/* $Id: semevent-nt.cpp 93115 2022-01-01 11:31:46Z vboxsync $ */ /** @file * IPRT - Single Release Event Semaphores, Ring-0 Driver & Ring-3 Userland, NT. */ /* * Copyright (C) 2006-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define RTSEMEVENT_WITHOUT_REMAPPING #ifdef IN_RING0 # include "../r0drv/nt/the-nt-kernel.h" #else # include #endif #include #include #include #include #include #include #include #include "internal/magics.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * NT event semaphore. */ typedef struct RTSEMEVENTINTERNAL { /** Magic value (RTSEMEVENT_MAGIC). */ uint32_t volatile u32Magic; /** Reference counter. */ uint32_t volatile cRefs; #ifdef IN_RING0 /** The NT event object. */ KEVENT Event; #elif defined(IN_RING3) /** Handle to the NT event object. */ HANDLE hEvent; #else # error "Unknown context" #endif #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) /** Signallers. */ RTLOCKVALRECSHRD Signallers; /** Indicates that lock validation should be performed. */ bool volatile fEverHadSignallers; #endif } RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL; RTDECL(int) RTSemEventCreate(PRTSEMEVENT phEventSem) { return RTSemEventCreateEx(phEventSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL); } RTDECL(int) RTSemEventCreateEx(PRTSEMEVENT phEventSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...) { AssertReturn(!(fFlags & ~(RTSEMEVENT_FLAGS_NO_LOCK_VAL | RTSEMEVENT_FLAGS_BOOTSTRAP_HACK)), VERR_INVALID_PARAMETER); Assert(!(fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK) || (fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL)); AssertCompile(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *)); PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)RTMemAlloc(sizeof(*pThis)); if (pThis) { pThis->u32Magic = RTSEMEVENT_MAGIC; pThis->cRefs = 1; #ifdef IN_RING0 KeInitializeEvent(&pThis->Event, SynchronizationEvent, FALSE /* not signalled */); #else NTSTATUS rcNt = NtCreateEvent(&pThis->hEvent, EVENT_ALL_ACCESS, NULL /*pObjAttr*/, SynchronizationEvent, FALSE /*not signalled*/); if (NT_SUCCESS(rcNt)) #endif { #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) if (!pszNameFmt) { static uint32_t volatile s_iSemEventAnon = 0; RTLockValidatorRecSharedInit(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis, true /*fSignaller*/, !(fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL), "RTSemEvent-%u", ASMAtomicIncU32(&s_iSemEventAnon) - 1); } else { va_list va; va_start(va, pszNameFmt); RTLockValidatorRecSharedInitV(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis, true /*fSignaller*/, !(fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL), pszNameFmt, va); va_end(va); } pThis->fEverHadSignallers = false; #else RT_NOREF_PV(hClass); RT_NOREF_PV(pszNameFmt); #endif *phEventSem = pThis; return VINF_SUCCESS; } #ifdef IN_RING3 RTMemFree(pThis); return RTErrConvertFromNtStatus(rcNt); #endif } return VERR_NO_MEMORY; } /** * Retains a reference to the semaphore. * * @param pThis The semaphore to retain. */ DECLINLINE(void) rtR0SemEventNtRetain(PRTSEMEVENTINTERNAL pThis) { uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs); Assert(cRefs < 100000); NOREF(cRefs); } /** * Releases a reference to the semaphore. * * @param pThis The semaphore to release */ DECLINLINE(void) rtR0SemEventNtRelease(PRTSEMEVENTINTERNAL pThis) { if (ASMAtomicDecU32(&pThis->cRefs) == 0) { #ifdef IN_RING3 NTSTATUS rcNt = NtClose(pThis->hEvent); AssertMsg(NT_SUCCESS(rcNt), ("%#x\n", rcNt)); RT_NOREF(rcNt); pThis->hEvent = NULL; #endif #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) RTLockValidatorRecSharedDelete(&pThis->Signallers); #endif RTMemFree(pThis); } } RTDECL(int) RTSemEventDestroy(RTSEMEVENT hEventSem) { /* * Validate input. */ PRTSEMEVENTINTERNAL pThis = hEventSem; if (pThis == NIL_RTSEMEVENT) return VINF_SUCCESS; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("pThis->u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); /* * Invalidate it and signal the object just in case. */ ASMAtomicIncU32(&pThis->u32Magic); #ifdef IN_RING0 KeSetEvent(&pThis->Event, 0xfff, FALSE); #else NtSetEvent(pThis->hEvent, NULL); #endif rtR0SemEventNtRelease(pThis); return VINF_SUCCESS; } RTDECL(int) RTSemEventSignal(RTSEMEVENT hEventSem) { /* * Validate input. */ PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("pThis->u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); rtR0SemEventNtRetain(pThis); #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) if (pThis->fEverHadSignallers) { int rc9 = RTLockValidatorRecSharedCheckSignaller(&pThis->Signallers, NIL_RTTHREAD); if (RT_FAILURE(rc9)) return rc9; } #endif /* * Signal the event object. */ #ifdef IN_RING0 KeSetEvent(&pThis->Event, 1, FALSE); #else NTSTATUS rcNt = NtSetEvent(pThis->hEvent, NULL); #endif rtR0SemEventNtRelease(pThis); #ifdef IN_RING3 AssertMsgReturn(NT_SUCCESS(rcNt), ("Signaling hEventSem %p failed: %#x\n", pThis, rcNt), RTErrConvertFromNtStatus(rcNt)); #endif return VINF_SUCCESS; } /** * Worker for RTSemEventWaitEx and RTSemEventWaitExDebug. * * @returns VBox status code. * @param pThis The event semaphore. * @param fFlags See RTSemEventWaitEx. * @param uTimeout See RTSemEventWaitEx. * @param pSrcPos The source code position of the wait. */ DECLINLINE(int) rtR0SemEventNtWait(PRTSEMEVENTINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout, PCRTLOCKVALSRCPOS pSrcPos) { /* * Validate input. */ if (!pThis) return VERR_INVALID_PARAMETER; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE); AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_FLAGS); NOREF(pSrcPos); rtR0SemEventNtRetain(pThis); /* * Lock validation needs to be done only when not polling. */ #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) RTTHREAD const hThreadSelf = !(pThis->fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK) ? RTThreadSelfAutoAdopt() : RTThreadSelf(); if ( pThis->fEverHadSignallers && ( uTimeout != 0 || (fFlags & (RTSEMWAIT_FLAGS_INDEFINITE | RTSEMWAIT_FLAGS_ABSOLUTE))) ) { int rc9 = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, NULL /*pSrcPos*/, false, fFlags & RTSEMWAIT_FLAGS_INDEFINITE ? RT_INDEFINITE_WAIT : RT_MS_30SEC /*whatever*/, RTTHREADSTATE_EVENT, true); if (RT_FAILURE(rc9)) return rc9; } #elif defined(IN_RING3) RTTHREAD const hThreadSelf = RTThreadSelf(); #endif /* * Convert the timeout to a relative one because KeWaitForSingleObject * takes system time instead of interrupt time as input for absolute * timeout specifications. So, we're best off by giving it relative time. * * Lazy bird converts uTimeout to relative nanoseconds and then to Nt time. */ #ifdef IN_RING3 uint64_t nsStartNow = 0; #endif if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)) { if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) uTimeout = uTimeout < UINT64_MAX / RT_NS_1MS ? uTimeout * RT_NS_1MS : UINT64_MAX; if (uTimeout == UINT64_MAX) fFlags |= RTSEMWAIT_FLAGS_INDEFINITE; else { #ifdef IN_RING3 if (fFlags & (RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_ABSOLUTE)) nsStartNow = RTTimeSystemNanoTS(); #endif if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE) { #ifdef IN_RING0 uint64_t const nsStartNow = RTTimeSystemNanoTS(); #endif uTimeout = nsStartNow < uTimeout ? uTimeout - nsStartNow : 0; } } } /* * Wait for it. * We're assuming interruptible waits should happen at UserMode level. */ int rc; #ifdef IN_RING3 for (;;) #endif { #ifdef IN_RING0 BOOLEAN fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE); KPROCESSOR_MODE WaitMode = fInterruptible ? UserMode : KernelMode; #endif NTSTATUS rcNt; #ifdef IN_RING3 RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT, true); #endif if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE) #ifdef IN_RING0 rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, NULL); #else rcNt = NtWaitForSingleObject(pThis->hEvent, TRUE /*Alertable*/, NULL); #endif else { LARGE_INTEGER Timeout; Timeout.QuadPart = -(int64_t)(uTimeout / 100); #ifdef IN_RING0 rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, &Timeout); #else rcNt = NtWaitForSingleObject(pThis->hEvent, TRUE /*Alertable*/, &Timeout); #endif } #ifdef IN_RING3 RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT); #endif if (pThis->u32Magic == RTSEMEVENT_MAGIC) { switch (rcNt) { case STATUS_SUCCESS: rc = VINF_SUCCESS; break; case STATUS_TIMEOUT: Assert(!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)); rc = VERR_TIMEOUT; break; case STATUS_USER_APC: case STATUS_ALERTED: rc = VERR_INTERRUPTED; #ifdef IN_RING3 /* Loop if when automatically resuming on interruption, adjusting the timeout. */ if (fFlags & RTSEMWAIT_FLAGS_RESUME) { if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE) && uTimeout > 0) { uint64_t const nsNewNow = RTTimeSystemNanoTS(); uint64_t const cNsElapsed = nsNewNow - nsStartNow; if (cNsElapsed < uTimeout) uTimeout -= cNsElapsed; else uTimeout = 0; nsStartNow = nsNewNow; } continue; } #endif break; #ifdef IN_RING3 case STATUS_ABANDONED_WAIT_0: rc = VERR_SEM_OWNER_DIED; break; #endif default: AssertMsgFailed(("pThis->u32Magic=%RX32 pThis=%p: wait returned %x!\n", pThis->u32Magic, pThis, rcNt)); rc = VERR_INTERNAL_ERROR_4; break; } } else rc = VERR_SEM_DESTROYED; #ifdef IN_RING3 break; #endif } rtR0SemEventNtRelease(pThis); return rc; } RTDECL(int) RTSemEventWaitEx(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout) { #ifndef RTSEMEVENT_STRICT return rtR0SemEventNtWait(hEventSem, fFlags, uTimeout, NULL); #else RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API(); return rtR0SemEventNtWait(hEventSem, fFlags, uTimeout, &SrcPos); #endif } RTDECL(int) RTSemEventWaitExDebug(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout, RTHCUINTPTR uId, RT_SRC_POS_DECL) { RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API(); return rtR0SemEventNtWait(hEventSem, fFlags, uTimeout, &SrcPos); } #ifdef IN_RING0 RTR0DECL(bool) RTSemEventIsSignalSafe(void) { return KeGetCurrentIrql() <= DISPATCH_LEVEL; } #endif #ifdef IN_RING3 RTDECL(void) RTSemEventSetSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread) { # ifdef RTSEMEVENT_STRICT struct RTSEMEVENTINTERNAL *pThis = hEventSem; AssertPtrReturnVoid(pThis); AssertReturnVoid(pThis->u32Magic == RTSEMEVENT_MAGIC); ASMAtomicWriteBool(&pThis->fEverHadSignallers, true); RTLockValidatorRecSharedResetOwner(&pThis->Signallers, hThread, NULL); # else RT_NOREF_PV(hEventSem); RT_NOREF_PV(hThread); # endif } RTDECL(void) RTSemEventAddSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread) { # ifdef RTSEMEVENT_STRICT struct RTSEMEVENTINTERNAL *pThis = hEventSem; AssertPtrReturnVoid(pThis); AssertReturnVoid(pThis->u32Magic == RTSEMEVENT_MAGIC); ASMAtomicWriteBool(&pThis->fEverHadSignallers, true); RTLockValidatorRecSharedAddOwner(&pThis->Signallers, hThread, NULL); # else RT_NOREF_PV(hEventSem); RT_NOREF_PV(hThread); # endif } RTDECL(void) RTSemEventRemoveSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread) { # ifdef RTSEMEVENT_STRICT struct RTSEMEVENTINTERNAL *pThis = hEventSem; AssertPtrReturnVoid(pThis); AssertReturnVoid(pThis->u32Magic == RTSEMEVENT_MAGIC); RTLockValidatorRecSharedRemoveOwner(&pThis->Signallers, hThread); # else RT_NOREF_PV(hEventSem); RT_NOREF_PV(hThread); # endif } #endif /* IN_RING3 */