/* $Id: semeventmulti-r0drv-freebsd.c 8245 2008-04-21 17:24:28Z vboxsync $ */ /** @file * IPRT - Multiple Release Event Semaphores, Ring-0 Driver, FreeBSD. */ /* * Copyright (c) 2007 knut st. osmundsen * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-freebsd-kernel.h" #include #include #include #include #include #include "internal/magics.h" /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * FreeBSD multiple release event semaphore. */ typedef struct RTSEMEVENTMULTIINTERNAL { /** Magic value (RTSEMEVENTMULTI_MAGIC). */ uint32_t volatile u32Magic; /** The number of waiting threads. */ uint32_t volatile cWaiters; /** Set if the event object is signaled. */ uint8_t volatile fSignaled; /** The number of threads in the process of waking up. */ uint32_t volatile cWaking; /** The FreeBSD spinlock protecting this structure. */ struct mtx Mtx; } RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL; RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI pEventMultiSem) { Assert(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *)); AssertPtrReturn(pEventMultiSem, VERR_INVALID_POINTER); PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pEventMultiInt)); if (pEventMultiInt) { pEventMultiInt->u32Magic = RTSEMEVENTMULTI_MAGIC; pEventMultiInt->cWaiters = 0; pEventMultiInt->cWaking = 0; pEventMultiInt->fSignaled = 0; mtx_init(&pEventMultiInt->Mtx, "IPRT Multiple Release Event Semaphore", NULL, MTX_SPIN); *pEventMultiSem = pEventMultiInt; return VINF_SUCCESS; } return VERR_NO_MEMORY; } RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI EventMultiSem) { if (EventMultiSem == NIL_RTSEMEVENTMULTI) /* don't bitch */ return VERR_INVALID_HANDLE; PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem; AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic), VERR_INVALID_HANDLE); mtx_lock_spin(&pEventMultiInt->Mtx); ASMAtomicIncU32(&pEventMultiInt->u32Magic); /* make the handle invalid */ if (pEventMultiInt->cWaiters > 0) { /* abort waiting thread, last man cleans up. */ ASMAtomicXchgU32(&pEventMultiInt->cWaking, pEventMultiInt->cWaking + pEventMultiInt->cWaiters); wakeup(pEventMultiInt); mtx_unlock_spin(&pEventMultiInt->Mtx); } else if (pEventMultiInt->cWaking) /* the last waking thread is gonna do the cleanup */ mtx_unlock_spin(&pEventMultiInt->Mtx); else { mtx_unlock_spin(&pEventMultiInt->Mtx); mtx_destroy(&pEventMultiInt->Mtx); RTMemFree(pEventMultiInt); } return VINF_SUCCESS; } RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI EventMultiSem) { PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem; AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic), VERR_INVALID_HANDLE); mtx_lock_spin(&pEventMultiInt->Mtx); ASMAtomicXchgU8(&pEventMultiInt->fSignaled, true); if (pEventMultiInt->cWaiters > 0) { ASMAtomicXchgU32(&pEventMultiInt->cWaking, pEventMultiInt->cWaking + pEventMultiInt->cWaiters); ASMAtomicXchgU32(&pEventMultiInt->cWaiters, 0); wakeup(pEventMultiInt); } mtx_unlock_spin(&pEventMultiInt->Mtx); return VINF_SUCCESS; } RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI EventMultiSem) { PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem; AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic), VERR_INVALID_HANDLE); mtx_lock_spin(&pEventMultiInt->Mtx); ASMAtomicXchgU8(&pEventMultiInt->fSignaled, false); mtx_unlock_spin(&pEventMultiInt->Mtx); return VINF_SUCCESS; } static int rtSemEventMultiWait(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies, bool fInterruptible) { int rc; PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem; AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic), VERR_INVALID_HANDLE); mtx_lock_spin(&pEventMultiInt->Mtx); if (pEventMultiInt->fSignaled) rc = VINF_SUCCESS; else { /* * Translate milliseconds into ticks and go to sleep. */ int cTicks; if (cMillies != RT_INDEFINITE_WAIT) { if (hz == 1000) cTicks = cMillies; else if (hz == 100) cTicks = cMillies / 10; else { int64_t cTicks64 = ((uint64_t)cMillies * hz) / 1000; cTicks = (int)cTicks64; if (cTicks != cTicks64) cTicks = INT_MAX; } } else cTicks = 0; ASMAtomicIncU32(&pEventMultiInt->cWaiters); rc = msleep(pEventMultiInt, /* block id */ &pEventMultiInt->Mtx, fInterruptible ? PZERO | PCATCH : PZERO, "iprtev", /* max 6 chars */ cTicks); switch (rc) { case 0: if (pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC) { ASMAtomicDecU32(&pEventMultiInt->cWaking); rc = VINF_SUCCESS; } else { rc = VERR_SEM_DESTROYED; /** @todo this isn't necessarily correct, we've * could've woken up just before destruction... */ if (!ASMAtomicDecU32(&pEventMultiInt->cWaking)) { /* The event was destroyed, as the last thread do the cleanup. we don't actually know whether */ mtx_unlock_spin(&pEventMultiInt->Mtx); mtx_destroy(&pEventMultiInt->Mtx); RTMemFree(pEventMultiInt); return rc; } } break; case EWOULDBLOCK: Assert(cMillies != RT_INDEFINITE_WAIT); if (pEventMultiInt->cWaiters > 0) ASMAtomicDecU32(&pEventMultiInt->cWaiters); rc = VERR_TIMEOUT; break; case EINTR: case ERESTART: Assert(fInterruptible); if (pEventMultiInt->cWaiters > 0) ASMAtomicDecU32(&pEventMultiInt->cWaiters); rc = VERR_INTERRUPTED; break; default: AssertMsgFailed(("msleep -> %d\n", rc)); rc = VERR_GENERAL_FAILURE; break; } } mtx_unlock_spin(&pEventMultiInt->Mtx); return rc; } RTDECL(int) RTSemEventMultiWait(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies) { return rtSemEventMultiWait(EventMultiSem, cMillies, false /* not interruptible */); } RTDECL(int) RTSemEventMultiWaitNoResume(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies) { return rtSemEventMultiWait(EventMultiSem, cMillies, true /* interruptible */); }