VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c@ 92258

Last change on this file since 92258 was 91483, checked in by vboxsync, 3 years ago

IPRT/memobj: Passing pszTag around...

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 23.9 KB
Line 
1/* $Id: memobj-r0drv-haiku.c 91483 2021-09-30 00:19:19Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Haiku.
4 */
5
6/*
7 * Copyright (C) 2012-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-haiku-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/mem.h>
35#include <iprt/err.h>
36#include <iprt/assert.h>
37#include <iprt/log.h>
38#include <iprt/param.h>
39#include <iprt/process.h>
40#include "internal/memobj.h"
41
42
43/*********************************************************************************************************************************
44* Structures and Typedefs *
45*********************************************************************************************************************************/
46/**
47 * The Haiku version of the memory object structure.
48 */
49typedef struct RTR0MEMOBJHAIKU
50{
51 /** The core structure. */
52 RTR0MEMOBJINTERNAL Core;
53 /** Area identifier */
54 area_id AreaId;
55} RTR0MEMOBJHAIKU, *PRTR0MEMOBJHAIKU;
56
57
58//MALLOC_DEFINE(M_IPRTMOBJ, "iprtmobj", "IPRT - R0MemObj");
59#if 0
60/**
61 * Gets the virtual memory map the specified object is mapped into.
62 *
63 * @returns VM map handle on success, NULL if no map.
64 * @param pMem The memory object.
65 */
66static vm_map_t rtR0MemObjHaikuGetMap(PRTR0MEMOBJINTERNAL pMem)
67{
68 switch (pMem->enmType)
69 {
70 case RTR0MEMOBJTYPE_PAGE:
71 case RTR0MEMOBJTYPE_LOW:
72 case RTR0MEMOBJTYPE_CONT:
73 return kernel_map;
74
75 case RTR0MEMOBJTYPE_PHYS:
76 case RTR0MEMOBJTYPE_PHYS_NC:
77 return NULL; /* pretend these have no mapping atm. */
78
79 case RTR0MEMOBJTYPE_LOCK:
80 return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
81 ? kernel_map
82 : &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map;
83
84 case RTR0MEMOBJTYPE_RES_VIRT:
85 return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
86 ? kernel_map
87 : &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map;
88
89 case RTR0MEMOBJTYPE_MAPPING:
90 return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
91 ? kernel_map
92 : &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map;
93
94 default:
95 return NULL;
96 }
97}
98#endif
99
100
101int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
102{
103 PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem;
104 int rc = B_OK;
105
106 switch (pMemHaiku->Core.enmType)
107 {
108 case RTR0MEMOBJTYPE_PAGE:
109 case RTR0MEMOBJTYPE_LOW:
110 case RTR0MEMOBJTYPE_CONT:
111 case RTR0MEMOBJTYPE_MAPPING:
112 case RTR0MEMOBJTYPE_PHYS:
113 case RTR0MEMOBJTYPE_PHYS_NC:
114 {
115 if (pMemHaiku->AreaId > -1)
116 rc = delete_area(pMemHaiku->AreaId);
117
118 AssertMsg(rc == B_OK, ("%#x", rc));
119 break;
120 }
121
122 case RTR0MEMOBJTYPE_LOCK:
123 {
124 team_id team = B_SYSTEM_TEAM;
125
126 if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
127 team = ((team_id)pMemHaiku->Core.u.Lock.R0Process);
128
129 rc = unlock_memory_etc(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb, B_READ_DEVICE);
130 AssertMsg(rc == B_OK, ("%#x", rc));
131 break;
132 }
133
134 case RTR0MEMOBJTYPE_RES_VIRT:
135 {
136 team_id team = B_SYSTEM_TEAM;
137 if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
138 team = ((team_id)pMemHaiku->Core.u.Lock.R0Process);
139
140 rc = vm_unreserve_address_range(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb);
141 AssertMsg(rc == B_OK, ("%#x", rc));
142 break;
143 }
144
145 default:
146 AssertMsgFailed(("enmType=%d\n", pMemHaiku->Core.enmType));
147 return VERR_INTERNAL_ERROR;
148 }
149
150 return VINF_SUCCESS;
151}
152
153
154static int rtR0MemObjNativeAllocArea(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTR0MEMOBJTYPE enmType,
155 RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
156{
157 NOREF(fExecutable);
158
159 int rc;
160 void *pvMap = NULL;
161 const char *pszName = NULL;
162 uint32 addressSpec = B_ANY_KERNEL_ADDRESS;
163 uint32 fLock = ~0U;
164 LogFlowFunc(("ppMem=%p cb=%u, fExecutable=%s, enmType=%08x, PhysHighest=%RX64 uAlignment=%u\n", ppMem,(unsigned)cb,
165 fExecutable ? "true" : "false", enmType, PhysHighest,(unsigned)uAlignment));
166
167 switch (enmType)
168 {
169 case RTR0MEMOBJTYPE_PAGE:
170 pszName = "IPRT R0MemObj Alloc";
171 fLock = B_FULL_LOCK;
172 break;
173 case RTR0MEMOBJTYPE_LOW:
174 pszName = "IPRT R0MemObj AllocLow";
175 fLock = B_32_BIT_FULL_LOCK;
176 break;
177 case RTR0MEMOBJTYPE_CONT:
178 pszName = "IPRT R0MemObj AllocCont";
179 fLock = B_32_BIT_CONTIGUOUS;
180 break;
181#if 0
182 case RTR0MEMOBJTYPE_MAPPING:
183 pszName = "IPRT R0MemObj Mapping";
184 fLock = B_FULL_LOCK;
185 break;
186#endif
187 case RTR0MEMOBJTYPE_PHYS:
188 /** @todo alignment */
189 if (uAlignment != PAGE_SIZE)
190 return VERR_NOT_SUPPORTED;
191 /** @todo r=ramshankar: no 'break' here?? */
192 case RTR0MEMOBJTYPE_PHYS_NC:
193 pszName = "IPRT R0MemObj AllocPhys";
194 fLock = (PhysHighest < _4G ? B_LOMEM : B_32_BIT_CONTIGUOUS);
195 break;
196#if 0
197 case RTR0MEMOBJTYPE_LOCK:
198 break;
199#endif
200 default:
201 return VERR_INTERNAL_ERROR;
202 }
203
204 /* Create the object. */
205 PRTR0MEMOBJHAIKU pMemHaiku;
206 pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), enmType, NULL, cb, pszTag);
207 if (RT_UNLIKELY(!pMemHaiku))
208 return VERR_NO_MEMORY;
209
210 rc = pMemHaiku->AreaId = create_area(pszName, &pvMap, addressSpec, cb, fLock, B_READ_AREA | B_WRITE_AREA);
211 if (pMemHaiku->AreaId >= 0)
212 {
213 physical_entry physMap[2];
214 pMemHaiku->Core.pv = pvMap; /* store start address */
215 switch (enmType)
216 {
217 case RTR0MEMOBJTYPE_CONT:
218 rc = get_memory_map(pvMap, cb, physMap, 2);
219 if (rc == B_OK)
220 pMemHaiku->Core.u.Cont.Phys = physMap[0].address;
221 break;
222
223 case RTR0MEMOBJTYPE_PHYS:
224 case RTR0MEMOBJTYPE_PHYS_NC:
225 rc = get_memory_map(pvMap, cb, physMap, 2);
226 if (rc == B_OK)
227 {
228 pMemHaiku->Core.u.Phys.PhysBase = physMap[0].address;
229 pMemHaiku->Core.u.Phys.fAllocated = true;
230 }
231 break;
232
233 default:
234 break;
235 }
236 if (rc >= B_OK)
237 {
238 *ppMem = &pMemHaiku->Core;
239 return VINF_SUCCESS;
240 }
241
242 delete_area(pMemHaiku->AreaId);
243 }
244
245 rtR0MemObjDelete(&pMemHaiku->Core);
246 return RTErrConvertFromHaikuKernReturn(rc);
247}
248
249
250int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, const char *pszTag)
251{
252 return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_PAGE, 0 /* PhysHighest */, 0 /* uAlignment */, pszTag);
253}
254
255
256DECLHIDDEN(int) rtR0MemObjNativeAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
257 const char *pszTag)
258{
259 return rtR0MemObjFallbackAllocLarge(ppMem, cb, cbLargePage, fFlags, pszTag);
260}
261
262
263int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, const char *pszTag)
264{
265 return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_LOW, 0 /* PhysHighest */, 0 /* uAlignment */, pszTag);
266}
267
268
269int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, const char *pszTag)
270{
271 return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_CONT, 0 /* PhysHighest */, 0 /* uAlignment */, pszTag);
272}
273
274int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
275{
276 return rtR0MemObjNativeAllocArea(ppMem, cb, false, RTR0MEMOBJTYPE_PHYS, PhysHighest, uAlignment, pszTag);
277}
278
279
280int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
281{
282 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE, pszTag);
283}
284
285
286int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
287{
288 AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
289 LogFlowFunc(("ppMem=%p Phys=%08x cb=%u uCachePolicy=%x\n", ppMem, Phys,(unsigned)cb, uCachePolicy));
290
291 /* Create the object. */
292 PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_PHYS, NULL, cb, pszTag);
293 if (!pMemHaiku)
294 return VERR_NO_MEMORY;
295
296 /* There is no allocation here, it needs to be mapped somewhere first. */
297 pMemHaiku->AreaId = -1;
298 pMemHaiku->Core.u.Phys.fAllocated = false;
299 pMemHaiku->Core.u.Phys.PhysBase = Phys;
300 pMemHaiku->Core.u.Phys.uCachePolicy = uCachePolicy;
301 *ppMem = &pMemHaiku->Core;
302 return VINF_SUCCESS;
303}
304
305
306/**
307 * Worker locking the memory in either kernel or user maps.
308 *
309 * @returns IPRT status code.
310 * @param ppMem Where to store the allocated memory object.
311 * @param pvStart The starting address.
312 * @param cb The size of the block.
313 * @param fAccess The mapping protection to apply.
314 * @param R0Process The process to map the memory to (use NIL_RTR0PROCESS
315 * for the kernel)
316 * @param fFlags Memory flags (B_READ_DEVICE indicates the memory is
317 * intended to be written from a "device").
318 * @param pszTag Allocation tag used for statistics and such.
319 */
320static int rtR0MemObjNativeLockInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvStart, size_t cb, uint32_t fAccess,
321 RTR0PROCESS R0Process, int fFlags, const char *pszTag)
322{
323 NOREF(fAccess);
324 team_id TeamId = B_SYSTEM_TEAM;
325
326 LogFlowFunc(("ppMem=%p pvStart=%p cb=%u fAccess=%x R0Process=%d fFlags=%x\n", ppMem, pvStart, cb, fAccess, R0Process,
327 fFlags));
328
329 /* Create the object. */
330 PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_LOCK, pvStart, cb, pszTag);
331 if (RT_UNLIKELY(!pMemHaiku))
332 return VERR_NO_MEMORY;
333
334 if (R0Process != NIL_RTR0PROCESS)
335 TeamId = (team_id)R0Process;
336 int rc = lock_memory_etc(TeamId, pvStart, cb, fFlags);
337 if (rc == B_OK)
338 {
339 pMemHaiku->AreaId = -1;
340 pMemHaiku->Core.u.Lock.R0Process = R0Process;
341 *ppMem = &pMemHaiku->Core;
342 return VINF_SUCCESS;
343 }
344 rtR0MemObjDelete(&pMemHaiku->Core);
345 return RTErrConvertFromHaikuKernReturn(rc);
346}
347
348
349int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process,
350 const char *pszTag)
351{
352 return rtR0MemObjNativeLockInMap(ppMem, (void *)R3Ptr, cb, fAccess, R0Process, B_READ_DEVICE, pszTag);
353}
354
355
356int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
357{
358 return rtR0MemObjNativeLockInMap(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS, B_READ_DEVICE, pszTag);
359}
360
361
362#if 0
363/** @todo Reserve address space */
364/**
365 * Worker for the two virtual address space reservers.
366 *
367 * We're leaning on the examples provided by mmap and vm_mmap in vm_mmap.c here.
368 */
369static int rtR0MemObjNativeReserveInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment,
370 RTR0PROCESS R0Process)
371{
372 int rc;
373 team_id TeamId = B_SYSTEM_TEAM;
374
375 LogFlowFunc(("ppMem=%p pvFixed=%p cb=%u uAlignment=%u R0Process=%d\n", ppMem, pvFixed, (unsigned)cb, uAlignment, R0Process));
376
377 if (R0Process != NIL_RTR0PROCESS)
378 team = (team_id)R0Process;
379
380 /* Check that the specified alignment is supported. */
381 if (uAlignment > PAGE_SIZE)
382 return VERR_NOT_SUPPORTED;
383
384 /* Create the object. */
385 PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb);
386 if (!pMemHaiku)
387 return VERR_NO_MEMORY;
388
389 /* Ask the kernel to reserve the address range. */
390 //XXX: vm_reserve_address_range ?
391 return VERR_NOT_SUPPORTED;
392}
393#endif
394
395
396int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
397{
398 RT_NOREF(ppMem, pvFixed, cb, uAlignment, pszTag);
399 return VERR_NOT_SUPPORTED;
400}
401
402
403int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
404 RTR0PROCESS R0Process, const char *pszTag)
405{
406 RT_NOREF(ppMem, R3PtrFixed, cb, uAlignment, R0Process, pszTag);
407 return VERR_NOT_SUPPORTED;
408}
409
410
411int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
412 unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
413{
414 PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap;
415 PRTR0MEMOBJHAIKU pMemHaiku;
416 area_id area = -1;
417 void *pvMap = pvFixed;
418 uint32 uAddrSpec = B_EXACT_ADDRESS;
419 uint32 fProtect = 0;
420 int rc = VERR_MAP_FAILED;
421 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
422 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
423#if 0
424 /** @todo r=ramshankar: Wrong format specifiers, fix later! */
425 dprintf("%s(%p, %p, %p, %d, %x, %u, %u)\n", __FUNCTION__, ppMem, pMemToMap, pvFixed, uAlignment,
426 fProt, offSub, cbSub);
427#endif
428 /* Check that the specified alignment is supported. */
429 if (uAlignment > PAGE_SIZE)
430 return VERR_NOT_SUPPORTED;
431
432 /* We can't map anything to the first page, sorry. */
433 if (pvFixed == 0)
434 return VERR_NOT_SUPPORTED;
435
436 if (fProt & RTMEM_PROT_READ)
437 fProtect |= B_KERNEL_READ_AREA;
438 if (fProt & RTMEM_PROT_WRITE)
439 fProtect |= B_KERNEL_WRITE_AREA;
440
441 /*
442 * Either the object we map has an area associated with, which we can clone,
443 * or it's a physical address range which we must map.
444 */
445 if (pMemToMapHaiku->AreaId > -1)
446 {
447 if (pvFixed == (void *)-1)
448 uAddrSpec = B_ANY_KERNEL_ADDRESS;
449
450 rc = area = clone_area("IPRT R0MemObj MapKernel", &pvMap, uAddrSpec, fProtect, pMemToMapHaiku->AreaId);
451 LogFlow(("rtR0MemObjNativeMapKernel: clone_area uAddrSpec=%d fProtect=%x AreaId=%d rc=%d\n", uAddrSpec, fProtect,
452 pMemToMapHaiku->AreaId, rc));
453 }
454 else if (pMemToMapHaiku->Core.enmType == RTR0MEMOBJTYPE_PHYS)
455 {
456 /* map_physical_memory() won't let you choose where. */
457 if (pvFixed != (void *)-1)
458 return VERR_NOT_SUPPORTED;
459 uAddrSpec = B_ANY_KERNEL_ADDRESS;
460
461 rc = area = map_physical_memory("IPRT R0MemObj MapKernelPhys", (phys_addr_t)pMemToMapHaiku->Core.u.Phys.PhysBase,
462 pMemToMapHaiku->Core.cb, uAddrSpec, fProtect, &pvMap);
463 }
464 else
465 return VERR_NOT_SUPPORTED;
466
467 if (rc >= B_OK)
468 {
469 /* Create the object. */
470 pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), RTR0MEMOBJTYPE_MAPPING, pvMap,
471 pMemToMapHaiku->Core.cb, pszTag);
472 if (RT_UNLIKELY(!pMemHaiku))
473 return VERR_NO_MEMORY;
474
475 pMemHaiku->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
476 pMemHaiku->Core.pv = pvMap;
477 pMemHaiku->AreaId = area;
478 *ppMem = &pMemHaiku->Core;
479 return VINF_SUCCESS;
480 }
481 rc = VERR_MAP_FAILED;
482
483 /** @todo finish the implementation. */
484
485 rtR0MemObjDelete(&pMemHaiku->Core);
486 return rc;
487}
488
489
490int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
491 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
492{
493#if 0
494 /*
495 * Check for unsupported stuff.
496 */
497 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
498 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
499 if (uAlignment > PAGE_SIZE)
500 return VERR_NOT_SUPPORTED;
501 AssertMsgReturn(!offSub && !cbSub, ("%#zx %#zx\n", offSub, cbSub), VERR_NOT_SUPPORTED); /** @todo implement sub maps */
502
503 int rc;
504 PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap;
505 struct proc *pProc = (struct proc *)R0Process;
506 struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
507
508 /* calc protection */
509 vm_prot_t ProtectionFlags = 0;
510 if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE)
511 ProtectionFlags = VM_PROT_NONE;
512 if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ)
513 ProtectionFlags |= VM_PROT_READ;
514 if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE)
515 ProtectionFlags |= VM_PROT_WRITE;
516 if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC)
517 ProtectionFlags |= VM_PROT_EXECUTE;
518
519 /* calc mapping address */
520 PROC_LOCK(pProc);
521 vm_offset_t AddrR3 = round_page((vm_offset_t)pProc->p_vmspace->vm_daddr + lim_max(pProc, RLIMIT_DATA));
522 PROC_UNLOCK(pProc);
523
524 /* Insert the object in the map. */
525 rc = vm_map_find(pProcMap, /* Map to insert the object in */
526 NULL, /* Object to map */
527 0, /* Start offset in the object */
528 &AddrR3, /* Start address IN/OUT */
529 pMemToMap->cb, /* Size of the mapping */
530 TRUE, /* Whether a suitable address should be searched for first */
531 ProtectionFlags, /* protection flags */
532 VM_PROT_ALL, /* Maximum protection flags */
533 0); /* Copy on write */
534
535 /* Map the memory page by page into the destination map. */
536 if (rc == KERN_SUCCESS)
537 {
538 size_t cPages = pMemToMap->cb >> PAGE_SHIFT;;
539 pmap_t pPhysicalMap = pProcMap->pmap;
540 vm_offset_t AddrR3Dst = AddrR3;
541
542 if ( pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS
543 || pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS_NC
544 || pMemToMap->enmType == RTR0MEMOBJTYPE_PAGE)
545 {
546 /* Mapping physical allocations */
547 Assert(cPages == pMemToMapHaiku->u.Phys.cPages);
548
549 /* Insert the memory page by page into the mapping. */
550 for (uint32_t iPage = 0; iPage < cPages; iPage++)
551 {
552 vm_page_t pPage = pMemToMapHaiku->u.Phys.apPages[iPage];
553
554 MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
555 AddrR3Dst += PAGE_SIZE;
556 }
557 }
558 else
559 {
560 /* Mapping cont or low memory types */
561 vm_offset_t AddrToMap = (vm_offset_t)pMemToMap->pv;
562
563 for (uint32_t iPage = 0; iPage < cPages; iPage++)
564 {
565 vm_page_t pPage = PHYS_TO_VM_PAGE(vtophys(AddrToMap));
566
567 MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
568 AddrR3Dst += PAGE_SIZE;
569 AddrToMap += PAGE_SIZE;
570 }
571 }
572 }
573
574 if (RT_SUCCESS(rc))
575 {
576 /*
577 * Create a mapping object for it.
578 */
579 PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), RTR0MEMOBJTYPE_MAPPING,
580 (void *)AddrR3, pMemToMap->cb, pszTag);
581 if (pMemHaiku)
582 {
583 Assert((vm_offset_t)pMemHaiku->Core.pv == AddrR3);
584 pMemHaiku->Core.u.Mapping.R0Process = R0Process;
585 *ppMem = &pMemHaiku->Core;
586 return VINF_SUCCESS;
587 }
588
589 rc = vm_map_remove(pProcMap, ((vm_offset_t)AddrR3), ((vm_offset_t)AddrR3) + pMemToMap->cb);
590 AssertMsg(rc == KERN_SUCCESS, ("Deleting mapping failed\n"));
591 }
592#else
593 RT_NOREF(ppMem, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub, pszTag);
594#endif
595 return VERR_NOT_SUPPORTED;
596}
597
598
599int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
600{
601 return VERR_NOT_SUPPORTED;
602}
603
604
605RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
606{
607 PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem;
608 status_t rc;
609
610 /** @todo r=ramshankar: Validate objects */
611
612 LogFlow(("rtR0MemObjNativeGetPagePhysAddr: pMem=%p enmType=%x iPage=%u\n", pMem, pMemHaiku->Core.enmType,(unsigned)iPage));
613
614 switch (pMemHaiku->Core.enmType)
615 {
616 case RTR0MEMOBJTYPE_LOCK:
617 {
618 team_id TeamId = B_SYSTEM_TEAM;
619 physical_entry aPhysMap[2];
620 int32 cPhysMap = 2; /** @todo r=ramshankar: why not use RT_ELEMENTS? */
621
622 if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
623 TeamId = (team_id)pMemHaiku->Core.u.Lock.R0Process;
624 void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
625
626 rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap);
627 if (rc < B_OK || cPhysMap < 1)
628 return NIL_RTHCPHYS;
629
630 return aPhysMap[0].address;
631 }
632
633#if 0
634 case RTR0MEMOBJTYPE_MAPPING:
635 {
636 vm_offset_t pb = (vm_offset_t)pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
637
638 if (pMemHaiku->Core.u.Mapping.R0Process != NIL_RTR0PROCESS)
639 {
640 struct proc *pProc = (struct proc *)pMemHaiku->Core.u.Mapping.R0Process;
641 struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
642 pmap_t pPhysicalMap = pProcMap->pmap;
643
644 return pmap_extract(pPhysicalMap, pb);
645 }
646 return vtophys(pb);
647 }
648#endif
649 case RTR0MEMOBJTYPE_CONT:
650 return pMemHaiku->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
651
652 case RTR0MEMOBJTYPE_PHYS:
653 return pMemHaiku->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
654
655 case RTR0MEMOBJTYPE_LOW:
656 case RTR0MEMOBJTYPE_PAGE:
657 case RTR0MEMOBJTYPE_PHYS_NC:
658 {
659 team_id TeamId = B_SYSTEM_TEAM;
660 physical_entry aPhysMap[2];
661 int32 cPhysMap = 2; /** @todo r=ramshankar: why not use RT_ELEMENTS? */
662
663 void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
664 rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap);
665 if (rc < B_OK || cPhysMap < 1)
666 return NIL_RTHCPHYS;
667
668 return aPhysMap[0].address;
669 }
670
671 case RTR0MEMOBJTYPE_RES_VIRT:
672 default:
673 return NIL_RTHCPHYS;
674 }
675}
676
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette