1 | /* $Id: memobj-r0drv.cpp 93115 2022-01-01 11:31:46Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Ring-0 Memory Objects, Common Code.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*********************************************************************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *********************************************************************************************************************************/
|
---|
31 | #define LOG_GROUP RTLOGGROUP_DEFAULT /// @todo RTLOGGROUP_MEM
|
---|
32 | #define RTMEM_NO_WRAP_TO_EF_APIS /* circular dependency otherwise. */
|
---|
33 | #include <iprt/memobj.h>
|
---|
34 | #include "internal/iprt.h"
|
---|
35 |
|
---|
36 | #include <iprt/alloc.h>
|
---|
37 | #include <iprt/asm.h>
|
---|
38 | #include <iprt/assert.h>
|
---|
39 | #include <iprt/err.h>
|
---|
40 | #include <iprt/log.h>
|
---|
41 | #include <iprt/mp.h>
|
---|
42 | #include <iprt/param.h>
|
---|
43 | #include <iprt/process.h>
|
---|
44 | #include <iprt/thread.h>
|
---|
45 |
|
---|
46 | #include "internal/memobj.h"
|
---|
47 |
|
---|
48 |
|
---|
49 | /**
|
---|
50 | * Internal function for allocating a new memory object.
|
---|
51 | *
|
---|
52 | * @returns The allocated and initialized handle.
|
---|
53 | * @param cbSelf The size of the memory object handle. 0 mean default size.
|
---|
54 | * @param enmType The memory object type.
|
---|
55 | * @param pv The memory object mapping.
|
---|
56 | * @param cb The size of the memory object.
|
---|
57 | * @param pszTag The tag string.
|
---|
58 | */
|
---|
59 | DECLHIDDEN(PRTR0MEMOBJINTERNAL) rtR0MemObjNew(size_t cbSelf, RTR0MEMOBJTYPE enmType, void *pv, size_t cb, const char *pszTag)
|
---|
60 | {
|
---|
61 | PRTR0MEMOBJINTERNAL pNew;
|
---|
62 |
|
---|
63 | /* validate the size */
|
---|
64 | if (!cbSelf)
|
---|
65 | cbSelf = sizeof(*pNew);
|
---|
66 | Assert(cbSelf >= sizeof(*pNew));
|
---|
67 | Assert(cbSelf == (uint32_t)cbSelf);
|
---|
68 | AssertMsg(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, ("%#zx\n", cb));
|
---|
69 |
|
---|
70 | /*
|
---|
71 | * Allocate and initialize the object.
|
---|
72 | */
|
---|
73 | pNew = (PRTR0MEMOBJINTERNAL)RTMemAllocZ(cbSelf);
|
---|
74 | if (pNew)
|
---|
75 | {
|
---|
76 | pNew->u32Magic = RTR0MEMOBJ_MAGIC;
|
---|
77 | pNew->cbSelf = (uint32_t)cbSelf;
|
---|
78 | pNew->enmType = enmType;
|
---|
79 | pNew->fFlags = 0;
|
---|
80 | pNew->cb = cb;
|
---|
81 | pNew->pv = pv;
|
---|
82 | #ifdef DEBUG
|
---|
83 | pNew->pszTag = pszTag;
|
---|
84 | #else
|
---|
85 | RT_NOREF_PV(pszTag);
|
---|
86 | #endif
|
---|
87 | }
|
---|
88 | return pNew;
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 | /**
|
---|
93 | * Deletes an incomplete memory object.
|
---|
94 | *
|
---|
95 | * This is for cleaning up after failures during object creation.
|
---|
96 | *
|
---|
97 | * @param pMem The incomplete memory object to delete.
|
---|
98 | */
|
---|
99 | DECLHIDDEN(void) rtR0MemObjDelete(PRTR0MEMOBJINTERNAL pMem)
|
---|
100 | {
|
---|
101 | if (pMem)
|
---|
102 | {
|
---|
103 | ASMAtomicUoWriteU32(&pMem->u32Magic, ~RTR0MEMOBJ_MAGIC);
|
---|
104 | pMem->enmType = RTR0MEMOBJTYPE_END;
|
---|
105 | RTMemFree(pMem);
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Links a mapping object to a primary object.
|
---|
112 | *
|
---|
113 | * @returns IPRT status code.
|
---|
114 | * @retval VINF_SUCCESS on success.
|
---|
115 | * @retval VINF_NO_MEMORY if we couldn't expand the mapping array of the parent.
|
---|
116 | * @param pParent The parent (primary) memory object.
|
---|
117 | * @param pChild The child (mapping) memory object.
|
---|
118 | */
|
---|
119 | static int rtR0MemObjLink(PRTR0MEMOBJINTERNAL pParent, PRTR0MEMOBJINTERNAL pChild)
|
---|
120 | {
|
---|
121 | uint32_t i;
|
---|
122 |
|
---|
123 | /* sanity */
|
---|
124 | Assert(rtR0MemObjIsMapping(pChild));
|
---|
125 | Assert(!rtR0MemObjIsMapping(pParent));
|
---|
126 |
|
---|
127 | /* expand the array? */
|
---|
128 | i = pParent->uRel.Parent.cMappings;
|
---|
129 | if (i >= pParent->uRel.Parent.cMappingsAllocated)
|
---|
130 | {
|
---|
131 | void *pv = RTMemRealloc(pParent->uRel.Parent.papMappings,
|
---|
132 | (i + 32) * sizeof(pParent->uRel.Parent.papMappings[0]));
|
---|
133 | if (!pv)
|
---|
134 | return VERR_NO_MEMORY;
|
---|
135 | pParent->uRel.Parent.papMappings = (PPRTR0MEMOBJINTERNAL)pv;
|
---|
136 | pParent->uRel.Parent.cMappingsAllocated = i + 32;
|
---|
137 | Assert(i == pParent->uRel.Parent.cMappings);
|
---|
138 | }
|
---|
139 |
|
---|
140 | /* do the linking. */
|
---|
141 | pParent->uRel.Parent.papMappings[i] = pChild;
|
---|
142 | pParent->uRel.Parent.cMappings++;
|
---|
143 | pChild->uRel.Child.pParent = pParent;
|
---|
144 |
|
---|
145 | return VINF_SUCCESS;
|
---|
146 | }
|
---|
147 |
|
---|
148 |
|
---|
149 | /**
|
---|
150 | * Checks if this is mapping or not.
|
---|
151 | *
|
---|
152 | * @returns true if it's a mapping, otherwise false.
|
---|
153 | * @param MemObj The ring-0 memory object handle.
|
---|
154 | */
|
---|
155 | RTR0DECL(bool) RTR0MemObjIsMapping(RTR0MEMOBJ MemObj)
|
---|
156 | {
|
---|
157 | /* Validate the object handle. */
|
---|
158 | PRTR0MEMOBJINTERNAL pMem;
|
---|
159 | AssertPtrReturn(MemObj, false);
|
---|
160 | pMem = (PRTR0MEMOBJINTERNAL)MemObj;
|
---|
161 | AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
|
---|
162 | AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);
|
---|
163 |
|
---|
164 | /* hand it on to the inlined worker. */
|
---|
165 | return rtR0MemObjIsMapping(pMem);
|
---|
166 | }
|
---|
167 | RT_EXPORT_SYMBOL(RTR0MemObjIsMapping);
|
---|
168 |
|
---|
169 |
|
---|
170 | /**
|
---|
171 | * Gets the address of a ring-0 memory object.
|
---|
172 | *
|
---|
173 | * @returns The address of the memory object.
|
---|
174 | * @returns NULL if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
|
---|
175 | * @param MemObj The ring-0 memory object handle.
|
---|
176 | */
|
---|
177 | RTR0DECL(void *) RTR0MemObjAddress(RTR0MEMOBJ MemObj)
|
---|
178 | {
|
---|
179 | /* Validate the object handle. */
|
---|
180 | PRTR0MEMOBJINTERNAL pMem;
|
---|
181 | if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
|
---|
182 | return NULL;
|
---|
183 | AssertPtrReturn(MemObj, NULL);
|
---|
184 | pMem = (PRTR0MEMOBJINTERNAL)MemObj;
|
---|
185 | AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NULL);
|
---|
186 | AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NULL);
|
---|
187 |
|
---|
188 | /* return the mapping address. */
|
---|
189 | return pMem->pv;
|
---|
190 | }
|
---|
191 | RT_EXPORT_SYMBOL(RTR0MemObjAddress);
|
---|
192 |
|
---|
193 |
|
---|
194 | /**
|
---|
195 | * Gets the ring-3 address of a ring-0 memory object.
|
---|
196 | *
|
---|
197 | * This only applies to ring-0 memory object with ring-3 mappings of some kind, i.e.
|
---|
198 | * locked user memory, reserved user address space and user mappings. This API should
|
---|
199 | * not be used on any other objects.
|
---|
200 | *
|
---|
201 | * @returns The address of the memory object.
|
---|
202 | * @returns NIL_RTR3PTR if the handle is invalid or if it's not an object with a ring-3 mapping.
|
---|
203 | * Strict builds will assert in both cases.
|
---|
204 | * @param MemObj The ring-0 memory object handle.
|
---|
205 | */
|
---|
206 | RTR0DECL(RTR3PTR) RTR0MemObjAddressR3(RTR0MEMOBJ MemObj)
|
---|
207 | {
|
---|
208 | PRTR0MEMOBJINTERNAL pMem;
|
---|
209 |
|
---|
210 | /* Validate the object handle. */
|
---|
211 | if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
|
---|
212 | return NIL_RTR3PTR;
|
---|
213 | AssertPtrReturn(MemObj, NIL_RTR3PTR);
|
---|
214 | pMem = (PRTR0MEMOBJINTERNAL)MemObj;
|
---|
215 | AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTR3PTR);
|
---|
216 | AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTR3PTR);
|
---|
217 | if (RT_UNLIKELY( ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING
|
---|
218 | || pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
|
---|
219 | && ( pMem->enmType != RTR0MEMOBJTYPE_LOCK
|
---|
220 | || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
|
---|
221 | && ( pMem->enmType != RTR0MEMOBJTYPE_PHYS_NC
|
---|
222 | || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
|
---|
223 | && ( pMem->enmType != RTR0MEMOBJTYPE_RES_VIRT
|
---|
224 | || pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS)))
|
---|
225 | return NIL_RTR3PTR;
|
---|
226 |
|
---|
227 | /* return the mapping address. */
|
---|
228 | return (RTR3PTR)pMem->pv;
|
---|
229 | }
|
---|
230 | RT_EXPORT_SYMBOL(RTR0MemObjAddressR3);
|
---|
231 |
|
---|
232 |
|
---|
233 | /**
|
---|
234 | * Gets the size of a ring-0 memory object.
|
---|
235 | *
|
---|
236 | * The returned value may differ from the one specified to the API creating the
|
---|
237 | * object because of alignment adjustments. The minimal alignment currently
|
---|
238 | * employed by any API is PAGE_SIZE, so the result can safely be shifted by
|
---|
239 | * PAGE_SHIFT to calculate a page count.
|
---|
240 | *
|
---|
241 | * @returns The object size.
|
---|
242 | * @returns 0 if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
|
---|
243 | * @param MemObj The ring-0 memory object handle.
|
---|
244 | */
|
---|
245 | RTR0DECL(size_t) RTR0MemObjSize(RTR0MEMOBJ MemObj)
|
---|
246 | {
|
---|
247 | PRTR0MEMOBJINTERNAL pMem;
|
---|
248 |
|
---|
249 | /* Validate the object handle. */
|
---|
250 | if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
|
---|
251 | return 0;
|
---|
252 | AssertPtrReturn(MemObj, 0);
|
---|
253 | pMem = (PRTR0MEMOBJINTERNAL)MemObj;
|
---|
254 | AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), 0);
|
---|
255 | AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), 0);
|
---|
256 | AssertMsg(RT_ALIGN_Z(pMem->cb, PAGE_SIZE) == pMem->cb, ("%#zx\n", pMem->cb));
|
---|
257 |
|
---|
258 | /* return the size. */
|
---|
259 | return pMem->cb;
|
---|
260 | }
|
---|
261 | RT_EXPORT_SYMBOL(RTR0MemObjSize);
|
---|
262 |
|
---|
263 |
|
---|
264 | /**
|
---|
265 | * Get the physical address of an page in the memory object.
|
---|
266 | *
|
---|
267 | * @returns The physical address.
|
---|
268 | * @returns NIL_RTHCPHYS if the object doesn't contain fixed physical pages.
|
---|
269 | * @returns NIL_RTHCPHYS if the iPage is out of range.
|
---|
270 | * @returns NIL_RTHCPHYS if the object handle isn't valid.
|
---|
271 | * @param MemObj The ring-0 memory object handle.
|
---|
272 | * @param iPage The page number within the object.
|
---|
273 | */
|
---|
274 | /* Work around gcc bug 55940 */
|
---|
275 | #if defined(__GNUC__) && defined(RT_ARCH_X86) && (__GNUC__ * 100 + __GNUC_MINOR__) == 407
|
---|
276 | __attribute__((__optimize__ ("no-shrink-wrap")))
|
---|
277 | #endif
|
---|
278 | RTR0DECL(RTHCPHYS) RTR0MemObjGetPagePhysAddr(RTR0MEMOBJ MemObj, size_t iPage)
|
---|
279 | {
|
---|
280 | /* Validate the object handle. */
|
---|
281 | PRTR0MEMOBJINTERNAL pMem;
|
---|
282 | size_t cPages;
|
---|
283 | AssertPtrReturn(MemObj, NIL_RTHCPHYS);
|
---|
284 | pMem = (PRTR0MEMOBJINTERNAL)MemObj;
|
---|
285 | AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, NIL_RTHCPHYS);
|
---|
286 | AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, NIL_RTHCPHYS);
|
---|
287 | AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTHCPHYS);
|
---|
288 | AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTHCPHYS);
|
---|
289 | cPages = (pMem->cb >> PAGE_SHIFT);
|
---|
290 | if (iPage >= cPages)
|
---|
291 | {
|
---|
292 | /* permit: while (RTR0MemObjGetPagePhysAddr(pMem, iPage++) != NIL_RTHCPHYS) {} */
|
---|
293 | if (iPage == cPages)
|
---|
294 | return NIL_RTHCPHYS;
|
---|
295 | AssertReturn(iPage < (pMem->cb >> PAGE_SHIFT), NIL_RTHCPHYS);
|
---|
296 | }
|
---|
297 |
|
---|
298 | /*
|
---|
299 | * We know the address of physically contiguous allocations and mappings.
|
---|
300 | */
|
---|
301 | if (pMem->enmType == RTR0MEMOBJTYPE_CONT)
|
---|
302 | return pMem->u.Cont.Phys + iPage * PAGE_SIZE;
|
---|
303 | if (pMem->enmType == RTR0MEMOBJTYPE_PHYS)
|
---|
304 | return pMem->u.Phys.PhysBase + iPage * PAGE_SIZE;
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Do the job.
|
---|
308 | */
|
---|
309 | return rtR0MemObjNativeGetPagePhysAddr(pMem, iPage);
|
---|
310 | }
|
---|
311 | RT_EXPORT_SYMBOL(RTR0MemObjGetPagePhysAddr);
|
---|
312 |
|
---|
313 |
|
---|
314 | /**
|
---|
315 | * Checks whether the allocation was zero initialized or not.
|
---|
316 | *
|
---|
317 | * This only works on allocations. It is not meaningful for mappings, reserved
|
---|
318 | * memory and entered physical address, and will return false for these.
|
---|
319 | *
|
---|
320 | * @returns true if the allocation was initialized to zero at allocation time,
|
---|
321 | * false if not or query not meaningful to the object type.
|
---|
322 | * @param hMemObj The ring-0 memory object to be freed.
|
---|
323 | *
|
---|
324 | * @remarks It can be expected that memory allocated in the same fashion will
|
---|
325 | * have the same initialization state. So, if this returns true for
|
---|
326 | * one allocation it will return true for all other similarly made
|
---|
327 | * allocations.
|
---|
328 | */
|
---|
329 | RTR0DECL(bool) RTR0MemObjWasZeroInitialized(RTR0MEMOBJ hMemObj)
|
---|
330 | {
|
---|
331 | PRTR0MEMOBJINTERNAL pMem;
|
---|
332 |
|
---|
333 | /* Validate the object handle. */
|
---|
334 | if (RT_UNLIKELY(hMemObj == NIL_RTR0MEMOBJ))
|
---|
335 | return false;
|
---|
336 | AssertPtrReturn(hMemObj, false);
|
---|
337 | pMem = (PRTR0MEMOBJINTERNAL)hMemObj;
|
---|
338 | AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
|
---|
339 | AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);
|
---|
340 | Assert( (pMem->fFlags & (RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC | RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC))
|
---|
341 | != (RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC | RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC));
|
---|
342 |
|
---|
343 | /* return the alloc init state. */
|
---|
344 | return (pMem->fFlags & (RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC | RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC))
|
---|
345 | == RTR0MEMOBJ_FLAGS_ZERO_AT_ALLOC;
|
---|
346 | }
|
---|
347 | RT_EXPORT_SYMBOL(RTR0MemObjWasZeroInitialized);
|
---|
348 |
|
---|
349 |
|
---|
350 | /**
|
---|
351 | * Frees a ring-0 memory object.
|
---|
352 | *
|
---|
353 | * @returns IPRT status code.
|
---|
354 | * @retval VERR_INVALID_HANDLE if
|
---|
355 | * @param MemObj The ring-0 memory object to be freed. NIL is
|
---|
356 | * accepted.
|
---|
357 | * @param fFreeMappings Whether or not to free mappings of the object.
|
---|
358 | */
|
---|
359 | RTR0DECL(int) RTR0MemObjFree(RTR0MEMOBJ MemObj, bool fFreeMappings)
|
---|
360 | {
|
---|
361 | /*
|
---|
362 | * Validate the object handle.
|
---|
363 | */
|
---|
364 | PRTR0MEMOBJINTERNAL pMem;
|
---|
365 | int rc;
|
---|
366 |
|
---|
367 | if (MemObj == NIL_RTR0MEMOBJ)
|
---|
368 | return VINF_SUCCESS;
|
---|
369 | AssertPtrReturn(MemObj, VERR_INVALID_HANDLE);
|
---|
370 | pMem = (PRTR0MEMOBJINTERNAL)MemObj;
|
---|
371 | AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
|
---|
372 | AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
|
---|
373 | RT_ASSERT_PREEMPTIBLE();
|
---|
374 |
|
---|
375 | /*
|
---|
376 | * Deal with mappings according to fFreeMappings.
|
---|
377 | */
|
---|
378 | if ( !rtR0MemObjIsMapping(pMem)
|
---|
379 | && pMem->uRel.Parent.cMappings > 0)
|
---|
380 | {
|
---|
381 | /* fail if not requested to free mappings. */
|
---|
382 | if (!fFreeMappings)
|
---|
383 | return VERR_MEMORY_BUSY;
|
---|
384 |
|
---|
385 | while (pMem->uRel.Parent.cMappings > 0)
|
---|
386 | {
|
---|
387 | PRTR0MEMOBJINTERNAL pChild = pMem->uRel.Parent.papMappings[--pMem->uRel.Parent.cMappings];
|
---|
388 | pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings] = NULL;
|
---|
389 |
|
---|
390 | /* sanity checks. */
|
---|
391 | AssertPtr(pChild);
|
---|
392 | AssertFatal(pChild->u32Magic == RTR0MEMOBJ_MAGIC);
|
---|
393 | AssertFatal(pChild->enmType > RTR0MEMOBJTYPE_INVALID && pChild->enmType < RTR0MEMOBJTYPE_END);
|
---|
394 | AssertFatal(rtR0MemObjIsMapping(pChild));
|
---|
395 |
|
---|
396 | /* free the mapping. */
|
---|
397 | rc = rtR0MemObjNativeFree(pChild);
|
---|
398 | if (RT_FAILURE(rc))
|
---|
399 | {
|
---|
400 | Log(("RTR0MemObjFree: failed to free mapping %p: %p %#zx; rc=%Rrc\n", pChild, pChild->pv, pChild->cb, rc));
|
---|
401 | pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings++] = pChild;
|
---|
402 | return rc;
|
---|
403 | }
|
---|
404 |
|
---|
405 | pChild->u32Magic++;
|
---|
406 | pChild->enmType = RTR0MEMOBJTYPE_END;
|
---|
407 | RTMemFree(pChild);
|
---|
408 | }
|
---|
409 | }
|
---|
410 |
|
---|
411 | /*
|
---|
412 | * Free this object.
|
---|
413 | */
|
---|
414 | rc = rtR0MemObjNativeFree(pMem);
|
---|
415 | if (RT_SUCCESS(rc))
|
---|
416 | {
|
---|
417 | /*
|
---|
418 | * Ok, it was freed just fine. Now, if it's a mapping we'll have to remove it from the parent.
|
---|
419 | */
|
---|
420 | if (rtR0MemObjIsMapping(pMem))
|
---|
421 | {
|
---|
422 | PRTR0MEMOBJINTERNAL pParent = pMem->uRel.Child.pParent;
|
---|
423 | uint32_t i;
|
---|
424 |
|
---|
425 | /* sanity checks */
|
---|
426 | AssertPtr(pParent);
|
---|
427 | AssertFatal(pParent->u32Magic == RTR0MEMOBJ_MAGIC);
|
---|
428 | AssertFatal(pParent->enmType > RTR0MEMOBJTYPE_INVALID && pParent->enmType < RTR0MEMOBJTYPE_END);
|
---|
429 | AssertFatal(!rtR0MemObjIsMapping(pParent));
|
---|
430 | AssertFatal(pParent->uRel.Parent.cMappings > 0);
|
---|
431 | AssertPtr(pParent->uRel.Parent.papMappings);
|
---|
432 |
|
---|
433 | /* locate and remove from the array of mappings. */
|
---|
434 | i = pParent->uRel.Parent.cMappings;
|
---|
435 | while (i-- > 0)
|
---|
436 | {
|
---|
437 | if (pParent->uRel.Parent.papMappings[i] == pMem)
|
---|
438 | {
|
---|
439 | pParent->uRel.Parent.papMappings[i] = pParent->uRel.Parent.papMappings[--pParent->uRel.Parent.cMappings];
|
---|
440 | break;
|
---|
441 | }
|
---|
442 | }
|
---|
443 | Assert(i != UINT32_MAX);
|
---|
444 | }
|
---|
445 | else
|
---|
446 | Assert(pMem->uRel.Parent.cMappings == 0);
|
---|
447 |
|
---|
448 | /*
|
---|
449 | * Finally, destroy the handle.
|
---|
450 | */
|
---|
451 | pMem->u32Magic++;
|
---|
452 | pMem->enmType = RTR0MEMOBJTYPE_END;
|
---|
453 | if (!rtR0MemObjIsMapping(pMem))
|
---|
454 | RTMemFree(pMem->uRel.Parent.papMappings);
|
---|
455 | RTMemFree(pMem);
|
---|
456 | }
|
---|
457 | else
|
---|
458 | Log(("RTR0MemObjFree: failed to free %p: %d %p %#zx; rc=%Rrc\n",
|
---|
459 | pMem, pMem->enmType, pMem->pv, pMem->cb, rc));
|
---|
460 | return rc;
|
---|
461 | }
|
---|
462 | RT_EXPORT_SYMBOL(RTR0MemObjFree);
|
---|
463 |
|
---|
464 |
|
---|
465 |
|
---|
466 | RTR0DECL(int) RTR0MemObjAllocPageTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
|
---|
467 | {
|
---|
468 | /* sanity checks. */
|
---|
469 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
470 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
471 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
472 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
473 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
474 | RT_ASSERT_PREEMPTIBLE();
|
---|
475 |
|
---|
476 | /* do the allocation. */
|
---|
477 | return rtR0MemObjNativeAllocPage(pMemObj, cbAligned, fExecutable, pszTag);
|
---|
478 | }
|
---|
479 | RT_EXPORT_SYMBOL(RTR0MemObjAllocPageTag);
|
---|
480 |
|
---|
481 |
|
---|
482 | RTR0DECL(int) RTR0MemObjAllocLargeTag(PRTR0MEMOBJ pMemObj, size_t cb, size_t cbLargePage, uint32_t fFlags, const char *pszTag)
|
---|
483 | {
|
---|
484 | /* sanity checks. */
|
---|
485 | const size_t cbAligned = RT_ALIGN_Z(cb, cbLargePage);
|
---|
486 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
487 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
488 | #ifdef RT_ARCH_AMD64
|
---|
489 | AssertReturn(cbLargePage == _2M || cbLargePage == _1G, VERR_OUT_OF_RANGE);
|
---|
490 | #elif defined(RT_ARCH_X86)
|
---|
491 | AssertReturn(cbLargePage == _2M || cbLargePage == _4M, VERR_OUT_OF_RANGE);
|
---|
492 | #else
|
---|
493 | AssertReturn(RT_IS_POWER_OF_TWO(cbLargePage), VERR_NOT_POWER_OF_TWO);
|
---|
494 | AssertReturn(cbLargePage > PAGE_SIZE, VERR_OUT_OF_RANGE);
|
---|
495 | #endif
|
---|
496 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
497 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
498 | AssertReturn(!(fFlags & ~RTMEMOBJ_ALLOC_LARGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
|
---|
499 | RT_ASSERT_PREEMPTIBLE();
|
---|
500 |
|
---|
501 | /* do the allocation. */
|
---|
502 | return rtR0MemObjNativeAllocLarge(pMemObj, cbAligned, cbLargePage, fFlags, pszTag);
|
---|
503 | }
|
---|
504 | RT_EXPORT_SYMBOL(RTR0MemObjAllocLargeTag);
|
---|
505 |
|
---|
506 |
|
---|
507 | /**
|
---|
508 | * Fallback implementation of rtR0MemObjNativeAllocLarge and implements single
|
---|
509 | * page allocation using rtR0MemObjNativeAllocPhys.
|
---|
510 | */
|
---|
511 | DECLHIDDEN(int) rtR0MemObjFallbackAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
|
---|
512 | const char *pszTag)
|
---|
513 | {
|
---|
514 | RT_NOREF(pszTag, fFlags);
|
---|
515 | if (cb == cbLargePage)
|
---|
516 | return rtR0MemObjNativeAllocPhys(ppMem, cb, NIL_RTHCPHYS, cbLargePage, pszTag);
|
---|
517 | return VERR_NOT_SUPPORTED;
|
---|
518 | }
|
---|
519 |
|
---|
520 |
|
---|
521 | RTR0DECL(int) RTR0MemObjAllocLowTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
|
---|
522 | {
|
---|
523 | /* sanity checks. */
|
---|
524 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
525 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
526 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
527 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
528 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
529 | RT_ASSERT_PREEMPTIBLE();
|
---|
530 |
|
---|
531 | /* do the allocation. */
|
---|
532 | return rtR0MemObjNativeAllocLow(pMemObj, cbAligned, fExecutable, pszTag);
|
---|
533 | }
|
---|
534 | RT_EXPORT_SYMBOL(RTR0MemObjAllocLowTag);
|
---|
535 |
|
---|
536 |
|
---|
537 | RTR0DECL(int) RTR0MemObjAllocContTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
|
---|
538 | {
|
---|
539 | /* sanity checks. */
|
---|
540 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
541 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
542 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
543 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
544 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
545 | RT_ASSERT_PREEMPTIBLE();
|
---|
546 |
|
---|
547 | /* do the allocation. */
|
---|
548 | return rtR0MemObjNativeAllocCont(pMemObj, cbAligned, fExecutable, pszTag);
|
---|
549 | }
|
---|
550 | RT_EXPORT_SYMBOL(RTR0MemObjAllocContTag);
|
---|
551 |
|
---|
552 |
|
---|
553 | RTR0DECL(int) RTR0MemObjLockUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb,
|
---|
554 | uint32_t fAccess, RTR0PROCESS R0Process, const char *pszTag)
|
---|
555 | {
|
---|
556 | /* sanity checks. */
|
---|
557 | const size_t cbAligned = RT_ALIGN_Z(cb + (R3Ptr & PAGE_OFFSET_MASK), PAGE_SIZE);
|
---|
558 | RTR3PTR const R3PtrAligned = (R3Ptr & ~(RTR3PTR)PAGE_OFFSET_MASK);
|
---|
559 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
560 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
561 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
562 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
563 | if (R0Process == NIL_RTR0PROCESS)
|
---|
564 | R0Process = RTR0ProcHandleSelf();
|
---|
565 | AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
|
---|
566 | AssertReturn(fAccess, VERR_INVALID_PARAMETER);
|
---|
567 | RT_ASSERT_PREEMPTIBLE();
|
---|
568 |
|
---|
569 | /* do the locking. */
|
---|
570 | return rtR0MemObjNativeLockUser(pMemObj, R3PtrAligned, cbAligned, fAccess, R0Process, pszTag);
|
---|
571 | }
|
---|
572 | RT_EXPORT_SYMBOL(RTR0MemObjLockUserTag);
|
---|
573 |
|
---|
574 |
|
---|
575 | RTR0DECL(int) RTR0MemObjLockKernelTag(PRTR0MEMOBJ pMemObj, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
|
---|
576 | {
|
---|
577 | /* sanity checks. */
|
---|
578 | const size_t cbAligned = RT_ALIGN_Z(cb + ((uintptr_t)pv & PAGE_OFFSET_MASK), PAGE_SIZE);
|
---|
579 | void * const pvAligned = (void *)((uintptr_t)pv & ~(uintptr_t)PAGE_OFFSET_MASK);
|
---|
580 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
581 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
582 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
583 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
584 | AssertPtrReturn(pvAligned, VERR_INVALID_POINTER);
|
---|
585 | AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
|
---|
586 | AssertReturn(fAccess, VERR_INVALID_PARAMETER);
|
---|
587 | RT_ASSERT_PREEMPTIBLE();
|
---|
588 |
|
---|
589 | /* do the allocation. */
|
---|
590 | return rtR0MemObjNativeLockKernel(pMemObj, pvAligned, cbAligned, fAccess, pszTag);
|
---|
591 | }
|
---|
592 | RT_EXPORT_SYMBOL(RTR0MemObjLockKernelTag);
|
---|
593 |
|
---|
594 |
|
---|
595 | RTR0DECL(int) RTR0MemObjAllocPhysTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
|
---|
596 | {
|
---|
597 | /* sanity checks. */
|
---|
598 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
599 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
600 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
601 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
602 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
603 | AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
|
---|
604 | RT_ASSERT_PREEMPTIBLE();
|
---|
605 |
|
---|
606 | /* do the allocation. */
|
---|
607 | return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, PAGE_SIZE /* page aligned */, pszTag);
|
---|
608 | }
|
---|
609 | RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysTag);
|
---|
610 |
|
---|
611 |
|
---|
612 | RTR0DECL(int) RTR0MemObjAllocPhysExTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
|
---|
613 | {
|
---|
614 | /* sanity checks. */
|
---|
615 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
616 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
617 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
618 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
619 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
620 | AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
|
---|
621 | if (uAlignment == 0)
|
---|
622 | uAlignment = PAGE_SIZE;
|
---|
623 | AssertReturn( uAlignment == PAGE_SIZE
|
---|
624 | || uAlignment == _2M
|
---|
625 | || uAlignment == _4M
|
---|
626 | || uAlignment == _1G,
|
---|
627 | VERR_INVALID_PARAMETER);
|
---|
628 | #if HC_ARCH_BITS == 32
|
---|
629 | /* Memory allocated in this way is typically mapped into kernel space as well; simply
|
---|
630 | don't allow this on 32 bits hosts as the kernel space is too crowded already. */
|
---|
631 | if (uAlignment != PAGE_SIZE)
|
---|
632 | return VERR_NOT_SUPPORTED;
|
---|
633 | #endif
|
---|
634 | RT_ASSERT_PREEMPTIBLE();
|
---|
635 |
|
---|
636 | /* do the allocation. */
|
---|
637 | return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, uAlignment, pszTag);
|
---|
638 | }
|
---|
639 | RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysExTag);
|
---|
640 |
|
---|
641 |
|
---|
642 | RTR0DECL(int) RTR0MemObjAllocPhysNCTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
|
---|
643 | {
|
---|
644 | /* sanity checks. */
|
---|
645 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
646 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
647 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
648 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
649 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
650 | AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
|
---|
651 | RT_ASSERT_PREEMPTIBLE();
|
---|
652 |
|
---|
653 | /* do the allocation. */
|
---|
654 | return rtR0MemObjNativeAllocPhysNC(pMemObj, cbAligned, PhysHighest, pszTag);
|
---|
655 | }
|
---|
656 | RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysNCTag);
|
---|
657 |
|
---|
658 |
|
---|
659 | RTR0DECL(int) RTR0MemObjEnterPhysTag(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
|
---|
660 | {
|
---|
661 | /* sanity checks. */
|
---|
662 | const size_t cbAligned = RT_ALIGN_Z(cb + (Phys & PAGE_OFFSET_MASK), PAGE_SIZE);
|
---|
663 | const RTHCPHYS PhysAligned = Phys & ~(RTHCPHYS)PAGE_OFFSET_MASK;
|
---|
664 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
665 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
666 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
667 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
668 | AssertReturn(Phys != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
669 | AssertReturn( uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE
|
---|
670 | || uCachePolicy == RTMEM_CACHE_POLICY_MMIO,
|
---|
671 | VERR_INVALID_PARAMETER);
|
---|
672 | RT_ASSERT_PREEMPTIBLE();
|
---|
673 |
|
---|
674 | /* do the allocation. */
|
---|
675 | return rtR0MemObjNativeEnterPhys(pMemObj, PhysAligned, cbAligned, uCachePolicy, pszTag);
|
---|
676 | }
|
---|
677 | RT_EXPORT_SYMBOL(RTR0MemObjEnterPhysTag);
|
---|
678 |
|
---|
679 |
|
---|
680 | RTR0DECL(int) RTR0MemObjReserveKernelTag(PRTR0MEMOBJ pMemObj, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
|
---|
681 | {
|
---|
682 | /* sanity checks. */
|
---|
683 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
684 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
685 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
686 | if (uAlignment == 0)
|
---|
687 | uAlignment = PAGE_SIZE;
|
---|
688 | AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
|
---|
689 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
690 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
691 | if (pvFixed != (void *)-1)
|
---|
692 | AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
|
---|
693 | RT_ASSERT_PREEMPTIBLE();
|
---|
694 |
|
---|
695 | /* do the reservation. */
|
---|
696 | return rtR0MemObjNativeReserveKernel(pMemObj, pvFixed, cbAligned, uAlignment, pszTag);
|
---|
697 | }
|
---|
698 | RT_EXPORT_SYMBOL(RTR0MemObjReserveKernelTag);
|
---|
699 |
|
---|
700 |
|
---|
701 | RTR0DECL(int) RTR0MemObjReserveUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3PtrFixed, size_t cb,
|
---|
702 | size_t uAlignment, RTR0PROCESS R0Process, const char *pszTag)
|
---|
703 | {
|
---|
704 | /* sanity checks. */
|
---|
705 | const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
|
---|
706 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
707 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
708 | if (uAlignment == 0)
|
---|
709 | uAlignment = PAGE_SIZE;
|
---|
710 | AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
|
---|
711 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
712 | AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
|
---|
713 | if (R3PtrFixed != (RTR3PTR)-1)
|
---|
714 | AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
|
---|
715 | if (R0Process == NIL_RTR0PROCESS)
|
---|
716 | R0Process = RTR0ProcHandleSelf();
|
---|
717 | RT_ASSERT_PREEMPTIBLE();
|
---|
718 |
|
---|
719 | /* do the reservation. */
|
---|
720 | return rtR0MemObjNativeReserveUser(pMemObj, R3PtrFixed, cbAligned, uAlignment, R0Process, pszTag);
|
---|
721 | }
|
---|
722 | RT_EXPORT_SYMBOL(RTR0MemObjReserveUserTag);
|
---|
723 |
|
---|
724 |
|
---|
725 | RTR0DECL(int) RTR0MemObjMapKernelTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed,
|
---|
726 | size_t uAlignment, unsigned fProt, const char *pszTag)
|
---|
727 | {
|
---|
728 | return RTR0MemObjMapKernelExTag(pMemObj, MemObjToMap, pvFixed, uAlignment, fProt, 0, 0, pszTag);
|
---|
729 | }
|
---|
730 | RT_EXPORT_SYMBOL(RTR0MemObjMapKernelTag);
|
---|
731 |
|
---|
732 |
|
---|
733 | RTR0DECL(int) RTR0MemObjMapKernelExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment,
|
---|
734 | unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
|
---|
735 | {
|
---|
736 | PRTR0MEMOBJINTERNAL pMemToMap;
|
---|
737 | PRTR0MEMOBJINTERNAL pNew;
|
---|
738 | int rc;
|
---|
739 |
|
---|
740 | /* sanity checks. */
|
---|
741 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
742 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
743 | AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
|
---|
744 | pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
|
---|
745 | AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
|
---|
746 | AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
|
---|
747 | AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
|
---|
748 | AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
|
---|
749 | if (uAlignment == 0)
|
---|
750 | uAlignment = PAGE_SIZE;
|
---|
751 | AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
|
---|
752 | if (pvFixed != (void *)-1)
|
---|
753 | AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
|
---|
754 | AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
|
---|
755 | AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
|
---|
756 | AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
757 | AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
|
---|
758 | AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
759 | AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
|
---|
760 | AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
|
---|
761 | RT_ASSERT_PREEMPTIBLE();
|
---|
762 |
|
---|
763 | /* adjust the request to simplify the native code. */
|
---|
764 | if (offSub == 0 && cbSub == pMemToMap->cb)
|
---|
765 | cbSub = 0;
|
---|
766 |
|
---|
767 | /* do the mapping. */
|
---|
768 | rc = rtR0MemObjNativeMapKernel(&pNew, pMemToMap, pvFixed, uAlignment, fProt, offSub, cbSub, pszTag);
|
---|
769 | if (RT_SUCCESS(rc))
|
---|
770 | {
|
---|
771 | /* link it. */
|
---|
772 | rc = rtR0MemObjLink(pMemToMap, pNew);
|
---|
773 | if (RT_SUCCESS(rc))
|
---|
774 | *pMemObj = pNew;
|
---|
775 | else
|
---|
776 | {
|
---|
777 | /* damn, out of memory. bail out. */
|
---|
778 | int rc2 = rtR0MemObjNativeFree(pNew);
|
---|
779 | AssertRC(rc2);
|
---|
780 | pNew->u32Magic++;
|
---|
781 | pNew->enmType = RTR0MEMOBJTYPE_END;
|
---|
782 | RTMemFree(pNew);
|
---|
783 | }
|
---|
784 | }
|
---|
785 |
|
---|
786 | return rc;
|
---|
787 | }
|
---|
788 | RT_EXPORT_SYMBOL(RTR0MemObjMapKernelExTag);
|
---|
789 |
|
---|
790 |
|
---|
791 | RTR0DECL(int) RTR0MemObjMapUserTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed,
|
---|
792 | size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, const char *pszTag)
|
---|
793 | {
|
---|
794 | return RTR0MemObjMapUserExTag(pMemObj, MemObjToMap, R3PtrFixed, uAlignment, fProt, R0Process, 0, 0, pszTag);
|
---|
795 | }
|
---|
796 | RT_EXPORT_SYMBOL(RTR0MemObjMapUserTag);
|
---|
797 |
|
---|
798 |
|
---|
799 | RTR0DECL(int) RTR0MemObjMapUserExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
|
---|
800 | unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
|
---|
801 | {
|
---|
802 | /* sanity checks. */
|
---|
803 | PRTR0MEMOBJINTERNAL pMemToMap;
|
---|
804 | PRTR0MEMOBJINTERNAL pNew;
|
---|
805 | int rc;
|
---|
806 | AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
|
---|
807 | pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
|
---|
808 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
809 | AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
|
---|
810 | AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
|
---|
811 | AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
|
---|
812 | AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
|
---|
813 | AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
|
---|
814 | if (uAlignment == 0)
|
---|
815 | uAlignment = PAGE_SIZE;
|
---|
816 | AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
|
---|
817 | if (R3PtrFixed != (RTR3PTR)-1)
|
---|
818 | AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
|
---|
819 | AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
|
---|
820 | AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
|
---|
821 | AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
822 | AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
|
---|
823 | AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
824 | AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
|
---|
825 | AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
|
---|
826 | if (R0Process == NIL_RTR0PROCESS)
|
---|
827 | R0Process = RTR0ProcHandleSelf();
|
---|
828 | RT_ASSERT_PREEMPTIBLE();
|
---|
829 |
|
---|
830 | /* adjust the request to simplify the native code. */
|
---|
831 | if (offSub == 0 && cbSub == pMemToMap->cb)
|
---|
832 | cbSub = 0;
|
---|
833 |
|
---|
834 | /* do the mapping. */
|
---|
835 | rc = rtR0MemObjNativeMapUser(&pNew, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub, pszTag);
|
---|
836 | if (RT_SUCCESS(rc))
|
---|
837 | {
|
---|
838 | /* link it. */
|
---|
839 | rc = rtR0MemObjLink(pMemToMap, pNew);
|
---|
840 | if (RT_SUCCESS(rc))
|
---|
841 | *pMemObj = pNew;
|
---|
842 | else
|
---|
843 | {
|
---|
844 | /* damn, out of memory. bail out. */
|
---|
845 | int rc2 = rtR0MemObjNativeFree(pNew);
|
---|
846 | AssertRC(rc2);
|
---|
847 | pNew->u32Magic++;
|
---|
848 | pNew->enmType = RTR0MEMOBJTYPE_END;
|
---|
849 | RTMemFree(pNew);
|
---|
850 | }
|
---|
851 | }
|
---|
852 |
|
---|
853 | return rc;
|
---|
854 | }
|
---|
855 | RT_EXPORT_SYMBOL(RTR0MemObjMapUserExTag);
|
---|
856 |
|
---|
857 |
|
---|
858 | RTR0DECL(int) RTR0MemObjProtect(RTR0MEMOBJ hMemObj, size_t offSub, size_t cbSub, uint32_t fProt)
|
---|
859 | {
|
---|
860 | PRTR0MEMOBJINTERNAL pMemObj;
|
---|
861 | int rc;
|
---|
862 |
|
---|
863 | /* sanity checks. */
|
---|
864 | pMemObj = (PRTR0MEMOBJINTERNAL)hMemObj;
|
---|
865 | AssertPtrReturn(pMemObj, VERR_INVALID_HANDLE);
|
---|
866 | AssertReturn(pMemObj->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
|
---|
867 | AssertReturn(pMemObj->enmType > RTR0MEMOBJTYPE_INVALID && pMemObj->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
|
---|
868 | AssertReturn(rtR0MemObjIsProtectable(pMemObj), VERR_INVALID_PARAMETER);
|
---|
869 | AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
870 | AssertReturn(offSub < pMemObj->cb, VERR_INVALID_PARAMETER);
|
---|
871 | AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
872 | AssertReturn(cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
|
---|
873 | AssertReturn(offSub + cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
|
---|
874 | AssertReturn(!(fProt & ~(RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
|
---|
875 | RT_ASSERT_PREEMPTIBLE();
|
---|
876 |
|
---|
877 | /* do the job */
|
---|
878 | rc = rtR0MemObjNativeProtect(pMemObj, offSub, cbSub, fProt);
|
---|
879 | if (RT_SUCCESS(rc))
|
---|
880 | pMemObj->fFlags |= RTR0MEMOBJ_FLAGS_PROT_CHANGED; /* record it */
|
---|
881 |
|
---|
882 | return rc;
|
---|
883 | }
|
---|
884 | RT_EXPORT_SYMBOL(RTR0MemObjProtect);
|
---|
885 |
|
---|