VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 60372

Last change on this file since 60372 was 60372, checked in by vboxsync, 9 years ago

Runtime/r0drv/linux: bugref:8315: don't set the PG_reserved flag on potential compound pages. Play safe and do this change only on Linux 4.5 and later which would panic in that case (forward-port of r106453)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 55.4 KB
Line 
1/* $Id: memobj-r0drv-linux.c 60372 2016-04-07 14:12:17Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/alloc.h>
35#include <iprt/assert.h>
36#include <iprt/log.h>
37#include <iprt/process.h>
38#include <iprt/string.h>
39#include "internal/memobj.h"
40
41
42/*********************************************************************************************************************************
43* Defined Constants And Macros *
44*********************************************************************************************************************************/
45/* early 2.6 kernels */
46#ifndef PAGE_SHARED_EXEC
47# define PAGE_SHARED_EXEC PAGE_SHARED
48#endif
49#ifndef PAGE_READONLY_EXEC
50# define PAGE_READONLY_EXEC PAGE_READONLY
51#endif
52
53/*
54 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
55 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
56 * It should be safe to use vm_insert_page() older kernels as well.
57 */
58#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
59# define VBOX_USE_INSERT_PAGE
60#endif
61#if defined(CONFIG_X86_PAE) \
62 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
63 || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
64 && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
65# define VBOX_USE_PAE_HACK
66#endif
67
68
69/*********************************************************************************************************************************
70* Structures and Typedefs *
71*********************************************************************************************************************************/
72/**
73 * The Darwin version of the memory object structure.
74 */
75typedef struct RTR0MEMOBJLNX
76{
77 /** The core structure. */
78 RTR0MEMOBJINTERNAL Core;
79 /** Set if the allocation is contiguous.
80 * This means it has to be given back as one chunk. */
81 bool fContiguous;
82 /** Set if we've vmap'ed the memory into ring-0. */
83 bool fMappedToRing0;
84 /** The pages in the apPages array. */
85 size_t cPages;
86 /** Array of struct page pointers. (variable size) */
87 struct page *apPages[1];
88} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
89
90
91static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
92
93
94/**
95 * Helper that converts from a RTR0PROCESS handle to a linux task.
96 *
97 * @returns The corresponding Linux task.
98 * @param R0Process IPRT ring-0 process handle.
99 */
100static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
101{
102 /** @todo fix rtR0ProcessToLinuxTask!! */
103 /** @todo many (all?) callers currently assume that we return 'current'! */
104 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
105}
106
107
108/**
109 * Compute order. Some functions allocate 2^order pages.
110 *
111 * @returns order.
112 * @param cPages Number of pages.
113 */
114static int rtR0MemObjLinuxOrder(size_t cPages)
115{
116 int iOrder;
117 size_t cTmp;
118
119 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
120 ;
121 if (cPages & ~((size_t)1 << iOrder))
122 ++iOrder;
123
124 return iOrder;
125}
126
127
128/**
129 * Converts from RTMEM_PROT_* to Linux PAGE_*.
130 *
131 * @returns Linux page protection constant.
132 * @param fProt The IPRT protection mask.
133 * @param fKernel Whether it applies to kernel or user space.
134 */
135static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
136{
137 switch (fProt)
138 {
139 default:
140 AssertMsgFailed(("%#x %d\n", fProt, fKernel));
141 case RTMEM_PROT_NONE:
142 return PAGE_NONE;
143
144 case RTMEM_PROT_READ:
145 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
146
147 case RTMEM_PROT_WRITE:
148 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
149 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
150
151 case RTMEM_PROT_EXEC:
152 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
153#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
154 if (fKernel)
155 {
156 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
157 pgprot_val(fPg) &= ~_PAGE_RW;
158 return fPg;
159 }
160 return PAGE_READONLY_EXEC;
161#else
162 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
163#endif
164
165 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
166 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
167 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
168 }
169}
170
171
172/**
173 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
174 * an empty user space mapping.
175 *
176 * We acquire the mmap_sem of the task!
177 *
178 * @returns Pointer to the mapping.
179 * (void *)-1 on failure.
180 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
181 * @param cb The size of the mapping.
182 * @param uAlignment The alignment of the mapping.
183 * @param pTask The Linux task to create this mapping in.
184 * @param fProt The RTMEM_PROT_* mask.
185 */
186static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
187{
188 unsigned fLnxProt;
189 unsigned long ulAddr;
190
191 Assert((pTask == current)); /* do_mmap */
192
193 /*
194 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
195 */
196 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
197 if (fProt == RTMEM_PROT_NONE)
198 fLnxProt = PROT_NONE;
199 else
200 {
201 fLnxProt = 0;
202 if (fProt & RTMEM_PROT_READ)
203 fLnxProt |= PROT_READ;
204 if (fProt & RTMEM_PROT_WRITE)
205 fLnxProt |= PROT_WRITE;
206 if (fProt & RTMEM_PROT_EXEC)
207 fLnxProt |= PROT_EXEC;
208 }
209
210 if (R3PtrFixed != (RTR3PTR)-1)
211 {
212#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
213 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
214#else
215 down_write(&pTask->mm->mmap_sem);
216 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
217 up_write(&pTask->mm->mmap_sem);
218#endif
219 }
220 else
221 {
222#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
223 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
224#else
225 down_write(&pTask->mm->mmap_sem);
226 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
227 up_write(&pTask->mm->mmap_sem);
228#endif
229 if ( !(ulAddr & ~PAGE_MASK)
230 && (ulAddr & (uAlignment - 1)))
231 {
232 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
233 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
234 * ourselves) and further by there begin two mmap strategies (top / bottom). */
235 /* For now, just ignore uAlignment requirements... */
236 }
237 }
238
239
240 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
241 return (void *)-1;
242 return (void *)ulAddr;
243}
244
245
246/**
247 * Worker that destroys a user space mapping.
248 * Undoes what rtR0MemObjLinuxDoMmap did.
249 *
250 * We acquire the mmap_sem of the task!
251 *
252 * @param pv The ring-3 mapping.
253 * @param cb The size of the mapping.
254 * @param pTask The Linux task to destroy this mapping in.
255 */
256static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
257{
258#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
259 Assert(pTask == current);
260 vm_munmap((unsigned long)pv, cb);
261#elif defined(USE_RHEL4_MUNMAP)
262 down_write(&pTask->mm->mmap_sem);
263 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
264 up_write(&pTask->mm->mmap_sem);
265#else
266 down_write(&pTask->mm->mmap_sem);
267 do_munmap(pTask->mm, (unsigned long)pv, cb);
268 up_write(&pTask->mm->mmap_sem);
269#endif
270}
271
272
273/**
274 * Internal worker that allocates physical pages and creates the memory object for them.
275 *
276 * @returns IPRT status code.
277 * @param ppMemLnx Where to store the memory object pointer.
278 * @param enmType The object type.
279 * @param cb The number of bytes to allocate.
280 * @param uAlignment The alignment of the physical memory.
281 * Only valid if fContiguous == true, ignored otherwise.
282 * @param fFlagsLnx The page allocation flags (GPFs).
283 * @param fContiguous Whether the allocation must be contiguous.
284 * @param rcNoMem What to return when we're out of pages.
285 */
286static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
287 size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem)
288{
289 size_t iPage;
290 size_t const cPages = cb >> PAGE_SHIFT;
291 struct page *paPages;
292
293 /*
294 * Allocate a memory object structure that's large enough to contain
295 * the page pointer array.
296 */
297 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
298 if (!pMemLnx)
299 return VERR_NO_MEMORY;
300 pMemLnx->cPages = cPages;
301
302 if (cPages > 255)
303 {
304# ifdef __GFP_REPEAT
305 /* Try hard to allocate the memory, but the allocation attempt might fail. */
306 fFlagsLnx |= __GFP_REPEAT;
307# endif
308# ifdef __GFP_NOMEMALLOC
309 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
310 fFlagsLnx |= __GFP_NOMEMALLOC;
311# endif
312 }
313
314 /*
315 * Allocate the pages.
316 * For small allocations we'll try contiguous first and then fall back on page by page.
317 */
318#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
319 if ( fContiguous
320 || cb <= PAGE_SIZE * 2)
321 {
322# ifdef VBOX_USE_INSERT_PAGE
323 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
324# else
325 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
326# endif
327 if (paPages)
328 {
329 fContiguous = true;
330 for (iPage = 0; iPage < cPages; iPage++)
331 pMemLnx->apPages[iPage] = &paPages[iPage];
332 }
333 else if (fContiguous)
334 {
335 rtR0MemObjDelete(&pMemLnx->Core);
336 return rcNoMem;
337 }
338 }
339
340 if (!fContiguous)
341 {
342 for (iPage = 0; iPage < cPages; iPage++)
343 {
344 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
345 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
346 {
347 while (iPage-- > 0)
348 __free_page(pMemLnx->apPages[iPage]);
349 rtR0MemObjDelete(&pMemLnx->Core);
350 return rcNoMem;
351 }
352 }
353 }
354
355#else /* < 2.4.22 */
356 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
357 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
358 if (!paPages)
359 {
360 rtR0MemObjDelete(&pMemLnx->Core);
361 return rcNoMem;
362 }
363 for (iPage = 0; iPage < cPages; iPage++)
364 {
365 pMemLnx->apPages[iPage] = &paPages[iPage];
366 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
367 if (PageHighMem(pMemLnx->apPages[iPage]))
368 BUG();
369 }
370
371 fContiguous = true;
372#endif /* < 2.4.22 */
373 pMemLnx->fContiguous = fContiguous;
374
375#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
376 /*
377 * Reserve the pages.
378 *
379 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
380 * pages. According to Michal Hocko this shouldn't be necessary anyway because
381 * as pages which are not on the LRU list are never evictable.
382 */
383 for (iPage = 0; iPage < cPages; iPage++)
384 SetPageReserved(pMemLnx->apPages[iPage]);
385#endif
386
387 /*
388 * Note that the physical address of memory allocated with alloc_pages(flags, order)
389 * is always 2^(PAGE_SHIFT+order)-aligned.
390 */
391 if ( fContiguous
392 && uAlignment > PAGE_SIZE)
393 {
394 /*
395 * Check for alignment constraints. The physical address of memory allocated with
396 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
397 */
398 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
399 {
400 /*
401 * This should never happen!
402 */
403 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
404 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
405 rtR0MemObjLinuxFreePages(pMemLnx);
406 return rcNoMem;
407 }
408 }
409
410 *ppMemLnx = pMemLnx;
411 return VINF_SUCCESS;
412}
413
414
415/**
416 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
417 *
418 * This method does NOT free the object.
419 *
420 * @param pMemLnx The object which physical pages should be freed.
421 */
422static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
423{
424 size_t iPage = pMemLnx->cPages;
425 if (iPage > 0)
426 {
427 /*
428 * Restore the page flags.
429 */
430 while (iPage-- > 0)
431 {
432#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
433 /*
434 * See SetPageReserved() in rtR0MemObjLinuxAllocPages()
435 */
436 ClearPageReserved(pMemLnx->apPages[iPage]);
437#endif
438#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
439#else
440 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
441#endif
442 }
443
444 /*
445 * Free the pages.
446 */
447#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
448 if (!pMemLnx->fContiguous)
449 {
450 iPage = pMemLnx->cPages;
451 while (iPage-- > 0)
452 __free_page(pMemLnx->apPages[iPage]);
453 }
454 else
455#endif
456 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
457
458 pMemLnx->cPages = 0;
459 }
460}
461
462
463/**
464 * Maps the allocation into ring-0.
465 *
466 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
467 *
468 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
469 * space, so we'll use that mapping if possible. If execute access is required, we'll
470 * play safe and do our own mapping.
471 *
472 * @returns IPRT status code.
473 * @param pMemLnx The linux memory object to map.
474 * @param fExecutable Whether execute access is required.
475 */
476static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
477{
478 int rc = VINF_SUCCESS;
479
480 /*
481 * Choose mapping strategy.
482 */
483 bool fMustMap = fExecutable
484 || !pMemLnx->fContiguous;
485 if (!fMustMap)
486 {
487 size_t iPage = pMemLnx->cPages;
488 while (iPage-- > 0)
489 if (PageHighMem(pMemLnx->apPages[iPage]))
490 {
491 fMustMap = true;
492 break;
493 }
494 }
495
496 Assert(!pMemLnx->Core.pv);
497 Assert(!pMemLnx->fMappedToRing0);
498
499 if (fMustMap)
500 {
501 /*
502 * Use vmap - 2.4.22 and later.
503 */
504#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
505 pgprot_t fPg;
506 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
507# ifdef _PAGE_NX
508 if (!fExecutable)
509 pgprot_val(fPg) |= _PAGE_NX;
510# endif
511
512# ifdef VM_MAP
513 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
514# else
515 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
516# endif
517 if (pMemLnx->Core.pv)
518 pMemLnx->fMappedToRing0 = true;
519 else
520 rc = VERR_MAP_FAILED;
521#else /* < 2.4.22 */
522 rc = VERR_NOT_SUPPORTED;
523#endif
524 }
525 else
526 {
527 /*
528 * Use the kernel RAM mapping.
529 */
530 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
531 Assert(pMemLnx->Core.pv);
532 }
533
534 return rc;
535}
536
537
538/**
539 * Undoes what rtR0MemObjLinuxVMap() did.
540 *
541 * @param pMemLnx The linux memory object.
542 */
543static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
544{
545#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
546 if (pMemLnx->fMappedToRing0)
547 {
548 Assert(pMemLnx->Core.pv);
549 vunmap(pMemLnx->Core.pv);
550 pMemLnx->fMappedToRing0 = false;
551 }
552#else /* < 2.4.22 */
553 Assert(!pMemLnx->fMappedToRing0);
554#endif
555 pMemLnx->Core.pv = NULL;
556}
557
558
559DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
560{
561 IPRT_LINUX_SAVE_EFL_AC();
562 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
563
564 /*
565 * Release any memory that we've allocated or locked.
566 */
567 switch (pMemLnx->Core.enmType)
568 {
569 case RTR0MEMOBJTYPE_LOW:
570 case RTR0MEMOBJTYPE_PAGE:
571 case RTR0MEMOBJTYPE_CONT:
572 case RTR0MEMOBJTYPE_PHYS:
573 case RTR0MEMOBJTYPE_PHYS_NC:
574 rtR0MemObjLinuxVUnmap(pMemLnx);
575 rtR0MemObjLinuxFreePages(pMemLnx);
576 break;
577
578 case RTR0MEMOBJTYPE_LOCK:
579 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
580 {
581 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
582 size_t iPage;
583 Assert(pTask);
584 if (pTask && pTask->mm)
585 down_read(&pTask->mm->mmap_sem);
586
587 iPage = pMemLnx->cPages;
588 while (iPage-- > 0)
589 {
590 if (!PageReserved(pMemLnx->apPages[iPage]))
591 SetPageDirty(pMemLnx->apPages[iPage]);
592 page_cache_release(pMemLnx->apPages[iPage]);
593 }
594
595 if (pTask && pTask->mm)
596 up_read(&pTask->mm->mmap_sem);
597 }
598 /* else: kernel memory - nothing to do here. */
599 break;
600
601 case RTR0MEMOBJTYPE_RES_VIRT:
602 Assert(pMemLnx->Core.pv);
603 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
604 {
605 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
606 Assert(pTask);
607 if (pTask && pTask->mm)
608 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
609 }
610 else
611 {
612 vunmap(pMemLnx->Core.pv);
613
614 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
615 __free_page(pMemLnx->apPages[0]);
616 pMemLnx->apPages[0] = NULL;
617 pMemLnx->cPages = 0;
618 }
619 pMemLnx->Core.pv = NULL;
620 break;
621
622 case RTR0MEMOBJTYPE_MAPPING:
623 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
624 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
625 {
626 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
627 Assert(pTask);
628 if (pTask && pTask->mm)
629 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
630 }
631 else
632 vunmap(pMemLnx->Core.pv);
633 pMemLnx->Core.pv = NULL;
634 break;
635
636 default:
637 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
638 return VERR_INTERNAL_ERROR;
639 }
640 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
641 return VINF_SUCCESS;
642}
643
644
645DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
646{
647 IPRT_LINUX_SAVE_EFL_AC();
648 PRTR0MEMOBJLNX pMemLnx;
649 int rc;
650
651#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
652 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
653 false /* non-contiguous */, VERR_NO_MEMORY);
654#else
655 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
656 false /* non-contiguous */, VERR_NO_MEMORY);
657#endif
658 if (RT_SUCCESS(rc))
659 {
660 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
661 if (RT_SUCCESS(rc))
662 {
663 *ppMem = &pMemLnx->Core;
664 IPRT_LINUX_RESTORE_EFL_AC();
665 return rc;
666 }
667
668 rtR0MemObjLinuxFreePages(pMemLnx);
669 rtR0MemObjDelete(&pMemLnx->Core);
670 }
671
672 IPRT_LINUX_RESTORE_EFL_AC();
673 return rc;
674}
675
676
677DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
678{
679 IPRT_LINUX_SAVE_EFL_AC();
680 PRTR0MEMOBJLNX pMemLnx;
681 int rc;
682
683 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
684#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
685 /* ZONE_DMA32: 0-4GB */
686 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
687 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
688 if (RT_FAILURE(rc))
689#endif
690#ifdef RT_ARCH_AMD64
691 /* ZONE_DMA: 0-16MB */
692 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
693 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
694#else
695# ifdef CONFIG_X86_PAE
696# endif
697 /* ZONE_NORMAL: 0-896MB */
698 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
699 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
700#endif
701 if (RT_SUCCESS(rc))
702 {
703 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
704 if (RT_SUCCESS(rc))
705 {
706 *ppMem = &pMemLnx->Core;
707 IPRT_LINUX_RESTORE_EFL_AC();
708 return rc;
709 }
710
711 rtR0MemObjLinuxFreePages(pMemLnx);
712 rtR0MemObjDelete(&pMemLnx->Core);
713 }
714
715 IPRT_LINUX_RESTORE_EFL_AC();
716 return rc;
717}
718
719
720DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
721{
722 IPRT_LINUX_SAVE_EFL_AC();
723 PRTR0MEMOBJLNX pMemLnx;
724 int rc;
725
726#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
727 /* ZONE_DMA32: 0-4GB */
728 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
729 true /* contiguous */, VERR_NO_CONT_MEMORY);
730 if (RT_FAILURE(rc))
731#endif
732#ifdef RT_ARCH_AMD64
733 /* ZONE_DMA: 0-16MB */
734 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
735 true /* contiguous */, VERR_NO_CONT_MEMORY);
736#else
737 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
738 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
739 true /* contiguous */, VERR_NO_CONT_MEMORY);
740#endif
741 if (RT_SUCCESS(rc))
742 {
743 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
744 if (RT_SUCCESS(rc))
745 {
746#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
747 size_t iPage = pMemLnx->cPages;
748 while (iPage-- > 0)
749 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
750#endif
751 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
752 *ppMem = &pMemLnx->Core;
753 IPRT_LINUX_RESTORE_EFL_AC();
754 return rc;
755 }
756
757 rtR0MemObjLinuxFreePages(pMemLnx);
758 rtR0MemObjDelete(&pMemLnx->Core);
759 }
760
761 IPRT_LINUX_RESTORE_EFL_AC();
762 return rc;
763}
764
765
766/**
767 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
768 *
769 * @returns IPRT status code.
770 * @param ppMemLnx Where to
771 * @param enmType The object type.
772 * @param cb The size of the allocation.
773 * @param uAlignment The alignment of the physical memory.
774 * Only valid for fContiguous == true, ignored otherwise.
775 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
776 * @param fGfp The Linux GFP flags to use for the allocation.
777 */
778static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
779 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
780{
781 PRTR0MEMOBJLNX pMemLnx;
782 int rc;
783
784 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
785 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
786 VERR_NO_PHYS_MEMORY);
787 if (RT_FAILURE(rc))
788 return rc;
789
790 /*
791 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
792 */
793 if (PhysHighest != NIL_RTHCPHYS)
794 {
795 size_t iPage = pMemLnx->cPages;
796 while (iPage-- > 0)
797 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
798 {
799 rtR0MemObjLinuxFreePages(pMemLnx);
800 rtR0MemObjDelete(&pMemLnx->Core);
801 return VERR_NO_MEMORY;
802 }
803 }
804
805 /*
806 * Complete the object.
807 */
808 if (enmType == RTR0MEMOBJTYPE_PHYS)
809 {
810 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
811 pMemLnx->Core.u.Phys.fAllocated = true;
812 }
813 *ppMem = &pMemLnx->Core;
814 return rc;
815}
816
817
818/**
819 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
820 *
821 * @returns IPRT status code.
822 * @param ppMem Where to store the memory object pointer on success.
823 * @param enmType The object type.
824 * @param cb The size of the allocation.
825 * @param uAlignment The alignment of the physical memory.
826 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
827 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
828 */
829static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
830 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
831{
832 int rc;
833 IPRT_LINUX_SAVE_EFL_AC();
834
835 /*
836 * There are two clear cases and that's the <=16MB and anything-goes ones.
837 * When the physical address limit is somewhere in-between those two we'll
838 * just have to try, starting with HIGHUSER and working our way thru the
839 * different types, hoping we'll get lucky.
840 *
841 * We should probably move this physical address restriction logic up to
842 * the page alloc function as it would be more efficient there. But since
843 * we don't expect this to be a performance issue just yet it can wait.
844 */
845 if (PhysHighest == NIL_RTHCPHYS)
846 /* ZONE_HIGHMEM: the whole physical memory */
847 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
848 else if (PhysHighest <= _1M * 16)
849 /* ZONE_DMA: 0-16MB */
850 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
851 else
852 {
853 rc = VERR_NO_MEMORY;
854 if (RT_FAILURE(rc))
855 /* ZONE_HIGHMEM: the whole physical memory */
856 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
857 if (RT_FAILURE(rc))
858 /* ZONE_NORMAL: 0-896MB */
859 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
860#ifdef GFP_DMA32
861 if (RT_FAILURE(rc))
862 /* ZONE_DMA32: 0-4GB */
863 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
864#endif
865 if (RT_FAILURE(rc))
866 /* ZONE_DMA: 0-16MB */
867 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
868 }
869 IPRT_LINUX_RESTORE_EFL_AC();
870 return rc;
871}
872
873
874/**
875 * Translates a kernel virtual address to a linux page structure by walking the
876 * page tables.
877 *
878 * @note We do assume that the page tables will not change as we are walking
879 * them. This assumption is rather forced by the fact that I could not
880 * immediately see any way of preventing this from happening. So, we
881 * take some extra care when accessing them.
882 *
883 * Because of this, we don't want to use this function on memory where
884 * attribute changes to nearby pages is likely to cause large pages to
885 * be used or split up. So, don't use this for the linear mapping of
886 * physical memory.
887 *
888 * @returns Pointer to the page structur or NULL if it could not be found.
889 * @param pv The kernel virtual address.
890 */
891static struct page *rtR0MemObjLinuxVirtToPage(void *pv)
892{
893 unsigned long ulAddr = (unsigned long)pv;
894 unsigned long pfn;
895 struct page *pPage;
896 pte_t *pEntry;
897 union
898 {
899 pgd_t Global;
900#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
901 pud_t Upper;
902#endif
903 pmd_t Middle;
904 pte_t Entry;
905 } u;
906
907 /* Should this happen in a situation this code will be called in? And if
908 * so, can it change under our feet? See also
909 * "Documentation/vm/active_mm.txt" in the kernel sources. */
910 if (RT_UNLIKELY(!current->active_mm))
911 return NULL;
912 u.Global = *pgd_offset(current->active_mm, ulAddr);
913 if (RT_UNLIKELY(pgd_none(u.Global)))
914 return NULL;
915
916#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
917 u.Upper = *pud_offset(&u.Global, ulAddr);
918 if (RT_UNLIKELY(pud_none(u.Upper)))
919 return NULL;
920# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
921 if (pud_large(u.Upper))
922 {
923 pPage = pud_page(u.Upper);
924 AssertReturn(pPage, NULL);
925 pfn = page_to_pfn(pPage); /* doing the safe way... */
926 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
927 return pfn_to_page(pfn);
928 }
929# endif
930
931 u.Middle = *pmd_offset(&u.Upper, ulAddr);
932#else /* < 2.6.11 */
933 u.Middle = *pmd_offset(&u.Global, ulAddr);
934#endif /* < 2.6.11 */
935 if (RT_UNLIKELY(pmd_none(u.Middle)))
936 return NULL;
937#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
938 if (pmd_large(u.Middle))
939 {
940 pPage = pmd_page(u.Middle);
941 AssertReturn(pPage, NULL);
942 pfn = page_to_pfn(pPage); /* doing the safe way... */
943 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
944 return pfn_to_page(pfn);
945 }
946#endif
947
948#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
949 pEntry = pte_offset_map(&u.Middle, ulAddr);
950#else
951 pEntry = pte_offset(&u.Middle, ulAddr);
952#endif
953 if (RT_UNLIKELY(!pEntry))
954 return NULL;
955 u.Entry = *pEntry;
956#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
957 pte_unmap(pEntry);
958#endif
959
960 if (RT_UNLIKELY(!pte_present(u.Entry)))
961 return NULL;
962 return pte_page(u.Entry);
963}
964
965
966DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
967{
968 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
969}
970
971
972DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
973{
974 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
975}
976
977
978DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
979{
980 IPRT_LINUX_SAVE_EFL_AC();
981
982 /*
983 * All we need to do here is to validate that we can use
984 * ioremap on the specified address (32/64-bit dma_addr_t).
985 */
986 PRTR0MEMOBJLNX pMemLnx;
987 dma_addr_t PhysAddr = Phys;
988 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
989
990 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
991 if (!pMemLnx)
992 {
993 IPRT_LINUX_RESTORE_EFL_AC();
994 return VERR_NO_MEMORY;
995 }
996
997 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
998 pMemLnx->Core.u.Phys.fAllocated = false;
999 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1000 Assert(!pMemLnx->cPages);
1001 *ppMem = &pMemLnx->Core;
1002 IPRT_LINUX_RESTORE_EFL_AC();
1003 return VINF_SUCCESS;
1004}
1005
1006
1007DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1008{
1009 IPRT_LINUX_SAVE_EFL_AC();
1010 const int cPages = cb >> PAGE_SHIFT;
1011 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1012 struct vm_area_struct **papVMAs;
1013 PRTR0MEMOBJLNX pMemLnx;
1014 int rc = VERR_NO_MEMORY;
1015 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1016
1017 /*
1018 * Check for valid task and size overflows.
1019 */
1020 if (!pTask)
1021 return VERR_NOT_SUPPORTED;
1022 if (((size_t)cPages << PAGE_SHIFT) != cb)
1023 return VERR_OUT_OF_RANGE;
1024
1025 /*
1026 * Allocate the memory object and a temporary buffer for the VMAs.
1027 */
1028 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1029 if (!pMemLnx)
1030 {
1031 IPRT_LINUX_RESTORE_EFL_AC();
1032 return VERR_NO_MEMORY;
1033 }
1034
1035 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1036 if (papVMAs)
1037 {
1038 down_read(&pTask->mm->mmap_sem);
1039
1040 /*
1041 * Get user pages.
1042 */
1043 rc = get_user_pages(pTask, /* Task for fault accounting. */
1044 pTask->mm, /* Whose pages. */
1045 R3Ptr, /* Where from. */
1046 cPages, /* How many pages. */
1047 fWrite, /* Write to memory. */
1048 fWrite, /* force write access. */
1049 &pMemLnx->apPages[0], /* Page array. */
1050 papVMAs); /* vmas */
1051 if (rc == cPages)
1052 {
1053 /*
1054 * Flush dcache (required?), protect against fork and _really_ pin the page
1055 * table entries. get_user_pages() will protect against swapping out the
1056 * pages but it will NOT protect against removing page table entries. This
1057 * can be achieved with
1058 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1059 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1060 * Usual Linux distributions support only a limited size of locked pages
1061 * (e.g. 32KB).
1062 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1063 * or by
1064 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1065 * a range check.
1066 */
1067 /** @todo The Linux fork() protection will require more work if this API
1068 * is to be used for anything but locking VM pages. */
1069 while (rc-- > 0)
1070 {
1071 flush_dcache_page(pMemLnx->apPages[rc]);
1072 papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
1073 }
1074
1075 up_read(&pTask->mm->mmap_sem);
1076
1077 RTMemFree(papVMAs);
1078
1079 pMemLnx->Core.u.Lock.R0Process = R0Process;
1080 pMemLnx->cPages = cPages;
1081 Assert(!pMemLnx->fMappedToRing0);
1082 *ppMem = &pMemLnx->Core;
1083
1084 IPRT_LINUX_RESTORE_EFL_AC();
1085 return VINF_SUCCESS;
1086 }
1087
1088 /*
1089 * Failed - we need to unlock any pages that we succeeded to lock.
1090 */
1091 while (rc-- > 0)
1092 {
1093 if (!PageReserved(pMemLnx->apPages[rc]))
1094 SetPageDirty(pMemLnx->apPages[rc]);
1095 page_cache_release(pMemLnx->apPages[rc]);
1096 }
1097
1098 up_read(&pTask->mm->mmap_sem);
1099
1100 RTMemFree(papVMAs);
1101 rc = VERR_LOCK_FAILED;
1102 }
1103
1104 rtR0MemObjDelete(&pMemLnx->Core);
1105 IPRT_LINUX_RESTORE_EFL_AC();
1106 return rc;
1107}
1108
1109
1110DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1111{
1112 IPRT_LINUX_SAVE_EFL_AC();
1113 void *pvLast = (uint8_t *)pv + cb - 1;
1114 size_t const cPages = cb >> PAGE_SHIFT;
1115 PRTR0MEMOBJLNX pMemLnx;
1116 bool fLinearMapping;
1117 int rc;
1118 uint8_t *pbPage;
1119 size_t iPage;
1120 NOREF(fAccess);
1121
1122 if ( !RTR0MemKernelIsValidAddr(pv)
1123 || !RTR0MemKernelIsValidAddr(pv + cb))
1124 return VERR_INVALID_PARAMETER;
1125
1126 /*
1127 * The lower part of the kernel memory has a linear mapping between
1128 * physical and virtual addresses. So we take a short cut here. This is
1129 * assumed to be the cleanest way to handle those addresses (and the code
1130 * is well tested, though the test for determining it is not very nice).
1131 * If we ever decide it isn't we can still remove it.
1132 */
1133#if 0
1134 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1135#else
1136 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1137 && (unsigned long)pvLast < (unsigned long)high_memory;
1138#endif
1139
1140 /*
1141 * Allocate the memory object.
1142 */
1143 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1144 if (!pMemLnx)
1145 {
1146 IPRT_LINUX_RESTORE_EFL_AC();
1147 return VERR_NO_MEMORY;
1148 }
1149
1150 /*
1151 * Gather the pages.
1152 * We ASSUME all kernel pages are non-swappable and non-movable.
1153 */
1154 rc = VINF_SUCCESS;
1155 pbPage = (uint8_t *)pvLast;
1156 iPage = cPages;
1157 if (!fLinearMapping)
1158 {
1159 while (iPage-- > 0)
1160 {
1161 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1162 if (RT_UNLIKELY(!pPage))
1163 {
1164 rc = VERR_LOCK_FAILED;
1165 break;
1166 }
1167 pMemLnx->apPages[iPage] = pPage;
1168 pbPage -= PAGE_SIZE;
1169 }
1170 }
1171 else
1172 {
1173 while (iPage-- > 0)
1174 {
1175 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1176 pbPage -= PAGE_SIZE;
1177 }
1178 }
1179 if (RT_SUCCESS(rc))
1180 {
1181 /*
1182 * Complete the memory object and return.
1183 */
1184 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1185 pMemLnx->cPages = cPages;
1186 Assert(!pMemLnx->fMappedToRing0);
1187 *ppMem = &pMemLnx->Core;
1188
1189 IPRT_LINUX_RESTORE_EFL_AC();
1190 return VINF_SUCCESS;
1191 }
1192
1193 rtR0MemObjDelete(&pMemLnx->Core);
1194 IPRT_LINUX_RESTORE_EFL_AC();
1195 return rc;
1196}
1197
1198
1199DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1200{
1201#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1202 IPRT_LINUX_SAVE_EFL_AC();
1203 const size_t cPages = cb >> PAGE_SHIFT;
1204 struct page *pDummyPage;
1205 struct page **papPages;
1206
1207 /* check for unsupported stuff. */
1208 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1209 if (uAlignment > PAGE_SIZE)
1210 return VERR_NOT_SUPPORTED;
1211
1212 /*
1213 * Allocate a dummy page and create a page pointer array for vmap such that
1214 * the dummy page is mapped all over the reserved area.
1215 */
1216 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1217 if (pDummyPage)
1218 {
1219 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1220 if (papPages)
1221 {
1222 void *pv;
1223 size_t iPage = cPages;
1224 while (iPage-- > 0)
1225 papPages[iPage] = pDummyPage;
1226# ifdef VM_MAP
1227 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1228# else
1229 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1230# endif
1231 RTMemFree(papPages);
1232 if (pv)
1233 {
1234 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1235 if (pMemLnx)
1236 {
1237 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1238 pMemLnx->cPages = 1;
1239 pMemLnx->apPages[0] = pDummyPage;
1240 *ppMem = &pMemLnx->Core;
1241 IPRT_LINUX_RESTORE_EFL_AC();
1242 return VINF_SUCCESS;
1243 }
1244 vunmap(pv);
1245 }
1246 }
1247 __free_page(pDummyPage);
1248 }
1249 IPRT_LINUX_RESTORE_EFL_AC();
1250 return VERR_NO_MEMORY;
1251
1252#else /* < 2.4.22 */
1253 /*
1254 * Could probably use ioremap here, but the caller is in a better position than us
1255 * to select some safe physical memory.
1256 */
1257 return VERR_NOT_SUPPORTED;
1258#endif
1259}
1260
1261
1262DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1263{
1264 IPRT_LINUX_SAVE_EFL_AC();
1265 PRTR0MEMOBJLNX pMemLnx;
1266 void *pv;
1267 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1268 if (!pTask)
1269 return VERR_NOT_SUPPORTED;
1270
1271 /*
1272 * Check that the specified alignment is supported.
1273 */
1274 if (uAlignment > PAGE_SIZE)
1275 return VERR_NOT_SUPPORTED;
1276
1277 /*
1278 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1279 */
1280 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1281 if (pv == (void *)-1)
1282 {
1283 IPRT_LINUX_RESTORE_EFL_AC();
1284 return VERR_NO_MEMORY;
1285 }
1286
1287 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1288 if (!pMemLnx)
1289 {
1290 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1291 IPRT_LINUX_RESTORE_EFL_AC();
1292 return VERR_NO_MEMORY;
1293 }
1294
1295 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1296 *ppMem = &pMemLnx->Core;
1297 IPRT_LINUX_RESTORE_EFL_AC();
1298 return VINF_SUCCESS;
1299}
1300
1301
1302DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1303 void *pvFixed, size_t uAlignment,
1304 unsigned fProt, size_t offSub, size_t cbSub)
1305{
1306 int rc = VERR_NO_MEMORY;
1307 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1308 PRTR0MEMOBJLNX pMemLnx;
1309 IPRT_LINUX_SAVE_EFL_AC();
1310
1311 /* Fail if requested to do something we can't. */
1312 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
1313 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1314 if (uAlignment > PAGE_SIZE)
1315 return VERR_NOT_SUPPORTED;
1316
1317 /*
1318 * Create the IPRT memory object.
1319 */
1320 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1321 if (pMemLnx)
1322 {
1323 if (pMemLnxToMap->cPages)
1324 {
1325#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1326 /*
1327 * Use vmap - 2.4.22 and later.
1328 */
1329 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1330# ifdef VM_MAP
1331 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
1332# else
1333 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
1334# endif
1335 if (pMemLnx->Core.pv)
1336 {
1337 pMemLnx->fMappedToRing0 = true;
1338 rc = VINF_SUCCESS;
1339 }
1340 else
1341 rc = VERR_MAP_FAILED;
1342
1343#else /* < 2.4.22 */
1344 /*
1345 * Only option here is to share mappings if possible and forget about fProt.
1346 */
1347 if (rtR0MemObjIsRing3(pMemToMap))
1348 rc = VERR_NOT_SUPPORTED;
1349 else
1350 {
1351 rc = VINF_SUCCESS;
1352 if (!pMemLnxToMap->Core.pv)
1353 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1354 if (RT_SUCCESS(rc))
1355 {
1356 Assert(pMemLnxToMap->Core.pv);
1357 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
1358 }
1359 }
1360#endif
1361 }
1362 else
1363 {
1364 /*
1365 * MMIO / physical memory.
1366 */
1367 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1368 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1369 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
1370 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
1371 if (pMemLnx->Core.pv)
1372 {
1373 /** @todo fix protection. */
1374 rc = VINF_SUCCESS;
1375 }
1376 }
1377 if (RT_SUCCESS(rc))
1378 {
1379 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1380 *ppMem = &pMemLnx->Core;
1381 IPRT_LINUX_RESTORE_EFL_AC();
1382 return VINF_SUCCESS;
1383 }
1384 rtR0MemObjDelete(&pMemLnx->Core);
1385 }
1386
1387 IPRT_LINUX_RESTORE_EFL_AC();
1388 return rc;
1389}
1390
1391
1392#ifdef VBOX_USE_PAE_HACK
1393/**
1394 * Replace the PFN of a PTE with the address of the actual page.
1395 *
1396 * The caller maps a reserved dummy page at the address with the desired access
1397 * and flags.
1398 *
1399 * This hack is required for older Linux kernels which don't provide
1400 * remap_pfn_range().
1401 *
1402 * @returns 0 on success, -ENOMEM on failure.
1403 * @param mm The memory context.
1404 * @param ulAddr The mapping address.
1405 * @param Phys The physical address of the page to map.
1406 */
1407static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1408{
1409 int rc = -ENOMEM;
1410 pgd_t *pgd;
1411
1412 spin_lock(&mm->page_table_lock);
1413
1414 pgd = pgd_offset(mm, ulAddr);
1415 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1416 {
1417 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1418 if (!pmd_none(*pmd))
1419 {
1420 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1421 if (ptep)
1422 {
1423 pte_t pte = *ptep;
1424 pte.pte_high &= 0xfff00000;
1425 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1426 pte.pte_low &= 0x00000fff;
1427 pte.pte_low |= (Phys & 0xfffff000);
1428 set_pte(ptep, pte);
1429 pte_unmap(ptep);
1430 rc = 0;
1431 }
1432 }
1433 }
1434
1435 spin_unlock(&mm->page_table_lock);
1436 return rc;
1437}
1438#endif /* VBOX_USE_PAE_HACK */
1439
1440
1441DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
1442 size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
1443{
1444 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1445 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1446 int rc = VERR_NO_MEMORY;
1447 PRTR0MEMOBJLNX pMemLnx;
1448#ifdef VBOX_USE_PAE_HACK
1449 struct page *pDummyPage;
1450 RTHCPHYS DummyPhys;
1451#endif
1452 IPRT_LINUX_SAVE_EFL_AC();
1453
1454 /*
1455 * Check for restrictions.
1456 */
1457 if (!pTask)
1458 return VERR_NOT_SUPPORTED;
1459 if (uAlignment > PAGE_SIZE)
1460 return VERR_NOT_SUPPORTED;
1461
1462#ifdef VBOX_USE_PAE_HACK
1463 /*
1464 * Allocate a dummy page for use when mapping the memory.
1465 */
1466 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1467 if (!pDummyPage)
1468 {
1469 IPRT_LINUX_RESTORE_EFL_AC();
1470 return VERR_NO_MEMORY;
1471 }
1472 SetPageReserved(pDummyPage);
1473 DummyPhys = page_to_phys(pDummyPage);
1474#endif
1475
1476 /*
1477 * Create the IPRT memory object.
1478 */
1479 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1480 if (pMemLnx)
1481 {
1482 /*
1483 * Allocate user space mapping.
1484 */
1485 void *pv;
1486 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1487 if (pv != (void *)-1)
1488 {
1489 /*
1490 * Map page by page into the mmap area.
1491 * This is generic, paranoid and not very efficient.
1492 */
1493 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1494 unsigned long ulAddrCur = (unsigned long)pv;
1495 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1496 size_t iPage;
1497
1498 down_write(&pTask->mm->mmap_sem);
1499
1500 rc = VINF_SUCCESS;
1501 if (pMemLnxToMap->cPages)
1502 {
1503 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1504 {
1505#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
1506 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1507#endif
1508#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1509 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1510 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1511#endif
1512#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1513 /* remap_page_range() limitation on x86 */
1514 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1515#endif
1516
1517#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
1518 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1519 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1520 * See remap_pfn_range() in mm/memory.c */
1521#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
1522 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1523#else
1524 vma->vm_flags |= VM_RESERVED;
1525#endif
1526#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1527 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1528#elif defined(VBOX_USE_PAE_HACK)
1529 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1530 if (!rc)
1531 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1532#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1533 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1534#else /* 2.4 */
1535 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1536#endif
1537 if (rc)
1538 {
1539 rc = VERR_NO_MEMORY;
1540 break;
1541 }
1542 }
1543 }
1544 else
1545 {
1546 RTHCPHYS Phys;
1547 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1548 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1549 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1550 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1551 else
1552 {
1553 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1554 Phys = NIL_RTHCPHYS;
1555 }
1556 if (Phys != NIL_RTHCPHYS)
1557 {
1558 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1559 {
1560#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1561 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1562 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1563#endif
1564#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1565 /* remap_page_range() limitation on x86 */
1566 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1567#endif
1568
1569#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1570 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1571#elif defined(VBOX_USE_PAE_HACK)
1572 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1573 if (!rc)
1574 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1575#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1576 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1577#else /* 2.4 */
1578 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1579#endif
1580 if (rc)
1581 {
1582 rc = VERR_NO_MEMORY;
1583 break;
1584 }
1585 }
1586 }
1587 }
1588
1589#ifdef CONFIG_NUMA_BALANCING
1590# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
1591# ifdef RHEL_RELEASE_CODE
1592# if RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7, 0)
1593# define VBOX_NUMA_HACK_OLD
1594# endif
1595# endif
1596# endif
1597 if (RT_SUCCESS(rc))
1598 {
1599 /** @todo Ugly hack! But right now we have no other means to
1600 * disable automatic NUMA page balancing. */
1601# ifdef RT_OS_X86
1602# ifdef VBOX_NUMA_HACK_OLD
1603 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1604# endif
1605 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1606# else
1607# ifdef VBOX_NUMA_HACK_OLD
1608 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1609# endif
1610 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1611# endif
1612 }
1613#endif /* CONFIG_NUMA_BALANCING */
1614
1615 up_write(&pTask->mm->mmap_sem);
1616
1617 if (RT_SUCCESS(rc))
1618 {
1619#ifdef VBOX_USE_PAE_HACK
1620 __free_page(pDummyPage);
1621#endif
1622 pMemLnx->Core.pv = pv;
1623 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1624 *ppMem = &pMemLnx->Core;
1625 IPRT_LINUX_RESTORE_EFL_AC();
1626 return VINF_SUCCESS;
1627 }
1628
1629 /*
1630 * Bail out.
1631 */
1632 rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
1633 }
1634 rtR0MemObjDelete(&pMemLnx->Core);
1635 }
1636#ifdef VBOX_USE_PAE_HACK
1637 __free_page(pDummyPage);
1638#endif
1639
1640 IPRT_LINUX_RESTORE_EFL_AC();
1641 return rc;
1642}
1643
1644
1645DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1646{
1647 NOREF(pMem);
1648 NOREF(offSub);
1649 NOREF(cbSub);
1650 NOREF(fProt);
1651 return VERR_NOT_SUPPORTED;
1652}
1653
1654
1655DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1656{
1657 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1658
1659 if (pMemLnx->cPages)
1660 return page_to_phys(pMemLnx->apPages[iPage]);
1661
1662 switch (pMemLnx->Core.enmType)
1663 {
1664 case RTR0MEMOBJTYPE_CONT:
1665 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1666
1667 case RTR0MEMOBJTYPE_PHYS:
1668 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1669
1670 /* the parent knows */
1671 case RTR0MEMOBJTYPE_MAPPING:
1672 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1673
1674 /* cPages > 0 */
1675 case RTR0MEMOBJTYPE_LOW:
1676 case RTR0MEMOBJTYPE_LOCK:
1677 case RTR0MEMOBJTYPE_PHYS_NC:
1678 case RTR0MEMOBJTYPE_PAGE:
1679 default:
1680 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1681 /* fall thru */
1682
1683 case RTR0MEMOBJTYPE_RES_VIRT:
1684 return NIL_RTHCPHYS;
1685 }
1686}
1687
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette