/* $Revision: 43637 $ */ /** @file * IPRT - Ring-0 Memory Objects, Linux. */ /* * Copyright (C) 2006-2007 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-linux-kernel.h" #include #include #include #include #include #include #include "internal/memobj.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /* early 2.6 kernels */ #ifndef PAGE_SHARED_EXEC # define PAGE_SHARED_EXEC PAGE_SHARED #endif #ifndef PAGE_READONLY_EXEC # define PAGE_READONLY_EXEC PAGE_READONLY #endif /* * 2.6.29+ kernels don't work with remap_pfn_range() anymore because * track_pfn_vma_new() is apparently not defined for non-RAM pages. * It should be safe to use vm_insert_page() older kernels as well. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) # define VBOX_USE_INSERT_PAGE #endif #if defined(CONFIG_X86_PAE) \ && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \ || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \ && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11))) # define VBOX_USE_PAE_HACK #endif /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * The Darwin version of the memory object structure. */ typedef struct RTR0MEMOBJLNX { /** The core structure. */ RTR0MEMOBJINTERNAL Core; /** Set if the allocation is contiguous. * This means it has to be given back as one chunk. */ bool fContiguous; /** Set if we've vmap'ed the memory into ring-0. */ bool fMappedToRing0; /** The pages in the apPages array. */ size_t cPages; /** Array of struct page pointers. (variable size) */ struct page *apPages[1]; } RTR0MEMOBJLNX, *PRTR0MEMOBJLNX; static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx); /** * Helper that converts from a RTR0PROCESS handle to a linux task. * * @returns The corresponding Linux task. * @param R0Process IPRT ring-0 process handle. */ static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process) { /** @todo fix rtR0ProcessToLinuxTask!! */ /** @todo many (all?) callers currently assume that we return 'current'! */ return R0Process == RTR0ProcHandleSelf() ? current : NULL; } /** * Compute order. Some functions allocate 2^order pages. * * @returns order. * @param cPages Number of pages. */ static int rtR0MemObjLinuxOrder(size_t cPages) { int iOrder; size_t cTmp; for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder) ; if (cPages & ~((size_t)1 << iOrder)) ++iOrder; return iOrder; } /** * Converts from RTMEM_PROT_* to Linux PAGE_*. * * @returns Linux page protection constant. * @param fProt The IPRT protection mask. * @param fKernel Whether it applies to kernel or user space. */ static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel) { switch (fProt) { default: AssertMsgFailed(("%#x %d\n", fProt, fKernel)); case RTMEM_PROT_NONE: return PAGE_NONE; case RTMEM_PROT_READ: return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY; case RTMEM_PROT_WRITE: case RTMEM_PROT_WRITE | RTMEM_PROT_READ: return fKernel ? PAGE_KERNEL : PAGE_SHARED; case RTMEM_PROT_EXEC: case RTMEM_PROT_EXEC | RTMEM_PROT_READ: #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) if (fKernel) { pgprot_t fPg = MY_PAGE_KERNEL_EXEC; pgprot_val(fPg) &= ~_PAGE_RW; return fPg; } return PAGE_READONLY_EXEC; #else return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC; #endif case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC: case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ: return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC; } } /** * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates * an empty user space mapping. * * We acquire the mmap_sem of the task! * * @returns Pointer to the mapping. * (void *)-1 on failure. * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location. * @param cb The size of the mapping. * @param uAlignment The alignment of the mapping. * @param pTask The Linux task to create this mapping in. * @param fProt The RTMEM_PROT_* mask. */ static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt) { unsigned fLnxProt; unsigned long ulAddr; Assert((pTask == current)); /* do_mmap */ /* * Convert from IPRT protection to mman.h PROT_ and call do_mmap. */ fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC); if (fProt == RTMEM_PROT_NONE) fLnxProt = PROT_NONE; else { fLnxProt = 0; if (fProt & RTMEM_PROT_READ) fLnxProt |= PROT_READ; if (fProt & RTMEM_PROT_WRITE) fLnxProt |= PROT_WRITE; if (fProt & RTMEM_PROT_EXEC) fLnxProt |= PROT_EXEC; } if (R3PtrFixed != (RTR3PTR)-1) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0) ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0); #else down_write(&pTask->mm->mmap_sem); ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0); up_write(&pTask->mm->mmap_sem); #endif } else { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0) ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0); #else down_write(&pTask->mm->mmap_sem); ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0); up_write(&pTask->mm->mmap_sem); #endif if ( !(ulAddr & ~PAGE_MASK) && (ulAddr & (uAlignment - 1))) { /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill * up alignment gaps. This is of course complicated by fragmentation (which we might have cause * ourselves) and further by there begin two mmap strategies (top / bottom). */ /* For now, just ignore uAlignment requirements... */ } } if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */ return (void *)-1; return (void *)ulAddr; } /** * Worker that destroys a user space mapping. * Undoes what rtR0MemObjLinuxDoMmap did. * * We acquire the mmap_sem of the task! * * @param pv The ring-3 mapping. * @param cb The size of the mapping. * @param pTask The Linux task to destroy this mapping in. */ static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0) Assert(pTask == current); vm_munmap((unsigned long)pv, cb); #elif defined(USE_RHEL4_MUNMAP) down_write(&pTask->mm->mmap_sem); do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */ up_write(&pTask->mm->mmap_sem); #else down_write(&pTask->mm->mmap_sem); do_munmap(pTask->mm, (unsigned long)pv, cb); up_write(&pTask->mm->mmap_sem); #endif } /** * Internal worker that allocates physical pages and creates the memory object for them. * * @returns IPRT status code. * @param ppMemLnx Where to store the memory object pointer. * @param enmType The object type. * @param cb The number of bytes to allocate. * @param uAlignment The alignment of the physical memory. * Only valid if fContiguous == true, ignored otherwise. * @param fFlagsLnx The page allocation flags (GPFs). * @param fContiguous Whether the allocation must be contiguous. * @param rcNoMem What to return when we're out of pages. */ static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb, size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem) { size_t iPage; size_t const cPages = cb >> PAGE_SHIFT; struct page *paPages; /* * Allocate a memory object structure that's large enough to contain * the page pointer array. */ PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb); if (!pMemLnx) return VERR_NO_MEMORY; pMemLnx->cPages = cPages; if (cPages > 255) { # ifdef __GFP_REPEAT /* Try hard to allocate the memory, but the allocation attempt might fail. */ fFlagsLnx |= __GFP_REPEAT; # endif # ifdef __GFP_NOMEMALLOC /* Introduced with Linux 2.6.12: Don't use emergency reserves */ fFlagsLnx |= __GFP_NOMEMALLOC; # endif } /* * Allocate the pages. * For small allocations we'll try contiguous first and then fall back on page by page. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) if ( fContiguous || cb <= PAGE_SIZE * 2) { # ifdef VBOX_USE_INSERT_PAGE paPages = alloc_pages(fFlagsLnx | __GFP_COMP, rtR0MemObjLinuxOrder(cPages)); # else paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages)); # endif if (paPages) { fContiguous = true; for (iPage = 0; iPage < cPages; iPage++) pMemLnx->apPages[iPage] = &paPages[iPage]; } else if (fContiguous) { rtR0MemObjDelete(&pMemLnx->Core); return rcNoMem; } } if (!fContiguous) { for (iPage = 0; iPage < cPages; iPage++) { pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx); if (RT_UNLIKELY(!pMemLnx->apPages[iPage])) { while (iPage-- > 0) __free_page(pMemLnx->apPages[iPage]); rtR0MemObjDelete(&pMemLnx->Core); return rcNoMem; } } } #else /* < 2.4.22 */ /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */ paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages)); if (!paPages) { rtR0MemObjDelete(&pMemLnx->Core); return rcNoMem; } for (iPage = 0; iPage < cPages; iPage++) { pMemLnx->apPages[iPage] = &paPages[iPage]; MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1); if (PageHighMem(pMemLnx->apPages[iPage])) BUG(); } fContiguous = true; #endif /* < 2.4.22 */ pMemLnx->fContiguous = fContiguous; /* * Reserve the pages. */ for (iPage = 0; iPage < cPages; iPage++) SetPageReserved(pMemLnx->apPages[iPage]); /* * Note that the physical address of memory allocated with alloc_pages(flags, order) * is always 2^(PAGE_SHIFT+order)-aligned. */ if ( fContiguous && uAlignment > PAGE_SIZE) { /* * Check for alignment constraints. The physical address of memory allocated with * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned. */ if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1))) { /* * This should never happen! */ printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n", (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0])); rtR0MemObjLinuxFreePages(pMemLnx); return rcNoMem; } } *ppMemLnx = pMemLnx; return VINF_SUCCESS; } /** * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call. * * This method does NOT free the object. * * @param pMemLnx The object which physical pages should be freed. */ static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx) { size_t iPage = pMemLnx->cPages; if (iPage > 0) { /* * Restore the page flags. */ while (iPage-- > 0) { ClearPageReserved(pMemLnx->apPages[iPage]); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) #else MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1); #endif } /* * Free the pages. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) if (!pMemLnx->fContiguous) { iPage = pMemLnx->cPages; while (iPage-- > 0) __free_page(pMemLnx->apPages[iPage]); } else #endif __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages)); pMemLnx->cPages = 0; } } /** * Maps the allocation into ring-0. * * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members. * * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel * space, so we'll use that mapping if possible. If execute access is required, we'll * play safe and do our own mapping. * * @returns IPRT status code. * @param pMemLnx The linux memory object to map. * @param fExecutable Whether execute access is required. */ static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable) { int rc = VINF_SUCCESS; /* * Choose mapping strategy. */ bool fMustMap = fExecutable || !pMemLnx->fContiguous; if (!fMustMap) { size_t iPage = pMemLnx->cPages; while (iPage-- > 0) if (PageHighMem(pMemLnx->apPages[iPage])) { fMustMap = true; break; } } Assert(!pMemLnx->Core.pv); Assert(!pMemLnx->fMappedToRing0); if (fMustMap) { /* * Use vmap - 2.4.22 and later. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) pgprot_t fPg; pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW; # ifdef _PAGE_NX if (!fExecutable) pgprot_val(fPg) |= _PAGE_NX; # endif # ifdef VM_MAP pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg); # else pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg); # endif if (pMemLnx->Core.pv) pMemLnx->fMappedToRing0 = true; else rc = VERR_MAP_FAILED; #else /* < 2.4.22 */ rc = VERR_NOT_SUPPORTED; #endif } else { /* * Use the kernel RAM mapping. */ pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0])); Assert(pMemLnx->Core.pv); } return rc; } /** * Undoes what rtR0MemObjLinuxVMap() did. * * @param pMemLnx The linux memory object. */ static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) if (pMemLnx->fMappedToRing0) { Assert(pMemLnx->Core.pv); vunmap(pMemLnx->Core.pv); pMemLnx->fMappedToRing0 = false; } #else /* < 2.4.22 */ Assert(!pMemLnx->fMappedToRing0); #endif pMemLnx->Core.pv = NULL; } DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem) { PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem; /* * Release any memory that we've allocated or locked. */ switch (pMemLnx->Core.enmType) { case RTR0MEMOBJTYPE_LOW: case RTR0MEMOBJTYPE_PAGE: case RTR0MEMOBJTYPE_CONT: case RTR0MEMOBJTYPE_PHYS: case RTR0MEMOBJTYPE_PHYS_NC: rtR0MemObjLinuxVUnmap(pMemLnx); rtR0MemObjLinuxFreePages(pMemLnx); break; case RTR0MEMOBJTYPE_LOCK: if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS) { struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process); size_t iPage; Assert(pTask); if (pTask && pTask->mm) down_read(&pTask->mm->mmap_sem); iPage = pMemLnx->cPages; while (iPage-- > 0) { if (!PageReserved(pMemLnx->apPages[iPage])) SetPageDirty(pMemLnx->apPages[iPage]); page_cache_release(pMemLnx->apPages[iPage]); } if (pTask && pTask->mm) up_read(&pTask->mm->mmap_sem); } /* else: kernel memory - nothing to do here. */ break; case RTR0MEMOBJTYPE_RES_VIRT: Assert(pMemLnx->Core.pv); if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS) { struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process); Assert(pTask); if (pTask && pTask->mm) rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask); } else { vunmap(pMemLnx->Core.pv); Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL); __free_page(pMemLnx->apPages[0]); pMemLnx->apPages[0] = NULL; pMemLnx->cPages = 0; } pMemLnx->Core.pv = NULL; break; case RTR0MEMOBJTYPE_MAPPING: Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv); if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS) { struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process); Assert(pTask); if (pTask && pTask->mm) rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask); } else vunmap(pMemLnx->Core.pv); pMemLnx->Core.pv = NULL; break; default: AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType)); return VERR_INTERNAL_ERROR; } return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { PRTR0MEMOBJLNX pMemLnx; int rc; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER, false /* non-contiguous */, VERR_NO_MEMORY); #else rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER, false /* non-contiguous */, VERR_NO_MEMORY); #endif if (RT_SUCCESS(rc)) { rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable); if (RT_SUCCESS(rc)) { *ppMem = &pMemLnx->Core; return rc; } rtR0MemObjLinuxFreePages(pMemLnx); rtR0MemObjDelete(&pMemLnx->Core); } return rc; } DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { PRTR0MEMOBJLNX pMemLnx; int rc; /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */ #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32) /* ZONE_DMA32: 0-4GB */ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32, false /* non-contiguous */, VERR_NO_LOW_MEMORY); if (RT_FAILURE(rc)) #endif #ifdef RT_ARCH_AMD64 /* ZONE_DMA: 0-16MB */ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA, false /* non-contiguous */, VERR_NO_LOW_MEMORY); #else # ifdef CONFIG_X86_PAE # endif /* ZONE_NORMAL: 0-896MB */ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER, false /* non-contiguous */, VERR_NO_LOW_MEMORY); #endif if (RT_SUCCESS(rc)) { rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable); if (RT_SUCCESS(rc)) { *ppMem = &pMemLnx->Core; return rc; } rtR0MemObjLinuxFreePages(pMemLnx); rtR0MemObjDelete(&pMemLnx->Core); } return rc; } DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { PRTR0MEMOBJLNX pMemLnx; int rc; #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32) /* ZONE_DMA32: 0-4GB */ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32, true /* contiguous */, VERR_NO_CONT_MEMORY); if (RT_FAILURE(rc)) #endif #ifdef RT_ARCH_AMD64 /* ZONE_DMA: 0-16MB */ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA, true /* contiguous */, VERR_NO_CONT_MEMORY); #else /* ZONE_NORMAL (32-bit hosts): 0-896MB */ rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER, true /* contiguous */, VERR_NO_CONT_MEMORY); #endif if (RT_SUCCESS(rc)) { rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable); if (RT_SUCCESS(rc)) { #if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G)) size_t iPage = pMemLnx->cPages; while (iPage-- > 0) Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G); #endif pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]); *ppMem = &pMemLnx->Core; return rc; } rtR0MemObjLinuxFreePages(pMemLnx); rtR0MemObjDelete(&pMemLnx->Core); } return rc; } /** * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy. * * @returns IPRT status. * @param ppMemLnx Where to * @param enmType The object type. * @param cb The size of the allocation. * @param uAlignment The alignment of the physical memory. * Only valid for fContiguous == true, ignored otherwise. * @param PhysHighest See rtR0MemObjNativeAllocPhys. * @param fGfp The Linux GFP flags to use for the allocation. */ static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp) { PRTR0MEMOBJLNX pMemLnx; int rc; rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp, enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */, VERR_NO_PHYS_MEMORY); if (RT_FAILURE(rc)) return rc; /* * Check the addresses if necessary. (Can be optimized a bit for PHYS.) */ if (PhysHighest != NIL_RTHCPHYS) { size_t iPage = pMemLnx->cPages; while (iPage-- > 0) if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest) { rtR0MemObjLinuxFreePages(pMemLnx); rtR0MemObjDelete(&pMemLnx->Core); return VERR_NO_MEMORY; } } /* * Complete the object. */ if (enmType == RTR0MEMOBJTYPE_PHYS) { pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]); pMemLnx->Core.u.Phys.fAllocated = true; } *ppMem = &pMemLnx->Core; return rc; } /** * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC. * * @returns IPRT status. * @param ppMem Where to store the memory object pointer on success. * @param enmType The object type. * @param cb The size of the allocation. * @param uAlignment The alignment of the physical memory. * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise. * @param PhysHighest See rtR0MemObjNativeAllocPhys. */ static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, size_t uAlignment, RTHCPHYS PhysHighest) { int rc; /* * There are two clear cases and that's the <=16MB and anything-goes ones. * When the physical address limit is somewhere in-between those two we'll * just have to try, starting with HIGHUSER and working our way thru the * different types, hoping we'll get lucky. * * We should probably move this physical address restriction logic up to * the page alloc function as it would be more efficient there. But since * we don't expect this to be a performance issue just yet it can wait. */ if (PhysHighest == NIL_RTHCPHYS) /* ZONE_HIGHMEM: the whole physical memory */ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER); else if (PhysHighest <= _1M * 16) /* ZONE_DMA: 0-16MB */ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA); else { rc = VERR_NO_MEMORY; if (RT_FAILURE(rc)) /* ZONE_HIGHMEM: the whole physical memory */ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER); if (RT_FAILURE(rc)) /* ZONE_NORMAL: 0-896MB */ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER); #ifdef GFP_DMA32 if (RT_FAILURE(rc)) /* ZONE_DMA32: 0-4GB */ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32); #endif if (RT_FAILURE(rc)) /* ZONE_DMA: 0-16MB */ rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA); } return rc; } /** * Translates a kernel virtual address to a linux page structure by walking the * page tables. * * @note We do assume that the page tables will not change as we are walking * them. This assumption is rather forced by the fact that I could not * immediately see any way of preventing this from happening. So, we * take some extra care when accessing them. * * Because of this, we don't want to use this function on memory where * attribute changes to nearby pages is likely to cause large pages to * be used or split up. So, don't use this for the linear mapping of * physical memory. * * @returns Pointer to the page structur or NULL if it could not be found. * @param pv The kernel virtual address. */ static struct page *rtR0MemObjLinuxVirtToPage(void *pv) { unsigned long ulAddr = (unsigned long)pv; unsigned long pfn; struct page *pPage; pte_t *pEntry; union { pgd_t Global; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11) pud_t Upper; #endif pmd_t Middle; pte_t Entry; } u; /* Should this happen in a situation this code will be called in? And if * so, can it change under our feet? See also * "Documentation/vm/active_mm.txt" in the kernel sources. */ if (RT_UNLIKELY(!current->active_mm)) return NULL; u.Global = *pgd_offset(current->active_mm, ulAddr); if (RT_UNLIKELY(pgd_none(u.Global))) return NULL; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11) u.Upper = *pud_offset(&u.Global, ulAddr); if (RT_UNLIKELY(pud_none(u.Upper))) return NULL; # if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25) if (pud_large(u.Upper)) { pPage = pud_page(u.Upper); AssertReturn(pPage, NULL); pfn = page_to_pfn(pPage); /* doing the safe way... */ pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1); return pfn_to_page(pfn); } # endif u.Middle = *pmd_offset(&u.Upper, ulAddr); #else /* < 2.6.11 */ u.Middle = *pmd_offset(&u.Global, ulAddr); #endif /* < 2.6.11 */ if (RT_UNLIKELY(pmd_none(u.Middle))) return NULL; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) if (pmd_large(u.Middle)) { pPage = pmd_page(u.Middle); AssertReturn(pPage, NULL); pfn = page_to_pfn(pPage); /* doing the safe way... */ pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1); return pfn_to_page(pfn); } #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */ pEntry = pte_offset_map(&u.Middle, ulAddr); #else pEntry = pte_offset(&u.Middle, ulAddr); #endif if (RT_UNLIKELY(!pEntry)) return NULL; u.Entry = *pEntry; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) pte_unmap(pEntry); #endif if (RT_UNLIKELY(!pte_present(u.Entry))) return NULL; return pte_page(u.Entry); } DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment) { return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest); } DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest) { return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest); } DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy) { /* * All we need to do here is to validate that we can use * ioremap on the specified address (32/64-bit dma_addr_t). */ PRTR0MEMOBJLNX pMemLnx; dma_addr_t PhysAddr = Phys; AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG); pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb); if (!pMemLnx) return VERR_NO_MEMORY; pMemLnx->Core.u.Phys.PhysBase = PhysAddr; pMemLnx->Core.u.Phys.fAllocated = false; pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy; Assert(!pMemLnx->cPages); *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process) { const int cPages = cb >> PAGE_SHIFT; struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process); struct vm_area_struct **papVMAs; PRTR0MEMOBJLNX pMemLnx; int rc = VERR_NO_MEMORY; int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0; /* * Check for valid task and size overflows. */ if (!pTask) return VERR_NOT_SUPPORTED; if (((size_t)cPages << PAGE_SHIFT) != cb) return VERR_OUT_OF_RANGE; /* * Allocate the memory object and a temporary buffer for the VMAs. */ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb); if (!pMemLnx) return VERR_NO_MEMORY; papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages); if (papVMAs) { down_read(&pTask->mm->mmap_sem); /* * Get user pages. */ rc = get_user_pages(pTask, /* Task for fault accounting. */ pTask->mm, /* Whose pages. */ R3Ptr, /* Where from. */ cPages, /* How many pages. */ fWrite, /* Write to memory. */ fWrite, /* force write access. */ &pMemLnx->apPages[0], /* Page array. */ papVMAs); /* vmas */ if (rc == cPages) { /* * Flush dcache (required?), protect against fork and _really_ pin the page * table entries. get_user_pages() will protect against swapping out the * pages but it will NOT protect against removing page table entries. This * can be achieved with * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...). * Usual Linux distributions support only a limited size of locked pages * (e.g. 32KB). * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages() * or by * - setting the VM_LOCKED flag. This is the same as doing mlock() without * a range check. */ /** @todo The Linux fork() protection will require more work if this API * is to be used for anything but locking VM pages. */ while (rc-- > 0) { flush_dcache_page(pMemLnx->apPages[rc]); papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED); } up_read(&pTask->mm->mmap_sem); RTMemFree(papVMAs); pMemLnx->Core.u.Lock.R0Process = R0Process; pMemLnx->cPages = cPages; Assert(!pMemLnx->fMappedToRing0); *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } /* * Failed - we need to unlock any pages that we succeeded to lock. */ while (rc-- > 0) { if (!PageReserved(pMemLnx->apPages[rc])) SetPageDirty(pMemLnx->apPages[rc]); page_cache_release(pMemLnx->apPages[rc]); } up_read(&pTask->mm->mmap_sem); RTMemFree(papVMAs); rc = VERR_LOCK_FAILED; } rtR0MemObjDelete(&pMemLnx->Core); return rc; } DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess) { void *pvLast = (uint8_t *)pv + cb - 1; size_t const cPages = cb >> PAGE_SHIFT; PRTR0MEMOBJLNX pMemLnx; bool fLinearMapping; int rc; uint8_t *pbPage; size_t iPage; NOREF(fAccess); if ( !RTR0MemKernelIsValidAddr(pv) || !RTR0MemKernelIsValidAddr(pv + cb)) return VERR_INVALID_PARAMETER; /* * The lower part of the kernel memory has a linear mapping between * physical and virtual addresses. So we take a short cut here. This is * assumed to be the cleanest way to handle those addresses (and the code * is well tested, though the test for determining it is not very nice). * If we ever decide it isn't we can still remove it. */ #if 0 fLinearMapping = (unsigned long)pvLast < VMALLOC_START; #else fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0) && (unsigned long)pvLast < (unsigned long)high_memory; #endif /* * Allocate the memory object. */ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb); if (!pMemLnx) return VERR_NO_MEMORY; /* * Gather the pages. * We ASSUME all kernel pages are non-swappable and non-movable. */ rc = VINF_SUCCESS; pbPage = (uint8_t *)pvLast; iPage = cPages; if (!fLinearMapping) { while (iPage-- > 0) { struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage); if (RT_UNLIKELY(!pPage)) { rc = VERR_LOCK_FAILED; break; } pMemLnx->apPages[iPage] = pPage; pbPage -= PAGE_SIZE; } } else { while (iPage-- > 0) { pMemLnx->apPages[iPage] = virt_to_page(pbPage); pbPage -= PAGE_SIZE; } } if (RT_SUCCESS(rc)) { /* * Complete the memory object and return. */ pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS; pMemLnx->cPages = cPages; Assert(!pMemLnx->fMappedToRing0); *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } rtR0MemObjDelete(&pMemLnx->Core); return rc; } DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) const size_t cPages = cb >> PAGE_SHIFT; struct page *pDummyPage; struct page **papPages; /* check for unsupported stuff. */ AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; /* * Allocate a dummy page and create a page pointer array for vmap such that * the dummy page is mapped all over the reserved area. */ pDummyPage = alloc_page(GFP_HIGHUSER); if (!pDummyPage) return VERR_NO_MEMORY; papPages = RTMemAlloc(sizeof(*papPages) * cPages); if (papPages) { void *pv; size_t iPage = cPages; while (iPage-- > 0) papPages[iPage] = pDummyPage; # ifdef VM_MAP pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO); # else pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO); # endif RTMemFree(papPages); if (pv) { PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb); if (pMemLnx) { pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS; pMemLnx->cPages = 1; pMemLnx->apPages[0] = pDummyPage; *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } vunmap(pv); } } __free_page(pDummyPage); return VERR_NO_MEMORY; #else /* < 2.4.22 */ /* * Could probably use ioremap here, but the caller is in a better position than us * to select some safe physical memory. */ return VERR_NOT_SUPPORTED; #endif } DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process) { PRTR0MEMOBJLNX pMemLnx; void *pv; struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process); if (!pTask) return VERR_NOT_SUPPORTED; /* * Check that the specified alignment is supported. */ if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; /* * Let rtR0MemObjLinuxDoMmap do the difficult bits. */ pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE); if (pv == (void *)-1) return VERR_NO_MEMORY; pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb); if (!pMemLnx) { rtR0MemObjLinuxDoMunmap(pv, cb, pTask); return VERR_NO_MEMORY; } pMemLnx->Core.u.ResVirt.R0Process = R0Process; *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt, size_t offSub, size_t cbSub) { int rc = VERR_NO_MEMORY; PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap; PRTR0MEMOBJLNX pMemLnx; /* Fail if requested to do something we can't. */ AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED); AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; /* * Create the IPRT memory object. */ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb); if (pMemLnx) { if (pMemLnxToMap->cPages) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22) /* * Use vmap - 2.4.22 and later. */ pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */); # ifdef VM_MAP pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg); # else pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg); # endif if (pMemLnx->Core.pv) { pMemLnx->fMappedToRing0 = true; rc = VINF_SUCCESS; } else rc = VERR_MAP_FAILED; #else /* < 2.4.22 */ /* * Only option here is to share mappings if possible and forget about fProt. */ if (rtR0MemObjIsRing3(pMemToMap)) rc = VERR_NOT_SUPPORTED; else { rc = VINF_SUCCESS; if (!pMemLnxToMap->Core.pv) rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC)); if (RT_SUCCESS(rc)) { Assert(pMemLnxToMap->Core.pv); pMemLnx->Core.pv = pMemLnxToMap->Core.pv; } } #endif } else { /* * MMIO / physical memory. */ Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated); pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb) : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb); if (pMemLnx->Core.pv) { /** @todo fix protection. */ rc = VINF_SUCCESS; } } if (RT_SUCCESS(rc)) { pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } rtR0MemObjDelete(&pMemLnx->Core); } return rc; } #ifdef VBOX_USE_PAE_HACK /** * Replace the PFN of a PTE with the address of the actual page. * * The caller maps a reserved dummy page at the address with the desired access * and flags. * * This hack is required for older Linux kernels which don't provide * remap_pfn_range(). * * @returns 0 on success, -ENOMEM on failure. * @param mm The memory context. * @param ulAddr The mapping address. * @param Phys The physical address of the page to map. */ static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys) { int rc = -ENOMEM; pgd_t *pgd; spin_lock(&mm->page_table_lock); pgd = pgd_offset(mm, ulAddr); if (!pgd_none(*pgd) && !pgd_bad(*pgd)) { pmd_t *pmd = pmd_offset(pgd, ulAddr); if (!pmd_none(*pmd)) { pte_t *ptep = pte_offset_map(pmd, ulAddr); if (ptep) { pte_t pte = *ptep; pte.pte_high &= 0xfff00000; pte.pte_high |= ((Phys >> 32) & 0x000fffff); pte.pte_low &= 0x00000fff; pte.pte_low |= (Phys & 0xfffff000); set_pte(ptep, pte); pte_unmap(ptep); rc = 0; } } } spin_unlock(&mm->page_table_lock); return rc; } #endif /* VBOX_USE_PAE_HACK */ DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process) { struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process); PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap; int rc = VERR_NO_MEMORY; PRTR0MEMOBJLNX pMemLnx; #ifdef VBOX_USE_PAE_HACK struct page *pDummyPage; RTHCPHYS DummyPhys; #endif /* * Check for restrictions. */ if (!pTask) return VERR_NOT_SUPPORTED; if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; #ifdef VBOX_USE_PAE_HACK /* * Allocate a dummy page for use when mapping the memory. */ pDummyPage = alloc_page(GFP_USER); if (!pDummyPage) return VERR_NO_MEMORY; SetPageReserved(pDummyPage); DummyPhys = page_to_phys(pDummyPage); #endif /* * Create the IPRT memory object. */ pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb); if (pMemLnx) { /* * Allocate user space mapping. */ void *pv; pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt); if (pv != (void *)-1) { /* * Map page by page into the mmap area. * This is generic, paranoid and not very efficient. */ pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */); unsigned long ulAddrCur = (unsigned long)pv; const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT; size_t iPage; down_write(&pTask->mm->mmap_sem); rc = VINF_SUCCESS; if (pMemLnxToMap->cPages) { for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11) RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */ AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR); #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86) /* remap_page_range() limitation on x86 */ AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY); #endif #if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]); /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++). * See remap_pfn_range() in mm/memory.c */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0) vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; #else vma->vm_flags |= VM_RESERVED; #endif #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11) rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg); #elif defined(VBOX_USE_PAE_HACK) rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg); if (!rc) rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg); #else /* 2.4 */ rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg); #endif if (rc) { rc = VERR_NO_MEMORY; break; } } } else { RTHCPHYS Phys; if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS) Phys = pMemLnxToMap->Core.u.Phys.PhysBase; else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT) Phys = pMemLnxToMap->Core.u.Cont.Phys; else { AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType)); Phys = NIL_RTHCPHYS; } if (Phys != NIL_RTHCPHYS) { for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */ AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR); #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86) /* remap_page_range() limitation on x86 */ AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11) rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg); #elif defined(VBOX_USE_PAE_HACK) rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg); if (!rc) rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg); #else /* 2.4 */ rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg); #endif if (rc) { rc = VERR_NO_MEMORY; break; } } } } up_write(&pTask->mm->mmap_sem); if (RT_SUCCESS(rc)) { #ifdef VBOX_USE_PAE_HACK __free_page(pDummyPage); #endif pMemLnx->Core.pv = pv; pMemLnx->Core.u.Mapping.R0Process = R0Process; *ppMem = &pMemLnx->Core; return VINF_SUCCESS; } /* * Bail out. */ rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask); } rtR0MemObjDelete(&pMemLnx->Core); } #ifdef VBOX_USE_PAE_HACK __free_page(pDummyPage); #endif return rc; } DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt) { NOREF(pMem); NOREF(offSub); NOREF(cbSub); NOREF(fProt); return VERR_NOT_SUPPORTED; } DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage) { PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem; if (pMemLnx->cPages) return page_to_phys(pMemLnx->apPages[iPage]); switch (pMemLnx->Core.enmType) { case RTR0MEMOBJTYPE_CONT: return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT); case RTR0MEMOBJTYPE_PHYS: return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT); /* the parent knows */ case RTR0MEMOBJTYPE_MAPPING: return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage); /* cPages > 0 */ case RTR0MEMOBJTYPE_LOW: case RTR0MEMOBJTYPE_LOCK: case RTR0MEMOBJTYPE_PHYS_NC: case RTR0MEMOBJTYPE_PAGE: default: AssertMsgFailed(("%d\n", pMemLnx->Core.enmType)); /* fall thru */ case RTR0MEMOBJTYPE_RES_VIRT: return NIL_RTHCPHYS; } }