1 | /* $NetBSD: muldi3.c,v 1.10 2005/12/11 12:24:37 christos Exp $ */
|
---|
2 |
|
---|
3 | /*-
|
---|
4 | * Copyright (c) 1992, 1993
|
---|
5 | * The Regents of the University of California. All rights reserved.
|
---|
6 | *
|
---|
7 | * This software was developed by the Computer Systems Engineering group
|
---|
8 | * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
---|
9 | * contributed to Berkeley.
|
---|
10 | *
|
---|
11 | * Redistribution and use in source and binary forms, with or without
|
---|
12 | * modification, are permitted provided that the following conditions
|
---|
13 | * are met:
|
---|
14 | * 1. Redistributions of source code must retain the above copyright
|
---|
15 | * notice, this list of conditions and the following disclaimer.
|
---|
16 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
17 | * notice, this list of conditions and the following disclaimer in the
|
---|
18 | * documentation and/or other materials provided with the distribution.
|
---|
19 | * 3. Neither the name of the University nor the names of its contributors
|
---|
20 | * may be used to endorse or promote products derived from this software
|
---|
21 | * without specific prior written permission.
|
---|
22 | *
|
---|
23 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
24 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
27 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
28 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
29 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
30 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
31 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
32 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
33 | * SUCH DAMAGE.
|
---|
34 | */
|
---|
35 |
|
---|
36 | /*#include <sys/cdefs.h>
|
---|
37 | #if defined(LIBC_SCCS) && !defined(lint)
|
---|
38 | #if 0
|
---|
39 | static char sccsid[] = "@(#)muldi3.c 8.1 (Berkeley) 6/4/93";
|
---|
40 | #else
|
---|
41 | __RCSID("$NetBSD: muldi3.c,v 1.10 2005/12/11 12:24:37 christos Exp $");
|
---|
42 | #endif
|
---|
43 | #endif*/ /* LIBC_SCCS and not lint */
|
---|
44 |
|
---|
45 | #include "quad.h"
|
---|
46 |
|
---|
47 | /*
|
---|
48 | * Multiply two quads.
|
---|
49 | *
|
---|
50 | * Our algorithm is based on the following. Split incoming quad values
|
---|
51 | * u and v (where u,v >= 0) into
|
---|
52 | *
|
---|
53 | * u = 2^n u1 * u0 (n = number of bits in `u_int', usu. 32)
|
---|
54 | *
|
---|
55 | * and
|
---|
56 | *
|
---|
57 | * v = 2^n v1 * v0
|
---|
58 | *
|
---|
59 | * Then
|
---|
60 | *
|
---|
61 | * uv = 2^2n u1 v1 + 2^n u1 v0 + 2^n v1 u0 + u0 v0
|
---|
62 | * = 2^2n u1 v1 + 2^n (u1 v0 + v1 u0) + u0 v0
|
---|
63 | *
|
---|
64 | * Now add 2^n u1 v1 to the first term and subtract it from the middle,
|
---|
65 | * and add 2^n u0 v0 to the last term and subtract it from the middle.
|
---|
66 | * This gives:
|
---|
67 | *
|
---|
68 | * uv = (2^2n + 2^n) (u1 v1) +
|
---|
69 | * (2^n) (u1 v0 - u1 v1 + u0 v1 - u0 v0) +
|
---|
70 | * (2^n + 1) (u0 v0)
|
---|
71 | *
|
---|
72 | * Factoring the middle a bit gives us:
|
---|
73 | *
|
---|
74 | * uv = (2^2n + 2^n) (u1 v1) + [u1v1 = high]
|
---|
75 | * (2^n) (u1 - u0) (v0 - v1) + [(u1-u0)... = mid]
|
---|
76 | * (2^n + 1) (u0 v0) [u0v0 = low]
|
---|
77 | *
|
---|
78 | * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
|
---|
79 | * in just half the precision of the original. (Note that either or both
|
---|
80 | * of (u1 - u0) or (v0 - v1) may be negative.)
|
---|
81 | *
|
---|
82 | * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
|
---|
83 | *
|
---|
84 | * Since C does not give us a `int * int = quad' operator, we split
|
---|
85 | * our input quads into two ints, then split the two ints into two
|
---|
86 | * shorts. We can then calculate `short * short = int' in native
|
---|
87 | * arithmetic.
|
---|
88 | *
|
---|
89 | * Our product should, strictly speaking, be a `long quad', with 128
|
---|
90 | * bits, but we are going to discard the upper 64. In other words,
|
---|
91 | * we are not interested in uv, but rather in (uv mod 2^2n). This
|
---|
92 | * makes some of the terms above vanish, and we get:
|
---|
93 | *
|
---|
94 | * (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
|
---|
95 | *
|
---|
96 | * or
|
---|
97 | *
|
---|
98 | * (2^n)(high + mid + low) + low
|
---|
99 | *
|
---|
100 | * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
|
---|
101 | * of 2^n in either one will also vanish. Only `low' need be computed
|
---|
102 | * mod 2^2n, and only because of the final term above.
|
---|
103 | */
|
---|
104 | static quad_t __lmulq(u_int, u_int);
|
---|
105 |
|
---|
106 | quad_t
|
---|
107 | __muldi3(a, b)
|
---|
108 | quad_t a, b;
|
---|
109 | {
|
---|
110 | union uu u, v, low, prod;
|
---|
111 | u_int high, mid, udiff, vdiff;
|
---|
112 | int negall, negmid;
|
---|
113 | #define u1 u.ul[H]
|
---|
114 | #define u0 u.ul[L]
|
---|
115 | #define v1 v.ul[H]
|
---|
116 | #define v0 v.ul[L]
|
---|
117 |
|
---|
118 | /*
|
---|
119 | * Get u and v such that u, v >= 0. When this is finished,
|
---|
120 | * u1, u0, v1, and v0 will be directly accessible through the
|
---|
121 | * int fields.
|
---|
122 | */
|
---|
123 | if (a >= 0)
|
---|
124 | u.q = a, negall = 0;
|
---|
125 | else
|
---|
126 | u.q = -a, negall = 1;
|
---|
127 | if (b >= 0)
|
---|
128 | v.q = b;
|
---|
129 | else
|
---|
130 | v.q = -b, negall ^= 1;
|
---|
131 |
|
---|
132 | if (u1 == 0 && v1 == 0) {
|
---|
133 | /*
|
---|
134 | * An (I hope) important optimization occurs when u1 and v1
|
---|
135 | * are both 0. This should be common since most numbers
|
---|
136 | * are small. Here the product is just u0*v0.
|
---|
137 | */
|
---|
138 | prod.q = __lmulq(u0, v0);
|
---|
139 | } else {
|
---|
140 | /*
|
---|
141 | * Compute the three intermediate products, remembering
|
---|
142 | * whether the middle term is negative. We can discard
|
---|
143 | * any upper bits in high and mid, so we can use native
|
---|
144 | * u_int * u_int => u_int arithmetic.
|
---|
145 | */
|
---|
146 | low.q = __lmulq(u0, v0);
|
---|
147 |
|
---|
148 | if (u1 >= u0)
|
---|
149 | negmid = 0, udiff = u1 - u0;
|
---|
150 | else
|
---|
151 | negmid = 1, udiff = u0 - u1;
|
---|
152 | if (v0 >= v1)
|
---|
153 | vdiff = v0 - v1;
|
---|
154 | else
|
---|
155 | vdiff = v1 - v0, negmid ^= 1;
|
---|
156 | mid = udiff * vdiff;
|
---|
157 |
|
---|
158 | high = u1 * v1;
|
---|
159 |
|
---|
160 | /*
|
---|
161 | * Assemble the final product.
|
---|
162 | */
|
---|
163 | prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
|
---|
164 | low.ul[H];
|
---|
165 | prod.ul[L] = low.ul[L];
|
---|
166 | }
|
---|
167 | return (negall ? -prod.q : prod.q);
|
---|
168 | #undef u1
|
---|
169 | #undef u0
|
---|
170 | #undef v1
|
---|
171 | #undef v0
|
---|
172 | }
|
---|
173 |
|
---|
174 | /*
|
---|
175 | * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
|
---|
176 | * the number of bits in an int (whatever that is---the code below
|
---|
177 | * does not care as long as quad.h does its part of the bargain---but
|
---|
178 | * typically N==16).
|
---|
179 | *
|
---|
180 | * We use the same algorithm from Knuth, but this time the modulo refinement
|
---|
181 | * does not apply. On the other hand, since N is half the size of an int,
|
---|
182 | * we can get away with native multiplication---none of our input terms
|
---|
183 | * exceeds (UINT_MAX >> 1).
|
---|
184 | *
|
---|
185 | * Note that, for u_int l, the quad-precision result
|
---|
186 | *
|
---|
187 | * l << N
|
---|
188 | *
|
---|
189 | * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
|
---|
190 | */
|
---|
191 | static quad_t
|
---|
192 | __lmulq(u_int u, u_int v)
|
---|
193 | {
|
---|
194 | u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
|
---|
195 | u_int prodh, prodl, was;
|
---|
196 | union uu prod;
|
---|
197 | int neg;
|
---|
198 |
|
---|
199 | u1 = HHALF(u);
|
---|
200 | u0 = LHALF(u);
|
---|
201 | v1 = HHALF(v);
|
---|
202 | v0 = LHALF(v);
|
---|
203 |
|
---|
204 | low = u0 * v0;
|
---|
205 |
|
---|
206 | /* This is the same small-number optimization as before. */
|
---|
207 | if (u1 == 0 && v1 == 0)
|
---|
208 | return (low);
|
---|
209 |
|
---|
210 | if (u1 >= u0)
|
---|
211 | udiff = u1 - u0, neg = 0;
|
---|
212 | else
|
---|
213 | udiff = u0 - u1, neg = 1;
|
---|
214 | if (v0 >= v1)
|
---|
215 | vdiff = v0 - v1;
|
---|
216 | else
|
---|
217 | vdiff = v1 - v0, neg ^= 1;
|
---|
218 | mid = udiff * vdiff;
|
---|
219 |
|
---|
220 | high = u1 * v1;
|
---|
221 |
|
---|
222 | /* prod = (high << 2N) + (high << N); */
|
---|
223 | prodh = high + HHALF(high);
|
---|
224 | prodl = LHUP(high);
|
---|
225 |
|
---|
226 | /* if (neg) prod -= mid << N; else prod += mid << N; */
|
---|
227 | if (neg) {
|
---|
228 | was = prodl;
|
---|
229 | prodl -= LHUP(mid);
|
---|
230 | prodh -= HHALF(mid) + (prodl > was);
|
---|
231 | } else {
|
---|
232 | was = prodl;
|
---|
233 | prodl += LHUP(mid);
|
---|
234 | prodh += HHALF(mid) + (prodl < was);
|
---|
235 | }
|
---|
236 |
|
---|
237 | /* prod += low << N */
|
---|
238 | was = prodl;
|
---|
239 | prodl += LHUP(low);
|
---|
240 | prodh += HHALF(low) + (prodl < was);
|
---|
241 | /* ... + low; */
|
---|
242 | if ((prodl += low) < low)
|
---|
243 | prodh++;
|
---|
244 |
|
---|
245 | /* return 4N-bit product */
|
---|
246 | prod.ul[H] = prodh;
|
---|
247 | prod.ul[L] = prodl;
|
---|
248 | return (prod.q);
|
---|
249 | }
|
---|