VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/time/time.cpp@ 93943

Last change on this file since 93943 was 93115, checked in by vboxsync, 3 years ago

scm --update-copyright-year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 60.8 KB
Line 
1/* $Id: time.cpp 93115 2022-01-01 11:31:46Z vboxsync $ */
2/** @file
3 * IPRT - Time.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_TIME
32#include <iprt/time.h>
33#include "internal/iprt.h"
34
35#include <iprt/assert.h>
36#include <iprt/ctype.h>
37#include <iprt/errcore.h>
38#include <iprt/string.h>
39#include "internal/time.h"
40
41
42/*********************************************************************************************************************************
43* Defined Constants And Macros *
44*********************************************************************************************************************************/
45/** The max year we possibly could implode. */
46#define RTTIME_MAX_YEAR (292 + 1970)
47/** The min year we possibly could implode. */
48#define RTTIME_MIN_YEAR (-293 + 1970)
49
50/** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */
51#define RTTIME_MAX_DAY (365*292+71 + 101-1)
52/** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */
53#define RTTIME_MIN_DAY (365*-293-70 + 264-1)
54
55/** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */
56#define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 )
57/** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */
58#define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 )
59
60/**
61 * Asserts that a_pTime is normalized.
62 */
63#define RTTIME_ASSERT_NORMALIZED(a_pTime) \
64 do \
65 { \
66 Assert(RT_ABS((a_pTime)->offUTC) <= 840); \
67 Assert((a_pTime)->u32Nanosecond < 1000000000); \
68 Assert((a_pTime)->u8Second < 60); \
69 Assert((a_pTime)->u8Minute < 60); \
70 Assert((a_pTime)->u8Hour < 24); \
71 Assert((a_pTime)->u8Month >= 1 && (a_pTime)->u8Month <= 12); \
72 Assert((a_pTime)->u8WeekDay < 7); \
73 Assert((a_pTime)->u16YearDay >= 1); \
74 Assert((a_pTime)->u16YearDay <= (rtTimeIsLeapYear((a_pTime)->i32Year) ? 366 : 365)); \
75 Assert((a_pTime)->u8MonthDay >= 1 && (a_pTime)->u8MonthDay <= 31); \
76 } while (0)
77
78
79/*********************************************************************************************************************************
80* Global Variables *
81*********************************************************************************************************************************/
82/**
83 * Days per month in a common year.
84 */
85static const uint8_t g_acDaysInMonths[12] =
86{
87 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
88 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
89};
90
91/**
92 * Days per month in a leap year.
93 */
94static const uint8_t g_acDaysInMonthsLeap[12] =
95{
96 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
97 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
98};
99
100/**
101 * The day of year for each month in a common year.
102 */
103static const uint16_t g_aiDayOfYear[12 + 1] =
104{
105 1, /* Jan */
106 1+31, /* Feb */
107 1+31+28, /* Mar */
108 1+31+28+31, /* Apr */
109 1+31+28+31+30, /* May */
110 1+31+28+31+30+31, /* Jun */
111 1+31+28+31+30+31+30, /* Jul */
112 1+31+28+31+30+31+30+31, /* Aug */
113 1+31+28+31+30+31+30+31+31, /* Sep */
114 1+31+28+31+30+31+30+31+31+30, /* Oct */
115 1+31+28+31+30+31+30+31+31+30+31, /* Nov */
116 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */
117 1+31+28+31+30+31+30+31+31+30+31+30+31
118};
119
120/**
121 * The day of year for each month in a leap year.
122 */
123static const uint16_t g_aiDayOfYearLeap[12 + 1] =
124{
125 1, /* Jan */
126 1+31, /* Feb */
127 1+31+29, /* Mar */
128 1+31+29+31, /* Apr */
129 1+31+29+31+30, /* May */
130 1+31+29+31+30+31, /* Jun */
131 1+31+29+31+30+31+30, /* Jul */
132 1+31+29+31+30+31+30+31, /* Aug */
133 1+31+29+31+30+31+30+31+31, /* Sep */
134 1+31+29+31+30+31+30+31+31+30, /* Oct */
135 1+31+29+31+30+31+30+31+31+30+31, /* Nov */
136 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */
137 1+31+29+31+30+31+30+31+31+30+31+30+31
138};
139
140/** The index of 1970 in g_aoffYear */
141#define OFF_YEAR_IDX_EPOCH 300
142/** The year of the first index. */
143#define OFF_YEAR_IDX_0_YEAR 1670
144
145/**
146 * The number of days the 1st of January a year is offseted from 1970-01-01.
147 */
148static const int32_t g_aoffYear[] =
149{
150/*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70,
151/*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67,
152/*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65,
153/*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63,
154/*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61,
155/*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58,
156/*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56,
157/*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53,
158/*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51,
159/*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48,
160/*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46,
161/*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43,
162/*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41,
163/*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39,
164/*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37,
165/*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34,
166/*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32,
167/*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29,
168/*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27,
169/*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24,
170/*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22,
171/*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19,
172/*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17,
173/*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15,
174/*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13,
175/*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10,
176/*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 ,
177/*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 ,
178/*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 ,
179/*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 ,
180/*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 ,
181/*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 ,
182/*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 ,
183/*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 ,
184/*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 ,
185/*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 ,
186/*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 ,
187/*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 ,
188/*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 ,
189/*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 ,
190/*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 ,
191/*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 ,
192/*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 ,
193/*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 ,
194/*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 ,
195/*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 ,
196/*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 ,
197/*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 ,
198/*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 ,
199/*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 ,
200/*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 ,
201/*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 ,
202/*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 ,
203/*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 ,
204/*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 ,
205/*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 ,
206/*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 ,
207/*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 ,
208/*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 ,
209/*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73
210};
211
212/* generator code:
213#include <stdio.h>
214bool isLeapYear(int iYear)
215{
216 return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0);
217}
218void printYear(int iYear, int iLeap)
219{
220 if (!(iYear % 10))
221 printf("\n/" "*%d:*" "/", iYear + 1970);
222 printf(" 365*%4d+%-3d,", iYear, iLeap);
223}
224int main()
225{
226 int iYear = 0;
227 int iLeap = 0;
228 while (iYear > -300)
229 iLeap -= isLeapYear(1970 + --iYear);
230 while (iYear < 300)
231 {
232 printYear(iYear, iLeap);
233 iLeap += isLeapYear(1970 + iYear++);
234 }
235 printf("\n");
236 return 0;
237}
238*/
239
240/** RFC-1123 week day names. */
241static const char * const g_apszWeekDays[7] =
242{
243 "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
244};
245/** RFC-1123 month of the year names. */
246static const char * const g_apszMonths[1+12] =
247{
248 "000", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
249};
250
251
252/**
253 * Checks if a year is a leap year or not.
254 *
255 * @returns true if it's a leap year.
256 * @returns false if it's a common year.
257 * @param i32Year The year in question.
258 */
259DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year)
260{
261 return i32Year % 4 == 0
262 && ( i32Year % 100 != 0
263 || i32Year % 400 == 0);
264}
265
266
267/**
268 * Checks if a year is a leap year or not.
269 *
270 * @returns true if it's a leap year.
271 * @returns false if it's a common year.
272 * @param i32Year The year in question.
273 */
274RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year)
275{
276 return rtTimeIsLeapYear(i32Year);
277}
278RT_EXPORT_SYMBOL(RTTimeIsLeapYear);
279
280
281/**
282 * Explodes a time spec (UTC).
283 *
284 * @returns pTime.
285 * @param pTime Where to store the exploded time.
286 * @param pTimeSpec The time spec to exploded.
287 */
288RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec)
289{
290 int64_t i64Div;
291 int32_t i32Div;
292 int32_t i32Rem;
293 unsigned iYear;
294 const uint16_t *paiDayOfYear;
295 int iMonth;
296
297 AssertPtr(pTime);
298 AssertPtr(pTimeSpec);
299
300 /*
301 * The simple stuff first.
302 */
303 pTime->fFlags = RTTIME_FLAGS_TYPE_UTC;
304 i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch;
305 i32Rem = (int32_t)(i64Div % 1000000000);
306 i64Div /= 1000000000;
307 if (i32Rem < 0)
308 {
309 i32Rem += 1000000000;
310 i64Div--;
311 }
312 pTime->u32Nanosecond = i32Rem;
313
314 /* second */
315 i32Rem = (int32_t)(i64Div % 60);
316 i64Div /= 60;
317 if (i32Rem < 0)
318 {
319 i32Rem += 60;
320 i64Div--;
321 }
322 pTime->u8Second = i32Rem;
323
324 /* minute */
325 i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */
326 i32Rem = i32Div % 60;
327 i32Div /= 60;
328 if (i32Rem < 0)
329 {
330 i32Rem += 60;
331 i32Div--;
332 }
333 pTime->u8Minute = i32Rem;
334
335 /* hour */
336 i32Rem = i32Div % 24;
337 i32Div /= 24; /* days relative to 1970-01-01 */
338 if (i32Rem < 0)
339 {
340 i32Rem += 24;
341 i32Div--;
342 }
343 pTime->u8Hour = i32Rem;
344
345 /* weekday - 1970-01-01 was a Thursday (3) */
346 pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7;
347
348 /*
349 * We've now got a number of days relative to 1970-01-01.
350 * To get the correct year number we have to mess with leap years. Fortunately,
351 * the representation we've got only supports a few hundred years, so we can
352 * generate a table and perform a simple two way search from the modulus 365 derived.
353 */
354 iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365;
355 while (g_aoffYear[iYear + 1] <= i32Div)
356 iYear++;
357 while (g_aoffYear[iYear] > i32Div)
358 iYear--;
359 pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR;
360 i32Div -= g_aoffYear[iYear];
361 pTime->u16YearDay = i32Div + 1;
362
363 /*
364 * Figuring out the month is done in a manner similar to the year, only here we
365 * ensure that the index is matching or too small.
366 */
367 if (rtTimeIsLeapYear(pTime->i32Year))
368 {
369 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
370 paiDayOfYear = &g_aiDayOfYearLeap[0];
371 }
372 else
373 {
374 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
375 paiDayOfYear = &g_aiDayOfYear[0];
376 }
377 iMonth = i32Div / 32;
378 i32Div++;
379 while (paiDayOfYear[iMonth + 1] <= i32Div)
380 iMonth++;
381 pTime->u8Month = iMonth + 1;
382 i32Div -= paiDayOfYear[iMonth];
383 pTime->u8MonthDay = i32Div + 1;
384
385 /* This is for UTC timespecs, so, no offset. */
386 pTime->offUTC = 0;
387
388 return pTime;
389}
390RT_EXPORT_SYMBOL(RTTimeExplode);
391
392
393/**
394 * Implodes exploded time to a time spec (UTC).
395 *
396 * @returns pTime on success.
397 * @returns NULL if the pTime data is invalid.
398 * @param pTimeSpec Where to store the imploded UTC time.
399 * If pTime specifies a time which outside the range, maximum or
400 * minimum values will be returned.
401 * @param pTime Pointer to the exploded time to implode.
402 * The fields u8Month, u8WeekDay and u8MonthDay are not used,
403 * and all the other fields are expected to be within their
404 * bounds. Use RTTimeNormalize() or RTTimeLocalNormalize() to
405 * calculate u16YearDay and normalize the ranges of the fields.
406 */
407RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime)
408{
409 int32_t i32Days;
410 uint32_t u32Secs;
411 int64_t i64Nanos;
412
413 /*
414 * Validate input.
415 */
416 AssertPtrReturn(pTimeSpec, NULL);
417 AssertPtrReturn(pTime, NULL);
418 AssertReturn(pTime->u32Nanosecond < 1000000000, NULL);
419 AssertReturn(pTime->u8Second < 60, NULL);
420 AssertReturn(pTime->u8Minute < 60, NULL);
421 AssertReturn(pTime->u8Hour < 24, NULL);
422 AssertReturn(pTime->u16YearDay >= 1, NULL);
423 AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL);
424 AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL);
425 Assert(pTime->offUTC >= -840 && pTime->offUTC <= 840);
426
427 /*
428 * Do the conversion to nanoseconds.
429 */
430 i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
431 + pTime->u16YearDay - 1;
432 AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL);
433
434 u32Secs = pTime->u8Second
435 + pTime->u8Minute * 60
436 + pTime->u8Hour * 3600;
437 i64Nanos = (uint64_t)pTime->u32Nanosecond
438 + u32Secs * UINT64_C(1000000000);
439 AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
440 AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
441
442 i64Nanos += i32Days * UINT64_C(86400000000000);
443 if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL)
444 i64Nanos -= pTime->offUTC * RT_NS_1MIN;
445
446 pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos;
447 return pTimeSpec;
448}
449RT_EXPORT_SYMBOL(RTTimeImplode);
450
451
452/**
453 * Internal worker for RTTimeNormalize and RTTimeLocalNormalize.
454 */
455static PRTTIME rtTimeNormalizeInternal(PRTTIME pTime)
456{
457 unsigned uSecond;
458 unsigned uMinute;
459 unsigned uHour;
460 bool fLeapYear;
461
462 /*
463 * Fix the YearDay and Month/MonthDay.
464 */
465 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
466 if (!pTime->u16YearDay)
467 {
468 /*
469 * The Month+MonthDay must present, overflow adjust them and calc the year day.
470 */
471 AssertMsgReturn( pTime->u8Month
472 && pTime->u8MonthDay,
473 ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay),
474 NULL);
475 while (pTime->u8Month > 12)
476 {
477 pTime->u8Month -= 12;
478 pTime->i32Year++;
479 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
480 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
481 }
482
483 for (;;)
484 {
485 unsigned cDaysInMonth = fLeapYear
486 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
487 : g_acDaysInMonths[pTime->u8Month - 1];
488 if (pTime->u8MonthDay <= cDaysInMonth)
489 break;
490 pTime->u8MonthDay -= cDaysInMonth;
491 if (pTime->u8Month != 12)
492 pTime->u8Month++;
493 else
494 {
495 pTime->u8Month = 1;
496 pTime->i32Year++;
497 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
498 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
499 }
500 }
501
502 pTime->u16YearDay = pTime->u8MonthDay - 1
503 + (fLeapYear
504 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
505 : g_aiDayOfYear[pTime->u8Month - 1]);
506 }
507 else
508 {
509 /*
510 * Are both YearDay and Month/MonthDay valid?
511 * Check that they don't overflow and match, if not use YearDay (simpler).
512 */
513 bool fRecalc = true;
514 if ( pTime->u8Month
515 && pTime->u8MonthDay)
516 {
517 do
518 {
519 uint16_t u16YearDay;
520
521 /* If you change one, zero the other to make clear what you mean. */
522 AssertBreak(pTime->u8Month <= 12);
523 AssertBreak(pTime->u8MonthDay <= (fLeapYear
524 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
525 : g_acDaysInMonths[pTime->u8Month - 1]));
526 u16YearDay = pTime->u8MonthDay - 1
527 + (fLeapYear
528 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
529 : g_aiDayOfYear[pTime->u8Month - 1]);
530 AssertBreak(u16YearDay == pTime->u16YearDay);
531 fRecalc = false;
532 } while (0);
533 }
534 if (fRecalc)
535 {
536 const uint16_t *paiDayOfYear;
537
538 /* overflow adjust YearDay */
539 while (pTime->u16YearDay > (fLeapYear ? 366 : 365))
540 {
541 pTime->u16YearDay -= fLeapYear ? 366 : 365;
542 pTime->i32Year++;
543 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
544 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
545 }
546
547 /* calc Month and MonthDay */
548 paiDayOfYear = fLeapYear
549 ? &g_aiDayOfYearLeap[0]
550 : &g_aiDayOfYear[0];
551 pTime->u8Month = 1;
552 while (pTime->u16YearDay >= paiDayOfYear[pTime->u8Month])
553 pTime->u8Month++;
554 Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12);
555 pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1;
556 }
557 }
558
559 /*
560 * Fixup time overflows.
561 * Use unsigned int values internally to avoid overflows.
562 */
563 uSecond = pTime->u8Second;
564 uMinute = pTime->u8Minute;
565 uHour = pTime->u8Hour;
566
567 while (pTime->u32Nanosecond >= 1000000000)
568 {
569 pTime->u32Nanosecond -= 1000000000;
570 uSecond++;
571 }
572
573 while (uSecond >= 60)
574 {
575 uSecond -= 60;
576 uMinute++;
577 }
578
579 while (uMinute >= 60)
580 {
581 uMinute -= 60;
582 uHour++;
583 }
584
585 while (uHour >= 24)
586 {
587 uHour -= 24;
588
589 /* This is really a RTTimeIncDay kind of thing... */
590 if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month]))
591 {
592 pTime->u16YearDay++;
593 pTime->u8MonthDay++;
594 }
595 else if (pTime->u8Month != 12)
596 {
597 pTime->u16YearDay++;
598 pTime->u8Month++;
599 pTime->u8MonthDay = 1;
600 }
601 else
602 {
603 pTime->i32Year++;
604 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
605 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
606 pTime->u16YearDay = 1;
607 pTime->u8Month = 1;
608 pTime->u8MonthDay = 1;
609 }
610 }
611
612 pTime->u8Second = uSecond;
613 pTime->u8Minute = uMinute;
614 pTime->u8Hour = uHour;
615
616 /*
617 * Correct the leap year flag.
618 * Assert if it's wrong, but ignore if unset.
619 */
620 if (fLeapYear)
621 {
622 Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR));
623 pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR;
624 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
625 }
626 else
627 {
628 Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR));
629 pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR;
630 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
631 }
632
633
634 /*
635 * Calc week day.
636 *
637 * 1970-01-01 was a Thursday (3), so find the number of days relative to
638 * that point. We use the table when possible and a slow+stupid+brute-force
639 * algorithm for points outside it. Feel free to optimize the latter by
640 * using some clever formula.
641 */
642 if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR
643 && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear))
644 {
645 int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
646 + pTime->u16YearDay -1;
647 pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7;
648 }
649 else
650 {
651 int32_t i32Year = pTime->i32Year;
652 if (i32Year >= 1970)
653 {
654 uint64_t offDays = pTime->u16YearDay - 1;
655 while (--i32Year >= 1970)
656 offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365;
657 pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7);
658 }
659 else
660 {
661 int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay;
662 while (++i32Year < 1970)
663 offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365;
664 pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7;
665 }
666 }
667 return pTime;
668}
669
670
671/**
672 * Normalizes the fields of a time structure.
673 *
674 * It is possible to calculate year-day from month/day and vice
675 * versa. If you adjust any of these, make sure to zero the
676 * other so you make it clear which of the fields to use. If
677 * it's ambiguous, the year-day field is used (and you get
678 * assertions in debug builds).
679 *
680 * All the time fields and the year-day or month/day fields will
681 * be adjusted for overflows. (Since all fields are unsigned, there
682 * is no underflows.) It is possible to exploit this for simple
683 * date math, though the recommended way of doing that to implode
684 * the time into a timespec and do the math on that.
685 *
686 * @returns pTime on success.
687 * @returns NULL if the data is invalid.
688 *
689 * @param pTime The time structure to normalize.
690 *
691 * @remarks This function doesn't work with local time, only with UTC time.
692 */
693RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime)
694{
695 /*
696 * Validate that we've got the minimum of stuff handy.
697 */
698 AssertPtrReturn(pTime, NULL);
699 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
700 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL);
701 AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL);
702
703 pTime = rtTimeNormalizeInternal(pTime);
704 if (pTime)
705 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
706 return pTime;
707}
708RT_EXPORT_SYMBOL(RTTimeNormalize);
709
710
711/**
712 * Normalizes the fields of a time structure, assuming local time.
713 *
714 * It is possible to calculate year-day from month/day and vice
715 * versa. If you adjust any of these, make sure to zero the
716 * other so you make it clear which of the fields to use. If
717 * it's ambiguous, the year-day field is used (and you get
718 * assertions in debug builds).
719 *
720 * All the time fields and the year-day or month/day fields will
721 * be adjusted for overflows. (Since all fields are unsigned, there
722 * is no underflows.) It is possible to exploit this for simple
723 * date math, though the recommended way of doing that to implode
724 * the time into a timespec and do the math on that.
725 *
726 * @returns pTime on success.
727 * @returns NULL if the data is invalid.
728 *
729 * @param pTime The time structure to normalize.
730 *
731 * @remarks This function doesn't work with UTC time, only with local time.
732 */
733RTDECL(PRTTIME) RTTimeLocalNormalize(PRTTIME pTime)
734{
735 /*
736 * Validate that we've got the minimum of stuff handy.
737 */
738 AssertPtrReturn(pTime, NULL);
739 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
740 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC, ("Use RTTimeNormalize!\n"), NULL);
741
742 pTime = rtTimeNormalizeInternal(pTime);
743 if (pTime)
744 pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL;
745 return pTime;
746}
747RT_EXPORT_SYMBOL(RTTimeLocalNormalize);
748
749
750/**
751 * Converts a time spec to a ISO date string.
752 *
753 * @returns psz on success.
754 * @returns NULL on buffer underflow.
755 * @param pTime The time. Caller should've normalized this.
756 * @param psz Where to store the string.
757 * @param cb The size of the buffer.
758 */
759RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb)
760{
761 size_t cch;
762
763 /* (Default to UTC if not specified) */
764 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
765 && pTime->offUTC)
766 {
767 int32_t offUTC = pTime->offUTC;
768 Assert(offUTC <= 840 && offUTC >= -840);
769 char chSign;
770 if (offUTC >= 0)
771 chSign = '+';
772 else
773 {
774 chSign = '-';
775 offUTC = -offUTC;
776 }
777 uint32_t offUTCHour = (uint32_t)offUTC / 60;
778 uint32_t offUTCMinute = (uint32_t)offUTC % 60;
779 cch = RTStrPrintf(psz, cb,
780 "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02d%:02d",
781 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
782 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond,
783 chSign, offUTCHour, offUTCMinute);
784 if ( cch <= 15
785 || psz[cch - 6] != chSign)
786 return NULL;
787 }
788 else
789 {
790 cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z",
791 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
792 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond);
793 if ( cch <= 15
794 || psz[cch - 1] != 'Z')
795 return NULL;
796 }
797 return psz;
798}
799RT_EXPORT_SYMBOL(RTTimeToString);
800
801
802/**
803 * Converts a time spec to a ISO date string, extended version.
804 *
805 * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW
806 * (negative) or VERR_OUT_OF_RANGE (negative) on failure.
807 * @param pTime The time. Caller should've normalized this.
808 * @param psz Where to store the string.
809 * @param cb The size of the buffer.
810 * @param cFractionDigits Number of digits in the fraction. Max is 9.
811 */
812RTDECL(ssize_t) RTTimeToStringEx(PCRTTIME pTime, char *psz, size_t cb, unsigned cFractionDigits)
813{
814 size_t cch;
815
816 /* Format the fraction. */
817 char szFraction[16];
818 if (!cFractionDigits)
819 szFraction[0] = '\0';
820 else
821 {
822 AssertReturn(cFractionDigits <= 9, VERR_OUT_OF_RANGE);
823 Assert(pTime->u32Nanosecond <= 999999999);
824 RTStrPrintf(szFraction, sizeof(szFraction), ".%09RU32", pTime->u32Nanosecond);
825 szFraction[cFractionDigits + 1] = '\0';
826 }
827
828 /* (Default to UTC if not specified) */
829 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
830 && pTime->offUTC)
831 {
832 int32_t offUTC = pTime->offUTC;
833 Assert(offUTC <= 840 && offUTC >= -840);
834 char chSign;
835 if (offUTC >= 0)
836 chSign = '+';
837 else
838 {
839 chSign = '-';
840 offUTC = -offUTC;
841 }
842 uint32_t offUTCHour = (uint32_t)offUTC / 60;
843 uint32_t offUTCMinute = (uint32_t)offUTC % 60;
844
845 /* Examples: 2018-09-07T16:12:00+02:00 2018-09-07T16:12:00.123456789+02:00 */
846 cch = RTStrPrintf(psz, cb,
847 "%04RI32-%02u-%02uT%02u:%02u:%02u%s%c%02d%:02d",
848 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
849 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, szFraction,
850 chSign, offUTCHour, offUTCMinute);
851 if ( cch >= 24
852 && psz[cch - 6] == chSign)
853 return cch;
854 }
855 else
856 {
857 /* Examples: 2018-09-07T16:12:00Z 2018-09-07T16:12:00.123456789Z */
858 cch = RTStrPrintf(psz, cb, "%04RI32-%02u-%02uT%02u:%02u:%02u%sZ",
859 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
860 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, szFraction);
861 if ( cch >= 19
862 && psz[cch - 1] == 'Z')
863 return cch;
864 }
865 return VERR_BUFFER_OVERFLOW;
866}
867RT_EXPORT_SYMBOL(RTTimeToStringEx);
868
869
870/**
871 * Converts a time spec to a ISO date string.
872 *
873 * @returns psz on success.
874 * @returns NULL on buffer underflow.
875 * @param pTime The time spec.
876 * @param psz Where to store the string.
877 * @param cb The size of the buffer.
878 */
879RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb)
880{
881 RTTIME Time;
882 return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb);
883}
884RT_EXPORT_SYMBOL(RTTimeSpecToString);
885
886
887
888/**
889 * Attempts to convert an ISO date string to a time structure.
890 *
891 * We're a little forgiving with zero padding, unspecified parts, and leading
892 * and trailing spaces.
893 *
894 * @retval pTime on success,
895 * @retval NULL on failure.
896 * @param pTime Where to store the time on success.
897 * @param pszString The ISO date string to convert.
898 */
899RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString)
900{
901 /* Ignore leading spaces. */
902 while (RT_C_IS_SPACE(*pszString))
903 pszString++;
904
905 /*
906 * Init non date & time parts.
907 */
908 pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL;
909 pTime->offUTC = 0;
910
911 /*
912 * The date part.
913 */
914
915 /* Year */
916 int rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year);
917 if (rc != VWRN_TRAILING_CHARS)
918 return NULL;
919
920 bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
921 if (fLeapYear)
922 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
923
924 if (*pszString++ != '-')
925 return NULL;
926
927 /* Month of the year. */
928 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Month);
929 if (rc != VWRN_TRAILING_CHARS)
930 return NULL;
931 if (pTime->u8Month == 0 || pTime->u8Month > 12)
932 return NULL;
933 if (*pszString++ != '-')
934 return NULL;
935
936 /* Day of month.*/
937 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay);
938 if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS)
939 return NULL;
940 unsigned const cDaysInMonth = fLeapYear
941 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
942 : g_acDaysInMonths[pTime->u8Month - 1];
943 if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth)
944 return NULL;
945
946 /* Calculate year day. */
947 pTime->u16YearDay = pTime->u8MonthDay - 1
948 + (fLeapYear
949 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
950 : g_aiDayOfYear[pTime->u8Month - 1]);
951
952 pTime->u8WeekDay = UINT8_MAX; /* later */
953
954 /*
955 * The time part.
956 */
957 if (*pszString++ != 'T')
958 return NULL;
959
960 /* Hour. */
961 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour);
962 if (rc != VWRN_TRAILING_CHARS)
963 return NULL;
964 if (pTime->u8Hour > 23)
965 return NULL;
966 if (*pszString++ != ':')
967 return NULL;
968
969 /* Minute. */
970 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
971 if (rc != VWRN_TRAILING_CHARS)
972 return NULL;
973 if (pTime->u8Minute > 59)
974 return NULL;
975 if (*pszString++ != ':')
976 return NULL;
977
978 /* Second. */
979 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second);
980 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
981 return NULL;
982 if (pTime->u8Second > 59)
983 return NULL;
984
985 /* We generally put a 9 digit fraction here, but it's entirely optional. */
986 if (*pszString == '.')
987 {
988 const char * const pszStart = ++pszString;
989 rc = RTStrToUInt32Ex(pszString, (char **)&pszString, 10, &pTime->u32Nanosecond);
990 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
991 return NULL;
992 if (pTime->u32Nanosecond >= 1000000000)
993 return NULL;
994 switch (pszString - pszStart)
995 {
996 case 1: pTime->u32Nanosecond *= 100000000; break;
997 case 2: pTime->u32Nanosecond *= 10000000; break;
998 case 3: pTime->u32Nanosecond *= 1000000; break;
999 case 4: pTime->u32Nanosecond *= 100000; break;
1000 case 5: pTime->u32Nanosecond *= 10000; break;
1001 case 6: pTime->u32Nanosecond *= 1000; break;
1002 case 7: pTime->u32Nanosecond *= 100; break;
1003 case 8: pTime->u32Nanosecond *= 10; break;
1004 case 9: break;
1005 default:
1006 return NULL;
1007 }
1008 if (pTime->u32Nanosecond >= 1000000000)
1009 return NULL;
1010 }
1011 else
1012 pTime->u32Nanosecond = 0;
1013
1014 /*
1015 * Time zone.
1016 */
1017 if (*pszString == 'Z')
1018 {
1019 pszString++;
1020 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1021 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1022 pTime->offUTC = 0;
1023 }
1024 else if ( *pszString == '+'
1025 || *pszString == '-')
1026 {
1027 int8_t cUtcHours = 0;
1028 rc = RTStrToInt8Ex(pszString, (char **)&pszString, 10, &cUtcHours);
1029 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
1030 return NULL;
1031 uint8_t cUtcMin = 0;
1032 if (*pszString == ':')
1033 {
1034 rc = RTStrToUInt8Ex(pszString + 1, (char **)&pszString, 10, &cUtcMin);
1035 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES)
1036 return NULL;
1037 }
1038 else if (*pszString && !RT_C_IS_BLANK(*pszString))
1039 return NULL;
1040 if (cUtcHours >= 0)
1041 pTime->offUTC = cUtcHours * 60 + cUtcMin;
1042 else
1043 pTime->offUTC = cUtcHours * 60 - cUtcMin;
1044 if (RT_ABS(pTime->offUTC) > 840)
1045 return NULL;
1046 }
1047 /* else: No time zone given, local with offUTC = 0. */
1048
1049 /*
1050 * The rest of the string should be blanks.
1051 */
1052 char ch;
1053 while ((ch = *pszString++) != '\0')
1054 if (!RT_C_IS_BLANK(ch))
1055 return NULL;
1056
1057 /* Calc week day. */
1058 rtTimeNormalizeInternal(pTime);
1059 return pTime;
1060}
1061RT_EXPORT_SYMBOL(RTTimeFromString);
1062
1063
1064/**
1065 * Attempts to convert an ISO date string to a time structure.
1066 *
1067 * We're a little forgiving with zero padding, unspecified parts, and leading
1068 * and trailing spaces.
1069 *
1070 * @retval pTime on success,
1071 * @retval NULL on failure.
1072 * @param pTime The time spec.
1073 * @param pszString The ISO date string to convert.
1074 */
1075RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString)
1076{
1077 RTTIME Time;
1078 if (RTTimeFromString(&Time, pszString))
1079 return RTTimeImplode(pTime, &Time);
1080 return NULL;
1081}
1082RT_EXPORT_SYMBOL(RTTimeSpecFromString);
1083
1084
1085/**
1086 * Formats the given time on a RTC-2822 compliant format.
1087 *
1088 * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW
1089 * (negative) on failure.
1090 * @param pTime The time. Caller should've normalized this.
1091 * @param psz Where to store the string.
1092 * @param cb The size of the buffer.
1093 */
1094RTDECL(ssize_t) RTTimeToRfc2822(PRTTIME pTime, char *psz, size_t cb, uint32_t fFlags)
1095{
1096 Assert(pTime->u8Month > 0 && pTime->u8Month <= 12);
1097 Assert(pTime->u8WeekDay < 7);
1098 Assert(!(fFlags & ~RTTIME_RFC2822_F_GMT));
1099
1100 /* (Default to UTC if not specified) */
1101 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
1102 && pTime->offUTC)
1103 {
1104 Assert(!(fFlags & RTTIME_RFC2822_F_GMT) /* don't call with local time. duh! */ );
1105
1106 /* Calc the UTC offset part. */
1107 int32_t offUtc = pTime->offUTC;
1108 Assert(offUtc <= 840 && offUtc >= -840);
1109 char chSign;
1110 if (offUtc >= 0)
1111 chSign = '+';
1112 else
1113 {
1114 chSign = '-';
1115 offUtc = -offUtc;
1116 }
1117 uint32_t offUtcHour = (uint32_t)offUtc / 60;
1118 uint32_t offUtcMinute = (uint32_t)offUtc % 60;
1119
1120 /* Example: "Mon, 31 Aug 2018 00:00:00 +0200" */
1121 size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u %c%02u%02u", g_apszWeekDays[pTime->u8WeekDay],
1122 pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year,
1123 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, chSign, offUtcHour, offUtcMinute);
1124 if ( cch >= 27
1125 && psz[cch - 5] == chSign)
1126 return cch;
1127 }
1128 else if (fFlags & RTTIME_RFC2822_F_GMT)
1129 {
1130 /* Example: "Mon, 1 Jan 1971 23:55:59 GMT" */
1131 size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u GMT", g_apszWeekDays[pTime->u8WeekDay],
1132 pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year,
1133 pTime->u8Hour, pTime->u8Minute, pTime->u8Second);
1134 if ( cch >= 27
1135 && psz[cch - 1] == 'T')
1136 return cch;
1137 }
1138 else
1139 {
1140 /* Example: "Mon, 1 Jan 1971 00:00:00 -0000" */
1141 size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u -0000", g_apszWeekDays[pTime->u8WeekDay],
1142 pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year,
1143 pTime->u8Hour, pTime->u8Minute, pTime->u8Second);
1144 if ( cch >= 27
1145 && psz[cch - 5] == '-')
1146 return cch;
1147 }
1148 return VERR_BUFFER_OVERFLOW;
1149}
1150RT_EXPORT_SYMBOL(RTTimeToRfc2822);
1151
1152
1153/**
1154 * Attempts to convert an RFC-2822 date string to a time structure.
1155 *
1156 * We're a little forgiving with zero padding, unspecified parts, and leading
1157 * and trailing spaces.
1158 *
1159 * @retval pTime on success,
1160 * @retval NULL on failure.
1161 * @param pTime Where to store the time on success.
1162 * @param pszString The ISO date string to convert.
1163 */
1164RTDECL(PRTTIME) RTTimeFromRfc2822(PRTTIME pTime, const char *pszString)
1165{
1166 /*
1167 * Fri, 31 Aug 2018 00:00:00 +0200
1168 * Mon, 3 Sep 2018 00:00:00 GMT
1169 * Mon, 3 Sep 2018 00:00:00 -0000
1170 * 3 Sep 2018 00:00:00 -0000 (?)
1171 * 3 Sep 2018 00:00:00 GMT (?)
1172 *
1173 */
1174
1175 /* Ignore leading spaces. */
1176 while (RT_C_IS_SPACE(*pszString))
1177 pszString++;
1178
1179 /*
1180 * Init non date & time parts.
1181 */
1182 pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL;
1183 pTime->offUTC = 0;
1184
1185 /*
1186 * The date part.
1187 */
1188
1189 /* Optional day of week: */
1190 if (RT_C_IS_ALPHA(pszString[0]) && pszString[1] != '\0')
1191 {
1192 uint32_t uWeekDay = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]),
1193 RT_C_TO_LOWER(pszString[2]), 0);
1194 if ( uWeekDay == RT_MAKE_U32_FROM_U8('m', 'o', 'n', 0)) pTime->u8WeekDay = 0;
1195 else if (uWeekDay == RT_MAKE_U32_FROM_U8('t', 'u', 'e', 0)) pTime->u8WeekDay = 1;
1196 else if (uWeekDay == RT_MAKE_U32_FROM_U8('w', 'e', 'd', 0)) pTime->u8WeekDay = 2;
1197 else if (uWeekDay == RT_MAKE_U32_FROM_U8('t', 'h', 'u', 0)) pTime->u8WeekDay = 3;
1198 else if (uWeekDay == RT_MAKE_U32_FROM_U8('f', 'r', 'i', 0)) pTime->u8WeekDay = 4;
1199 else if (uWeekDay == RT_MAKE_U32_FROM_U8('s', 'a', 't', 0)) pTime->u8WeekDay = 5;
1200 else if (uWeekDay == RT_MAKE_U32_FROM_U8('s', 'u', 'n', 0)) pTime->u8WeekDay = 6;
1201 else
1202 return NULL;
1203 pszString += 3;
1204 while (RT_C_IS_ALPHA(*pszString))
1205 pszString++;
1206 if (*pszString == ',')
1207 pszString++;
1208 while (RT_C_IS_SPACE(*pszString))
1209 pszString++;
1210 if (!RT_C_IS_DIGIT(pszString[0]))
1211 return NULL;
1212 }
1213 else if (RT_C_IS_DIGIT(pszString[0]))
1214 pTime->u8WeekDay = UINT8_MAX;
1215 else
1216 return NULL;
1217
1218 /* Day of month.*/
1219 int rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay);
1220 if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS)
1221 return NULL;
1222 while (RT_C_IS_SPACE(*pszString))
1223 pszString++;
1224
1225 /* Month of the year. */
1226 if (pszString[0] == '\0' || pszString[1] == '\0' || pszString[2] == '\0')
1227 return NULL;
1228 uint32_t uMonth = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]),
1229 RT_C_TO_LOWER(pszString[2]), 0);
1230 if ( uMonth == RT_MAKE_U32_FROM_U8('j', 'a', 'n', 0)) pTime->u8Month = 1;
1231 else if (uMonth == RT_MAKE_U32_FROM_U8('f', 'e', 'b', 0)) pTime->u8Month = 2;
1232 else if (uMonth == RT_MAKE_U32_FROM_U8('m', 'a', 'r', 0)) pTime->u8Month = 3;
1233 else if (uMonth == RT_MAKE_U32_FROM_U8('a', 'p', 'r', 0)) pTime->u8Month = 4;
1234 else if (uMonth == RT_MAKE_U32_FROM_U8('m', 'a', 'y', 0)) pTime->u8Month = 5;
1235 else if (uMonth == RT_MAKE_U32_FROM_U8('j', 'u', 'n', 0)) pTime->u8Month = 6;
1236 else if (uMonth == RT_MAKE_U32_FROM_U8('j', 'u', 'l', 0)) pTime->u8Month = 7;
1237 else if (uMonth == RT_MAKE_U32_FROM_U8('a', 'u', 'g', 0)) pTime->u8Month = 8;
1238 else if (uMonth == RT_MAKE_U32_FROM_U8('s', 'e', 'p', 0)) pTime->u8Month = 9;
1239 else if (uMonth == RT_MAKE_U32_FROM_U8('o', 'c', 't', 0)) pTime->u8Month = 10;
1240 else if (uMonth == RT_MAKE_U32_FROM_U8('n', 'o', 'v', 0)) pTime->u8Month = 11;
1241 else if (uMonth == RT_MAKE_U32_FROM_U8('d', 'e', 'c', 0)) pTime->u8Month = 12;
1242 else
1243 return NULL;
1244 pszString += 3;
1245 while (RT_C_IS_ALPHA(*pszString))
1246 pszString++;
1247 while (RT_C_IS_SPACE(*pszString))
1248 pszString++;
1249
1250 /* Year */
1251 const char * const pszStartYear = pszString;
1252 rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year);
1253 if (rc != VWRN_TRAILING_CHARS)
1254 return NULL;
1255 if (pszString - pszStartYear >= 4 )
1256 { /* likely */ }
1257 else if (pszString - pszStartYear == 3)
1258 pTime->i32Year += 1900;
1259 else if (pszString - pszStartYear == 2)
1260 pTime->i32Year += pTime->i32Year >= 50 ? 1900 : 2000;
1261 else
1262 return NULL;
1263
1264 bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
1265 if (fLeapYear)
1266 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
1267
1268 while (RT_C_IS_SPACE(*pszString))
1269 pszString++;
1270
1271
1272 /* Calculate year day. */
1273 unsigned const cDaysInMonth = fLeapYear
1274 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
1275 : g_acDaysInMonths[pTime->u8Month - 1];
1276 if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth)
1277 return NULL;
1278
1279 pTime->u16YearDay = pTime->u8MonthDay - 1
1280 + (fLeapYear
1281 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
1282 : g_aiDayOfYear[pTime->u8Month - 1]);
1283
1284 /*
1285 * The time part.
1286 */
1287 /* Hour. */
1288 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour);
1289 if (rc != VWRN_TRAILING_CHARS)
1290 return NULL;
1291 if (pTime->u8Hour > 23)
1292 return NULL;
1293 if (*pszString++ != ':')
1294 return NULL;
1295
1296 /* Minute. */
1297 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
1298 if (rc != VWRN_TRAILING_CHARS)
1299 return NULL;
1300 if (pTime->u8Minute > 59)
1301 return NULL;
1302 if (*pszString++ != ':')
1303 return NULL;
1304
1305 /* Second. */
1306 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second);
1307 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
1308 return NULL;
1309 if (pTime->u8Second > 59)
1310 return NULL;
1311
1312 /* Non-standard fraction. Handy for testing, though. */
1313 if (*pszString == '.')
1314 {
1315 const char * const pszStart = ++pszString;
1316 rc = RTStrToUInt32Ex(pszString, (char **)&pszString, 10, &pTime->u32Nanosecond);
1317 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
1318 return NULL;
1319 if (pTime->u32Nanosecond >= 1000000000)
1320 return NULL;
1321 switch (pszString - pszStart)
1322 {
1323 case 1: pTime->u32Nanosecond *= 100000000; break;
1324 case 2: pTime->u32Nanosecond *= 10000000; break;
1325 case 3: pTime->u32Nanosecond *= 1000000; break;
1326 case 4: pTime->u32Nanosecond *= 100000; break;
1327 case 5: pTime->u32Nanosecond *= 10000; break;
1328 case 6: pTime->u32Nanosecond *= 1000; break;
1329 case 7: pTime->u32Nanosecond *= 100; break;
1330 case 8: pTime->u32Nanosecond *= 10; break;
1331 case 9: break;
1332 default:
1333 return NULL;
1334 }
1335 if (pTime->u32Nanosecond >= 1000000000)
1336 return NULL;
1337 }
1338 else
1339 pTime->u32Nanosecond = 0;
1340 while (RT_C_IS_SPACE(*pszString))
1341 pszString++;
1342
1343 /*
1344 * Time zone.
1345 */
1346 if ( *pszString == '+'
1347 || *pszString == '-')
1348 {
1349 if ( !RT_C_IS_DIGIT(pszString[1])
1350 || !RT_C_IS_DIGIT(pszString[2]))
1351 return NULL;
1352 int8_t cUtcHours = (pszString[1] - '0') * 10 + (pszString[2] - '0');
1353 char chSign = *pszString;
1354 if (chSign == '-')
1355 cUtcHours = -cUtcHours;
1356 pszString += 3;
1357
1358 uint8_t cUtcMin = 0;
1359 if (RT_C_IS_DIGIT(pszString[0]))
1360 {
1361 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &cUtcMin);
1362 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES)
1363 return NULL;
1364 }
1365 else if (*pszString && !RT_C_IS_BLANK(*pszString))
1366 return NULL;
1367 if (cUtcHours >= 0)
1368 pTime->offUTC = cUtcHours * 60 + cUtcMin;
1369 else
1370 pTime->offUTC = cUtcHours * 60 - cUtcMin;
1371 if (RT_ABS(pTime->offUTC) > 840)
1372 return NULL;
1373
1374 /* -0000: GMT isn't necessarily the local time zone, so change flags from local to UTC. */
1375 if (pTime->offUTC == 0 && chSign == '-')
1376 {
1377 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1378 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1379 }
1380 }
1381 else if (RT_C_IS_ALPHA(*pszString))
1382 {
1383 uint32_t uTimeZone = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]),
1384 RT_C_TO_LOWER(pszString[2]), 0);
1385 if (uTimeZone == RT_MAKE_U32_FROM_U8('g', 'm', 't', 0))
1386 {
1387 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1388 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1389 pTime->offUTC = 0;
1390 pszString += 3;
1391 }
1392 else if ((uint16_t)uTimeZone == RT_MAKE_U16('u', 't'))
1393 {
1394 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1395 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1396 pTime->offUTC = 0;
1397 pszString += 2;
1398 }
1399 else
1400 {
1401 static const struct { uint32_t uTimeZone; int32_t offUtc; } s_aLegacyTimeZones[] =
1402 {
1403 { RT_MAKE_U32_FROM_U8('e', 'd', 't', 0), -4*60 },
1404 { RT_MAKE_U32_FROM_U8('e', 's', 't', 0), -5*60 },
1405 { RT_MAKE_U32_FROM_U8('c', 'd', 't', 0), -5*60 },
1406 { RT_MAKE_U32_FROM_U8('c', 's', 't', 0), -6*60 },
1407 { RT_MAKE_U32_FROM_U8('m', 'd', 't', 0), -6*60 },
1408 { RT_MAKE_U32_FROM_U8('m', 's', 't', 0), -7*60 },
1409 { RT_MAKE_U32_FROM_U8('p', 'd', 't', 0), -7*60 },
1410 { RT_MAKE_U32_FROM_U8('p', 's', 't', 0), -8*60 },
1411 };
1412 size_t i = RT_ELEMENTS(s_aLegacyTimeZones);
1413 while (i-- > 0)
1414 if (s_aLegacyTimeZones[i].uTimeZone == uTimeZone)
1415 {
1416 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1417 pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL;
1418 pTime->offUTC = s_aLegacyTimeZones[i].offUtc;
1419 pszString += 3;
1420 break;
1421 }
1422 }
1423
1424 }
1425 /* else: No time zone given, local with offUTC = 0. */
1426
1427 /*
1428 * The rest of the string should be blanks.
1429 */
1430 char ch;
1431 while ((ch = *pszString++) != '\0')
1432 if (!RT_C_IS_BLANK(ch))
1433 return NULL;
1434
1435 rtTimeNormalizeInternal(pTime);
1436 return pTime;
1437}
1438RT_EXPORT_SYMBOL(RTTimeFromRfc2822);
1439
1440
1441/**
1442 * Adds one day to @a pTime.
1443 *
1444 * ASSUMES it is zulu time so DST can be ignored.
1445 */
1446static PRTTIME rtTimeAdd1Day(PRTTIME pTime)
1447{
1448 Assert(!pTime->offUTC);
1449 rtTimeNormalizeInternal(pTime);
1450 pTime->u8MonthDay += 1;
1451 pTime->u16YearDay = 0;
1452 return rtTimeNormalizeInternal(pTime);
1453}
1454
1455
1456/**
1457 * Subtracts one day from @a pTime.
1458 *
1459 * ASSUMES it is zulu time so DST can be ignored.
1460 */
1461static PRTTIME rtTimeSub1Day(PRTTIME pTime)
1462{
1463 Assert(!pTime->offUTC);
1464 rtTimeNormalizeInternal(pTime);
1465 if (pTime->u16YearDay > 1)
1466 {
1467 pTime->u16YearDay -= 1;
1468 pTime->u8Month = 0;
1469 pTime->u8MonthDay = 0;
1470 }
1471 else
1472 {
1473 pTime->i32Year -= 1;
1474 pTime->u16YearDay = rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365;
1475 pTime->u8MonthDay = 31;
1476 pTime->u8Month = 12;
1477 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
1478 }
1479 return rtTimeNormalizeInternal(pTime);
1480}
1481
1482
1483/**
1484 * Adds a signed number of minutes to @a pTime.
1485 *
1486 * ASSUMES it is zulu time so DST can be ignored.
1487 *
1488 * @param pTime The time structure to work on.
1489 * @param cAddend Number of minutes to add.
1490 * ASSUMES the value isn't all that high!
1491 */
1492static PRTTIME rtTimeAddMinutes(PRTTIME pTime, int32_t cAddend)
1493{
1494 Assert(RT_ABS(cAddend) < 31 * 24 * 60);
1495
1496 /*
1497 * Work on minutes of the day.
1498 */
1499 int32_t const cMinutesInDay = 24 * 60;
1500 int32_t iDayMinute = (unsigned)pTime->u8Hour * 60 + pTime->u8Minute;
1501 iDayMinute += cAddend;
1502
1503 while (iDayMinute >= cMinutesInDay)
1504 {
1505 rtTimeAdd1Day(pTime);
1506 iDayMinute -= cMinutesInDay;
1507 }
1508
1509 while (iDayMinute < 0)
1510 {
1511 rtTimeSub1Day(pTime);
1512 iDayMinute += cMinutesInDay;
1513 }
1514
1515 pTime->u8Hour = iDayMinute / 60;
1516 pTime->u8Minute = iDayMinute % 60;
1517
1518 return pTime;
1519}
1520
1521
1522/**
1523 * Converts @a pTime to zulu time (UTC) if needed.
1524 *
1525 * @returns pTime.
1526 * @param pTime What to convert (in/out).
1527 */
1528static PRTTIME rtTimeConvertToZulu(PRTTIME pTime)
1529{
1530 RTTIME_ASSERT_NORMALIZED(pTime);
1531 if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC)
1532 {
1533 int32_t offUTC = pTime->offUTC;
1534 pTime->offUTC = 0;
1535 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1536 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1537 if (offUTC != 0)
1538 rtTimeAddMinutes(pTime, -offUTC);
1539 }
1540 return pTime;
1541}
1542
1543
1544/**
1545 * Converts a time structure to UTC, relying on UTC offset information if it contains local time.
1546 *
1547 * @returns pTime on success.
1548 * @returns NULL if the data is invalid.
1549 * @param pTime The time structure to convert.
1550 */
1551RTDECL(PRTTIME) RTTimeConvertToZulu(PRTTIME pTime)
1552{
1553 /*
1554 * Validate that we've got the minimum of stuff handy.
1555 */
1556 AssertPtrReturn(pTime, NULL);
1557 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
1558
1559 return rtTimeConvertToZulu(rtTimeNormalizeInternal(pTime));
1560}
1561RT_EXPORT_SYMBOL(RTTimeConvertToZulu);
1562
1563
1564/**
1565 * Compares two normalized time structures.
1566 *
1567 * @retval 0 if equal.
1568 * @retval -1 if @a pLeft is earlier than @a pRight.
1569 * @retval 1 if @a pRight is earlier than @a pLeft.
1570 *
1571 * @param pLeft The left side time. NULL is accepted.
1572 * @param pRight The right side time. NULL is accepted.
1573 *
1574 * @note A NULL time is considered smaller than anything else. If both are
1575 * NULL, they are considered equal.
1576 */
1577RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight)
1578{
1579#ifdef RT_STRICT
1580 if (pLeft)
1581 RTTIME_ASSERT_NORMALIZED(pLeft);
1582 if (pRight)
1583 RTTIME_ASSERT_NORMALIZED(pRight);
1584#endif
1585
1586 int iRet;
1587 if (pLeft)
1588 {
1589 if (pRight)
1590 {
1591 /*
1592 * Only work with normalized zulu time.
1593 */
1594 RTTIME TmpLeft;
1595 if ( pLeft->offUTC != 0
1596 || pLeft->u16YearDay == 0
1597 || pLeft->u16YearDay > 366
1598 || pLeft->u8Hour >= 60
1599 || pLeft->u8Minute >= 60
1600 || pLeft->u8Second >= 60)
1601 {
1602 TmpLeft = *pLeft;
1603 pLeft = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpLeft));
1604 }
1605
1606 RTTIME TmpRight;
1607 if ( pRight->offUTC != 0
1608 || pRight->u16YearDay == 0
1609 || pRight->u16YearDay > 366
1610 || pRight->u8Hour >= 60
1611 || pRight->u8Minute >= 60
1612 || pRight->u8Second >= 60)
1613 {
1614 TmpRight = *pRight;
1615 pRight = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpRight));
1616 }
1617
1618 /*
1619 * Do the comparison.
1620 */
1621 if ( pLeft->i32Year != pRight->i32Year)
1622 iRet = pLeft->i32Year < pRight->i32Year ? -1 : 1;
1623 else if ( pLeft->u16YearDay != pRight->u16YearDay)
1624 iRet = pLeft->u16YearDay < pRight->u16YearDay ? -1 : 1;
1625 else if ( pLeft->u8Hour != pRight->u8Hour)
1626 iRet = pLeft->u8Hour < pRight->u8Hour ? -1 : 1;
1627 else if ( pLeft->u8Minute != pRight->u8Minute)
1628 iRet = pLeft->u8Minute < pRight->u8Minute ? -1 : 1;
1629 else if ( pLeft->u8Second != pRight->u8Second)
1630 iRet = pLeft->u8Second < pRight->u8Second ? -1 : 1;
1631 else if ( pLeft->u32Nanosecond != pRight->u32Nanosecond)
1632 iRet = pLeft->u32Nanosecond < pRight->u32Nanosecond ? -1 : 1;
1633 else
1634 iRet = 0;
1635 }
1636 else
1637 iRet = 1;
1638 }
1639 else
1640 iRet = pRight ? -1 : 0;
1641 return iRet;
1642}
1643RT_EXPORT_SYMBOL(RTTimeCompare);
1644
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette