1 | /* $Id: timer-r0drv-linux.c 24181 2009-10-30 10:51:56Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Timers, Ring-0 Driver, Linux.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2008 Sun Microsystems, Inc.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | *
|
---|
26 | * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
|
---|
27 | * Clara, CA 95054 USA or visit http://www.sun.com if you need
|
---|
28 | * additional information or have any questions.
|
---|
29 | */
|
---|
30 |
|
---|
31 |
|
---|
32 | /*******************************************************************************
|
---|
33 | * Header Files *
|
---|
34 | *******************************************************************************/
|
---|
35 | #include "the-linux-kernel.h"
|
---|
36 | #include "internal/iprt.h"
|
---|
37 |
|
---|
38 | #include <iprt/timer.h>
|
---|
39 | #include <iprt/time.h>
|
---|
40 | #include <iprt/mp.h>
|
---|
41 | #include <iprt/cpuset.h>
|
---|
42 | #include <iprt/spinlock.h>
|
---|
43 | #include <iprt/err.h>
|
---|
44 | #include <iprt/asm.h>
|
---|
45 | #include <iprt/assert.h>
|
---|
46 | #include <iprt/alloc.h>
|
---|
47 |
|
---|
48 | #include "internal/magics.h"
|
---|
49 |
|
---|
50 | #if !defined(RT_USE_LINUX_HRTIMER) \
|
---|
51 | && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) \
|
---|
52 | && 0 /* disabled because it somehow sucks. */
|
---|
53 | # define RT_USE_LINUX_HRTIMER
|
---|
54 | #endif
|
---|
55 |
|
---|
56 | /* This check must match the ktime usage in rtTimeGetSystemNanoTS() / time-r0drv-linux.c. */
|
---|
57 | #if defined(RT_USE_LINUX_HRTIMER) \
|
---|
58 | && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 16)
|
---|
59 | # error "RT_USE_LINUX_HRTIMER requires 2.6.16 or later, sorry."
|
---|
60 | #endif
|
---|
61 |
|
---|
62 |
|
---|
63 | /*******************************************************************************
|
---|
64 | * Structures and Typedefs *
|
---|
65 | *******************************************************************************/
|
---|
66 | /**
|
---|
67 | * Timer state machine.
|
---|
68 | *
|
---|
69 | * This is used to try handle the issues with MP events and
|
---|
70 | * timers that runs on all CPUs. It's relatively nasty :-/
|
---|
71 | */
|
---|
72 | typedef enum RTTIMERLNXSTATE
|
---|
73 | {
|
---|
74 | /** Stopped. */
|
---|
75 | RTTIMERLNXSTATE_STOPPED = 0,
|
---|
76 | /** Transient state; next ACTIVE. */
|
---|
77 | RTTIMERLNXSTATE_STARTING,
|
---|
78 | /** Transient state; next ACTIVE. (not really necessary) */
|
---|
79 | RTTIMERLNXSTATE_MP_STARTING,
|
---|
80 | /** Active. */
|
---|
81 | RTTIMERLNXSTATE_ACTIVE,
|
---|
82 | /** Transient state; next STOPPED. */
|
---|
83 | RTTIMERLNXSTATE_STOPPING,
|
---|
84 | /** Transient state; next STOPPED. */
|
---|
85 | RTTIMERLNXSTATE_MP_STOPPING,
|
---|
86 | /** The usual 32-bit hack. */
|
---|
87 | RTTIMERLNXSTATE_32BIT_HACK = 0x7fffffff
|
---|
88 | } RTTIMERLNXSTATE;
|
---|
89 |
|
---|
90 |
|
---|
91 | /**
|
---|
92 | * A Linux sub-timer.
|
---|
93 | */
|
---|
94 | typedef struct RTTIMERLNXSUBTIMER
|
---|
95 | {
|
---|
96 | /** The linux timer structure. */
|
---|
97 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
98 | struct hrtimer LnxTimer;
|
---|
99 | #else
|
---|
100 | struct timer_list LnxTimer;
|
---|
101 | #endif
|
---|
102 | /** The start of the current run (ns).
|
---|
103 | * This is used to calculate when the timer ought to fire the next time. */
|
---|
104 | uint64_t u64StartTS;
|
---|
105 | /** The start of the current run (ns).
|
---|
106 | * This is used to calculate when the timer ought to fire the next time. */
|
---|
107 | uint64_t u64NextTS;
|
---|
108 | /** The current tick number (since u64StartTS). */
|
---|
109 | uint64_t iTick;
|
---|
110 | /** Pointer to the parent timer. */
|
---|
111 | PRTTIMER pParent;
|
---|
112 | #ifndef RT_USE_LINUX_HRTIMER
|
---|
113 | /** The u64NextTS in jiffies. */
|
---|
114 | unsigned long ulNextJiffies;
|
---|
115 | #endif
|
---|
116 | /** The current sub-timer state. */
|
---|
117 | RTTIMERLNXSTATE volatile enmState;
|
---|
118 | } RTTIMERLNXSUBTIMER;
|
---|
119 | /** Pointer to a linux sub-timer. */
|
---|
120 | typedef RTTIMERLNXSUBTIMER *PRTTIMERLNXSUBTIMER;
|
---|
121 | AssertCompileMemberOffset(RTTIMERLNXSUBTIMER, LnxTimer, 0);
|
---|
122 |
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * The internal representation of an Linux timer handle.
|
---|
126 | */
|
---|
127 | typedef struct RTTIMER
|
---|
128 | {
|
---|
129 | /** Magic.
|
---|
130 | * This is RTTIMER_MAGIC, but changes to something else before the timer
|
---|
131 | * is destroyed to indicate clearly that thread should exit. */
|
---|
132 | uint32_t volatile u32Magic;
|
---|
133 | /** Spinlock synchronizing the fSuspended and MP event handling.
|
---|
134 | * This is NIL_RTSPINLOCK if cCpus == 1. */
|
---|
135 | RTSPINLOCK hSpinlock;
|
---|
136 | /** Flag indicating that the timer is suspended. */
|
---|
137 | bool volatile fSuspended;
|
---|
138 | /** Whether the timer must run on one specific CPU or not. */
|
---|
139 | bool fSpecificCpu;
|
---|
140 | #ifdef CONFIG_SMP
|
---|
141 | /** Whether the timer must run on all CPUs or not. */
|
---|
142 | bool fAllCpus;
|
---|
143 | #endif /* else: All -> specific on non-SMP kernels */
|
---|
144 | /** The CPU it must run on if fSpecificCpu is set. */
|
---|
145 | RTCPUID idCpu;
|
---|
146 | /** The number of CPUs this timer should run on. */
|
---|
147 | RTCPUID cCpus;
|
---|
148 | /** Callback. */
|
---|
149 | PFNRTTIMER pfnTimer;
|
---|
150 | /** User argument. */
|
---|
151 | void *pvUser;
|
---|
152 | /** The timer interval. 0 if one-shot. */
|
---|
153 | uint64_t u64NanoInterval;
|
---|
154 | #ifndef RT_USE_LINUX_HRTIMER
|
---|
155 | /** This is set to the number of jiffies between ticks if the interval is
|
---|
156 | * an exact number of jiffies. */
|
---|
157 | unsigned long cJiffies;
|
---|
158 | #endif
|
---|
159 | /** Sub-timers.
|
---|
160 | * Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
|
---|
161 | * an entry for all possible cpus. In that case the index will be the same as
|
---|
162 | * for the RTCpuSet. */
|
---|
163 | RTTIMERLNXSUBTIMER aSubTimers[1];
|
---|
164 | } RTTIMER;
|
---|
165 |
|
---|
166 |
|
---|
167 | /**
|
---|
168 | * A rtTimerLinuxStartOnCpu and rtTimerLinuxStartOnCpu argument package.
|
---|
169 | */
|
---|
170 | typedef struct RTTIMERLINUXSTARTONCPUARGS
|
---|
171 | {
|
---|
172 | /** The current time (RTTimeNanoTS). */
|
---|
173 | uint64_t u64Now;
|
---|
174 | /** When to start firing (delta). */
|
---|
175 | uint64_t u64First;
|
---|
176 | } RTTIMERLINUXSTARTONCPUARGS;
|
---|
177 | /** Pointer to a rtTimerLinuxStartOnCpu argument package. */
|
---|
178 | typedef RTTIMERLINUXSTARTONCPUARGS *PRTTIMERLINUXSTARTONCPUARGS;
|
---|
179 |
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Sets the state.
|
---|
183 | */
|
---|
184 | DECLINLINE(void) rtTimerLnxSetState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState)
|
---|
185 | {
|
---|
186 | ASMAtomicWriteU32((uint32_t volatile *)penmState, enmNewState);
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | /**
|
---|
191 | * Sets the state if it has a certain value.
|
---|
192 | *
|
---|
193 | * @return true if xchg was done.
|
---|
194 | * @return false if xchg wasn't done.
|
---|
195 | */
|
---|
196 | DECLINLINE(bool) rtTimerLnxCmpXchgState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState, RTTIMERLNXSTATE enmCurState)
|
---|
197 | {
|
---|
198 | return ASMAtomicCmpXchgU32((uint32_t volatile *)penmState, enmNewState, enmCurState);
|
---|
199 | }
|
---|
200 |
|
---|
201 |
|
---|
202 | /**
|
---|
203 | * Gets the state.
|
---|
204 | */
|
---|
205 | DECLINLINE(RTTIMERLNXSTATE) rtTimerLnxGetState(RTTIMERLNXSTATE volatile *penmState)
|
---|
206 | {
|
---|
207 | return (RTTIMERLNXSTATE)ASMAtomicUoReadU32((uint32_t volatile *)penmState);
|
---|
208 | }
|
---|
209 |
|
---|
210 |
|
---|
211 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
212 | /**
|
---|
213 | * Converts a nano second time stamp to ktime_t.
|
---|
214 | *
|
---|
215 | * ASSUMES RTTimeNanoTS() is implemented using ktime_get_ts().
|
---|
216 | *
|
---|
217 | * @returns ktime_t.
|
---|
218 | * @param cNanoSecs Nanoseconds.
|
---|
219 | */
|
---|
220 | DECLINLINE(ktime_t) rtTimerLnxNanoToKt(uint64_t cNanoSecs)
|
---|
221 | {
|
---|
222 | /* With some luck the compiler optimizes the division out of this... (Bet it doesn't.) */
|
---|
223 | return ktime_set(cNanoSecs / 1000000000, cNanoSecs % 1000000000);
|
---|
224 | }
|
---|
225 |
|
---|
226 | /**
|
---|
227 | * Converts ktime_t to a nano second time stamp.
|
---|
228 | *
|
---|
229 | * ASSUMES RTTimeNanoTS() is implemented using ktime_get_ts().
|
---|
230 | *
|
---|
231 | * @returns nano second time stamp.
|
---|
232 | * @param Kt ktime_t.
|
---|
233 | */
|
---|
234 | DECLINLINE(uint64_t) rtTimerLnxKtToNano(ktime_t Kt)
|
---|
235 | {
|
---|
236 | return ktime_to_ns(Kt);
|
---|
237 | }
|
---|
238 |
|
---|
239 | #else /* ! RT_USE_LINUX_HRTIMER */
|
---|
240 |
|
---|
241 | /**
|
---|
242 | * Converts a nano second interval to jiffies.
|
---|
243 | *
|
---|
244 | * @returns Jiffies.
|
---|
245 | * @param cNanoSecs Nanoseconds.
|
---|
246 | */
|
---|
247 | DECLINLINE(unsigned long) rtTimerLnxNanoToJiffies(uint64_t cNanoSecs)
|
---|
248 | {
|
---|
249 | /* this can be made even better... */
|
---|
250 | if (cNanoSecs > (uint64_t)TICK_NSEC * MAX_JIFFY_OFFSET)
|
---|
251 | return MAX_JIFFY_OFFSET;
|
---|
252 | #if ARCH_BITS == 32
|
---|
253 | if (RT_LIKELY(cNanoSecs <= UINT32_MAX))
|
---|
254 | return ((uint32_t)cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
|
---|
255 | #endif
|
---|
256 | return (cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
|
---|
257 | }
|
---|
258 | #endif
|
---|
259 |
|
---|
260 |
|
---|
261 | /**
|
---|
262 | * Starts a sub-timer (RTTimerStart).
|
---|
263 | *
|
---|
264 | * @param pSubTimer The sub-timer to start.
|
---|
265 | * @param u64Now The current timestamp (RTTimeNanoTS()).
|
---|
266 | * @param u64First The interval from u64Now to the first time the timer should fire.
|
---|
267 | */
|
---|
268 | static void rtTimerLnxStartSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, uint64_t u64Now, uint64_t u64First)
|
---|
269 | {
|
---|
270 | /*
|
---|
271 | * Calc when it should start firing.
|
---|
272 | */
|
---|
273 | uint64_t u64NextTS = u64Now + u64First;
|
---|
274 | pSubTimer->u64StartTS = u64NextTS;
|
---|
275 | pSubTimer->u64NextTS = u64NextTS;
|
---|
276 | pSubTimer->iTick = 0;
|
---|
277 |
|
---|
278 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
279 | hrtimer_start(&pSubTimer->LnxTimer, rtTimerLnxNanoToKt(u64NextTS), HRTIMER_MODE_ABS);
|
---|
280 | #else
|
---|
281 | {
|
---|
282 | unsigned long cJiffies = !u64First ? 0 : rtTimerLnxNanoToJiffies(u64First);
|
---|
283 | pSubTimer->ulNextJiffies = jiffies + cJiffies;
|
---|
284 | mod_timer(&pSubTimer->LnxTimer, pSubTimer->ulNextJiffies);
|
---|
285 | }
|
---|
286 | #endif
|
---|
287 |
|
---|
288 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE);
|
---|
289 | }
|
---|
290 |
|
---|
291 |
|
---|
292 | /**
|
---|
293 | * Stops a sub-timer (RTTimerStart and rtTimerLinuxMpEvent()).
|
---|
294 | *
|
---|
295 | * @param pSubTimer The sub-timer.
|
---|
296 | */
|
---|
297 | static void rtTimerLnxStopSubTimer(PRTTIMERLNXSUBTIMER pSubTimer)
|
---|
298 | {
|
---|
299 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
300 | hrtimer_cancel(&pSubTimer->LnxTimer);
|
---|
301 | #else
|
---|
302 | if (timer_pending(&pSubTimer->LnxTimer))
|
---|
303 | del_timer_sync(&pSubTimer->LnxTimer);
|
---|
304 | #endif
|
---|
305 |
|
---|
306 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
307 | }
|
---|
308 |
|
---|
309 |
|
---|
310 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
311 | /**
|
---|
312 | * Timer callback function.
|
---|
313 | * @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a one-shot or interval timer.
|
---|
314 | * @param pHrTimer Pointer to the sub-timer structure.
|
---|
315 | */
|
---|
316 | static enum hrtimer_restart rtTimerLinuxCallback(struct hrtimer *pHrTimer)
|
---|
317 | #else
|
---|
318 | /**
|
---|
319 | * Timer callback function.
|
---|
320 | * @param ulUser Address of the sub-timer structure.
|
---|
321 | */
|
---|
322 | static void rtTimerLinuxCallback(unsigned long ulUser)
|
---|
323 | #endif
|
---|
324 | {
|
---|
325 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
326 | enum hrtimer_restart rc;
|
---|
327 | PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)pHrTimer;
|
---|
328 | #else
|
---|
329 | PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)ulUser;
|
---|
330 | #endif
|
---|
331 | PRTTIMER pTimer = pSubTimer->pParent;
|
---|
332 |
|
---|
333 | /*
|
---|
334 | * Don't call the handler if the timer has been suspended.
|
---|
335 | * Also, when running on all CPUS, make sure we don't call out twice
|
---|
336 | * on a CPU because of timer migration.
|
---|
337 | *
|
---|
338 | * For the specific cpu case, we're just ignoring timer migration for now... (bad)
|
---|
339 | */
|
---|
340 | if ( ASMAtomicUoReadBool(&pTimer->fSuspended)
|
---|
341 | #ifdef CONFIG_SMP
|
---|
342 | || ( pTimer->fAllCpus
|
---|
343 | && (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != RTMpCpuId())
|
---|
344 | #endif
|
---|
345 | )
|
---|
346 | {
|
---|
347 | rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_ACTIVE);
|
---|
348 | # ifdef RT_USE_LINUX_HRTIMER
|
---|
349 | rc = HRTIMER_NORESTART;
|
---|
350 | # endif
|
---|
351 | }
|
---|
352 | else if (!pTimer->u64NanoInterval)
|
---|
353 | {
|
---|
354 | /*
|
---|
355 | * One shot timer, stop it before dispatching it.
|
---|
356 | */
|
---|
357 | if (pTimer->cCpus == 1)
|
---|
358 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
359 | rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_ACTIVE);
|
---|
360 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
361 | rc = HRTIMER_NORESTART;
|
---|
362 | #else
|
---|
363 | /* detached before we're called, nothing to do for this case. */
|
---|
364 | #endif
|
---|
365 |
|
---|
366 | pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
|
---|
367 | }
|
---|
368 | else
|
---|
369 | {
|
---|
370 | /*
|
---|
371 | * Interval timer, calculate the next timeout and re-arm it.
|
---|
372 | *
|
---|
373 | * The first time around, we'll re-adjust the u64StartTS to
|
---|
374 | * try prevent some jittering if we were started at a bad time.
|
---|
375 | * This may of course backfire with highres timers...
|
---|
376 | */
|
---|
377 | const uint64_t u64NanoTS = RTTimeNanoTS();
|
---|
378 | const uint64_t iTick = ++pSubTimer->iTick;
|
---|
379 |
|
---|
380 | if (RT_UNLIKELY(iTick == 1))
|
---|
381 | {
|
---|
382 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
383 | pSubTimer->u64StartTS = pSubTimer->u64NextTS = u64NanoTS;//rtTimerLnxKtToNano(pSubTimer->LnxTimer.base->softirq_time);
|
---|
384 | #else
|
---|
385 | pSubTimer->u64StartTS = pSubTimer->u64NextTS = u64NanoTS;
|
---|
386 | pSubTimer->ulNextJiffies = jiffies;
|
---|
387 | #endif
|
---|
388 | }
|
---|
389 |
|
---|
390 | pSubTimer->u64NextTS += pTimer->u64NanoInterval;
|
---|
391 |
|
---|
392 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
393 | while (pSubTimer->u64NextTS < u64NanoTS)
|
---|
394 | pSubTimer->u64NextTS += pTimer->u64NanoInterval;
|
---|
395 |
|
---|
396 | pSubTimer->LnxTimer.expires = rtTimerLnxNanoToKt(pSubTimer->u64NextTS);
|
---|
397 | rc = HRTIMER_RESTART;
|
---|
398 | #else
|
---|
399 | if (pTimer->cJiffies)
|
---|
400 | {
|
---|
401 | pSubTimer->ulNextJiffies += pTimer->cJiffies;
|
---|
402 | /* Prevent overflows when the jiffies counter wraps around.
|
---|
403 | * Special thanks to Ken Preslan for helping debugging! */
|
---|
404 | while (time_before(pSubTimer->ulNextJiffies, jiffies))
|
---|
405 | {
|
---|
406 | pSubTimer->ulNextJiffies += pTimer->cJiffies;
|
---|
407 | pSubTimer->u64NextTS += pTimer->u64NanoInterval;
|
---|
408 | }
|
---|
409 | }
|
---|
410 | else
|
---|
411 | {
|
---|
412 | while (pSubTimer->u64NextTS < u64NanoTS)
|
---|
413 | pSubTimer->u64NextTS += pTimer->u64NanoInterval;
|
---|
414 | pSubTimer->ulNextJiffies = jiffies + rtTimerLnxNanoToJiffies(pSubTimer->u64NextTS - u64NanoTS);
|
---|
415 | }
|
---|
416 |
|
---|
417 | mod_timer(&pSubTimer->LnxTimer, pSubTimer->ulNextJiffies);
|
---|
418 | #endif
|
---|
419 |
|
---|
420 | /*
|
---|
421 | * Run the timer.
|
---|
422 | */
|
---|
423 | pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
|
---|
424 | }
|
---|
425 |
|
---|
426 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
427 | return rc;
|
---|
428 | #endif
|
---|
429 | }
|
---|
430 |
|
---|
431 |
|
---|
432 | #ifdef CONFIG_SMP
|
---|
433 |
|
---|
434 | /**
|
---|
435 | * Per-cpu callback function (RTMpOnAll/RTMpOnSpecific).
|
---|
436 | *
|
---|
437 | * @param idCpu The current CPU.
|
---|
438 | * @param pvUser1 Pointer to the timer.
|
---|
439 | * @param pvUser2 Pointer to the argument structure.
|
---|
440 | */
|
---|
441 | static DECLCALLBACK(void) rtTimerLnxStartAllOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
442 | {
|
---|
443 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
444 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
445 | Assert(idCpu < pTimer->cCpus);
|
---|
446 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[idCpu], pArgs->u64Now, pArgs->u64First);
|
---|
447 | }
|
---|
448 |
|
---|
449 |
|
---|
450 | /**
|
---|
451 | * Worker for RTTimerStart() that takes care of the ugly bit.s
|
---|
452 | *
|
---|
453 | * @returns RTTimerStart() return value.
|
---|
454 | * @param pTimer The timer.
|
---|
455 | * @param pArgs The argument structure.
|
---|
456 | */
|
---|
457 | static int rtTimerLnxStartAll(PRTTIMER pTimer, PRTTIMERLINUXSTARTONCPUARGS pArgs)
|
---|
458 | {
|
---|
459 | RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
|
---|
460 | RTCPUID iCpu;
|
---|
461 | RTCPUSET OnlineSet;
|
---|
462 | RTCPUSET OnlineSet2;
|
---|
463 | int rc2;
|
---|
464 |
|
---|
465 | /*
|
---|
466 | * Prepare all the sub-timers for the startup and then flag the timer
|
---|
467 | * as a whole as non-suspended, make sure we get them all before
|
---|
468 | * clearing fSuspended as the MP handler will be waiting on this
|
---|
469 | * should something happen while we're looping.
|
---|
470 | */
|
---|
471 | RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
|
---|
472 |
|
---|
473 | do
|
---|
474 | {
|
---|
475 | RTMpGetOnlineSet(&OnlineSet);
|
---|
476 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
477 | {
|
---|
478 | Assert(pTimer->aSubTimers[iCpu].enmState != RTTIMERLNXSTATE_MP_STOPPING);
|
---|
479 | rtTimerLnxSetState(&pTimer->aSubTimers[iCpu].enmState,
|
---|
480 | RTCpuSetIsMember(&OnlineSet, iCpu)
|
---|
481 | ? RTTIMERLNXSTATE_STARTING
|
---|
482 | : RTTIMERLNXSTATE_STOPPED);
|
---|
483 | }
|
---|
484 | } while (!RTCpuSetIsEqual(&OnlineSet, RTMpGetOnlineSet(&OnlineSet2)));
|
---|
485 |
|
---|
486 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
487 |
|
---|
488 | RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
|
---|
489 |
|
---|
490 | /*
|
---|
491 | * Start them (can't find any exported function that allows me to
|
---|
492 | * do this without the cross calls).
|
---|
493 | */
|
---|
494 | pArgs->u64Now = RTTimeNanoTS();
|
---|
495 | rc2 = RTMpOnAll(rtTimerLnxStartAllOnCpu, pTimer, pArgs);
|
---|
496 | AssertRC(rc2); /* screw this if it fails. */
|
---|
497 |
|
---|
498 | /*
|
---|
499 | * Reset the sub-timers who didn't start up (ALL CPUs case).
|
---|
500 | * CPUs that comes online between the
|
---|
501 | */
|
---|
502 | RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
|
---|
503 |
|
---|
504 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
505 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_STARTING))
|
---|
506 | {
|
---|
507 | /** @todo very odd case for a rainy day. Cpus that temporarily went offline while
|
---|
508 | * we were between calls needs to nudged as the MP handler will ignore events for
|
---|
509 | * them because of the STARTING state. This is an extremely unlikely case - not that
|
---|
510 | * that means anything in my experience... ;-) */
|
---|
511 | }
|
---|
512 |
|
---|
513 | RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
|
---|
514 |
|
---|
515 | return VINF_SUCCESS;
|
---|
516 | }
|
---|
517 |
|
---|
518 |
|
---|
519 | /**
|
---|
520 | * Worker for RTTimerStop() that takes care of the ugly SMP bits.
|
---|
521 | *
|
---|
522 | * @returns RTTimerStop() return value.
|
---|
523 | * @param pTimer The timer (valid).
|
---|
524 | */
|
---|
525 | static int rtTimerLnxStopAll(PRTTIMER pTimer)
|
---|
526 | {
|
---|
527 | RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
|
---|
528 | RTCPUID iCpu;
|
---|
529 |
|
---|
530 |
|
---|
531 | /*
|
---|
532 | * Mark the timer as suspended and flag all timers as stopping, except
|
---|
533 | * for those being stopped by an MP event.
|
---|
534 | */
|
---|
535 | RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
|
---|
536 |
|
---|
537 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
538 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
539 | {
|
---|
540 | RTTIMERLNXSTATE enmState;
|
---|
541 | do
|
---|
542 | {
|
---|
543 | enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
|
---|
544 | if ( enmState == RTTIMERLNXSTATE_STOPPED
|
---|
545 | || enmState == RTTIMERLNXSTATE_MP_STOPPING)
|
---|
546 | break;
|
---|
547 | Assert(enmState == RTTIMERLNXSTATE_ACTIVE);
|
---|
548 | } while (!rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPING, enmState));
|
---|
549 | }
|
---|
550 |
|
---|
551 | RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
|
---|
552 |
|
---|
553 | /*
|
---|
554 | * Do the actual stopping. Fortunately, this doesn't require any IPIs.
|
---|
555 | * Unfortunately it cannot be done synchronously from within the spinlock,
|
---|
556 | * because we might end up in an active waiting for a handler to complete.
|
---|
557 | */
|
---|
558 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
559 | if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) == RTTIMERLNXSTATE_STOPPING)
|
---|
560 | rtTimerLnxStopSubTimer(&pTimer->aSubTimers[iCpu]);
|
---|
561 |
|
---|
562 | return VINF_SUCCESS;
|
---|
563 | }
|
---|
564 |
|
---|
565 |
|
---|
566 | /**
|
---|
567 | * Per-cpu callback function (RTMpOnSpecific) used by rtTimerLinuxMpEvent()
|
---|
568 | * to start a sub-timer on a cpu that just have come online.
|
---|
569 | *
|
---|
570 | * @param idCpu The current CPU.
|
---|
571 | * @param pvUser1 Pointer to the timer.
|
---|
572 | * @param pvUser2 Pointer to the argument structure.
|
---|
573 | */
|
---|
574 | static DECLCALLBACK(void) rtTimerLinuxMpStartOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
575 | {
|
---|
576 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
577 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
578 | RTSPINLOCK hSpinlock;
|
---|
579 | Assert(idCpu < pTimer->cCpus);
|
---|
580 |
|
---|
581 | /*
|
---|
582 | * We have to be kind of careful here as we might be racing RTTimerStop
|
---|
583 | * (and/or RTTimerDestroy, thus the paranoia.
|
---|
584 | */
|
---|
585 | hSpinlock = pTimer->hSpinlock;
|
---|
586 | if ( hSpinlock != NIL_RTSPINLOCK
|
---|
587 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
588 | {
|
---|
589 | RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
|
---|
590 | RTSpinlockAcquire(hSpinlock, &Tmp);
|
---|
591 |
|
---|
592 | if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
|
---|
593 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
594 | {
|
---|
595 | /* We're sane and the timer is not suspended yet. */
|
---|
596 | PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
|
---|
597 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
598 | rtTimerLnxStartSubTimer(pSubTimer, pArgs->u64Now, pArgs->u64First);
|
---|
599 | }
|
---|
600 |
|
---|
601 | RTSpinlockRelease(hSpinlock, &Tmp);
|
---|
602 | }
|
---|
603 | }
|
---|
604 |
|
---|
605 |
|
---|
606 | /**
|
---|
607 | * MP event notification callback.
|
---|
608 | *
|
---|
609 | * @param enmEvent The event.
|
---|
610 | * @param idCpu The cpu it applies to.
|
---|
611 | * @param pvUser The timer.
|
---|
612 | */
|
---|
613 | static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
|
---|
614 | {
|
---|
615 | PRTTIMER pTimer = (PRTTIMER)pvUser;
|
---|
616 | PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
|
---|
617 | RTSPINLOCK hSpinlock;
|
---|
618 | RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
|
---|
619 |
|
---|
620 | Assert(idCpu < pTimer->cCpus);
|
---|
621 |
|
---|
622 | /*
|
---|
623 | * Some initial paranoia.
|
---|
624 | */
|
---|
625 | if (pTimer->u32Magic != RTTIMER_MAGIC)
|
---|
626 | return;
|
---|
627 | hSpinlock = pTimer->hSpinlock;
|
---|
628 | if (hSpinlock == NIL_RTSPINLOCK)
|
---|
629 | return;
|
---|
630 |
|
---|
631 | RTSpinlockAcquire(hSpinlock, &Tmp);
|
---|
632 |
|
---|
633 | /* Is it active? */
|
---|
634 | if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
|
---|
635 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
636 | {
|
---|
637 | switch (enmEvent)
|
---|
638 | {
|
---|
639 | /*
|
---|
640 | * Try do it without leaving the spin lock, but if we have to, retake it
|
---|
641 | * when we're on the right cpu.
|
---|
642 | */
|
---|
643 | case RTMPEVENT_ONLINE:
|
---|
644 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
645 | {
|
---|
646 | RTTIMERLINUXSTARTONCPUARGS Args;
|
---|
647 | Args.u64Now = RTTimeNanoTS();
|
---|
648 | Args.u64First = 0;
|
---|
649 |
|
---|
650 | if (RTMpCpuId() == idCpu)
|
---|
651 | rtTimerLnxStartSubTimer(pSubTimer, Args.u64Now, Args.u64First);
|
---|
652 | else
|
---|
653 | {
|
---|
654 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED); /* we'll recheck it. */
|
---|
655 | RTSpinlockRelease(hSpinlock, &Tmp);
|
---|
656 |
|
---|
657 | RTMpOnSpecific(idCpu, rtTimerLinuxMpStartOnCpu, pTimer, &Args);
|
---|
658 | return; /* we've left the spinlock */
|
---|
659 | }
|
---|
660 | }
|
---|
661 | break;
|
---|
662 |
|
---|
663 | /*
|
---|
664 | * The CPU is (going) offline, make sure the sub-timer is stopped.
|
---|
665 | *
|
---|
666 | * Linux will migrate it to a different CPU, but we don't want this. The
|
---|
667 | * timer function is checking for this.
|
---|
668 | */
|
---|
669 | case RTMPEVENT_OFFLINE:
|
---|
670 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STOPPING, RTTIMERLNXSTATE_ACTIVE))
|
---|
671 | {
|
---|
672 | RTSpinlockRelease(hSpinlock, &Tmp);
|
---|
673 |
|
---|
674 | rtTimerLnxStopSubTimer(pSubTimer);
|
---|
675 | return; /* we've left the spinlock */
|
---|
676 | }
|
---|
677 | break;
|
---|
678 | }
|
---|
679 | }
|
---|
680 |
|
---|
681 | RTSpinlockRelease(hSpinlock, &Tmp);
|
---|
682 | }
|
---|
683 |
|
---|
684 | #endif /* CONFIG_SMP */
|
---|
685 |
|
---|
686 |
|
---|
687 | /**
|
---|
688 | * Callback function use by RTTimerStart via RTMpOnSpecific to start
|
---|
689 | * a timer running on a specific CPU.
|
---|
690 | *
|
---|
691 | * @param idCpu The current CPU.
|
---|
692 | * @param pvUser1 Pointer to the timer.
|
---|
693 | * @param pvUser2 Pointer to the argument structure.
|
---|
694 | */
|
---|
695 | static DECLCALLBACK(void) rtTimerLnxStartOnSpecificCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
696 | {
|
---|
697 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
698 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
699 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], pArgs->u64Now, pArgs->u64First);
|
---|
700 | }
|
---|
701 |
|
---|
702 |
|
---|
703 | RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
|
---|
704 | {
|
---|
705 | RTTIMERLINUXSTARTONCPUARGS Args;
|
---|
706 | int rc2;
|
---|
707 |
|
---|
708 | /*
|
---|
709 | * Validate.
|
---|
710 | */
|
---|
711 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
712 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
713 |
|
---|
714 | if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
|
---|
715 | return VERR_TIMER_ACTIVE;
|
---|
716 |
|
---|
717 | Args.u64First = u64First;
|
---|
718 | #ifdef CONFIG_SMP
|
---|
719 | /*
|
---|
720 | * Omnit timer?
|
---|
721 | */
|
---|
722 | if (pTimer->fAllCpus)
|
---|
723 | return rtTimerLnxStartAll(pTimer, &Args);
|
---|
724 | #endif
|
---|
725 |
|
---|
726 | /*
|
---|
727 | * Simple timer - Pretty straight forward.
|
---|
728 | */
|
---|
729 | Args.u64Now = RTTimeNanoTS();
|
---|
730 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STARTING);
|
---|
731 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
732 | if (!pTimer->fSpecificCpu)
|
---|
733 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], Args.u64Now, Args.u64First);
|
---|
734 | else
|
---|
735 | {
|
---|
736 | rc2 = RTMpOnSpecific(pTimer->idCpu, rtTimerLnxStartOnSpecificCpu, pTimer, &Args);
|
---|
737 | if (RT_FAILURE(rc2))
|
---|
738 | {
|
---|
739 | /* Suspend it, the cpu id is probably invalid or offline. */
|
---|
740 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
741 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
742 | return rc2;
|
---|
743 | }
|
---|
744 | }
|
---|
745 |
|
---|
746 | return VINF_SUCCESS;
|
---|
747 | }
|
---|
748 | RT_EXPORT_SYMBOL(RTTimerStart);
|
---|
749 |
|
---|
750 |
|
---|
751 | RTDECL(int) RTTimerStop(PRTTIMER pTimer)
|
---|
752 | {
|
---|
753 |
|
---|
754 | /*
|
---|
755 | * Validate.
|
---|
756 | */
|
---|
757 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
758 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
759 |
|
---|
760 | if (ASMAtomicUoReadBool(&pTimer->fSuspended))
|
---|
761 | return VERR_TIMER_SUSPENDED;
|
---|
762 |
|
---|
763 | #ifdef CONFIG_SMP
|
---|
764 | /*
|
---|
765 | * Omni timer?
|
---|
766 | */
|
---|
767 | if (pTimer->fAllCpus)
|
---|
768 | return rtTimerLnxStopAll(pTimer);
|
---|
769 | #endif
|
---|
770 |
|
---|
771 | /*
|
---|
772 | * Simple timer.
|
---|
773 | */
|
---|
774 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
775 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPING);
|
---|
776 | rtTimerLnxStopSubTimer(&pTimer->aSubTimers[0]);
|
---|
777 |
|
---|
778 | return VINF_SUCCESS;
|
---|
779 | }
|
---|
780 | RT_EXPORT_SYMBOL(RTTimerStop);
|
---|
781 |
|
---|
782 |
|
---|
783 | RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
|
---|
784 | {
|
---|
785 | RTSPINLOCK hSpinlock;
|
---|
786 |
|
---|
787 | /* It's ok to pass NULL pointer. */
|
---|
788 | if (pTimer == /*NIL_RTTIMER*/ NULL)
|
---|
789 | return VINF_SUCCESS;
|
---|
790 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
791 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
792 |
|
---|
793 | /*
|
---|
794 | * Remove the MP notifications first because it'll reduce the risk of
|
---|
795 | * us overtaking any MP event that might theoretically be racing us here.
|
---|
796 | */
|
---|
797 | hSpinlock = pTimer->hSpinlock;
|
---|
798 | #ifdef CONFIG_SMP
|
---|
799 | if ( pTimer->cCpus > 1
|
---|
800 | && hSpinlock != NIL_RTSPINLOCK)
|
---|
801 | {
|
---|
802 | int rc = RTMpNotificationDeregister(rtTimerLinuxMpEvent, pTimer);
|
---|
803 | AssertRC(rc);
|
---|
804 | }
|
---|
805 | #endif /* CONFIG_SMP */
|
---|
806 |
|
---|
807 | /*
|
---|
808 | * Stop the timer if it's running.
|
---|
809 | */
|
---|
810 | if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
|
---|
811 | RTTimerStop(pTimer);
|
---|
812 |
|
---|
813 | /*
|
---|
814 | * Uninitialize the structure and free the associated resources.
|
---|
815 | * The spinlock goes last.
|
---|
816 | */
|
---|
817 | ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
|
---|
818 | RTMemFree(pTimer);
|
---|
819 | if (hSpinlock != NIL_RTSPINLOCK)
|
---|
820 | RTSpinlockDestroy(hSpinlock);
|
---|
821 |
|
---|
822 | return VINF_SUCCESS;
|
---|
823 | }
|
---|
824 | RT_EXPORT_SYMBOL(RTTimerDestroy);
|
---|
825 |
|
---|
826 |
|
---|
827 | RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, unsigned fFlags, PFNRTTIMER pfnTimer, void *pvUser)
|
---|
828 | {
|
---|
829 | PRTTIMER pTimer;
|
---|
830 | RTCPUID iCpu;
|
---|
831 | unsigned cCpus;
|
---|
832 |
|
---|
833 | *ppTimer = NULL;
|
---|
834 |
|
---|
835 | /*
|
---|
836 | * Validate flags.
|
---|
837 | */
|
---|
838 | if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
|
---|
839 | return VERR_INVALID_PARAMETER;
|
---|
840 | if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
841 | && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
|
---|
842 | && !RTMpIsCpuOnline(fFlags & RTTIMER_FLAGS_CPU_MASK))
|
---|
843 | return (fFlags & RTTIMER_FLAGS_CPU_MASK) > RTMpGetMaxCpuId()
|
---|
844 | ? VERR_CPU_NOT_FOUND
|
---|
845 | : VERR_CPU_OFFLINE;
|
---|
846 |
|
---|
847 | /*
|
---|
848 | * Allocate the timer handler.
|
---|
849 | */
|
---|
850 | cCpus = 1;
|
---|
851 | #ifdef CONFIG_SMP
|
---|
852 | if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
|
---|
853 | {
|
---|
854 | cCpus = RTMpGetMaxCpuId() + 1;
|
---|
855 | Assert(cCpus <= RTCPUSET_MAX_CPUS); /* On linux we have a 1:1 relationship between cpuid and set index. */
|
---|
856 | AssertReturn(u64NanoInterval, VERR_NOT_IMPLEMENTED); /* We don't implement single shot on all cpus, sorry. */
|
---|
857 | }
|
---|
858 | #endif
|
---|
859 |
|
---|
860 | pTimer = (PRTTIMER)RTMemAllocZ(RT_OFFSETOF(RTTIMER, aSubTimers[cCpus]));
|
---|
861 | if (!pTimer)
|
---|
862 | return VERR_NO_MEMORY;
|
---|
863 |
|
---|
864 | /*
|
---|
865 | * Initialize it.
|
---|
866 | */
|
---|
867 | pTimer->u32Magic = RTTIMER_MAGIC;
|
---|
868 | pTimer->hSpinlock = NIL_RTSPINLOCK;
|
---|
869 | pTimer->fSuspended = true;
|
---|
870 | #ifdef CONFIG_SMP
|
---|
871 | pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
|
---|
872 | pTimer->fAllCpus = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
|
---|
873 | pTimer->idCpu = fFlags & RTTIMER_FLAGS_CPU_MASK;
|
---|
874 | #else
|
---|
875 | pTimer->fSpecificCpu = !!(fFlags & RTTIMER_FLAGS_CPU_SPECIFIC);
|
---|
876 | pTimer->idCpu = RTMpCpuId();
|
---|
877 | #endif
|
---|
878 | pTimer->cCpus = cCpus;
|
---|
879 | pTimer->pfnTimer = pfnTimer;
|
---|
880 | pTimer->pvUser = pvUser;
|
---|
881 | pTimer->u64NanoInterval = u64NanoInterval;
|
---|
882 | #ifndef RT_USE_LINUX_HRTIMER
|
---|
883 | pTimer->cJiffies = u64NanoInterval / RTTimerGetSystemGranularity();
|
---|
884 | if (pTimer->cJiffies * RTTimerGetSystemGranularity() != u64NanoInterval)
|
---|
885 | pTimer->cJiffies = 0;
|
---|
886 | #endif
|
---|
887 |
|
---|
888 | for (iCpu = 0; iCpu < cCpus; iCpu++)
|
---|
889 | {
|
---|
890 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
891 | hrtimer_init(&pTimer->aSubTimers[iCpu].LnxTimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
---|
892 | pTimer->aSubTimers[iCpu].LnxTimer.function = rtTimerLinuxCallback;
|
---|
893 | #else
|
---|
894 | init_timer(&pTimer->aSubTimers[iCpu].LnxTimer);
|
---|
895 | pTimer->aSubTimers[iCpu].LnxTimer.data = (unsigned long)&pTimer->aSubTimers[iCpu];
|
---|
896 | pTimer->aSubTimers[iCpu].LnxTimer.function = rtTimerLinuxCallback;
|
---|
897 | pTimer->aSubTimers[iCpu].LnxTimer.expires = jiffies;
|
---|
898 | #endif
|
---|
899 | pTimer->aSubTimers[iCpu].u64StartTS = 0;
|
---|
900 | pTimer->aSubTimers[iCpu].u64NextTS = 0;
|
---|
901 | pTimer->aSubTimers[iCpu].iTick = 0;
|
---|
902 | pTimer->aSubTimers[iCpu].pParent = pTimer;
|
---|
903 | pTimer->aSubTimers[iCpu].enmState = RTTIMERLNXSTATE_STOPPED;
|
---|
904 | }
|
---|
905 |
|
---|
906 | #ifdef CONFIG_SMP
|
---|
907 | /*
|
---|
908 | * If this is running on ALL cpus, we'll have to register a callback
|
---|
909 | * for MP events (so timers can be started/stopped on cpus going
|
---|
910 | * online/offline). We also create the spinlock for syncrhonizing
|
---|
911 | * stop/start/mp-event.
|
---|
912 | */
|
---|
913 | if (cCpus > 1)
|
---|
914 | {
|
---|
915 | int rc = RTSpinlockCreate(&pTimer->hSpinlock);
|
---|
916 | if (RT_SUCCESS(rc))
|
---|
917 | rc = RTMpNotificationRegister(rtTimerLinuxMpEvent, pTimer);
|
---|
918 | else
|
---|
919 | pTimer->hSpinlock = NIL_RTSPINLOCK;
|
---|
920 | if (RT_FAILURE(rc))
|
---|
921 | {
|
---|
922 | RTTimerDestroy(pTimer);
|
---|
923 | return rc;
|
---|
924 | }
|
---|
925 | }
|
---|
926 | #endif /* CONFIG_SMP */
|
---|
927 |
|
---|
928 | *ppTimer = pTimer;
|
---|
929 | return VINF_SUCCESS;
|
---|
930 | }
|
---|
931 | RT_EXPORT_SYMBOL(RTTimerCreateEx);
|
---|
932 |
|
---|
933 |
|
---|
934 | RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
|
---|
935 | {
|
---|
936 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
937 | struct timespec Ts;
|
---|
938 | int rc = hrtimer_get_res(CLOCK_MONOTONIC, &Ts);
|
---|
939 | if (!rc)
|
---|
940 | {
|
---|
941 | Assert(!Ts.tv_sec);
|
---|
942 | return Ts.tv_nsec;
|
---|
943 | }
|
---|
944 | #endif
|
---|
945 | return 1000000000 / HZ; /* ns */
|
---|
946 | }
|
---|
947 | RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity);
|
---|
948 |
|
---|
949 |
|
---|
950 | RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
|
---|
951 | {
|
---|
952 | return VERR_NOT_SUPPORTED;
|
---|
953 | }
|
---|
954 | RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity);
|
---|
955 |
|
---|
956 |
|
---|
957 | RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
|
---|
958 | {
|
---|
959 | return VERR_NOT_SUPPORTED;
|
---|
960 | }
|
---|
961 | RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity);
|
---|
962 |
|
---|