static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
502{
503 Assert(cPages >= cPagesRet);
504 if (cPages != cPagesRet)
505 {
506 ULONG iIn = cPagesRet;
507 ULONG iOut = cPages;
508 do
509 {
510 iIn--;
511 iOut--;
512 Assert(iIn <= iOut);
513
514 KernPageList_t Page = paPages[iIn];
515 Assert(!(Page.Addr & PAGE_OFFSET_MASK));
516 Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
517
518 if (Page.Size > PAGE_SIZE)
519 {
520 do
521 {
522 Page.Size -= PAGE_SIZE;
523 paPages[iOut].Addr = Page.Addr + Page.Size;
524 paPages[iOut].Size = PAGE_SIZE;
525 iOut--;
526 } while (Page.Size > PAGE_SIZE);
527 }
528
529 paPages[iOut].Addr = Page.Addr;
530 paPages[iOut].Size = PAGE_SIZE;
531 } while ( iIn != iOut
532 && iIn > 0);
533 }
534}
535
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette