1 | /* $Id: memobj-r0drv-nt.cpp 5005 2007-09-24 14:20:57Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * innotek Portable Runtime - Ring-0 Memory Objects, NT.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2007 innotek GmbH
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License as published by the Free Software Foundation,
|
---|
13 | * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
|
---|
14 | * distribution. VirtualBox OSE is distributed in the hope that it will
|
---|
15 | * be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*******************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *******************************************************************************/
|
---|
22 | #include "the-nt-kernel.h"
|
---|
23 |
|
---|
24 | #include <iprt/memobj.h>
|
---|
25 | #include <iprt/alloc.h>
|
---|
26 | #include <iprt/assert.h>
|
---|
27 | #include <iprt/log.h>
|
---|
28 | #include <iprt/param.h>
|
---|
29 | #include <iprt/string.h>
|
---|
30 | #include <iprt/process.h>
|
---|
31 | #include "internal/memobj.h"
|
---|
32 |
|
---|
33 |
|
---|
34 | /*******************************************************************************
|
---|
35 | * Defined Constants And Macros *
|
---|
36 | *******************************************************************************/
|
---|
37 | /** Maximum number of bytes we try to lock down in one go.
|
---|
38 | * This is supposed to have a limit right below 256MB, but this appears
|
---|
39 | * to actually be much lower. The values here have been determined experimentally.
|
---|
40 | */
|
---|
41 | #ifdef RT_ARCH_X86
|
---|
42 | # define MAX_LOCK_MEM_SIZE (32*1024*1024) /* 32MB */
|
---|
43 | #endif
|
---|
44 | #ifdef RT_ARCH_AMD64
|
---|
45 | # define MAX_LOCK_MEM_SIZE (24*1024*1024) /* 24MB */
|
---|
46 | #endif
|
---|
47 |
|
---|
48 |
|
---|
49 | /*******************************************************************************
|
---|
50 | * Structures and Typedefs *
|
---|
51 | *******************************************************************************/
|
---|
52 | /**
|
---|
53 | * The NT version of the memory object structure.
|
---|
54 | */
|
---|
55 | typedef struct RTR0MEMOBJNT
|
---|
56 | {
|
---|
57 | /** The core structure. */
|
---|
58 | RTR0MEMOBJINTERNAL Core;
|
---|
59 | #ifndef IPRT_TARGET_NT4
|
---|
60 | /** Used MmAllocatePagesForMdl(). */
|
---|
61 | bool fAllocatedPagesForMdl;
|
---|
62 | #endif
|
---|
63 | /** Pointer returned by MmSecureVirtualMemory */
|
---|
64 | PVOID pvSecureMem;
|
---|
65 | /** The number of PMDLs (memory descriptor lists) in the array. */
|
---|
66 | uint32_t cMdls;
|
---|
67 | /** Array of MDL pointers. (variable size) */
|
---|
68 | PMDL apMdls[1];
|
---|
69 | } RTR0MEMOBJNT, *PRTR0MEMOBJNT;
|
---|
70 |
|
---|
71 |
|
---|
72 | int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
|
---|
73 | {
|
---|
74 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
|
---|
75 |
|
---|
76 | /*
|
---|
77 | * Deal with it on a per type basis (just as a variation).
|
---|
78 | */
|
---|
79 | switch (pMemNt->Core.enmType)
|
---|
80 | {
|
---|
81 | case RTR0MEMOBJTYPE_LOW:
|
---|
82 | #ifndef IPRT_TARGET_NT4
|
---|
83 | if (pMemNt->fAllocatedPagesForMdl)
|
---|
84 | {
|
---|
85 | Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
|
---|
86 | MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
|
---|
87 | pMemNt->Core.pv = NULL;
|
---|
88 | if (pMemNt->pvSecureMem)
|
---|
89 | {
|
---|
90 | MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
|
---|
91 | pMemNt->pvSecureMem = NULL;
|
---|
92 | }
|
---|
93 |
|
---|
94 | MmFreePagesFromMdl(pMemNt->apMdls[0]);
|
---|
95 | ExFreePool(pMemNt->apMdls[0]);
|
---|
96 | pMemNt->apMdls[0] = NULL;
|
---|
97 | pMemNt->cMdls = 0;
|
---|
98 | break;
|
---|
99 | }
|
---|
100 | #endif
|
---|
101 | AssertFailed();
|
---|
102 | break;
|
---|
103 |
|
---|
104 | case RTR0MEMOBJTYPE_PAGE:
|
---|
105 | Assert(pMemNt->Core.pv);
|
---|
106 | ExFreePool(pMemNt->Core.pv);
|
---|
107 | pMemNt->Core.pv = NULL;
|
---|
108 |
|
---|
109 | Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
|
---|
110 | IoFreeMdl(pMemNt->apMdls[0]);
|
---|
111 | pMemNt->apMdls[0] = NULL;
|
---|
112 | pMemNt->cMdls = 0;
|
---|
113 | break;
|
---|
114 |
|
---|
115 | case RTR0MEMOBJTYPE_CONT:
|
---|
116 | Assert(pMemNt->Core.pv);
|
---|
117 | MmFreeContiguousMemory(pMemNt->Core.pv);
|
---|
118 | pMemNt->Core.pv = NULL;
|
---|
119 |
|
---|
120 | Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
|
---|
121 | IoFreeMdl(pMemNt->apMdls[0]);
|
---|
122 | pMemNt->apMdls[0] = NULL;
|
---|
123 | pMemNt->cMdls = 0;
|
---|
124 | break;
|
---|
125 |
|
---|
126 | case RTR0MEMOBJTYPE_PHYS:
|
---|
127 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
128 | #ifndef IPRT_TARGET_NT4
|
---|
129 | if (pMemNt->fAllocatedPagesForMdl)
|
---|
130 | {
|
---|
131 | MmFreePagesFromMdl(pMemNt->apMdls[0]);
|
---|
132 | ExFreePool(pMemNt->apMdls[0]);
|
---|
133 | pMemNt->apMdls[0] = NULL;
|
---|
134 | pMemNt->cMdls = 0;
|
---|
135 | break;
|
---|
136 | }
|
---|
137 | #endif
|
---|
138 | AssertFailed();
|
---|
139 | break;
|
---|
140 |
|
---|
141 | case RTR0MEMOBJTYPE_LOCK:
|
---|
142 | if (pMemNt->pvSecureMem)
|
---|
143 | {
|
---|
144 | MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
|
---|
145 | pMemNt->pvSecureMem = NULL;
|
---|
146 | }
|
---|
147 | for (uint32_t i = 0; i < pMemNt->cMdls; i++)
|
---|
148 | {
|
---|
149 | MmUnlockPages(pMemNt->apMdls[i]);
|
---|
150 | IoFreeMdl(pMemNt->apMdls[i]);
|
---|
151 | pMemNt->apMdls[i] = NULL;
|
---|
152 | }
|
---|
153 | break;
|
---|
154 |
|
---|
155 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
156 | /* if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
|
---|
157 | {
|
---|
158 | }
|
---|
159 | else
|
---|
160 | {
|
---|
161 | }*/
|
---|
162 | AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
|
---|
163 | return VERR_INTERNAL_ERROR;
|
---|
164 | break;
|
---|
165 |
|
---|
166 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
167 | {
|
---|
168 | Assert(pMemNt->cMdls == 0 && pMemNt->Core.pv);
|
---|
169 | PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
|
---|
170 | Assert(pMemNtParent);
|
---|
171 | if (pMemNtParent->cMdls)
|
---|
172 | {
|
---|
173 | Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
|
---|
174 | Assert( pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
|
---|
175 | || pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
|
---|
176 | MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
|
---|
177 | }
|
---|
178 | else
|
---|
179 | {
|
---|
180 | Assert( pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
|
---|
181 | && !pMemNtParent->Core.u.Phys.fAllocated);
|
---|
182 | Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
|
---|
183 | MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
|
---|
184 | }
|
---|
185 | pMemNt->Core.pv = NULL;
|
---|
186 | break;
|
---|
187 | }
|
---|
188 |
|
---|
189 | default:
|
---|
190 | AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
|
---|
191 | return VERR_INTERNAL_ERROR;
|
---|
192 | }
|
---|
193 |
|
---|
194 | return VINF_SUCCESS;
|
---|
195 | }
|
---|
196 |
|
---|
197 |
|
---|
198 | int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
199 | {
|
---|
200 | AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
|
---|
201 |
|
---|
202 | /*
|
---|
203 | * Try allocate the memory and create an MDL for them so
|
---|
204 | * we can query the physical addresses and do mappings later
|
---|
205 | * without running into out-of-memory conditions and similar problems.
|
---|
206 | */
|
---|
207 | int rc = VERR_NO_PAGE_MEMORY;
|
---|
208 | void *pv = ExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
|
---|
209 | if (pv)
|
---|
210 | {
|
---|
211 | PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
|
---|
212 | if (pMdl)
|
---|
213 | {
|
---|
214 | MmBuildMdlForNonPagedPool(pMdl);
|
---|
215 | #ifdef RT_ARCH_AMD64
|
---|
216 | MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
|
---|
217 | #endif
|
---|
218 |
|
---|
219 | /*
|
---|
220 | * Create the IPRT memory object.
|
---|
221 | */
|
---|
222 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
|
---|
223 | if (pMemNt)
|
---|
224 | {
|
---|
225 | pMemNt->cMdls = 1;
|
---|
226 | pMemNt->apMdls[0] = pMdl;
|
---|
227 | *ppMem = &pMemNt->Core;
|
---|
228 | return VINF_SUCCESS;
|
---|
229 | }
|
---|
230 |
|
---|
231 | rc = VERR_NO_MEMORY;
|
---|
232 | IoFreeMdl(pMdl);
|
---|
233 | }
|
---|
234 | ExFreePool(pv);
|
---|
235 | }
|
---|
236 | return rc;
|
---|
237 | }
|
---|
238 |
|
---|
239 |
|
---|
240 | int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
241 | {
|
---|
242 | AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
|
---|
243 |
|
---|
244 | /*
|
---|
245 | * Try see if we get lucky first...
|
---|
246 | * (We could probably just assume we're lucky on NT4.)
|
---|
247 | */
|
---|
248 | int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
|
---|
249 | if (RT_SUCCESS(rc))
|
---|
250 | {
|
---|
251 | size_t iPage = cb >> PAGE_SHIFT;
|
---|
252 | while (iPage-- > 0)
|
---|
253 | if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
|
---|
254 | {
|
---|
255 | rc = VERR_NO_MEMORY;
|
---|
256 | break;
|
---|
257 | }
|
---|
258 | if (RT_SUCCESS(rc))
|
---|
259 | return rc;
|
---|
260 |
|
---|
261 | /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
|
---|
262 | RTR0MemObjFree(*ppMem, false);
|
---|
263 | *ppMem = NULL;
|
---|
264 | }
|
---|
265 |
|
---|
266 | #ifndef IPRT_TARGET_NT4
|
---|
267 | /*
|
---|
268 | * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
|
---|
269 | */
|
---|
270 | PHYSICAL_ADDRESS Zero;
|
---|
271 | Zero.QuadPart = 0;
|
---|
272 | PHYSICAL_ADDRESS HighAddr;
|
---|
273 | HighAddr.QuadPart = _4G - 1;
|
---|
274 | PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
|
---|
275 | if (pMdl)
|
---|
276 | {
|
---|
277 | if (MmGetMdlByteCount(pMdl) >= cb)
|
---|
278 | {
|
---|
279 | __try
|
---|
280 | {
|
---|
281 | void *pv = MmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
|
---|
282 | FALSE /* no bug check on failure */, NormalPagePriority);
|
---|
283 | if (pv)
|
---|
284 | {
|
---|
285 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
|
---|
286 | if (pMemNt)
|
---|
287 | {
|
---|
288 | pMemNt->fAllocatedPagesForMdl = true;
|
---|
289 | pMemNt->cMdls = 1;
|
---|
290 | pMemNt->apMdls[0] = pMdl;
|
---|
291 | *ppMem = &pMemNt->Core;
|
---|
292 | return VINF_SUCCESS;
|
---|
293 | }
|
---|
294 | MmUnmapLockedPages(pv, pMdl);
|
---|
295 | }
|
---|
296 | }
|
---|
297 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
298 | {
|
---|
299 | NTSTATUS rcNt = GetExceptionCode();
|
---|
300 | Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
|
---|
301 | /* nothing */
|
---|
302 | }
|
---|
303 | }
|
---|
304 | MmFreePagesFromMdl(pMdl);
|
---|
305 | ExFreePool(pMdl);
|
---|
306 | }
|
---|
307 | #endif /* !IPRT_TARGET_NT4 */
|
---|
308 |
|
---|
309 | /*
|
---|
310 | * Fall back on contiguous memory...
|
---|
311 | */
|
---|
312 | return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
|
---|
313 | }
|
---|
314 |
|
---|
315 |
|
---|
316 | /**
|
---|
317 | * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
|
---|
318 | * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
|
---|
319 | * to what rtR0MemObjNativeAllocCont() does.
|
---|
320 | *
|
---|
321 | * @returns IPRT status code.
|
---|
322 | * @param ppMem Where to store the pointer to the ring-0 memory object.
|
---|
323 | * @param cb The size.
|
---|
324 | * @param fExecutable Whether the mapping should be executable or not.
|
---|
325 | * @param PhysHighest The highest physical address for the pages in allocation.
|
---|
326 | */
|
---|
327 | static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest)
|
---|
328 | {
|
---|
329 | AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
|
---|
330 |
|
---|
331 | /*
|
---|
332 | * Allocate the memory and create an MDL for it.
|
---|
333 | */
|
---|
334 | PHYSICAL_ADDRESS PhysAddrHighest;
|
---|
335 | PhysAddrHighest.QuadPart = PhysHighest;
|
---|
336 | void *pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
|
---|
337 | if (!pv)
|
---|
338 | return VERR_NO_MEMORY;
|
---|
339 |
|
---|
340 | PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
|
---|
341 | if (pMdl)
|
---|
342 | {
|
---|
343 | MmBuildMdlForNonPagedPool(pMdl);
|
---|
344 | #ifdef RT_ARCH_AMD64
|
---|
345 | MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
|
---|
346 | #endif
|
---|
347 |
|
---|
348 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
|
---|
349 | if (pMemNt)
|
---|
350 | {
|
---|
351 | pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
|
---|
352 | pMemNt->cMdls = 1;
|
---|
353 | pMemNt->apMdls[0] = pMdl;
|
---|
354 | *ppMem = &pMemNt->Core;
|
---|
355 | return VINF_SUCCESS;
|
---|
356 | }
|
---|
357 |
|
---|
358 | IoFreeMdl(pMdl);
|
---|
359 | }
|
---|
360 | MmFreeContiguousMemory(pv);
|
---|
361 | return VERR_NO_MEMORY;
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
366 | {
|
---|
367 | return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1);
|
---|
368 | }
|
---|
369 |
|
---|
370 |
|
---|
371 | int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
|
---|
372 | {
|
---|
373 | #ifndef IPRT_TARGET_NT4
|
---|
374 | /*
|
---|
375 | * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
|
---|
376 | *
|
---|
377 | * This is preferable to using MmAllocateContiguousMemory because there are
|
---|
378 | * a few situations where the memory shouldn't be mapped, like for instance
|
---|
379 | * VT-x control memory. Since these are rather small allocations (one or
|
---|
380 | * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
|
---|
381 | * request.
|
---|
382 | *
|
---|
383 | * If the allocation is big, the chances are *probably* not very good. The
|
---|
384 | * current limit is kind of random...
|
---|
385 | */
|
---|
386 | if (cb < _128K)
|
---|
387 | {
|
---|
388 | PHYSICAL_ADDRESS Zero;
|
---|
389 | Zero.QuadPart = 0;
|
---|
390 | PHYSICAL_ADDRESS HighAddr;
|
---|
391 | HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
|
---|
392 | PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
|
---|
393 | if (pMdl)
|
---|
394 | {
|
---|
395 | if (MmGetMdlByteCount(pMdl) >= cb)
|
---|
396 | {
|
---|
397 | PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
|
---|
398 | PFN_NUMBER Pfn = paPfns[0] + 1;
|
---|
399 | const size_t cPages = cb >> PAGE_SHIFT;
|
---|
400 | size_t iPage;
|
---|
401 | for (iPage = 1; iPage < cPages; iPage++, Pfn++)
|
---|
402 | if (paPfns[iPage] != Pfn)
|
---|
403 | break;
|
---|
404 | if (iPage >= cPages)
|
---|
405 | {
|
---|
406 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
407 | if (pMemNt)
|
---|
408 | {
|
---|
409 | pMemNt->Core.u.Phys.fAllocated = true;
|
---|
410 | pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
|
---|
411 | pMemNt->fAllocatedPagesForMdl = true;
|
---|
412 | pMemNt->cMdls = 1;
|
---|
413 | pMemNt->apMdls[0] = pMdl;
|
---|
414 | *ppMem = &pMemNt->Core;
|
---|
415 | return VINF_SUCCESS;
|
---|
416 | }
|
---|
417 | }
|
---|
418 | }
|
---|
419 | MmFreePagesFromMdl(pMdl);
|
---|
420 | ExFreePool(pMdl);
|
---|
421 | }
|
---|
422 | }
|
---|
423 | #endif /* !IPRT_TARGET_NT4 */
|
---|
424 |
|
---|
425 | return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest);
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
|
---|
430 | {
|
---|
431 | #ifndef IPRT_TARGET_NT4
|
---|
432 | PHYSICAL_ADDRESS Zero;
|
---|
433 | Zero.QuadPart = 0;
|
---|
434 | PHYSICAL_ADDRESS HighAddr;
|
---|
435 | HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
|
---|
436 | PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
|
---|
437 | if (pMdl)
|
---|
438 | {
|
---|
439 | if (MmGetMdlByteCount(pMdl) >= cb)
|
---|
440 | {
|
---|
441 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
|
---|
442 | if (pMemNt)
|
---|
443 | {
|
---|
444 | pMemNt->fAllocatedPagesForMdl = true;
|
---|
445 | pMemNt->cMdls = 1;
|
---|
446 | pMemNt->apMdls[0] = pMdl;
|
---|
447 | *ppMem = &pMemNt->Core;
|
---|
448 | return VINF_SUCCESS;
|
---|
449 | }
|
---|
450 | }
|
---|
451 | MmFreePagesFromMdl(pMdl);
|
---|
452 | ExFreePool(pMdl);
|
---|
453 | }
|
---|
454 | return VERR_NO_MEMORY;
|
---|
455 | #else /* IPRT_TARGET_NT4 */
|
---|
456 | return VERR_NOT_SUPPORTED;
|
---|
457 | #endif /* IPRT_TARGET_NT4 */
|
---|
458 | }
|
---|
459 |
|
---|
460 |
|
---|
461 | int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
|
---|
462 | {
|
---|
463 | /*
|
---|
464 | * Validate the address range and create a descriptor for it.
|
---|
465 | */
|
---|
466 | PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
|
---|
467 | if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
|
---|
468 | return VERR_ADDRESS_TOO_BIG;
|
---|
469 |
|
---|
470 | /*
|
---|
471 | * Create the IPRT memory object.
|
---|
472 | */
|
---|
473 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
474 | if (pMemNt)
|
---|
475 | {
|
---|
476 | pMemNt->Core.u.Phys.PhysBase = Phys;
|
---|
477 | pMemNt->Core.u.Phys.fAllocated = false;
|
---|
478 | *ppMem = &pMemNt->Core;
|
---|
479 | return VINF_SUCCESS;
|
---|
480 | }
|
---|
481 | return VERR_NO_MEMORY;
|
---|
482 | }
|
---|
483 |
|
---|
484 |
|
---|
485 | /**
|
---|
486 | * Internal worker for locking down pages.
|
---|
487 | *
|
---|
488 | * @return IPRT status code.
|
---|
489 | *
|
---|
490 | * @param ppMem Where to store the memory object pointer.
|
---|
491 | * @param pv First page.
|
---|
492 | * @param cb Number of bytes.
|
---|
493 | * @param Task The task \a pv and \a cb refers to.
|
---|
494 | */
|
---|
495 | static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, RTR0PROCESS R0Process)
|
---|
496 | {
|
---|
497 | /*
|
---|
498 | * Calc the number of MDLs we need and allocate the memory object structure.
|
---|
499 | */
|
---|
500 | size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
|
---|
501 | if (cb % MAX_LOCK_MEM_SIZE)
|
---|
502 | cMdls++;
|
---|
503 | if (cMdls >= UINT32_MAX)
|
---|
504 | return VERR_OUT_OF_RANGE;
|
---|
505 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJNT, apMdls[cMdls]),
|
---|
506 | RTR0MEMOBJTYPE_LOCK, pv, cb);
|
---|
507 | if (!pMemNt)
|
---|
508 | return VERR_NO_MEMORY;
|
---|
509 |
|
---|
510 | /*
|
---|
511 | * Loop locking down the sub parts of the memory.
|
---|
512 | */
|
---|
513 | int rc = VINF_SUCCESS;
|
---|
514 | size_t cbTotal = 0;
|
---|
515 | uint8_t *pb = (uint8_t *)pv;
|
---|
516 | uint32_t iMdl;
|
---|
517 | for (iMdl = 0; iMdl < cMdls; iMdl++)
|
---|
518 | {
|
---|
519 | /*
|
---|
520 | * Calc the Mdl size and allocate it.
|
---|
521 | */
|
---|
522 | size_t cbCur = cb - cbTotal;
|
---|
523 | if (cbCur > MAX_LOCK_MEM_SIZE)
|
---|
524 | cbCur = MAX_LOCK_MEM_SIZE;
|
---|
525 | AssertMsg(cbCur, ("cbCur: 0!\n"));
|
---|
526 | PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
|
---|
527 | if (!pMdl)
|
---|
528 | {
|
---|
529 | rc = VERR_NO_MEMORY;
|
---|
530 | break;
|
---|
531 | }
|
---|
532 |
|
---|
533 | /*
|
---|
534 | * Lock the pages.
|
---|
535 | */
|
---|
536 | __try
|
---|
537 | {
|
---|
538 | MmProbeAndLockPages(pMdl, R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode, IoModifyAccess);
|
---|
539 |
|
---|
540 | pMemNt->apMdls[iMdl] = pMdl;
|
---|
541 | pMemNt->cMdls++;
|
---|
542 | }
|
---|
543 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
544 | {
|
---|
545 | IoFreeMdl(pMdl);
|
---|
546 | rc = VERR_LOCK_FAILED;
|
---|
547 | break;
|
---|
548 | }
|
---|
549 |
|
---|
550 | if (R0Process != NIL_RTR0PROCESS )
|
---|
551 | {
|
---|
552 | /* Make sure the user process can't change the allocation. */
|
---|
553 | pMemNt->pvSecureMem = MmSecureVirtualMemory(pv, cb, PAGE_READWRITE);
|
---|
554 | if (!pMemNt->pvSecureMem)
|
---|
555 | {
|
---|
556 | rc = VERR_NO_MEMORY;
|
---|
557 | break;
|
---|
558 | }
|
---|
559 | }
|
---|
560 |
|
---|
561 | /* next */
|
---|
562 | cbTotal += cbCur;
|
---|
563 | pb += cbCur;
|
---|
564 | }
|
---|
565 | if (RT_SUCCESS(rc))
|
---|
566 | {
|
---|
567 | Assert(pMemNt->cMdls == cMdls);
|
---|
568 | pMemNt->Core.u.Lock.R0Process = R0Process;
|
---|
569 | *ppMem = &pMemNt->Core;
|
---|
570 | return rc;
|
---|
571 | }
|
---|
572 |
|
---|
573 | /*
|
---|
574 | * We failed, perform cleanups.
|
---|
575 | */
|
---|
576 | while (iMdl-- > 0)
|
---|
577 | {
|
---|
578 | MmUnlockPages(pMemNt->apMdls[iMdl]);
|
---|
579 | IoFreeMdl(pMemNt->apMdls[iMdl]);
|
---|
580 | pMemNt->apMdls[iMdl] = NULL;
|
---|
581 | }
|
---|
582 | if (pMemNt->pvSecureMem)
|
---|
583 | {
|
---|
584 | MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
|
---|
585 | pMemNt->pvSecureMem = NULL;
|
---|
586 | }
|
---|
587 |
|
---|
588 | rtR0MemObjDelete(&pMemNt->Core);
|
---|
589 | return rc;
|
---|
590 | }
|
---|
591 |
|
---|
592 |
|
---|
593 | int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
|
---|
594 | {
|
---|
595 | AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
|
---|
596 | /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
|
---|
597 | return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, R0Process);
|
---|
598 | }
|
---|
599 |
|
---|
600 |
|
---|
601 | int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
|
---|
602 | {
|
---|
603 | return rtR0MemObjNtLock(ppMem, pv, cb, NIL_RTR0PROCESS);
|
---|
604 | }
|
---|
605 |
|
---|
606 |
|
---|
607 | int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
|
---|
608 | {
|
---|
609 | /*
|
---|
610 | * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
|
---|
611 | */
|
---|
612 | return VERR_NOT_IMPLEMENTED;
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 | int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
|
---|
617 | {
|
---|
618 | /*
|
---|
619 | * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
|
---|
620 | */
|
---|
621 | return VERR_NOT_IMPLEMENTED;
|
---|
622 | }
|
---|
623 |
|
---|
624 |
|
---|
625 | /**
|
---|
626 | * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
|
---|
627 | *
|
---|
628 | * @returns IPRT status code.
|
---|
629 | * @param ppMem Where to store the memory object for the mapping.
|
---|
630 | * @param pMemToMap The memory object to map.
|
---|
631 | * @param pvFixed Where to map it. (void *)-1 if anywhere is fine.
|
---|
632 | * @param uAlignment The alignment requirement for the mapping.
|
---|
633 | * @param fProt The desired page protection for the mapping.
|
---|
634 | * @param R0Process If NIL_RTR0PROCESS map into system (kernel) memory.
|
---|
635 | * If not nil, it's the current process.
|
---|
636 | */
|
---|
637 | static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
|
---|
638 | unsigned fProt, RTR0PROCESS R0Process)
|
---|
639 | {
|
---|
640 | int rc = VERR_MAP_FAILED;
|
---|
641 |
|
---|
642 | /*
|
---|
643 | * There are two basic cases here, either we've got an MDL and can
|
---|
644 | * map it using MmMapLockedPages, or we've got a contiguous physical
|
---|
645 | * range (MMIO most likely) and can use MmMapIoSpace.
|
---|
646 | */
|
---|
647 | PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
|
---|
648 | if (pMemNtToMap->cMdls)
|
---|
649 | {
|
---|
650 | /* don't attempt map locked regions with more than one mdl. */
|
---|
651 | if (pMemNtToMap->cMdls != 1)
|
---|
652 | return VERR_NOT_SUPPORTED;
|
---|
653 |
|
---|
654 | /* we can't map anything to the first page, sorry. */
|
---|
655 | if (pvFixed == 0)
|
---|
656 | return VERR_NOT_SUPPORTED;
|
---|
657 |
|
---|
658 | /* only one system mapping for now - no time to figure out MDL restrictions right now. */
|
---|
659 | if ( pMemNtToMap->Core.uRel.Parent.cMappings
|
---|
660 | && R0Process == NIL_RTR0PROCESS)
|
---|
661 | return VERR_NOT_SUPPORTED;
|
---|
662 |
|
---|
663 | __try
|
---|
664 | {
|
---|
665 | /** @todo uAlignment */
|
---|
666 | /** @todo How to set the protection on the pages? */
|
---|
667 | void *pv = MmMapLockedPagesSpecifyCache(pMemNtToMap->apMdls[0],
|
---|
668 | R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
|
---|
669 | MmCached,
|
---|
670 | pvFixed != (void *)-1 ? pvFixed : NULL,
|
---|
671 | FALSE /* no bug check on failure */,
|
---|
672 | NormalPagePriority);
|
---|
673 | if (pv)
|
---|
674 | {
|
---|
675 | NOREF(fProt);
|
---|
676 |
|
---|
677 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
|
---|
678 | pMemNtToMap->Core.cb);
|
---|
679 | if (pMemNt)
|
---|
680 | {
|
---|
681 | pMemNt->Core.u.Mapping.R0Process = R0Process;
|
---|
682 | *ppMem = &pMemNt->Core;
|
---|
683 | return VINF_SUCCESS;
|
---|
684 | }
|
---|
685 |
|
---|
686 | rc = VERR_NO_MEMORY;
|
---|
687 | MmUnmapLockedPages(pv, pMemNtToMap->apMdls[0]);
|
---|
688 | }
|
---|
689 | }
|
---|
690 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
691 | {
|
---|
692 | NTSTATUS rcNt = GetExceptionCode();
|
---|
693 | Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
|
---|
694 |
|
---|
695 | /* nothing */
|
---|
696 | rc = VERR_MAP_FAILED;
|
---|
697 | }
|
---|
698 |
|
---|
699 | }
|
---|
700 | else
|
---|
701 | {
|
---|
702 | AssertReturn( pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
|
---|
703 | && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);
|
---|
704 |
|
---|
705 | /* cannot map phys mem to user space (yet). */
|
---|
706 | if (R0Process != NIL_RTR0PROCESS)
|
---|
707 | return VERR_NOT_SUPPORTED;
|
---|
708 |
|
---|
709 | /** @todo uAlignment */
|
---|
710 | /** @todo How to set the protection on the pages? */
|
---|
711 | PHYSICAL_ADDRESS Phys;
|
---|
712 | Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
|
---|
713 | void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb, MmCached); /** @todo add cache type to fProt. */
|
---|
714 | if (pv)
|
---|
715 | {
|
---|
716 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
|
---|
717 | pMemNtToMap->Core.cb);
|
---|
718 | if (pMemNt)
|
---|
719 | {
|
---|
720 | pMemNt->Core.u.Mapping.R0Process = R0Process;
|
---|
721 | *ppMem = &pMemNt->Core;
|
---|
722 | return VINF_SUCCESS;
|
---|
723 | }
|
---|
724 |
|
---|
725 | rc = VERR_NO_MEMORY;
|
---|
726 | MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
|
---|
727 | }
|
---|
728 | }
|
---|
729 |
|
---|
730 | NOREF(uAlignment); NOREF(fProt);
|
---|
731 | return rc;
|
---|
732 | }
|
---|
733 |
|
---|
734 |
|
---|
735 | int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt)
|
---|
736 | {
|
---|
737 | return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS);
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 | int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
|
---|
742 | {
|
---|
743 | AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
|
---|
744 | return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process);
|
---|
745 | }
|
---|
746 |
|
---|
747 |
|
---|
748 | RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
|
---|
749 | {
|
---|
750 | PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
|
---|
751 |
|
---|
752 | if (pMemNt->cMdls)
|
---|
753 | {
|
---|
754 | if (pMemNt->cMdls == 1)
|
---|
755 | {
|
---|
756 | PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
|
---|
757 | return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
|
---|
758 | }
|
---|
759 |
|
---|
760 | size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
|
---|
761 | size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
|
---|
762 | PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
|
---|
763 | return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
|
---|
764 | }
|
---|
765 |
|
---|
766 | switch (pMemNt->Core.enmType)
|
---|
767 | {
|
---|
768 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
769 | return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);
|
---|
770 |
|
---|
771 | case RTR0MEMOBJTYPE_PHYS:
|
---|
772 | return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
|
---|
773 |
|
---|
774 | case RTR0MEMOBJTYPE_PAGE:
|
---|
775 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
776 | case RTR0MEMOBJTYPE_LOW:
|
---|
777 | case RTR0MEMOBJTYPE_CONT:
|
---|
778 | case RTR0MEMOBJTYPE_LOCK:
|
---|
779 | default:
|
---|
780 | AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
|
---|
781 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
782 | return NIL_RTHCPHYS;
|
---|
783 | }
|
---|
784 | }
|
---|
785 |
|
---|