VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/memobj-r0drv.cpp@ 99416

Last change on this file since 99416 was 98103, checked in by vboxsync, 2 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 34.1 KB
Line 
1/* $Id: memobj-r0drv.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Common Code.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#define LOG_GROUP RTLOGGROUP_DEFAULT /// @todo RTLOGGROUP_MEM
42#define RTMEM_NO_WRAP_TO_EF_APIS /* circular dependency otherwise. */
43#include <iprt/memobj.h>
44#include "internal/iprt.h"
45
46#include <iprt/alloc.h>
47#include <iprt/asm.h>
48#include <iprt/assert.h>
49#include <iprt/err.h>
50#include <iprt/log.h>
51#include <iprt/mp.h>
52#include <iprt/param.h>
53#include <iprt/process.h>
54#include <iprt/thread.h>
55
56#include "internal/memobj.h"
57
58
59/**
60 * Internal function for allocating a new memory object.
61 *
62 * @returns The allocated and initialized handle.
63 * @param cbSelf The size of the memory object handle. 0 mean default size.
64 * @param enmType The memory object type.
65 * @param pv The memory object mapping.
66 * @param cb The size of the memory object.
67 * @param pszTag The tag string.
68 */
69DECLHIDDEN(PRTR0MEMOBJINTERNAL) rtR0MemObjNew(size_t cbSelf, RTR0MEMOBJTYPE enmType, void *pv, size_t cb, const char *pszTag)
70{
71 PRTR0MEMOBJINTERNAL pNew;
72
73 /* validate the size */
74 if (!cbSelf)
75 cbSelf = sizeof(*pNew);
76 Assert(cbSelf >= sizeof(*pNew));
77 Assert(cbSelf == (uint32_t)cbSelf);
78 AssertMsg(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, ("%#zx\n", cb));
79
80 /*
81 * Allocate and initialize the object.
82 */
83 pNew = (PRTR0MEMOBJINTERNAL)RTMemAllocZ(cbSelf);
84 if (pNew)
85 {
86 pNew->u32Magic = RTR0MEMOBJ_MAGIC;
87 pNew->cbSelf = (uint32_t)cbSelf;
88 pNew->enmType = enmType;
89 pNew->fFlags = 0;
90 pNew->cb = cb;
91 pNew->pv = pv;
92#ifdef DEBUG
93 pNew->pszTag = pszTag;
94#else
95 RT_NOREF_PV(pszTag);
96#endif
97 }
98 return pNew;
99}
100
101
102/**
103 * Deletes an incomplete memory object.
104 *
105 * This is for cleaning up after failures during object creation.
106 *
107 * @param pMem The incomplete memory object to delete.
108 */
109DECLHIDDEN(void) rtR0MemObjDelete(PRTR0MEMOBJINTERNAL pMem)
110{
111 if (pMem)
112 {
113 ASMAtomicUoWriteU32(&pMem->u32Magic, ~RTR0MEMOBJ_MAGIC);
114 pMem->enmType = RTR0MEMOBJTYPE_END;
115 RTMemFree(pMem);
116 }
117}
118
119
120/**
121 * Links a mapping object to a primary object.
122 *
123 * @returns IPRT status code.
124 * @retval VINF_SUCCESS on success.
125 * @retval VINF_NO_MEMORY if we couldn't expand the mapping array of the parent.
126 * @param pParent The parent (primary) memory object.
127 * @param pChild The child (mapping) memory object.
128 */
129static int rtR0MemObjLink(PRTR0MEMOBJINTERNAL pParent, PRTR0MEMOBJINTERNAL pChild)
130{
131 uint32_t i;
132
133 /* sanity */
134 Assert(rtR0MemObjIsMapping(pChild));
135 Assert(!rtR0MemObjIsMapping(pParent));
136
137 /* expand the array? */
138 i = pParent->uRel.Parent.cMappings;
139 if (i >= pParent->uRel.Parent.cMappingsAllocated)
140 {
141 void *pv = RTMemRealloc(pParent->uRel.Parent.papMappings,
142 (i + 32) * sizeof(pParent->uRel.Parent.papMappings[0]));
143 if (!pv)
144 return VERR_NO_MEMORY;
145 pParent->uRel.Parent.papMappings = (PPRTR0MEMOBJINTERNAL)pv;
146 pParent->uRel.Parent.cMappingsAllocated = i + 32;
147 Assert(i == pParent->uRel.Parent.cMappings);
148 }
149
150 /* do the linking. */
151 pParent->uRel.Parent.papMappings[i] = pChild;
152 pParent->uRel.Parent.cMappings++;
153 pChild->uRel.Child.pParent = pParent;
154
155 return VINF_SUCCESS;
156}
157
158
159/**
160 * Checks if this is mapping or not.
161 *
162 * @returns true if it's a mapping, otherwise false.
163 * @param MemObj The ring-0 memory object handle.
164 */
165RTR0DECL(bool) RTR0MemObjIsMapping(RTR0MEMOBJ MemObj)
166{
167 /* Validate the object handle. */
168 PRTR0MEMOBJINTERNAL pMem;
169 AssertPtrReturn(MemObj, false);
170 pMem = (PRTR0MEMOBJINTERNAL)MemObj;
171 AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
172 AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);
173
174 /* hand it on to the inlined worker. */
175 return rtR0MemObjIsMapping(pMem);
176}
177RT_EXPORT_SYMBOL(RTR0MemObjIsMapping);
178
179
180/**
181 * Gets the address of a ring-0 memory object.
182 *
183 * @returns The address of the memory object.
184 * @returns NULL if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
185 * @param MemObj The ring-0 memory object handle.
186 */
187RTR0DECL(void *) RTR0MemObjAddress(RTR0MEMOBJ MemObj)
188{
189 /* Validate the object handle. */
190 PRTR0MEMOBJINTERNAL pMem;
191 if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
192 return NULL;
193 AssertPtrReturn(MemObj, NULL);
194 pMem = (PRTR0MEMOBJINTERNAL)MemObj;
195 AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NULL);
196 AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NULL);
197
198 /* return the mapping address. */
199 return pMem->pv;
200}
201RT_EXPORT_SYMBOL(RTR0MemObjAddress);
202
203
204/**
205 * Gets the ring-3 address of a ring-0 memory object.
206 *
207 * This only applies to ring-0 memory object with ring-3 mappings of some kind, i.e.
208 * locked user memory, reserved user address space and user mappings. This API should
209 * not be used on any other objects.
210 *
211 * @returns The address of the memory object.
212 * @returns NIL_RTR3PTR if the handle is invalid or if it's not an object with a ring-3 mapping.
213 * Strict builds will assert in both cases.
214 * @param MemObj The ring-0 memory object handle.
215 */
216RTR0DECL(RTR3PTR) RTR0MemObjAddressR3(RTR0MEMOBJ MemObj)
217{
218 PRTR0MEMOBJINTERNAL pMem;
219
220 /* Validate the object handle. */
221 if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
222 return NIL_RTR3PTR;
223 AssertPtrReturn(MemObj, NIL_RTR3PTR);
224 pMem = (PRTR0MEMOBJINTERNAL)MemObj;
225 AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTR3PTR);
226 AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTR3PTR);
227 if (RT_UNLIKELY( ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING
228 || pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
229 && ( pMem->enmType != RTR0MEMOBJTYPE_LOCK
230 || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
231 && ( pMem->enmType != RTR0MEMOBJTYPE_PHYS_NC
232 || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
233 && ( pMem->enmType != RTR0MEMOBJTYPE_RES_VIRT
234 || pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS)))
235 return NIL_RTR3PTR;
236
237 /* return the mapping address. */
238 return (RTR3PTR)pMem->pv;
239}
240RT_EXPORT_SYMBOL(RTR0MemObjAddressR3);
241
242
243/**
244 * Gets the size of a ring-0 memory object.
245 *
246 * The returned value may differ from the one specified to the API creating the
247 * object because of alignment adjustments. The minimal alignment currently
248 * employed by any API is PAGE_SIZE, so the result can safely be shifted by
249 * PAGE_SHIFT to calculate a page count.
250 *
251 * @returns The object size.
252 * @returns 0 if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
253 * @param MemObj The ring-0 memory object handle.
254 */
255RTR0DECL(size_t) RTR0MemObjSize(RTR0MEMOBJ MemObj)
256{
257 PRTR0MEMOBJINTERNAL pMem;
258
259 /* Validate the object handle. */
260 if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
261 return 0;
262 AssertPtrReturn(MemObj, 0);
263 pMem = (PRTR0MEMOBJINTERNAL)MemObj;
264 AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), 0);
265 AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), 0);
266 AssertMsg(RT_ALIGN_Z(pMem->cb, PAGE_SIZE) == pMem->cb, ("%#zx\n", pMem->cb));
267
268 /* return the size. */
269 return pMem->cb;
270}
271RT_EXPORT_SYMBOL(RTR0MemObjSize);
272
273
274/**
275 * Get the physical address of an page in the memory object.
276 *
277 * @returns The physical address.
278 * @returns NIL_RTHCPHYS if the object doesn't contain fixed physical pages.
279 * @returns NIL_RTHCPHYS if the iPage is out of range.
280 * @returns NIL_RTHCPHYS if the object handle isn't valid.
281 * @param MemObj The ring-0 memory object handle.
282 * @param iPage The page number within the object.
283 */
284/* Work around gcc bug 55940 */
285#if defined(__GNUC__) && defined(RT_ARCH_X86) && (__GNUC__ * 100 + __GNUC_MINOR__) == 407
286 __attribute__((__optimize__ ("no-shrink-wrap")))
287#endif
288RTR0DECL(RTHCPHYS) RTR0MemObjGetPagePhysAddr(RTR0MEMOBJ MemObj, size_t iPage)
289{
290 /* Validate the object handle. */
291 PRTR0MEMOBJINTERNAL pMem;
292 size_t cPages;
293 AssertPtrReturn(MemObj, NIL_RTHCPHYS);
294 pMem = (PRTR0MEMOBJINTERNAL)MemObj;
295 AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, NIL_RTHCPHYS);
296 AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, NIL_RTHCPHYS);
297 AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTHCPHYS);
298 AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTHCPHYS);
299 cPages = (pMem->cb >> PAGE_SHIFT);
300 if (iPage >= cPages)
301 {
302 /* permit: while (RTR0MemObjGetPagePhysAddr(pMem, iPage++) != NIL_RTHCPHYS) {} */
303 if (iPage == cPages)
304 return NIL_RTHCPHYS;
305 AssertReturn(iPage < (pMem->cb >> PAGE_SHIFT), NIL_RTHCPHYS);
306 }
307
308 /*
309 * We know the address of physically contiguous allocations and mappings.
310 */
311 if (pMem->enmType == RTR0MEMOBJTYPE_CONT)
312 return pMem->u.Cont.Phys + iPage * PAGE_SIZE;
313 if (pMem->enmType == RTR0MEMOBJTYPE_PHYS)
314 return pMem->u.Phys.PhysBase + iPage * PAGE_SIZE;
315
316 /*
317 * Do the job.
318 */
319 return rtR0MemObjNativeGetPagePhysAddr(pMem, iPage);
320}
321RT_EXPORT_SYMBOL(RTR0MemObjGetPagePhysAddr);
322
323
324/**
325 * Checks whether the allocation was zero initialized or not.
326 *
327 * This only works on allocations. It is not meaningful for mappings, reserved
328 * memory and entered physical address, and will return false for these.
329 *
330 * @returns true if the allocation was initialized to zero at allocation time,
331 * false if not or query not meaningful to the object type.
332 * @param hMemObj The ring-0 memory object to be freed.
333 *
334 * @remarks It can be expected that memory allocated in the same fashion will
335 * have the same initialization state. So, if this returns true for
336 * one allocation it will return true for all other similarly made
337 * allocations.
338 */
339RTR0DECL(bool) RTR0MemObjWasZeroInitialized(RTR0MEMOBJ hMemObj)
340{
341 PRTR0MEMOBJINTERNAL pMem;
342
343 /* Validate the object handle. */
344 if (RT_UNLIKELY(hMemObj == NIL_RTR0MEMOBJ))
345 return false;
346 AssertPtrReturn(hMemObj, false);
347 pMem = (PRTR0MEMOBJINTERNAL)hMemObj;
348 AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
349 AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);
350 Assert( (pMem->fFlags & (RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC | RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC))
351 != (RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC | RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC));
352
353 /* return the alloc init state. */
354 return (pMem->fFlags & (RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC | RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC))
355 == RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC;
356}
357RT_EXPORT_SYMBOL(RTR0MemObjWasZeroInitialized);
358
359
360/**
361 * Frees a ring-0 memory object.
362 *
363 * @returns IPRT status code.
364 * @retval VERR_INVALID_HANDLE if
365 * @param MemObj The ring-0 memory object to be freed. NIL is
366 * accepted.
367 * @param fFreeMappings Whether or not to free mappings of the object.
368 */
369RTR0DECL(int) RTR0MemObjFree(RTR0MEMOBJ MemObj, bool fFreeMappings)
370{
371 /*
372 * Validate the object handle.
373 */
374 PRTR0MEMOBJINTERNAL pMem;
375 int rc;
376
377 if (MemObj == NIL_RTR0MEMOBJ)
378 return VINF_SUCCESS;
379 AssertPtrReturn(MemObj, VERR_INVALID_HANDLE);
380 pMem = (PRTR0MEMOBJINTERNAL)MemObj;
381 AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
382 AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
383 RT_ASSERT_PREEMPTIBLE();
384
385 /*
386 * Deal with mappings according to fFreeMappings.
387 */
388 if ( !rtR0MemObjIsMapping(pMem)
389 && pMem->uRel.Parent.cMappings > 0)
390 {
391 /* fail if not requested to free mappings. */
392 if (!fFreeMappings)
393 return VERR_MEMORY_BUSY;
394
395 while (pMem->uRel.Parent.cMappings > 0)
396 {
397 PRTR0MEMOBJINTERNAL pChild = pMem->uRel.Parent.papMappings[--pMem->uRel.Parent.cMappings];
398 pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings] = NULL;
399
400 /* sanity checks. */
401 AssertPtr(pChild);
402 AssertFatal(pChild->u32Magic == RTR0MEMOBJ_MAGIC);
403 AssertFatal(pChild->enmType > RTR0MEMOBJTYPE_INVALID && pChild->enmType < RTR0MEMOBJTYPE_END);
404 AssertFatal(rtR0MemObjIsMapping(pChild));
405
406 /* free the mapping. */
407 rc = rtR0MemObjNativeFree(pChild);
408 if (RT_FAILURE(rc))
409 {
410 Log(("RTR0MemObjFree: failed to free mapping %p: %p %#zx; rc=%Rrc\n", pChild, pChild->pv, pChild->cb, rc));
411 pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings++] = pChild;
412 return rc;
413 }
414
415 pChild->u32Magic++;
416 pChild->enmType = RTR0MEMOBJTYPE_END;
417 RTMemFree(pChild);
418 }
419 }
420
421 /*
422 * Free this object.
423 */
424 rc = rtR0MemObjNativeFree(pMem);
425 if (RT_SUCCESS(rc))
426 {
427 /*
428 * Ok, it was freed just fine. Now, if it's a mapping we'll have to remove it from the parent.
429 */
430 if (rtR0MemObjIsMapping(pMem))
431 {
432 PRTR0MEMOBJINTERNAL pParent = pMem->uRel.Child.pParent;
433 uint32_t i;
434
435 /* sanity checks */
436 AssertPtr(pParent);
437 AssertFatal(pParent->u32Magic == RTR0MEMOBJ_MAGIC);
438 AssertFatal(pParent->enmType > RTR0MEMOBJTYPE_INVALID && pParent->enmType < RTR0MEMOBJTYPE_END);
439 AssertFatal(!rtR0MemObjIsMapping(pParent));
440 AssertFatal(pParent->uRel.Parent.cMappings > 0);
441 AssertPtr(pParent->uRel.Parent.papMappings);
442
443 /* locate and remove from the array of mappings. */
444 i = pParent->uRel.Parent.cMappings;
445 while (i-- > 0)
446 {
447 if (pParent->uRel.Parent.papMappings[i] == pMem)
448 {
449 pParent->uRel.Parent.papMappings[i] = pParent->uRel.Parent.papMappings[--pParent->uRel.Parent.cMappings];
450 break;
451 }
452 }
453 Assert(i != UINT32_MAX);
454 }
455 else
456 Assert(pMem->uRel.Parent.cMappings == 0);
457
458 /*
459 * Finally, destroy the handle.
460 */
461 pMem->u32Magic++;
462 pMem->enmType = RTR0MEMOBJTYPE_END;
463 if (!rtR0MemObjIsMapping(pMem))
464 RTMemFree(pMem->uRel.Parent.papMappings);
465 RTMemFree(pMem);
466 }
467 else
468 Log(("RTR0MemObjFree: failed to free %p: %d %p %#zx; rc=%Rrc\n",
469 pMem, pMem->enmType, pMem->pv, pMem->cb, rc));
470 return rc;
471}
472RT_EXPORT_SYMBOL(RTR0MemObjFree);
473
474
475
476RTR0DECL(int) RTR0MemObjAllocPageTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
477{
478 /* sanity checks. */
479 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
480 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
481 *pMemObj = NIL_RTR0MEMOBJ;
482 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
483 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
484 RT_ASSERT_PREEMPTIBLE();
485
486 /* do the allocation. */
487 return rtR0MemObjNativeAllocPage(pMemObj, cbAligned, fExecutable, pszTag);
488}
489RT_EXPORT_SYMBOL(RTR0MemObjAllocPageTag);
490
491
492RTR0DECL(int) RTR0MemObjAllocLargeTag(PRTR0MEMOBJ pMemObj, size_t cb, size_t cbLargePage, uint32_t fFlags, const char *pszTag)
493{
494 /* sanity checks. */
495 const size_t cbAligned = RT_ALIGN_Z(cb, cbLargePage);
496 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
497 *pMemObj = NIL_RTR0MEMOBJ;
498#ifdef RT_ARCH_AMD64
499 AssertReturn(cbLargePage == _2M || cbLargePage == _1G, VERR_OUT_OF_RANGE);
500#elif defined(RT_ARCH_X86)
501 AssertReturn(cbLargePage == _2M || cbLargePage == _4M, VERR_OUT_OF_RANGE);
502#else
503 AssertReturn(RT_IS_POWER_OF_TWO(cbLargePage), VERR_NOT_POWER_OF_TWO);
504 AssertReturn(cbLargePage > PAGE_SIZE, VERR_OUT_OF_RANGE);
505#endif
506 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
507 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
508 AssertReturn(!(fFlags & ~RTMEMOBJ_ALLOC_LARGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
509 RT_ASSERT_PREEMPTIBLE();
510
511 /* do the allocation. */
512 return rtR0MemObjNativeAllocLarge(pMemObj, cbAligned, cbLargePage, fFlags, pszTag);
513}
514RT_EXPORT_SYMBOL(RTR0MemObjAllocLargeTag);
515
516
517/**
518 * Fallback implementation of rtR0MemObjNativeAllocLarge and implements single
519 * page allocation using rtR0MemObjNativeAllocPhys.
520 */
521DECLHIDDEN(int) rtR0MemObjFallbackAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
522 const char *pszTag)
523{
524 RT_NOREF(pszTag, fFlags);
525 if (cb == cbLargePage)
526 return rtR0MemObjNativeAllocPhys(ppMem, cb, NIL_RTHCPHYS, cbLargePage, pszTag);
527 return VERR_NOT_SUPPORTED;
528}
529
530
531RTR0DECL(int) RTR0MemObjAllocLowTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
532{
533 /* sanity checks. */
534 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
535 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
536 *pMemObj = NIL_RTR0MEMOBJ;
537 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
538 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
539 RT_ASSERT_PREEMPTIBLE();
540
541 /* do the allocation. */
542 return rtR0MemObjNativeAllocLow(pMemObj, cbAligned, fExecutable, pszTag);
543}
544RT_EXPORT_SYMBOL(RTR0MemObjAllocLowTag);
545
546
547RTR0DECL(int) RTR0MemObjAllocContTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
548{
549 /* sanity checks. */
550 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
551 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
552 *pMemObj = NIL_RTR0MEMOBJ;
553 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
554 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
555 RT_ASSERT_PREEMPTIBLE();
556
557 /* do the allocation. */
558 return rtR0MemObjNativeAllocCont(pMemObj, cbAligned, fExecutable, pszTag);
559}
560RT_EXPORT_SYMBOL(RTR0MemObjAllocContTag);
561
562
563RTR0DECL(int) RTR0MemObjLockUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb,
564 uint32_t fAccess, RTR0PROCESS R0Process, const char *pszTag)
565{
566 /* sanity checks. */
567 const size_t cbAligned = RT_ALIGN_Z(cb + (R3Ptr & PAGE_OFFSET_MASK), PAGE_SIZE);
568 RTR3PTR const R3PtrAligned = (R3Ptr & ~(RTR3PTR)PAGE_OFFSET_MASK);
569 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
570 *pMemObj = NIL_RTR0MEMOBJ;
571 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
572 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
573 if (R0Process == NIL_RTR0PROCESS)
574 R0Process = RTR0ProcHandleSelf();
575 AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
576 AssertReturn(fAccess, VERR_INVALID_PARAMETER);
577 RT_ASSERT_PREEMPTIBLE();
578
579 /* do the locking. */
580 return rtR0MemObjNativeLockUser(pMemObj, R3PtrAligned, cbAligned, fAccess, R0Process, pszTag);
581}
582RT_EXPORT_SYMBOL(RTR0MemObjLockUserTag);
583
584
585RTR0DECL(int) RTR0MemObjLockKernelTag(PRTR0MEMOBJ pMemObj, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
586{
587 /* sanity checks. */
588 const size_t cbAligned = RT_ALIGN_Z(cb + ((uintptr_t)pv & PAGE_OFFSET_MASK), PAGE_SIZE);
589 void * const pvAligned = (void *)((uintptr_t)pv & ~(uintptr_t)PAGE_OFFSET_MASK);
590 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
591 *pMemObj = NIL_RTR0MEMOBJ;
592 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
593 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
594 AssertPtrReturn(pvAligned, VERR_INVALID_POINTER);
595 AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
596 AssertReturn(fAccess, VERR_INVALID_PARAMETER);
597 RT_ASSERT_PREEMPTIBLE();
598
599 /* do the allocation. */
600 return rtR0MemObjNativeLockKernel(pMemObj, pvAligned, cbAligned, fAccess, pszTag);
601}
602RT_EXPORT_SYMBOL(RTR0MemObjLockKernelTag);
603
604
605RTR0DECL(int) RTR0MemObjAllocPhysTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
606{
607 /* sanity checks. */
608 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
609 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
610 *pMemObj = NIL_RTR0MEMOBJ;
611 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
612 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
613 AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
614 RT_ASSERT_PREEMPTIBLE();
615
616 /* do the allocation. */
617 return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, PAGE_SIZE /* page aligned */, pszTag);
618}
619RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysTag);
620
621
622RTR0DECL(int) RTR0MemObjAllocPhysExTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
623{
624 /* sanity checks. */
625 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
626 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
627 *pMemObj = NIL_RTR0MEMOBJ;
628 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
629 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
630 AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
631 if (uAlignment == 0)
632 uAlignment = PAGE_SIZE;
633 AssertReturn( uAlignment == PAGE_SIZE
634 || uAlignment == _2M
635 || uAlignment == _4M
636 || uAlignment == _1G,
637 VERR_INVALID_PARAMETER);
638#if HC_ARCH_BITS == 32
639 /* Memory allocated in this way is typically mapped into kernel space as well; simply
640 don't allow this on 32 bits hosts as the kernel space is too crowded already. */
641 if (uAlignment != PAGE_SIZE)
642 return VERR_NOT_SUPPORTED;
643#endif
644 RT_ASSERT_PREEMPTIBLE();
645
646 /* do the allocation. */
647 return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, uAlignment, pszTag);
648}
649RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysExTag);
650
651
652RTR0DECL(int) RTR0MemObjAllocPhysNCTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
653{
654 /* sanity checks. */
655 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
656 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
657 *pMemObj = NIL_RTR0MEMOBJ;
658 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
659 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
660 AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
661 RT_ASSERT_PREEMPTIBLE();
662
663 /* do the allocation. */
664 return rtR0MemObjNativeAllocPhysNC(pMemObj, cbAligned, PhysHighest, pszTag);
665}
666RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysNCTag);
667
668
669RTR0DECL(int) RTR0MemObjEnterPhysTag(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
670{
671 /* sanity checks. */
672 const size_t cbAligned = RT_ALIGN_Z(cb + (Phys & PAGE_OFFSET_MASK), PAGE_SIZE);
673 const RTHCPHYS PhysAligned = Phys & ~(RTHCPHYS)PAGE_OFFSET_MASK;
674 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
675 *pMemObj = NIL_RTR0MEMOBJ;
676 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
677 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
678 AssertReturn(Phys != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
679 AssertReturn( uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE
680 || uCachePolicy == RTMEM_CACHE_POLICY_MMIO,
681 VERR_INVALID_PARAMETER);
682 RT_ASSERT_PREEMPTIBLE();
683
684 /* do the allocation. */
685 return rtR0MemObjNativeEnterPhys(pMemObj, PhysAligned, cbAligned, uCachePolicy, pszTag);
686}
687RT_EXPORT_SYMBOL(RTR0MemObjEnterPhysTag);
688
689
690RTR0DECL(int) RTR0MemObjReserveKernelTag(PRTR0MEMOBJ pMemObj, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
691{
692 /* sanity checks. */
693 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
694 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
695 *pMemObj = NIL_RTR0MEMOBJ;
696 if (uAlignment == 0)
697 uAlignment = PAGE_SIZE;
698 AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
699 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
700 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
701 if (pvFixed != (void *)-1)
702 AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
703 RT_ASSERT_PREEMPTIBLE();
704
705 /* do the reservation. */
706 return rtR0MemObjNativeReserveKernel(pMemObj, pvFixed, cbAligned, uAlignment, pszTag);
707}
708RT_EXPORT_SYMBOL(RTR0MemObjReserveKernelTag);
709
710
711RTR0DECL(int) RTR0MemObjReserveUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3PtrFixed, size_t cb,
712 size_t uAlignment, RTR0PROCESS R0Process, const char *pszTag)
713{
714 /* sanity checks. */
715 const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
716 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
717 *pMemObj = NIL_RTR0MEMOBJ;
718 if (uAlignment == 0)
719 uAlignment = PAGE_SIZE;
720 AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
721 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
722 AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
723 if (R3PtrFixed != (RTR3PTR)-1)
724 AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
725 if (R0Process == NIL_RTR0PROCESS)
726 R0Process = RTR0ProcHandleSelf();
727 RT_ASSERT_PREEMPTIBLE();
728
729 /* do the reservation. */
730 return rtR0MemObjNativeReserveUser(pMemObj, R3PtrFixed, cbAligned, uAlignment, R0Process, pszTag);
731}
732RT_EXPORT_SYMBOL(RTR0MemObjReserveUserTag);
733
734
735RTR0DECL(int) RTR0MemObjMapKernelTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed,
736 size_t uAlignment, unsigned fProt, const char *pszTag)
737{
738 return RTR0MemObjMapKernelExTag(pMemObj, MemObjToMap, pvFixed, uAlignment, fProt, 0, 0, pszTag);
739}
740RT_EXPORT_SYMBOL(RTR0MemObjMapKernelTag);
741
742
743RTR0DECL(int) RTR0MemObjMapKernelExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment,
744 unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
745{
746 PRTR0MEMOBJINTERNAL pMemToMap;
747 PRTR0MEMOBJINTERNAL pNew;
748 int rc;
749
750 /* sanity checks. */
751 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
752 *pMemObj = NIL_RTR0MEMOBJ;
753 AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
754 pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
755 AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
756 AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
757 AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
758 AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
759 if (uAlignment == 0)
760 uAlignment = PAGE_SIZE;
761 AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
762 if (pvFixed != (void *)-1)
763 AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
764 AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
765 AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
766 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
767 AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
768 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
769 AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
770 AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
771 RT_ASSERT_PREEMPTIBLE();
772
773 /* adjust the request to simplify the native code. */
774 if (offSub == 0 && cbSub == pMemToMap->cb)
775 cbSub = 0;
776
777 /* do the mapping. */
778 rc = rtR0MemObjNativeMapKernel(&pNew, pMemToMap, pvFixed, uAlignment, fProt, offSub, cbSub, pszTag);
779 if (RT_SUCCESS(rc))
780 {
781 /* link it. */
782 rc = rtR0MemObjLink(pMemToMap, pNew);
783 if (RT_SUCCESS(rc))
784 *pMemObj = pNew;
785 else
786 {
787 /* damn, out of memory. bail out. */
788 int rc2 = rtR0MemObjNativeFree(pNew);
789 AssertRC(rc2);
790 pNew->u32Magic++;
791 pNew->enmType = RTR0MEMOBJTYPE_END;
792 RTMemFree(pNew);
793 }
794 }
795
796 return rc;
797}
798RT_EXPORT_SYMBOL(RTR0MemObjMapKernelExTag);
799
800
801RTR0DECL(int) RTR0MemObjMapUserTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed,
802 size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, const char *pszTag)
803{
804 return RTR0MemObjMapUserExTag(pMemObj, MemObjToMap, R3PtrFixed, uAlignment, fProt, R0Process, 0, 0, pszTag);
805}
806RT_EXPORT_SYMBOL(RTR0MemObjMapUserTag);
807
808
809RTR0DECL(int) RTR0MemObjMapUserExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
810 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
811{
812 /* sanity checks. */
813 PRTR0MEMOBJINTERNAL pMemToMap;
814 PRTR0MEMOBJINTERNAL pNew;
815 int rc;
816 AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
817 pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
818 *pMemObj = NIL_RTR0MEMOBJ;
819 AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
820 AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
821 AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
822 AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
823 AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
824 if (uAlignment == 0)
825 uAlignment = PAGE_SIZE;
826 AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
827 if (R3PtrFixed != (RTR3PTR)-1)
828 AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
829 AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
830 AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
831 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
832 AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
833 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
834 AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
835 AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
836 if (R0Process == NIL_RTR0PROCESS)
837 R0Process = RTR0ProcHandleSelf();
838 RT_ASSERT_PREEMPTIBLE();
839
840 /* adjust the request to simplify the native code. */
841 if (offSub == 0 && cbSub == pMemToMap->cb)
842 cbSub = 0;
843
844 /* do the mapping. */
845 rc = rtR0MemObjNativeMapUser(&pNew, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub, pszTag);
846 if (RT_SUCCESS(rc))
847 {
848 /* link it. */
849 rc = rtR0MemObjLink(pMemToMap, pNew);
850 if (RT_SUCCESS(rc))
851 *pMemObj = pNew;
852 else
853 {
854 /* damn, out of memory. bail out. */
855 int rc2 = rtR0MemObjNativeFree(pNew);
856 AssertRC(rc2);
857 pNew->u32Magic++;
858 pNew->enmType = RTR0MEMOBJTYPE_END;
859 RTMemFree(pNew);
860 }
861 }
862
863 return rc;
864}
865RT_EXPORT_SYMBOL(RTR0MemObjMapUserExTag);
866
867
868RTR0DECL(int) RTR0MemObjProtect(RTR0MEMOBJ hMemObj, size_t offSub, size_t cbSub, uint32_t fProt)
869{
870 PRTR0MEMOBJINTERNAL pMemObj;
871 int rc;
872
873 /* sanity checks. */
874 pMemObj = (PRTR0MEMOBJINTERNAL)hMemObj;
875 AssertPtrReturn(pMemObj, VERR_INVALID_HANDLE);
876 AssertReturn(pMemObj->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
877 AssertReturn(pMemObj->enmType > RTR0MEMOBJTYPE_INVALID && pMemObj->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
878 AssertReturn(rtR0MemObjIsProtectable(pMemObj), VERR_INVALID_PARAMETER);
879 AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
880 AssertReturn(offSub < pMemObj->cb, VERR_INVALID_PARAMETER);
881 AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
882 AssertReturn(cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
883 AssertReturn(offSub + cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
884 AssertReturn(!(fProt & ~(RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
885 RT_ASSERT_PREEMPTIBLE();
886
887 /* do the job */
888 rc = rtR0MemObjNativeProtect(pMemObj, offSub, cbSub, fProt);
889 if (RT_SUCCESS(rc))
890 pMemObj->fFlags |= RTR0MEMOBJ_FLAGS_PROT_CHANGED; /* record it */
891
892 return rc;
893}
894RT_EXPORT_SYMBOL(RTR0MemObjProtect);
895
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette