1 | /* $Id: memobj-r0drv-nt.cpp 57358 2015-08-14 15:16:38Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Ring-0 Memory Objects, NT.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*********************************************************************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *********************************************************************************************************************************/
|
---|
31 | #include "the-nt-kernel.h"
|
---|
32 |
|
---|
33 | #include <iprt/memobj.h>
|
---|
34 | #include <iprt/alloc.h>
|
---|
35 | #include <iprt/assert.h>
|
---|
36 | #include <iprt/log.h>
|
---|
37 | #include <iprt/param.h>
|
---|
38 | #include <iprt/string.h>
|
---|
39 | #include <iprt/process.h>
|
---|
40 | #include "internal/memobj.h"
|
---|
41 |
|
---|
42 |
|
---|
43 | /*********************************************************************************************************************************
|
---|
44 | * Defined Constants And Macros *
|
---|
45 | *********************************************************************************************************************************/
|
---|
46 | /** Maximum number of bytes we try to lock down in one go.
|
---|
47 | * This is supposed to have a limit right below 256MB, but this appears
|
---|
48 | * to actually be much lower. The values here have been determined experimentally.
|
---|
49 | */
|
---|
50 | #ifdef RT_ARCH_X86
|
---|
51 | # define MAX_LOCK_MEM_SIZE (32*1024*1024) /* 32MB */
|
---|
52 | #endif
|
---|
53 | #ifdef RT_ARCH_AMD64
|
---|
54 | # define MAX_LOCK_MEM_SIZE (24*1024*1024) /* 24MB */
|
---|
55 | #endif
|
---|
56 |
|
---|
57 |
|
---|
58 | /*********************************************************************************************************************************
|
---|
59 | * Structures and Typedefs *
|
---|
60 | *********************************************************************************************************************************/
|
---|
61 | /**
|
---|
62 | * The NT version of the memory object structure.
|
---|
63 | */
|
---|
64 | typedef struct RTR0MEMOBJNT
|
---|
65 | {
|
---|
66 | /** The core structure. */
|
---|
67 | RTR0MEMOBJINTERNAL Core;
|
---|
68 | #ifndef IPRT_TARGET_NT4
|
---|
69 | /** Used MmAllocatePagesForMdl(). */
|
---|
70 | bool fAllocatedPagesForMdl;
|
---|
71 | #endif
|
---|
72 | /** Pointer returned by MmSecureVirtualMemory */
|
---|
73 | PVOID pvSecureMem;
|
---|
74 | /** The number of PMDLs (memory descriptor lists) in the array. */
|
---|
75 | uint32_t cMdls;
|
---|
76 | /** Array of MDL pointers. (variable size) */
|
---|
77 | PMDL apMdls[1];
|
---|
78 | } RTR0MEMOBJNT, *PRTR0MEMOBJNT;
|
---|
79 |
|
---|
80 |
|
---|
81 | DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
|
---|
82 | {
|
---|
83 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
|
---|
84 |
|
---|
85 | /*
|
---|
86 | * Deal with it on a per type basis (just as a variation).
|
---|
87 | */
|
---|
88 | switch (pMemNt->Core.enmType)
|
---|
89 | {
|
---|
90 | case RTR0MEMOBJTYPE_LOW:
|
---|
91 | #ifndef IPRT_TARGET_NT4
|
---|
92 | if (pMemNt->fAllocatedPagesForMdl)
|
---|
93 | {
|
---|
94 | Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
|
---|
95 | MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
|
---|
96 | pMemNt->Core.pv = NULL;
|
---|
97 | if (pMemNt->pvSecureMem)
|
---|
98 | {
|
---|
99 | MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
|
---|
100 | pMemNt->pvSecureMem = NULL;
|
---|
101 | }
|
---|
102 |
|
---|
103 | MmFreePagesFromMdl(pMemNt->apMdls[0]);
|
---|
104 | ExFreePool(pMemNt->apMdls[0]);
|
---|
105 | pMemNt->apMdls[0] = NULL;
|
---|
106 | pMemNt->cMdls = 0;
|
---|
107 | break;
|
---|
108 | }
|
---|
109 | #endif
|
---|
110 | AssertFailed();
|
---|
111 | break;
|
---|
112 |
|
---|
113 | case RTR0MEMOBJTYPE_PAGE:
|
---|
114 | Assert(pMemNt->Core.pv);
|
---|
115 | ExFreePool(pMemNt->Core.pv);
|
---|
116 | pMemNt->Core.pv = NULL;
|
---|
117 |
|
---|
118 | Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
|
---|
119 | IoFreeMdl(pMemNt->apMdls[0]);
|
---|
120 | pMemNt->apMdls[0] = NULL;
|
---|
121 | pMemNt->cMdls = 0;
|
---|
122 | break;
|
---|
123 |
|
---|
124 | case RTR0MEMOBJTYPE_CONT:
|
---|
125 | Assert(pMemNt->Core.pv);
|
---|
126 | MmFreeContiguousMemory(pMemNt->Core.pv);
|
---|
127 | pMemNt->Core.pv = NULL;
|
---|
128 |
|
---|
129 | Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
|
---|
130 | IoFreeMdl(pMemNt->apMdls[0]);
|
---|
131 | pMemNt->apMdls[0] = NULL;
|
---|
132 | pMemNt->cMdls = 0;
|
---|
133 | break;
|
---|
134 |
|
---|
135 | case RTR0MEMOBJTYPE_PHYS:
|
---|
136 | /* rtR0MemObjNativeEnterPhys? */
|
---|
137 | if (!pMemNt->Core.u.Phys.fAllocated)
|
---|
138 | {
|
---|
139 | #ifndef IPRT_TARGET_NT4
|
---|
140 | Assert(!pMemNt->fAllocatedPagesForMdl);
|
---|
141 | #endif
|
---|
142 | /* Nothing to do here. */
|
---|
143 | break;
|
---|
144 | }
|
---|
145 | /* fall thru */
|
---|
146 |
|
---|
147 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
148 | #ifndef IPRT_TARGET_NT4
|
---|
149 | if (pMemNt->fAllocatedPagesForMdl)
|
---|
150 | {
|
---|
151 | MmFreePagesFromMdl(pMemNt->apMdls[0]);
|
---|
152 | ExFreePool(pMemNt->apMdls[0]);
|
---|
153 | pMemNt->apMdls[0] = NULL;
|
---|
154 | pMemNt->cMdls = 0;
|
---|
155 | break;
|
---|
156 | }
|
---|
157 | #endif
|
---|
158 | AssertFailed();
|
---|
159 | break;
|
---|
160 |
|
---|
161 | case RTR0MEMOBJTYPE_LOCK:
|
---|
162 | if (pMemNt->pvSecureMem)
|
---|
163 | {
|
---|
164 | MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
|
---|
165 | pMemNt->pvSecureMem = NULL;
|
---|
166 | }
|
---|
167 | for (uint32_t i = 0; i < pMemNt->cMdls; i++)
|
---|
168 | {
|
---|
169 | MmUnlockPages(pMemNt->apMdls[i]);
|
---|
170 | IoFreeMdl(pMemNt->apMdls[i]);
|
---|
171 | pMemNt->apMdls[i] = NULL;
|
---|
172 | }
|
---|
173 | break;
|
---|
174 |
|
---|
175 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
176 | /* if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
|
---|
177 | {
|
---|
178 | }
|
---|
179 | else
|
---|
180 | {
|
---|
181 | }*/
|
---|
182 | AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
|
---|
183 | return VERR_INTERNAL_ERROR;
|
---|
184 | break;
|
---|
185 |
|
---|
186 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
187 | {
|
---|
188 | Assert(pMemNt->cMdls == 0 && pMemNt->Core.pv);
|
---|
189 | PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
|
---|
190 | Assert(pMemNtParent);
|
---|
191 | if (pMemNtParent->cMdls)
|
---|
192 | {
|
---|
193 | Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
|
---|
194 | Assert( pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
|
---|
195 | || pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
|
---|
196 | MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
|
---|
197 | }
|
---|
198 | else
|
---|
199 | {
|
---|
200 | Assert( pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
|
---|
201 | && !pMemNtParent->Core.u.Phys.fAllocated);
|
---|
202 | Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
|
---|
203 | MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
|
---|
204 | }
|
---|
205 | pMemNt->Core.pv = NULL;
|
---|
206 | break;
|
---|
207 | }
|
---|
208 |
|
---|
209 | default:
|
---|
210 | AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
|
---|
211 | return VERR_INTERNAL_ERROR;
|
---|
212 | }
|
---|
213 |
|
---|
214 | return VINF_SUCCESS;
|
---|
215 | }
|
---|
216 |
|
---|
217 |
|
---|
218 | DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
219 | {
|
---|
220 | AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Try allocate the memory and create an MDL for them so
|
---|
224 | * we can query the physical addresses and do mappings later
|
---|
225 | * without running into out-of-memory conditions and similar problems.
|
---|
226 | */
|
---|
227 | int rc = VERR_NO_PAGE_MEMORY;
|
---|
228 | void *pv = ExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
|
---|
229 | if (pv)
|
---|
230 | {
|
---|
231 | PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
|
---|
232 | if (pMdl)
|
---|
233 | {
|
---|
234 | MmBuildMdlForNonPagedPool(pMdl);
|
---|
235 | #ifdef RT_ARCH_AMD64
|
---|
236 | MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
|
---|
237 | #endif
|
---|
238 |
|
---|
239 | /*
|
---|
240 | * Create the IPRT memory object.
|
---|
241 | */
|
---|
242 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
|
---|
243 | if (pMemNt)
|
---|
244 | {
|
---|
245 | pMemNt->cMdls = 1;
|
---|
246 | pMemNt->apMdls[0] = pMdl;
|
---|
247 | *ppMem = &pMemNt->Core;
|
---|
248 | return VINF_SUCCESS;
|
---|
249 | }
|
---|
250 |
|
---|
251 | rc = VERR_NO_MEMORY;
|
---|
252 | IoFreeMdl(pMdl);
|
---|
253 | }
|
---|
254 | ExFreePool(pv);
|
---|
255 | }
|
---|
256 | return rc;
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
261 | {
|
---|
262 | AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
|
---|
263 |
|
---|
264 | /*
|
---|
265 | * Try see if we get lucky first...
|
---|
266 | * (We could probably just assume we're lucky on NT4.)
|
---|
267 | */
|
---|
268 | int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
|
---|
269 | if (RT_SUCCESS(rc))
|
---|
270 | {
|
---|
271 | size_t iPage = cb >> PAGE_SHIFT;
|
---|
272 | while (iPage-- > 0)
|
---|
273 | if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
|
---|
274 | {
|
---|
275 | rc = VERR_NO_LOW_MEMORY;
|
---|
276 | break;
|
---|
277 | }
|
---|
278 | if (RT_SUCCESS(rc))
|
---|
279 | return rc;
|
---|
280 |
|
---|
281 | /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
|
---|
282 | RTR0MemObjFree(*ppMem, false);
|
---|
283 | *ppMem = NULL;
|
---|
284 | }
|
---|
285 |
|
---|
286 | #ifndef IPRT_TARGET_NT4
|
---|
287 | /*
|
---|
288 | * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
|
---|
289 | */
|
---|
290 | PHYSICAL_ADDRESS Zero;
|
---|
291 | Zero.QuadPart = 0;
|
---|
292 | PHYSICAL_ADDRESS HighAddr;
|
---|
293 | HighAddr.QuadPart = _4G - 1;
|
---|
294 | PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
|
---|
295 | if (pMdl)
|
---|
296 | {
|
---|
297 | if (MmGetMdlByteCount(pMdl) >= cb)
|
---|
298 | {
|
---|
299 | __try
|
---|
300 | {
|
---|
301 | void *pv = MmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
|
---|
302 | FALSE /* no bug check on failure */, NormalPagePriority);
|
---|
303 | if (pv)
|
---|
304 | {
|
---|
305 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
|
---|
306 | if (pMemNt)
|
---|
307 | {
|
---|
308 | pMemNt->fAllocatedPagesForMdl = true;
|
---|
309 | pMemNt->cMdls = 1;
|
---|
310 | pMemNt->apMdls[0] = pMdl;
|
---|
311 | *ppMem = &pMemNt->Core;
|
---|
312 | return VINF_SUCCESS;
|
---|
313 | }
|
---|
314 | MmUnmapLockedPages(pv, pMdl);
|
---|
315 | }
|
---|
316 | }
|
---|
317 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
318 | {
|
---|
319 | NTSTATUS rcNt = GetExceptionCode();
|
---|
320 | Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
|
---|
321 | /* nothing */
|
---|
322 | }
|
---|
323 | }
|
---|
324 | MmFreePagesFromMdl(pMdl);
|
---|
325 | ExFreePool(pMdl);
|
---|
326 | }
|
---|
327 | #endif /* !IPRT_TARGET_NT4 */
|
---|
328 |
|
---|
329 | /*
|
---|
330 | * Fall back on contiguous memory...
|
---|
331 | */
|
---|
332 | return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
|
---|
333 | }
|
---|
334 |
|
---|
335 |
|
---|
336 | /**
|
---|
337 | * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
|
---|
338 | * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
|
---|
339 | * to what rtR0MemObjNativeAllocCont() does.
|
---|
340 | *
|
---|
341 | * @returns IPRT status code.
|
---|
342 | * @param ppMem Where to store the pointer to the ring-0 memory object.
|
---|
343 | * @param cb The size.
|
---|
344 | * @param fExecutable Whether the mapping should be executable or not.
|
---|
345 | * @param PhysHighest The highest physical address for the pages in allocation.
|
---|
346 | * @param uAlignment The alignment of the physical memory to allocate.
|
---|
347 | * Supported values are PAGE_SIZE, _2M, _4M and _1G.
|
---|
348 | */
|
---|
349 | static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest,
|
---|
350 | size_t uAlignment)
|
---|
351 | {
|
---|
352 | AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
|
---|
353 | #ifdef IPRT_TARGET_NT4
|
---|
354 | if (uAlignment != PAGE_SIZE)
|
---|
355 | return VERR_NOT_SUPPORTED;
|
---|
356 | #endif
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * Allocate the memory and create an MDL for it.
|
---|
360 | */
|
---|
361 | PHYSICAL_ADDRESS PhysAddrHighest;
|
---|
362 | PhysAddrHighest.QuadPart = PhysHighest;
|
---|
363 | #ifndef IPRT_TARGET_NT4
|
---|
364 | PHYSICAL_ADDRESS PhysAddrLowest, PhysAddrBoundary;
|
---|
365 | PhysAddrLowest.QuadPart = 0;
|
---|
366 | PhysAddrBoundary.QuadPart = (uAlignment == PAGE_SIZE) ? 0 : uAlignment;
|
---|
367 | void *pv = MmAllocateContiguousMemorySpecifyCache(cb, PhysAddrLowest, PhysAddrHighest, PhysAddrBoundary, MmCached);
|
---|
368 | #else
|
---|
369 | void *pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
|
---|
370 | #endif
|
---|
371 | if (!pv)
|
---|
372 | return VERR_NO_MEMORY;
|
---|
373 |
|
---|
374 | PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
|
---|
375 | if (pMdl)
|
---|
376 | {
|
---|
377 | MmBuildMdlForNonPagedPool(pMdl);
|
---|
378 | #ifdef RT_ARCH_AMD64
|
---|
379 | MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
|
---|
380 | #endif
|
---|
381 |
|
---|
382 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
|
---|
383 | if (pMemNt)
|
---|
384 | {
|
---|
385 | pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
|
---|
386 | pMemNt->cMdls = 1;
|
---|
387 | pMemNt->apMdls[0] = pMdl;
|
---|
388 | *ppMem = &pMemNt->Core;
|
---|
389 | return VINF_SUCCESS;
|
---|
390 | }
|
---|
391 |
|
---|
392 | IoFreeMdl(pMdl);
|
---|
393 | }
|
---|
394 | MmFreeContiguousMemory(pv);
|
---|
395 | return VERR_NO_MEMORY;
|
---|
396 | }
|
---|
397 |
|
---|
398 |
|
---|
399 | DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
400 | {
|
---|
401 | return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1, PAGE_SIZE /* alignment */);
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
|
---|
406 | {
|
---|
407 | #ifndef IPRT_TARGET_NT4
|
---|
408 | /*
|
---|
409 | * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
|
---|
410 | *
|
---|
411 | * This is preferable to using MmAllocateContiguousMemory because there are
|
---|
412 | * a few situations where the memory shouldn't be mapped, like for instance
|
---|
413 | * VT-x control memory. Since these are rather small allocations (one or
|
---|
414 | * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
|
---|
415 | * request.
|
---|
416 | *
|
---|
417 | * If the allocation is big, the chances are *probably* not very good. The
|
---|
418 | * current limit is kind of random...
|
---|
419 | */
|
---|
420 | if ( cb < _128K
|
---|
421 | && uAlignment == PAGE_SIZE)
|
---|
422 |
|
---|
423 | {
|
---|
424 | PHYSICAL_ADDRESS Zero;
|
---|
425 | Zero.QuadPart = 0;
|
---|
426 | PHYSICAL_ADDRESS HighAddr;
|
---|
427 | HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
|
---|
428 | PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
|
---|
429 | if (pMdl)
|
---|
430 | {
|
---|
431 | if (MmGetMdlByteCount(pMdl) >= cb)
|
---|
432 | {
|
---|
433 | PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
|
---|
434 | PFN_NUMBER Pfn = paPfns[0] + 1;
|
---|
435 | const size_t cPages = cb >> PAGE_SHIFT;
|
---|
436 | size_t iPage;
|
---|
437 | for (iPage = 1; iPage < cPages; iPage++, Pfn++)
|
---|
438 | if (paPfns[iPage] != Pfn)
|
---|
439 | break;
|
---|
440 | if (iPage >= cPages)
|
---|
441 | {
|
---|
442 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
443 | if (pMemNt)
|
---|
444 | {
|
---|
445 | pMemNt->Core.u.Phys.fAllocated = true;
|
---|
446 | pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
|
---|
447 | pMemNt->fAllocatedPagesForMdl = true;
|
---|
448 | pMemNt->cMdls = 1;
|
---|
449 | pMemNt->apMdls[0] = pMdl;
|
---|
450 | *ppMem = &pMemNt->Core;
|
---|
451 | return VINF_SUCCESS;
|
---|
452 | }
|
---|
453 | }
|
---|
454 | }
|
---|
455 | MmFreePagesFromMdl(pMdl);
|
---|
456 | ExFreePool(pMdl);
|
---|
457 | }
|
---|
458 | }
|
---|
459 | #endif /* !IPRT_TARGET_NT4 */
|
---|
460 |
|
---|
461 | return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest, uAlignment);
|
---|
462 | }
|
---|
463 |
|
---|
464 |
|
---|
465 | DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
|
---|
466 | {
|
---|
467 | #ifndef IPRT_TARGET_NT4
|
---|
468 | PHYSICAL_ADDRESS Zero;
|
---|
469 | Zero.QuadPart = 0;
|
---|
470 | PHYSICAL_ADDRESS HighAddr;
|
---|
471 | HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
|
---|
472 | PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
|
---|
473 | if (pMdl)
|
---|
474 | {
|
---|
475 | if (MmGetMdlByteCount(pMdl) >= cb)
|
---|
476 | {
|
---|
477 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
|
---|
478 | if (pMemNt)
|
---|
479 | {
|
---|
480 | pMemNt->fAllocatedPagesForMdl = true;
|
---|
481 | pMemNt->cMdls = 1;
|
---|
482 | pMemNt->apMdls[0] = pMdl;
|
---|
483 | *ppMem = &pMemNt->Core;
|
---|
484 | return VINF_SUCCESS;
|
---|
485 | }
|
---|
486 | }
|
---|
487 | MmFreePagesFromMdl(pMdl);
|
---|
488 | ExFreePool(pMdl);
|
---|
489 | }
|
---|
490 | return VERR_NO_MEMORY;
|
---|
491 | #else /* IPRT_TARGET_NT4 */
|
---|
492 | return VERR_NOT_SUPPORTED;
|
---|
493 | #endif /* IPRT_TARGET_NT4 */
|
---|
494 | }
|
---|
495 |
|
---|
496 |
|
---|
497 | DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
|
---|
498 | {
|
---|
499 | AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE || uCachePolicy == RTMEM_CACHE_POLICY_MMIO, VERR_NOT_SUPPORTED);
|
---|
500 |
|
---|
501 | /*
|
---|
502 | * Validate the address range and create a descriptor for it.
|
---|
503 | */
|
---|
504 | PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
|
---|
505 | if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
|
---|
506 | return VERR_ADDRESS_TOO_BIG;
|
---|
507 |
|
---|
508 | /*
|
---|
509 | * Create the IPRT memory object.
|
---|
510 | */
|
---|
511 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
512 | if (pMemNt)
|
---|
513 | {
|
---|
514 | pMemNt->Core.u.Phys.PhysBase = Phys;
|
---|
515 | pMemNt->Core.u.Phys.fAllocated = false;
|
---|
516 | pMemNt->Core.u.Phys.uCachePolicy = uCachePolicy;
|
---|
517 | *ppMem = &pMemNt->Core;
|
---|
518 | return VINF_SUCCESS;
|
---|
519 | }
|
---|
520 | return VERR_NO_MEMORY;
|
---|
521 | }
|
---|
522 |
|
---|
523 |
|
---|
524 | /**
|
---|
525 | * Internal worker for locking down pages.
|
---|
526 | *
|
---|
527 | * @return IPRT status code.
|
---|
528 | *
|
---|
529 | * @param ppMem Where to store the memory object pointer.
|
---|
530 | * @param pv First page.
|
---|
531 | * @param cb Number of bytes.
|
---|
532 | * @param fAccess The desired access, a combination of RTMEM_PROT_READ
|
---|
533 | * and RTMEM_PROT_WRITE.
|
---|
534 | * @param R0Process The process \a pv and \a cb refers to.
|
---|
535 | */
|
---|
536 | static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
|
---|
537 | {
|
---|
538 | /*
|
---|
539 | * Calc the number of MDLs we need and allocate the memory object structure.
|
---|
540 | */
|
---|
541 | size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
|
---|
542 | if (cb % MAX_LOCK_MEM_SIZE)
|
---|
543 | cMdls++;
|
---|
544 | if (cMdls >= UINT32_MAX)
|
---|
545 | return VERR_OUT_OF_RANGE;
|
---|
546 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJNT, apMdls[cMdls]),
|
---|
547 | RTR0MEMOBJTYPE_LOCK, pv, cb);
|
---|
548 | if (!pMemNt)
|
---|
549 | return VERR_NO_MEMORY;
|
---|
550 |
|
---|
551 | /*
|
---|
552 | * Loop locking down the sub parts of the memory.
|
---|
553 | */
|
---|
554 | int rc = VINF_SUCCESS;
|
---|
555 | size_t cbTotal = 0;
|
---|
556 | uint8_t *pb = (uint8_t *)pv;
|
---|
557 | uint32_t iMdl;
|
---|
558 | for (iMdl = 0; iMdl < cMdls; iMdl++)
|
---|
559 | {
|
---|
560 | /*
|
---|
561 | * Calc the Mdl size and allocate it.
|
---|
562 | */
|
---|
563 | size_t cbCur = cb - cbTotal;
|
---|
564 | if (cbCur > MAX_LOCK_MEM_SIZE)
|
---|
565 | cbCur = MAX_LOCK_MEM_SIZE;
|
---|
566 | AssertMsg(cbCur, ("cbCur: 0!\n"));
|
---|
567 | PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
|
---|
568 | if (!pMdl)
|
---|
569 | {
|
---|
570 | rc = VERR_NO_MEMORY;
|
---|
571 | break;
|
---|
572 | }
|
---|
573 |
|
---|
574 | /*
|
---|
575 | * Lock the pages.
|
---|
576 | */
|
---|
577 | __try
|
---|
578 | {
|
---|
579 | MmProbeAndLockPages(pMdl,
|
---|
580 | R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
|
---|
581 | fAccess == RTMEM_PROT_READ
|
---|
582 | ? IoReadAccess
|
---|
583 | : fAccess == RTMEM_PROT_WRITE
|
---|
584 | ? IoWriteAccess
|
---|
585 | : IoModifyAccess);
|
---|
586 |
|
---|
587 | pMemNt->apMdls[iMdl] = pMdl;
|
---|
588 | pMemNt->cMdls++;
|
---|
589 | }
|
---|
590 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
591 | {
|
---|
592 | IoFreeMdl(pMdl);
|
---|
593 | rc = VERR_LOCK_FAILED;
|
---|
594 | break;
|
---|
595 | }
|
---|
596 |
|
---|
597 | if (R0Process != NIL_RTR0PROCESS)
|
---|
598 | {
|
---|
599 | /* Make sure the user process can't change the allocation. */
|
---|
600 | pMemNt->pvSecureMem = MmSecureVirtualMemory(pv, cb,
|
---|
601 | fAccess & RTMEM_PROT_WRITE
|
---|
602 | ? PAGE_READWRITE
|
---|
603 | : PAGE_READONLY);
|
---|
604 | if (!pMemNt->pvSecureMem)
|
---|
605 | {
|
---|
606 | rc = VERR_NO_MEMORY;
|
---|
607 | break;
|
---|
608 | }
|
---|
609 | }
|
---|
610 |
|
---|
611 | /* next */
|
---|
612 | cbTotal += cbCur;
|
---|
613 | pb += cbCur;
|
---|
614 | }
|
---|
615 | if (RT_SUCCESS(rc))
|
---|
616 | {
|
---|
617 | Assert(pMemNt->cMdls == cMdls);
|
---|
618 | pMemNt->Core.u.Lock.R0Process = R0Process;
|
---|
619 | *ppMem = &pMemNt->Core;
|
---|
620 | return rc;
|
---|
621 | }
|
---|
622 |
|
---|
623 | /*
|
---|
624 | * We failed, perform cleanups.
|
---|
625 | */
|
---|
626 | while (iMdl-- > 0)
|
---|
627 | {
|
---|
628 | MmUnlockPages(pMemNt->apMdls[iMdl]);
|
---|
629 | IoFreeMdl(pMemNt->apMdls[iMdl]);
|
---|
630 | pMemNt->apMdls[iMdl] = NULL;
|
---|
631 | }
|
---|
632 | if (pMemNt->pvSecureMem)
|
---|
633 | {
|
---|
634 | MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
|
---|
635 | pMemNt->pvSecureMem = NULL;
|
---|
636 | }
|
---|
637 |
|
---|
638 | rtR0MemObjDelete(&pMemNt->Core);
|
---|
639 | return rc;
|
---|
640 | }
|
---|
641 |
|
---|
642 |
|
---|
643 | DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
|
---|
644 | RTR0PROCESS R0Process)
|
---|
645 | {
|
---|
646 | AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
|
---|
647 | /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
|
---|
648 | return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, fAccess, R0Process);
|
---|
649 | }
|
---|
650 |
|
---|
651 |
|
---|
652 | DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
|
---|
653 | {
|
---|
654 | return rtR0MemObjNtLock(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS);
|
---|
655 | }
|
---|
656 |
|
---|
657 |
|
---|
658 | DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
|
---|
659 | {
|
---|
660 | /*
|
---|
661 | * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
|
---|
662 | */
|
---|
663 | return VERR_NOT_SUPPORTED;
|
---|
664 | }
|
---|
665 |
|
---|
666 |
|
---|
667 | DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
|
---|
668 | RTR0PROCESS R0Process)
|
---|
669 | {
|
---|
670 | /*
|
---|
671 | * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
|
---|
672 | */
|
---|
673 | return VERR_NOT_SUPPORTED;
|
---|
674 | }
|
---|
675 |
|
---|
676 |
|
---|
677 | /**
|
---|
678 | * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
|
---|
679 | *
|
---|
680 | * @returns IPRT status code.
|
---|
681 | * @param ppMem Where to store the memory object for the mapping.
|
---|
682 | * @param pMemToMap The memory object to map.
|
---|
683 | * @param pvFixed Where to map it. (void *)-1 if anywhere is fine.
|
---|
684 | * @param uAlignment The alignment requirement for the mapping.
|
---|
685 | * @param fProt The desired page protection for the mapping.
|
---|
686 | * @param R0Process If NIL_RTR0PROCESS map into system (kernel) memory.
|
---|
687 | * If not nil, it's the current process.
|
---|
688 | */
|
---|
689 | static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
|
---|
690 | unsigned fProt, RTR0PROCESS R0Process)
|
---|
691 | {
|
---|
692 | int rc = VERR_MAP_FAILED;
|
---|
693 |
|
---|
694 | /*
|
---|
695 | * Check that the specified alignment is supported.
|
---|
696 | */
|
---|
697 | if (uAlignment > PAGE_SIZE)
|
---|
698 | return VERR_NOT_SUPPORTED;
|
---|
699 |
|
---|
700 | /*
|
---|
701 | * There are two basic cases here, either we've got an MDL and can
|
---|
702 | * map it using MmMapLockedPages, or we've got a contiguous physical
|
---|
703 | * range (MMIO most likely) and can use MmMapIoSpace.
|
---|
704 | */
|
---|
705 | PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
|
---|
706 | if (pMemNtToMap->cMdls)
|
---|
707 | {
|
---|
708 | /* don't attempt map locked regions with more than one mdl. */
|
---|
709 | if (pMemNtToMap->cMdls != 1)
|
---|
710 | return VERR_NOT_SUPPORTED;
|
---|
711 |
|
---|
712 | #ifdef IPRT_TARGET_NT4
|
---|
713 | /* NT SP0 can't map to a specific address. */
|
---|
714 | if (pvFixed != (void *)-1)
|
---|
715 | return VERR_NOT_SUPPORTED;
|
---|
716 | #endif
|
---|
717 |
|
---|
718 | /* we can't map anything to the first page, sorry. */
|
---|
719 | if (pvFixed == 0)
|
---|
720 | return VERR_NOT_SUPPORTED;
|
---|
721 |
|
---|
722 | /* only one system mapping for now - no time to figure out MDL restrictions right now. */
|
---|
723 | if ( pMemNtToMap->Core.uRel.Parent.cMappings
|
---|
724 | && R0Process == NIL_RTR0PROCESS)
|
---|
725 | return VERR_NOT_SUPPORTED;
|
---|
726 |
|
---|
727 | __try
|
---|
728 | {
|
---|
729 | /** @todo uAlignment */
|
---|
730 | /** @todo How to set the protection on the pages? */
|
---|
731 | #ifdef IPRT_TARGET_NT4
|
---|
732 | void *pv = MmMapLockedPages(pMemNtToMap->apMdls[0],
|
---|
733 | R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode);
|
---|
734 | #else
|
---|
735 | void *pv = MmMapLockedPagesSpecifyCache(pMemNtToMap->apMdls[0],
|
---|
736 | R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
|
---|
737 | MmCached,
|
---|
738 | pvFixed != (void *)-1 ? pvFixed : NULL,
|
---|
739 | FALSE /* no bug check on failure */,
|
---|
740 | NormalPagePriority);
|
---|
741 | #endif
|
---|
742 | if (pv)
|
---|
743 | {
|
---|
744 | NOREF(fProt);
|
---|
745 |
|
---|
746 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
|
---|
747 | pMemNtToMap->Core.cb);
|
---|
748 | if (pMemNt)
|
---|
749 | {
|
---|
750 | pMemNt->Core.u.Mapping.R0Process = R0Process;
|
---|
751 | *ppMem = &pMemNt->Core;
|
---|
752 | return VINF_SUCCESS;
|
---|
753 | }
|
---|
754 |
|
---|
755 | rc = VERR_NO_MEMORY;
|
---|
756 | MmUnmapLockedPages(pv, pMemNtToMap->apMdls[0]);
|
---|
757 | }
|
---|
758 | }
|
---|
759 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
760 | {
|
---|
761 | NTSTATUS rcNt = GetExceptionCode();
|
---|
762 | Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
|
---|
763 |
|
---|
764 | /* nothing */
|
---|
765 | rc = VERR_MAP_FAILED;
|
---|
766 | }
|
---|
767 |
|
---|
768 | }
|
---|
769 | else
|
---|
770 | {
|
---|
771 | AssertReturn( pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
|
---|
772 | && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);
|
---|
773 |
|
---|
774 | /* cannot map phys mem to user space (yet). */
|
---|
775 | if (R0Process != NIL_RTR0PROCESS)
|
---|
776 | return VERR_NOT_SUPPORTED;
|
---|
777 |
|
---|
778 | /** @todo uAlignment */
|
---|
779 | /** @todo How to set the protection on the pages? */
|
---|
780 | PHYSICAL_ADDRESS Phys;
|
---|
781 | Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
|
---|
782 | void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb,
|
---|
783 | pMemNtToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO ? MmNonCached : MmCached);
|
---|
784 | if (pv)
|
---|
785 | {
|
---|
786 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
|
---|
787 | pMemNtToMap->Core.cb);
|
---|
788 | if (pMemNt)
|
---|
789 | {
|
---|
790 | pMemNt->Core.u.Mapping.R0Process = R0Process;
|
---|
791 | *ppMem = &pMemNt->Core;
|
---|
792 | return VINF_SUCCESS;
|
---|
793 | }
|
---|
794 |
|
---|
795 | rc = VERR_NO_MEMORY;
|
---|
796 | MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
|
---|
797 | }
|
---|
798 | }
|
---|
799 |
|
---|
800 | NOREF(uAlignment); NOREF(fProt);
|
---|
801 | return rc;
|
---|
802 | }
|
---|
803 |
|
---|
804 |
|
---|
805 | DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
|
---|
806 | unsigned fProt, size_t offSub, size_t cbSub)
|
---|
807 | {
|
---|
808 | AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
|
---|
809 | return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS);
|
---|
810 | }
|
---|
811 |
|
---|
812 |
|
---|
813 | DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
|
---|
814 | {
|
---|
815 | AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
|
---|
816 | return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process);
|
---|
817 | }
|
---|
818 |
|
---|
819 |
|
---|
820 | DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
|
---|
821 | {
|
---|
822 | NOREF(pMem);
|
---|
823 | NOREF(offSub);
|
---|
824 | NOREF(cbSub);
|
---|
825 | NOREF(fProt);
|
---|
826 | return VERR_NOT_SUPPORTED;
|
---|
827 | }
|
---|
828 |
|
---|
829 |
|
---|
830 | DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
|
---|
831 | {
|
---|
832 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
|
---|
833 |
|
---|
834 | if (pMemNt->cMdls)
|
---|
835 | {
|
---|
836 | if (pMemNt->cMdls == 1)
|
---|
837 | {
|
---|
838 | PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
|
---|
839 | return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
|
---|
840 | }
|
---|
841 |
|
---|
842 | size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
|
---|
843 | size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
|
---|
844 | PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
|
---|
845 | return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
|
---|
846 | }
|
---|
847 |
|
---|
848 | switch (pMemNt->Core.enmType)
|
---|
849 | {
|
---|
850 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
851 | return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);
|
---|
852 |
|
---|
853 | case RTR0MEMOBJTYPE_PHYS:
|
---|
854 | return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
|
---|
855 |
|
---|
856 | case RTR0MEMOBJTYPE_PAGE:
|
---|
857 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
858 | case RTR0MEMOBJTYPE_LOW:
|
---|
859 | case RTR0MEMOBJTYPE_CONT:
|
---|
860 | case RTR0MEMOBJTYPE_LOCK:
|
---|
861 | default:
|
---|
862 | AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
|
---|
863 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
864 | return NIL_RTHCPHYS;
|
---|
865 | }
|
---|
866 | }
|
---|
867 |
|
---|