VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/darwin/semaphore-r0drv-darwin.cpp@ 25776

Last change on this file since 25776 was 25724, checked in by vboxsync, 15 years ago

iprt: Use RTMSINTERVAL for timeouts. Fixed missing timeout underflow checks in two RTFileAioCtxWait implementations.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 22.6 KB
Line 
1/* $Id: semaphore-r0drv-darwin.cpp 25724 2010-01-11 14:45:34Z vboxsync $ */
2/** @file
3 * IPRT - Semaphores, Ring-0 Driver, Darwin.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-darwin-kernel.h"
36#include "internal/iprt.h"
37#include <iprt/semaphore.h>
38
39#include <iprt/alloc.h>
40#include <iprt/assert.h>
41#include <iprt/asm.h>
42#include <iprt/err.h>
43#include <iprt/mp.h>
44#include <iprt/thread.h>
45
46#include "internal/magics.h"
47
48
49/*******************************************************************************
50* Structures and Typedefs *
51*******************************************************************************/
52/**
53 * Darwin event semaphore.
54 */
55typedef struct RTSEMEVENTINTERNAL
56{
57 /** Magic value (RTSEMEVENT_MAGIC). */
58 uint32_t volatile u32Magic;
59 /** The number of waiting threads. */
60 uint32_t volatile cWaiters;
61 /** Set if the event object is signaled. */
62 uint8_t volatile fSignaled;
63 /** The number of threads in the process of waking up. */
64 uint32_t volatile cWaking;
65 /** The spinlock protecting us. */
66 lck_spin_t *pSpinlock;
67} RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL;
68
69
70/**
71 * Darwin multiple release event semaphore.
72 */
73typedef struct RTSEMEVENTMULTIINTERNAL
74{
75 /** Magic value (RTSEMEVENTMULTI_MAGIC). */
76 uint32_t volatile u32Magic;
77 /** The number of waiting threads. */
78 uint32_t volatile cWaiters;
79 /** Set if the event object is signaled. */
80 uint8_t volatile fSignaled;
81 /** The number of threads in the process of waking up. */
82 uint32_t volatile cWaking;
83 /** The spinlock protecting us. */
84 lck_spin_t *pSpinlock;
85} RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL;
86
87
88#if 0 /** @todo */
89/**
90 * Darwin mutex semaphore.
91 */
92typedef struct RTSEMMUTEXINTERNAL
93{
94 /** Magic value (RTSEMMUTEX_MAGIC). */
95 uint32_t volatile u32Magic;
96 /** The mutex. */
97 lck_mtx_t *pMtx;
98} RTSEMMUTEXINTERNAL, *PRTSEMMUTEXINTERNAL;
99
100#endif
101
102
103/**
104 * Wrapper for the darwin semaphore structure.
105 */
106typedef struct RTSEMFASTMUTEXINTERNAL
107{
108 /** Magic value (RTSEMFASTMUTEX_MAGIC). */
109 uint32_t u32Magic;
110 /** The mutex. */
111 lck_mtx_t *pMtx;
112} RTSEMFASTMUTEXINTERNAL, *PRTSEMFASTMUTEXINTERNAL;
113
114
115
116RTDECL(int) RTSemEventCreate(PRTSEMEVENT phEventSem)
117{
118 return RTSemEventCreateEx(phEventSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
119}
120
121
122RTDECL(int) RTSemEventCreateEx(PRTSEMEVENT phEventSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...)
123{
124 AssertCompile(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *));
125 AssertReturn(!(fFlags & ~RTSEMEVENT_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
126 AssertPtrReturn(phEventSem, VERR_INVALID_POINTER);
127 RT_ASSERT_PREEMPTIBLE();
128
129 PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)RTMemAlloc(sizeof(*pThis));
130 if (pThis)
131 {
132 pThis->u32Magic = RTSEMEVENT_MAGIC;
133 pThis->cWaiters = 0;
134 pThis->cWaking = 0;
135 pThis->fSignaled = 0;
136 Assert(g_pDarwinLockGroup);
137 pThis->pSpinlock = lck_spin_alloc_init(g_pDarwinLockGroup, LCK_ATTR_NULL);
138 if (pThis->pSpinlock)
139 {
140 *phEventSem = pThis;
141 return VINF_SUCCESS;
142 }
143
144 pThis->u32Magic = 0;
145 RTMemFree(pThis);
146 }
147 return VERR_NO_MEMORY;
148}
149
150
151RTDECL(int) RTSemEventDestroy(RTSEMEVENT hEventSem)
152{
153 PRTSEMEVENTINTERNAL pThis = hEventSem;
154 if (pThis == NIL_RTSEMEVENT)
155 return VINF_SUCCESS;
156 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
157 AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
158 RT_ASSERT_INTS_ON();
159
160 lck_spin_lock(pThis->pSpinlock);
161 ASMAtomicIncU32(&pThis->u32Magic); /* make the handle invalid */
162 if (pThis->cWaiters > 0)
163 {
164 /* abort waiting thread, last man cleans up. */
165 ASMAtomicXchgU32(&pThis->cWaking, pThis->cWaking + pThis->cWaiters);
166 thread_wakeup_prim((event_t)pThis, FALSE /* all threads */, THREAD_RESTART);
167 lck_spin_unlock(pThis->pSpinlock);
168 }
169 else if (pThis->cWaking)
170 /* the last waking thread is gonna do the cleanup */
171 lck_spin_unlock(pThis->pSpinlock);
172 else
173 {
174 lck_spin_unlock(pThis->pSpinlock);
175 lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
176 RTMemFree(pThis);
177 }
178
179 return VINF_SUCCESS;
180}
181
182
183RTDECL(int) RTSemEventSignal(RTSEMEVENT hEventSem)
184{
185 PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem;
186 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
187 AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC,
188 ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic),
189 VERR_INVALID_HANDLE);
190 RT_ASSERT_PREEMPT_CPUID_VAR();
191 RT_ASSERT_INTS_ON();
192
193 /** @todo should probably disable interrupts here... update
194 * semspinmutex-r0drv-generic.c when done. */
195 lck_spin_lock(pThis->pSpinlock);
196
197 if (pThis->cWaiters > 0)
198 {
199 ASMAtomicDecU32(&pThis->cWaiters);
200 ASMAtomicIncU32(&pThis->cWaking);
201 thread_wakeup_prim((event_t)pThis, TRUE /* one thread */, THREAD_AWAKENED);
202 /** @todo this isn't safe. a scheduling interrupt on the other cpu while we're in here
203 * could cause the thread to be timed out before we manage to wake it up and the event
204 * ends up in the wrong state. ditto for posix signals.
205 * Update: check the return code; it will return KERN_NOT_WAITING if no one is around. */
206 }
207 else
208 ASMAtomicXchgU8(&pThis->fSignaled, true);
209
210 lck_spin_unlock(pThis->pSpinlock);
211
212 RT_ASSERT_PREEMPT_CPUID();
213 return VINF_SUCCESS;
214}
215
216
217static int rtSemEventWait(RTSEMEVENT hEventSem, RTMSINTERVAL cMillies, wait_interrupt_t fInterruptible)
218{
219 PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem;
220 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
221 AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
222 if (cMillies)
223 RT_ASSERT_PREEMPTIBLE();
224
225 lck_spin_lock(pThis->pSpinlock);
226
227 int rc;
228 if (pThis->fSignaled)
229 {
230 Assert(!pThis->cWaiters);
231 ASMAtomicXchgU8(&pThis->fSignaled, false);
232 rc = VINF_SUCCESS;
233 }
234 else if (!cMillies)
235 rc = VERR_TIMEOUT;
236 else
237 {
238 ASMAtomicIncU32(&pThis->cWaiters);
239
240 wait_result_t rcWait;
241 if (cMillies == RT_INDEFINITE_WAIT)
242 rcWait = lck_spin_sleep(pThis->pSpinlock, LCK_SLEEP_DEFAULT, (event_t)pThis, fInterruptible);
243 else
244 {
245 uint64_t u64AbsTime;
246 nanoseconds_to_absolutetime(cMillies * UINT64_C(1000000), &u64AbsTime);
247 u64AbsTime += mach_absolute_time();
248
249 rcWait = lck_spin_sleep_deadline(pThis->pSpinlock, LCK_SLEEP_DEFAULT,
250 (event_t)pThis, fInterruptible, u64AbsTime);
251 }
252 switch (rcWait)
253 {
254 case THREAD_AWAKENED:
255 Assert(pThis->cWaking > 0);
256 if ( !ASMAtomicDecU32(&pThis->cWaking)
257 && pThis->u32Magic != RTSEMEVENT_MAGIC)
258 {
259 /* the event was destroyed after we woke up, as the last thread do the cleanup. */
260 lck_spin_unlock(pThis->pSpinlock);
261 Assert(g_pDarwinLockGroup);
262 lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
263 RTMemFree(pThis);
264 return VINF_SUCCESS;
265 }
266 rc = VINF_SUCCESS;
267 break;
268
269 case THREAD_TIMED_OUT:
270 Assert(cMillies != RT_INDEFINITE_WAIT);
271 ASMAtomicDecU32(&pThis->cWaiters);
272 rc = VERR_TIMEOUT;
273 break;
274
275 case THREAD_INTERRUPTED:
276 Assert(fInterruptible);
277 ASMAtomicDecU32(&pThis->cWaiters);
278 rc = VERR_INTERRUPTED;
279 break;
280
281 case THREAD_RESTART:
282 /* Last one out does the cleanup. */
283 if (!ASMAtomicDecU32(&pThis->cWaking))
284 {
285 lck_spin_unlock(pThis->pSpinlock);
286 Assert(g_pDarwinLockGroup);
287 lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
288 RTMemFree(pThis);
289 return VERR_SEM_DESTROYED;
290 }
291
292 rc = VERR_SEM_DESTROYED;
293 break;
294
295 default:
296 AssertMsgFailed(("rcWait=%d\n", rcWait));
297 rc = VERR_GENERAL_FAILURE;
298 break;
299 }
300 }
301
302 lck_spin_unlock(pThis->pSpinlock);
303 return rc;
304}
305
306
307RTDECL(int) RTSemEventWait(RTSEMEVENT hEventSem, RTMSINTERVAL cMillies)
308{
309 return rtSemEventWait(hEventSem, cMillies, THREAD_UNINT);
310}
311
312
313RTDECL(int) RTSemEventWaitNoResume(RTSEMEVENT hEventSem, RTMSINTERVAL cMillies)
314{
315 return rtSemEventWait(hEventSem, cMillies, THREAD_ABORTSAFE);
316}
317
318
319
320RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem)
321{
322 return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
323}
324
325
326RTDECL(int) RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass,
327 const char *pszNameFmt, ...)
328{
329 AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
330 AssertCompile(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *));
331 AssertPtrReturn(phEventMultiSem, VERR_INVALID_POINTER);
332 RT_ASSERT_PREEMPTIBLE();
333
334 PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pThis));
335 if (pThis)
336 {
337 pThis->u32Magic = RTSEMEVENTMULTI_MAGIC;
338 pThis->cWaiters = 0;
339 pThis->cWaking = 0;
340 pThis->fSignaled = 0;
341 Assert(g_pDarwinLockGroup);
342 pThis->pSpinlock = lck_spin_alloc_init(g_pDarwinLockGroup, LCK_ATTR_NULL);
343 if (pThis->pSpinlock)
344 {
345 *phEventMultiSem = pThis;
346 return VINF_SUCCESS;
347 }
348
349 pThis->u32Magic = 0;
350 RTMemFree(pThis);
351 }
352 return VERR_NO_MEMORY;
353}
354
355
356RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem)
357{
358 PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
359 if (pThis == NIL_RTSEMEVENTMULTI)
360 return VINF_SUCCESS;
361 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
362 AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
363 RT_ASSERT_INTS_ON();
364
365 lck_spin_lock(pThis->pSpinlock);
366 ASMAtomicIncU32(&pThis->u32Magic); /* make the handle invalid */
367 if (pThis->cWaiters > 0)
368 {
369 /* abort waiting thread, last man cleans up. */
370 ASMAtomicXchgU32(&pThis->cWaking, pThis->cWaking + pThis->cWaiters);
371 thread_wakeup_prim((event_t)pThis, FALSE /* all threads */, THREAD_RESTART);
372 lck_spin_unlock(pThis->pSpinlock);
373 }
374 else if (pThis->cWaking)
375 /* the last waking thread is gonna do the cleanup */
376 lck_spin_unlock(pThis->pSpinlock);
377 else
378 {
379 lck_spin_unlock(pThis->pSpinlock);
380 lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
381 RTMemFree(pThis);
382 }
383
384 return VINF_SUCCESS;
385}
386
387
388RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem)
389{
390 PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
391 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
392 AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
393 RT_ASSERT_PREEMPT_CPUID_VAR();
394 RT_ASSERT_INTS_ON();
395
396 lck_spin_lock(pThis->pSpinlock);
397
398 ASMAtomicXchgU8(&pThis->fSignaled, true);
399 if (pThis->cWaiters > 0)
400 {
401 ASMAtomicXchgU32(&pThis->cWaking, pThis->cWaking + pThis->cWaiters);
402 ASMAtomicXchgU32(&pThis->cWaiters, 0);
403 thread_wakeup_prim((event_t)pThis, FALSE /* all threads */, THREAD_AWAKENED);
404 }
405
406 lck_spin_unlock(pThis->pSpinlock);
407
408 RT_ASSERT_PREEMPT_CPUID();
409 return VINF_SUCCESS;
410}
411
412
413RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem)
414{
415 PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
416 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
417 AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
418 RT_ASSERT_PREEMPT_CPUID_VAR();
419 RT_ASSERT_INTS_ON();
420
421 lck_spin_lock(pThis->pSpinlock);
422 ASMAtomicXchgU8(&pThis->fSignaled, false);
423 lck_spin_unlock(pThis->pSpinlock);
424
425 RT_ASSERT_PREEMPT_CPUID();
426 return VINF_SUCCESS;
427}
428
429
430static int rtSemEventMultiWait(RTSEMEVENTMULTI hEventMultiSem, RTMSINTERVAL cMillies, wait_interrupt_t fInterruptible)
431{
432 PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
433 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
434 AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
435 if (cMillies)
436 RT_ASSERT_PREEMPTIBLE();
437
438 lck_spin_lock(pThis->pSpinlock);
439
440 int rc;
441 if (pThis->fSignaled)
442 rc = VINF_SUCCESS;
443 else if (!cMillies)
444 rc = VERR_TIMEOUT;
445 else
446 {
447 ASMAtomicIncU32(&pThis->cWaiters);
448
449 wait_result_t rcWait;
450 if (cMillies == RT_INDEFINITE_WAIT)
451 rcWait = lck_spin_sleep(pThis->pSpinlock, LCK_SLEEP_DEFAULT, (event_t)pThis, fInterruptible);
452 else
453 {
454 uint64_t u64AbsTime;
455 nanoseconds_to_absolutetime(cMillies * UINT64_C(1000000), &u64AbsTime);
456 u64AbsTime += mach_absolute_time();
457
458 rcWait = lck_spin_sleep_deadline(pThis->pSpinlock, LCK_SLEEP_DEFAULT,
459 (event_t)pThis, fInterruptible, u64AbsTime);
460 }
461 switch (rcWait)
462 {
463 case THREAD_AWAKENED:
464 Assert(pThis->cWaking > 0);
465 if ( !ASMAtomicDecU32(&pThis->cWaking)
466 && pThis->u32Magic != RTSEMEVENTMULTI_MAGIC)
467 {
468 /* the event was destroyed after we woke up, as the last thread do the cleanup. */
469 lck_spin_unlock(pThis->pSpinlock);
470 Assert(g_pDarwinLockGroup);
471 lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
472 RTMemFree(pThis);
473 return VINF_SUCCESS;
474 }
475 rc = VINF_SUCCESS;
476 break;
477
478 case THREAD_TIMED_OUT:
479 Assert(cMillies != RT_INDEFINITE_WAIT);
480 ASMAtomicDecU32(&pThis->cWaiters);
481 rc = VERR_TIMEOUT;
482 break;
483
484 case THREAD_INTERRUPTED:
485 Assert(fInterruptible);
486 ASMAtomicDecU32(&pThis->cWaiters);
487 rc = VERR_INTERRUPTED;
488 break;
489
490 case THREAD_RESTART:
491 /* Last one out does the cleanup. */
492 if (!ASMAtomicDecU32(&pThis->cWaking))
493 {
494 lck_spin_unlock(pThis->pSpinlock);
495 Assert(g_pDarwinLockGroup);
496 lck_spin_destroy(pThis->pSpinlock, g_pDarwinLockGroup);
497 RTMemFree(pThis);
498 return VERR_SEM_DESTROYED;
499 }
500
501 rc = VERR_SEM_DESTROYED;
502 break;
503
504 default:
505 AssertMsgFailed(("rcWait=%d\n", rcWait));
506 rc = VERR_GENERAL_FAILURE;
507 break;
508 }
509 }
510
511 lck_spin_unlock(pThis->pSpinlock);
512 return rc;
513}
514
515
516RTDECL(int) RTSemEventMultiWait(RTSEMEVENTMULTI hEventMultiSem, RTMSINTERVAL cMillies)
517{
518 return rtSemEventMultiWait(hEventMultiSem, cMillies, THREAD_UNINT);
519}
520
521
522RTDECL(int) RTSemEventMultiWaitNoResume(RTSEMEVENTMULTI hEventMultiSem, RTMSINTERVAL cMillies)
523{
524 return rtSemEventMultiWait(hEventMultiSem, cMillies, THREAD_ABORTSAFE);
525}
526
527
528
529
530
531#if 0 /* need proper timeout lock function! */
532RTDECL(int) RTSemMutexCreate(PRTSEMMUTEX phFastMtx)
533{
534 RT_ASSERT_PREEMPTIBLE();
535 AssertCompile(sizeof(RTSEMMUTEXINTERNAL) > sizeof(void *));
536 PRTSEMMUTEXINTERNAL pThis = (PRTSEMMUTEXINTERNAL)RTMemAlloc(sizeof(*pThis));
537 if (pThis)
538 {
539 pThis->u32Magic = RTSEMMUTEX_MAGIC;
540 Assert(g_pDarwinLockGroup);
541 pThis->pMtx = lck_mtx_alloc_init(g_pDarwinLockGroup, LCK_ATTR_NULL);
542 if (pThis->pMtx)
543 {
544 *phFastMtx = pThis;
545 return VINF_SUCCESS;
546 }
547 RTMemFree(pThis);
548 }
549 return VERR_NO_MEMORY;
550}
551
552
553RTDECL(int) RTSemMutexDestroy(RTSEMMUTEX hMutexSem)
554{
555 /*
556 * Validate input.
557 */
558 PRTSEMMUTEXINTERNAL pThis = (PRTSEMMUTEXINTERNAL)hMutexSem;
559 if (!pThis)
560 return VERR_INVALID_PARAMETER;
561 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
562 AssertMsg(pThis->u32Magic == RTSEMMUTEX_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE);
563 RT_ASSERT_INTS_ON();
564
565 /*
566 * Invalidate it and signal the object just in case.
567 */
568 ASMAtomicIncU32(&pThis->u32Magic);
569
570 Assert(g_pDarwinLockGroup);
571 lck_mtx_free(pThis->pMtx, g_pDarwinLockGroup);
572 pThis->pMtx = NULL;
573
574 RTMemFree(pThis);
575 return VINF_SUCCESS;
576}
577
578
579RTDECL(int) RTSemMutexRequest(RTSEMMUTEX hMutexSem, RTMSINTERVAL cMillies)
580{
581 /*
582 * Validate input.
583 */
584 PRTSEMMUTEXINTERNAL pThis = (PRTSEMMUTEXINTERNAL)hMutexSem;
585 if (!pThis)
586 return VERR_INVALID_PARAMETER;
587 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
588 AssertMsg(pThis->u32Magic == RTSEMMUTEX_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE);
589 if (cMillies)
590 RT_ASSERT_PREEMPTIBLE();
591
592 /*
593 * Get the mutex.
594 */
595 wait_result_t rc = lck_mtx_lock_deadlink
596#if 1
597#else
598 NTSTATUS rcNt;
599 if (cMillies == RT_INDEFINITE_WAIT)
600 rcNt = KeWaitForSingleObject(&pThis->Mutex, Executive, KernelMode, TRUE, NULL);
601 else
602 {
603 LARGE_INTEGER Timeout;
604 Timeout.QuadPart = -(int64_t)cMillies * 10000;
605 rcNt = KeWaitForSingleObject(&pThis->Mutex, Executive, KernelMode, TRUE, &Timeout);
606 }
607 switch (rcNt)
608 {
609 case STATUS_SUCCESS:
610 if (pThis->u32Magic == RTSEMMUTEX_MAGIC)
611 return VINF_SUCCESS;
612 return VERR_SEM_DESTROYED;
613 case STATUS_ALERTED:
614 return VERR_INTERRUPTED; /** @todo VERR_INTERRUPTED isn't correct anylonger. please fix r0drv stuff! */
615 case STATUS_USER_APC:
616 return VERR_INTERRUPTED; /** @todo VERR_INTERRUPTED isn't correct anylonger. please fix r0drv stuff! */
617 case STATUS_TIMEOUT:
618 return VERR_TIMEOUT;
619 default:
620 AssertMsgFailed(("pThis->u32Magic=%RX32 pThis=%p: wait returned %lx!\n",
621 pThis->u32Magic, pThis, (long)rcNt));
622 return VERR_INTERNAL_ERROR;
623 }
624#endif
625 return VINF_SUCCESS;
626}
627
628
629RTDECL(int) RTSemMutexRelease(RTSEMMUTEX hMutexSem)
630{
631 /*
632 * Validate input.
633 */
634 PRTSEMMUTEXINTERNAL pThis = (PRTSEMMUTEXINTERNAL)hMutexSem;
635 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
636 AssertMsg(pThis->u32Magic == RTSEMMUTEX_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE);
637 RT_ASSERT_PREEMPTIBLE();
638
639 /*
640 * Release the mutex.
641 */
642#ifdef RT_USE_FAST_MUTEX
643 ExReleaseFastMutex(&pThis->Mutex);
644#else
645 KeReleaseMutex(&pThis->Mutex, FALSE);
646#endif
647 return VINF_SUCCESS;
648}
649
650#endif /* later */
651
652
653
654
655RTDECL(int) RTSemFastMutexCreate(PRTSEMFASTMUTEX phFastMtx)
656{
657 AssertCompile(sizeof(RTSEMFASTMUTEXINTERNAL) > sizeof(void *));
658 AssertPtrReturn(phFastMtx, VERR_INVALID_POINTER);
659 RT_ASSERT_PREEMPTIBLE();
660
661 PRTSEMFASTMUTEXINTERNAL pThis = (PRTSEMFASTMUTEXINTERNAL)RTMemAlloc(sizeof(*pThis));
662 if (pThis)
663 {
664 pThis->u32Magic = RTSEMFASTMUTEX_MAGIC;
665 Assert(g_pDarwinLockGroup);
666 pThis->pMtx = lck_mtx_alloc_init(g_pDarwinLockGroup, LCK_ATTR_NULL);
667 if (pThis->pMtx)
668 {
669 *phFastMtx = pThis;
670 return VINF_SUCCESS;
671 }
672
673 RTMemFree(pThis);
674 }
675 return VERR_NO_MEMORY;
676}
677
678
679RTDECL(int) RTSemFastMutexDestroy(RTSEMFASTMUTEX hFastMtx)
680{
681 PRTSEMFASTMUTEXINTERNAL pThis = hFastMtx;
682 if (pThis == NIL_RTSEMFASTMUTEX)
683 return VINF_SUCCESS;
684 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
685 AssertMsgReturn(pThis->u32Magic == RTSEMFASTMUTEX_MAGIC, ("%p: u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
686 RT_ASSERT_INTS_ON();
687
688 ASMAtomicWriteU32(&pThis->u32Magic, RTSEMFASTMUTEX_MAGIC_DEAD);
689 Assert(g_pDarwinLockGroup);
690 lck_mtx_free(pThis->pMtx, g_pDarwinLockGroup);
691 pThis->pMtx = NULL;
692 RTMemFree(pThis);
693
694 return VINF_SUCCESS;
695}
696
697
698RTDECL(int) RTSemFastMutexRequest(RTSEMFASTMUTEX hFastMtx)
699{
700 PRTSEMFASTMUTEXINTERNAL pThis = hFastMtx;
701 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
702 AssertMsgReturn(pThis->u32Magic == RTSEMFASTMUTEX_MAGIC, ("%p: u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
703 RT_ASSERT_PREEMPTIBLE();
704
705 lck_mtx_lock(pThis->pMtx);
706 return VINF_SUCCESS;
707}
708
709
710RTDECL(int) RTSemFastMutexRelease(RTSEMFASTMUTEX hFastMtx)
711{
712 PRTSEMFASTMUTEXINTERNAL pThis = hFastMtx;
713 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
714 AssertMsgReturn(pThis->u32Magic == RTSEMFASTMUTEX_MAGIC, ("%p: u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
715 RT_ASSERT_PREEMPTIBLE();
716
717 lck_mtx_unlock(pThis->pMtx);
718 return VINF_SUCCESS;
719}
720
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette