/* $Id: time.cpp 90803 2021-08-23 19:08:38Z vboxsync $ */ /** @file * IPRT - Time. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP RTLOGGROUP_TIME #include #include "internal/iprt.h" #include #include #include #include #include "internal/time.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The max year we possibly could implode. */ #define RTTIME_MAX_YEAR (292 + 1970) /** The min year we possibly could implode. */ #define RTTIME_MIN_YEAR (-293 + 1970) /** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */ #define RTTIME_MAX_DAY (365*292+71 + 101-1) /** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */ #define RTTIME_MIN_DAY (365*-293-70 + 264-1) /** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */ #define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 ) /** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */ #define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 ) /** * Asserts that a_pTime is normalized. */ #define RTTIME_ASSERT_NORMALIZED(a_pTime) \ do \ { \ Assert(RT_ABS((a_pTime)->offUTC) <= 840); \ Assert((a_pTime)->u32Nanosecond < 1000000000); \ Assert((a_pTime)->u8Second < 60); \ Assert((a_pTime)->u8Minute < 60); \ Assert((a_pTime)->u8Hour < 24); \ Assert((a_pTime)->u8Month >= 1 && (a_pTime)->u8Month <= 12); \ Assert((a_pTime)->u8WeekDay < 7); \ Assert((a_pTime)->u16YearDay >= 1); \ Assert((a_pTime)->u16YearDay <= (rtTimeIsLeapYear((a_pTime)->i32Year) ? 366 : 365)); \ Assert((a_pTime)->u8MonthDay >= 1 && (a_pTime)->u8MonthDay <= 31); \ } while (0) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** * Days per month in a common year. */ static const uint8_t g_acDaysInMonths[12] = { /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /** * Days per month in a leap year. */ static const uint8_t g_acDaysInMonthsLeap[12] = { /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /** * The day of year for each month in a common year. */ static const uint16_t g_aiDayOfYear[12 + 1] = { 1, /* Jan */ 1+31, /* Feb */ 1+31+28, /* Mar */ 1+31+28+31, /* Apr */ 1+31+28+31+30, /* May */ 1+31+28+31+30+31, /* Jun */ 1+31+28+31+30+31+30, /* Jul */ 1+31+28+31+30+31+30+31, /* Aug */ 1+31+28+31+30+31+30+31+31, /* Sep */ 1+31+28+31+30+31+30+31+31+30, /* Oct */ 1+31+28+31+30+31+30+31+31+30+31, /* Nov */ 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */ 1+31+28+31+30+31+30+31+31+30+31+30+31 }; /** * The day of year for each month in a leap year. */ static const uint16_t g_aiDayOfYearLeap[12 + 1] = { 1, /* Jan */ 1+31, /* Feb */ 1+31+29, /* Mar */ 1+31+29+31, /* Apr */ 1+31+29+31+30, /* May */ 1+31+29+31+30+31, /* Jun */ 1+31+29+31+30+31+30, /* Jul */ 1+31+29+31+30+31+30+31, /* Aug */ 1+31+29+31+30+31+30+31+31, /* Sep */ 1+31+29+31+30+31+30+31+31+30, /* Oct */ 1+31+29+31+30+31+30+31+31+30+31, /* Nov */ 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */ 1+31+29+31+30+31+30+31+31+30+31+30+31 }; /** The index of 1970 in g_aoffYear */ #define OFF_YEAR_IDX_EPOCH 300 /** The year of the first index. */ #define OFF_YEAR_IDX_0_YEAR 1670 /** * The number of days the 1st of January a year is offseted from 1970-01-01. */ static const int32_t g_aoffYear[] = { /*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70, /*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67, /*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65, /*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63, /*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61, /*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58, /*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56, /*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53, /*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51, /*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48, /*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46, /*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43, /*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41, /*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39, /*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37, /*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34, /*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32, /*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29, /*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27, /*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24, /*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22, /*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19, /*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17, /*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15, /*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13, /*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10, /*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 , /*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 , /*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 , /*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 , /*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 , /*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 , /*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 , /*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 , /*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 , /*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 , /*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 , /*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 , /*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 , /*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 , /*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 , /*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 , /*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 , /*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 , /*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 , /*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 , /*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 , /*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 , /*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 , /*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 , /*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 , /*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 , /*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 , /*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 , /*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 , /*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 , /*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 , /*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 , /*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 , /*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73 }; /* generator code: #include bool isLeapYear(int iYear) { return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0); } void printYear(int iYear, int iLeap) { if (!(iYear % 10)) printf("\n/" "*%d:*" "/", iYear + 1970); printf(" 365*%4d+%-3d,", iYear, iLeap); } int main() { int iYear = 0; int iLeap = 0; while (iYear > -300) iLeap -= isLeapYear(1970 + --iYear); while (iYear < 300) { printYear(iYear, iLeap); iLeap += isLeapYear(1970 + iYear++); } printf("\n"); return 0; } */ /** RFC-1123 week day names. */ static const char * const g_apszWeekDays[7] = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" }; /** RFC-1123 month of the year names. */ static const char * const g_apszMonths[1+12] = { "000", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; /** * Checks if a year is a leap year or not. * * @returns true if it's a leap year. * @returns false if it's a common year. * @param i32Year The year in question. */ DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year) { return i32Year % 4 == 0 && ( i32Year % 100 != 0 || i32Year % 400 == 0); } /** * Checks if a year is a leap year or not. * * @returns true if it's a leap year. * @returns false if it's a common year. * @param i32Year The year in question. */ RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year) { return rtTimeIsLeapYear(i32Year); } RT_EXPORT_SYMBOL(RTTimeIsLeapYear); /** * Explodes a time spec (UTC). * * @returns pTime. * @param pTime Where to store the exploded time. * @param pTimeSpec The time spec to exploded. */ RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec) { int64_t i64Div; int32_t i32Div; int32_t i32Rem; unsigned iYear; const uint16_t *paiDayOfYear; int iMonth; AssertPtr(pTime); AssertPtr(pTimeSpec); /* * The simple stuff first. */ pTime->fFlags = RTTIME_FLAGS_TYPE_UTC; i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch; i32Rem = (int32_t)(i64Div % 1000000000); i64Div /= 1000000000; if (i32Rem < 0) { i32Rem += 1000000000; i64Div--; } pTime->u32Nanosecond = i32Rem; /* second */ i32Rem = (int32_t)(i64Div % 60); i64Div /= 60; if (i32Rem < 0) { i32Rem += 60; i64Div--; } pTime->u8Second = i32Rem; /* minute */ i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */ i32Rem = i32Div % 60; i32Div /= 60; if (i32Rem < 0) { i32Rem += 60; i32Div--; } pTime->u8Minute = i32Rem; /* hour */ i32Rem = i32Div % 24; i32Div /= 24; /* days relative to 1970-01-01 */ if (i32Rem < 0) { i32Rem += 24; i32Div--; } pTime->u8Hour = i32Rem; /* weekday - 1970-01-01 was a Thursday (3) */ pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7; /* * We've now got a number of days relative to 1970-01-01. * To get the correct year number we have to mess with leap years. Fortunately, * the representation we've got only supports a few hundred years, so we can * generate a table and perform a simple two way search from the modulus 365 derived. */ iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365; while (g_aoffYear[iYear + 1] <= i32Div) iYear++; while (g_aoffYear[iYear] > i32Div) iYear--; pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR; i32Div -= g_aoffYear[iYear]; pTime->u16YearDay = i32Div + 1; /* * Figuring out the month is done in a manner similar to the year, only here we * ensure that the index is matching or too small. */ if (rtTimeIsLeapYear(pTime->i32Year)) { pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; paiDayOfYear = &g_aiDayOfYearLeap[0]; } else { pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR; paiDayOfYear = &g_aiDayOfYear[0]; } iMonth = i32Div / 32; i32Div++; while (paiDayOfYear[iMonth + 1] <= i32Div) iMonth++; pTime->u8Month = iMonth + 1; i32Div -= paiDayOfYear[iMonth]; pTime->u8MonthDay = i32Div + 1; /* This is for UTC timespecs, so, no offset. */ pTime->offUTC = 0; return pTime; } RT_EXPORT_SYMBOL(RTTimeExplode); /** * Implodes exploded time to a time spec (UTC). * * @returns pTime on success. * @returns NULL if the pTime data is invalid. * @param pTimeSpec Where to store the imploded UTC time. * If pTime specifies a time which outside the range, maximum or * minimum values will be returned. * @param pTime Pointer to the exploded time to implode. * The fields u8Month, u8WeekDay and u8MonthDay are not used, * and all the other fields are expected to be within their * bounds. Use RTTimeNormalize() or RTTimeLocalNormalize() to * calculate u16YearDay and normalize the ranges of the fields. */ RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime) { int32_t i32Days; uint32_t u32Secs; int64_t i64Nanos; /* * Validate input. */ AssertPtrReturn(pTimeSpec, NULL); AssertPtrReturn(pTime, NULL); AssertReturn(pTime->u32Nanosecond < 1000000000, NULL); AssertReturn(pTime->u8Second < 60, NULL); AssertReturn(pTime->u8Minute < 60, NULL); AssertReturn(pTime->u8Hour < 24, NULL); AssertReturn(pTime->u16YearDay >= 1, NULL); AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL); AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL); Assert(pTime->offUTC >= -840 && pTime->offUTC <= 840); /* * Do the conversion to nanoseconds. */ i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR] + pTime->u16YearDay - 1; AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL); u32Secs = pTime->u8Second + pTime->u8Minute * 60 + pTime->u8Hour * 3600; i64Nanos = (uint64_t)pTime->u32Nanosecond + u32Secs * UINT64_C(1000000000); AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL); AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL); i64Nanos += i32Days * UINT64_C(86400000000000); if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL) i64Nanos -= pTime->offUTC * RT_NS_1MIN; pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos; return pTimeSpec; } RT_EXPORT_SYMBOL(RTTimeImplode); /** * Internal worker for RTTimeNormalize and RTTimeLocalNormalize. */ static PRTTIME rtTimeNormalizeInternal(PRTTIME pTime) { unsigned uSecond; unsigned uMinute; unsigned uHour; bool fLeapYear; /* * Fix the YearDay and Month/MonthDay. */ fLeapYear = rtTimeIsLeapYear(pTime->i32Year); if (!pTime->u16YearDay) { /* * The Month+MonthDay must present, overflow adjust them and calc the year day. */ AssertMsgReturn( pTime->u8Month && pTime->u8MonthDay, ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay), NULL); while (pTime->u8Month > 12) { pTime->u8Month -= 12; pTime->i32Year++; fLeapYear = rtTimeIsLeapYear(pTime->i32Year); pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); } for (;;) { unsigned cDaysInMonth = fLeapYear ? g_acDaysInMonthsLeap[pTime->u8Month - 1] : g_acDaysInMonths[pTime->u8Month - 1]; if (pTime->u8MonthDay <= cDaysInMonth) break; pTime->u8MonthDay -= cDaysInMonth; if (pTime->u8Month != 12) pTime->u8Month++; else { pTime->u8Month = 1; pTime->i32Year++; fLeapYear = rtTimeIsLeapYear(pTime->i32Year); pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); } } pTime->u16YearDay = pTime->u8MonthDay - 1 + (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month - 1] : g_aiDayOfYear[pTime->u8Month - 1]); } else { /* * Are both YearDay and Month/MonthDay valid? * Check that they don't overflow and match, if not use YearDay (simpler). */ bool fRecalc = true; if ( pTime->u8Month && pTime->u8MonthDay) { do { uint16_t u16YearDay; /* If you change one, zero the other to make clear what you mean. */ AssertBreak(pTime->u8Month <= 12); AssertBreak(pTime->u8MonthDay <= (fLeapYear ? g_acDaysInMonthsLeap[pTime->u8Month - 1] : g_acDaysInMonths[pTime->u8Month - 1])); u16YearDay = pTime->u8MonthDay - 1 + (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month - 1] : g_aiDayOfYear[pTime->u8Month - 1]); AssertBreak(u16YearDay == pTime->u16YearDay); fRecalc = false; } while (0); } if (fRecalc) { const uint16_t *paiDayOfYear; /* overflow adjust YearDay */ while (pTime->u16YearDay > (fLeapYear ? 366 : 365)) { pTime->u16YearDay -= fLeapYear ? 366 : 365; pTime->i32Year++; fLeapYear = rtTimeIsLeapYear(pTime->i32Year); pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); } /* calc Month and MonthDay */ paiDayOfYear = fLeapYear ? &g_aiDayOfYearLeap[0] : &g_aiDayOfYear[0]; pTime->u8Month = 1; while (pTime->u16YearDay >= paiDayOfYear[pTime->u8Month]) pTime->u8Month++; Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12); pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1; } } /* * Fixup time overflows. * Use unsigned int values internally to avoid overflows. */ uSecond = pTime->u8Second; uMinute = pTime->u8Minute; uHour = pTime->u8Hour; while (pTime->u32Nanosecond >= 1000000000) { pTime->u32Nanosecond -= 1000000000; uSecond++; } while (uSecond >= 60) { uSecond -= 60; uMinute++; } while (uMinute >= 60) { uMinute -= 60; uHour++; } while (uHour >= 24) { uHour -= 24; /* This is really a RTTimeIncDay kind of thing... */ if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month])) { pTime->u16YearDay++; pTime->u8MonthDay++; } else if (pTime->u8Month != 12) { pTime->u16YearDay++; pTime->u8Month++; pTime->u8MonthDay = 1; } else { pTime->i32Year++; fLeapYear = rtTimeIsLeapYear(pTime->i32Year); pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); pTime->u16YearDay = 1; pTime->u8Month = 1; pTime->u8MonthDay = 1; } } pTime->u8Second = uSecond; pTime->u8Minute = uMinute; pTime->u8Hour = uHour; /* * Correct the leap year flag. * Assert if it's wrong, but ignore if unset. */ if (fLeapYear) { Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR)); pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR; pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; } else { Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR)); pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR; pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR; } /* * Calc week day. * * 1970-01-01 was a Thursday (3), so find the number of days relative to * that point. We use the table when possible and a slow+stupid+brute-force * algorithm for points outside it. Feel free to optimize the latter by * using some clever formula. */ if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear)) { int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR] + pTime->u16YearDay -1; pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7; } else { int32_t i32Year = pTime->i32Year; if (i32Year >= 1970) { uint64_t offDays = pTime->u16YearDay - 1; while (--i32Year >= 1970) offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365; pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7); } else { int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay; while (++i32Year < 1970) offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365; pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7; } } return pTime; } /** * Normalizes the fields of a time structure. * * It is possible to calculate year-day from month/day and vice * versa. If you adjust any of these, make sure to zero the * other so you make it clear which of the fields to use. If * it's ambiguous, the year-day field is used (and you get * assertions in debug builds). * * All the time fields and the year-day or month/day fields will * be adjusted for overflows. (Since all fields are unsigned, there * is no underflows.) It is possible to exploit this for simple * date math, though the recommended way of doing that to implode * the time into a timespec and do the math on that. * * @returns pTime on success. * @returns NULL if the data is invalid. * * @param pTime The time structure to normalize. * * @remarks This function doesn't work with local time, only with UTC time. */ RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime) { /* * Validate that we've got the minimum of stuff handy. */ AssertPtrReturn(pTime, NULL); AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL); AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL); AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL); pTime = rtTimeNormalizeInternal(pTime); if (pTime) pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; return pTime; } RT_EXPORT_SYMBOL(RTTimeNormalize); /** * Normalizes the fields of a time structure, assuming local time. * * It is possible to calculate year-day from month/day and vice * versa. If you adjust any of these, make sure to zero the * other so you make it clear which of the fields to use. If * it's ambiguous, the year-day field is used (and you get * assertions in debug builds). * * All the time fields and the year-day or month/day fields will * be adjusted for overflows. (Since all fields are unsigned, there * is no underflows.) It is possible to exploit this for simple * date math, though the recommended way of doing that to implode * the time into a timespec and do the math on that. * * @returns pTime on success. * @returns NULL if the data is invalid. * * @param pTime The time structure to normalize. * * @remarks This function doesn't work with UTC time, only with local time. */ RTDECL(PRTTIME) RTTimeLocalNormalize(PRTTIME pTime) { /* * Validate that we've got the minimum of stuff handy. */ AssertPtrReturn(pTime, NULL); AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL); AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC, ("Use RTTimeNormalize!\n"), NULL); pTime = rtTimeNormalizeInternal(pTime); if (pTime) pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL; return pTime; } RT_EXPORT_SYMBOL(RTTimeLocalNormalize); /** * Converts a time spec to a ISO date string. * * @returns psz on success. * @returns NULL on buffer underflow. * @param pTime The time. Caller should've normalized this. * @param psz Where to store the string. * @param cb The size of the buffer. */ RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb) { size_t cch; /* (Default to UTC if not specified) */ if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL && pTime->offUTC) { int32_t offUTC = pTime->offUTC; Assert(offUTC <= 840 && offUTC >= -840); char chSign; if (offUTC >= 0) chSign = '+'; else { chSign = '-'; offUTC = -offUTC; } uint32_t offUTCHour = (uint32_t)offUTC / 60; uint32_t offUTCMinute = (uint32_t)offUTC % 60; cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02d%:02d", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond, chSign, offUTCHour, offUTCMinute); if ( cch <= 15 || psz[cch - 6] != chSign) return NULL; } else { cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond); if ( cch <= 15 || psz[cch - 1] != 'Z') return NULL; } return psz; } RT_EXPORT_SYMBOL(RTTimeToString); /** * Converts a time spec to a ISO date string, extended version. * * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW * (negative) or VERR_OUT_OF_RANGE (negative) on failure. * @param pTime The time. Caller should've normalized this. * @param psz Where to store the string. * @param cb The size of the buffer. * @param cFractionDigits Number of digits in the fraction. Max is 9. */ RTDECL(ssize_t) RTTimeToStringEx(PCRTTIME pTime, char *psz, size_t cb, unsigned cFractionDigits) { size_t cch; /* Format the fraction. */ char szFraction[16]; if (!cFractionDigits) szFraction[0] = '\0'; else { AssertReturn(cFractionDigits <= 9, VERR_OUT_OF_RANGE); Assert(pTime->u32Nanosecond <= 999999999); RTStrPrintf(szFraction, sizeof(szFraction), ".%09RU32", pTime->u32Nanosecond); szFraction[cFractionDigits + 1] = '\0'; } /* (Default to UTC if not specified) */ if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL && pTime->offUTC) { int32_t offUTC = pTime->offUTC; Assert(offUTC <= 840 && offUTC >= -840); char chSign; if (offUTC >= 0) chSign = '+'; else { chSign = '-'; offUTC = -offUTC; } uint32_t offUTCHour = (uint32_t)offUTC / 60; uint32_t offUTCMinute = (uint32_t)offUTC % 60; /* Examples: 2018-09-07T16:12:00+02:00 2018-09-07T16:12:00.123456789+02:00 */ cch = RTStrPrintf(psz, cb, "%04RI32-%02u-%02uT%02u:%02u:%02u%s%c%02d%:02d", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, pTime->u8Hour, pTime->u8Minute, pTime->u8Second, szFraction, chSign, offUTCHour, offUTCMinute); if ( cch >= 24 && psz[cch - 6] == chSign) return cch; } else { /* Examples: 2018-09-07T16:12:00Z 2018-09-07T16:12:00.123456789Z */ cch = RTStrPrintf(psz, cb, "%04RI32-%02u-%02uT%02u:%02u:%02u%sZ", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, pTime->u8Hour, pTime->u8Minute, pTime->u8Second, szFraction); if ( cch >= 19 && psz[cch - 1] == 'Z') return cch; } return VERR_BUFFER_OVERFLOW; } RT_EXPORT_SYMBOL(RTTimeToStringEx); /** * Converts a time spec to a ISO date string. * * @returns psz on success. * @returns NULL on buffer underflow. * @param pTime The time spec. * @param psz Where to store the string. * @param cb The size of the buffer. */ RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb) { RTTIME Time; return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb); } RT_EXPORT_SYMBOL(RTTimeSpecToString); /** * Attempts to convert an ISO date string to a time structure. * * We're a little forgiving with zero padding, unspecified parts, and leading * and trailing spaces. * * @retval pTime on success, * @retval NULL on failure. * @param pTime Where to store the time on success. * @param pszString The ISO date string to convert. */ RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString) { /* Ignore leading spaces. */ while (RT_C_IS_SPACE(*pszString)) pszString++; /* * Init non date & time parts. */ pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL; pTime->offUTC = 0; /* * The date part. */ /* Year */ int rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year); if (rc != VWRN_TRAILING_CHARS) return NULL; bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year); if (fLeapYear) pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; if (*pszString++ != '-') return NULL; /* Month of the year. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Month); if (rc != VWRN_TRAILING_CHARS) return NULL; if (pTime->u8Month == 0 || pTime->u8Month > 12) return NULL; if (*pszString++ != '-') return NULL; /* Day of month.*/ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay); if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS) return NULL; unsigned const cDaysInMonth = fLeapYear ? g_acDaysInMonthsLeap[pTime->u8Month - 1] : g_acDaysInMonths[pTime->u8Month - 1]; if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth) return NULL; /* Calculate year day. */ pTime->u16YearDay = pTime->u8MonthDay - 1 + (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month - 1] : g_aiDayOfYear[pTime->u8Month - 1]); pTime->u8WeekDay = UINT8_MAX; /* later */ /* * The time part. */ if (*pszString++ != 'T') return NULL; /* Hour. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour); if (rc != VWRN_TRAILING_CHARS) return NULL; if (pTime->u8Hour > 23) return NULL; if (*pszString++ != ':') return NULL; /* Minute. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute); if (rc != VWRN_TRAILING_CHARS) return NULL; if (pTime->u8Minute > 59) return NULL; if (*pszString++ != ':') return NULL; /* Second. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) return NULL; if (pTime->u8Second > 59) return NULL; /* We generally put a 9 digit fraction here, but it's entirely optional. */ if (*pszString == '.') { const char * const pszStart = ++pszString; rc = RTStrToUInt32Ex(pszString, (char **)&pszString, 10, &pTime->u32Nanosecond); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) return NULL; if (pTime->u32Nanosecond >= 1000000000) return NULL; switch (pszString - pszStart) { case 1: pTime->u32Nanosecond *= 100000000; break; case 2: pTime->u32Nanosecond *= 10000000; break; case 3: pTime->u32Nanosecond *= 1000000; break; case 4: pTime->u32Nanosecond *= 100000; break; case 5: pTime->u32Nanosecond *= 10000; break; case 6: pTime->u32Nanosecond *= 1000; break; case 7: pTime->u32Nanosecond *= 100; break; case 8: pTime->u32Nanosecond *= 10; break; case 9: break; default: return NULL; } if (pTime->u32Nanosecond >= 1000000000) return NULL; } else pTime->u32Nanosecond = 0; /* * Time zone. */ if (*pszString == 'Z') { pszString++; pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; pTime->offUTC = 0; } else if ( *pszString == '+' || *pszString == '-') { int8_t cUtcHours = 0; rc = RTStrToInt8Ex(pszString, (char **)&pszString, 10, &cUtcHours); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) return NULL; uint8_t cUtcMin = 0; if (*pszString == ':') { rc = RTStrToUInt8Ex(pszString + 1, (char **)&pszString, 10, &cUtcMin); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES) return NULL; } else if (*pszString && !RT_C_IS_BLANK(*pszString)) return NULL; if (cUtcHours >= 0) pTime->offUTC = cUtcHours * 60 + cUtcMin; else pTime->offUTC = cUtcHours * 60 - cUtcMin; if (RT_ABS(pTime->offUTC) > 840) return NULL; } /* else: No time zone given, local with offUTC = 0. */ /* * The rest of the string should be blanks. */ char ch; while ((ch = *pszString++) != '\0') if (!RT_C_IS_BLANK(ch)) return NULL; /* Calc week day. */ rtTimeNormalizeInternal(pTime); return pTime; } RT_EXPORT_SYMBOL(RTTimeFromString); /** * Attempts to convert an ISO date string to a time structure. * * We're a little forgiving with zero padding, unspecified parts, and leading * and trailing spaces. * * @retval pTime on success, * @retval NULL on failure. * @param pTime The time spec. * @param pszString The ISO date string to convert. */ RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString) { RTTIME Time; if (RTTimeFromString(&Time, pszString)) return RTTimeImplode(pTime, &Time); return NULL; } RT_EXPORT_SYMBOL(RTTimeSpecFromString); /** * Formats the given time on a RTC-2822 compliant format. * * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW * (negative) on failure. * @param pTime The time. Caller should've normalized this. * @param psz Where to store the string. * @param cb The size of the buffer. */ RTDECL(ssize_t) RTTimeToRfc2822(PRTTIME pTime, char *psz, size_t cb, uint32_t fFlags) { Assert(pTime->u8Month > 0 && pTime->u8Month <= 12); Assert(pTime->u8WeekDay < 7); Assert(!(fFlags & ~RTTIME_RFC2822_F_GMT)); /* (Default to UTC if not specified) */ if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL && pTime->offUTC) { Assert(!(fFlags & RTTIME_RFC2822_F_GMT) /* don't call with local time. duh! */ ); /* Calc the UTC offset part. */ int32_t offUtc = pTime->offUTC; Assert(offUtc <= 840 && offUtc >= -840); char chSign; if (offUtc >= 0) chSign = '+'; else { chSign = '-'; offUtc = -offUtc; } uint32_t offUtcHour = (uint32_t)offUtc / 60; uint32_t offUtcMinute = (uint32_t)offUtc % 60; /* Example: "Mon, 31 Aug 2018 00:00:00 +0200" */ size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u %c%02u%02u", g_apszWeekDays[pTime->u8WeekDay], pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year, pTime->u8Hour, pTime->u8Minute, pTime->u8Second, chSign, offUtcHour, offUtcMinute); if ( cch >= 27 && psz[cch - 5] == chSign) return cch; } else if (fFlags & RTTIME_RFC2822_F_GMT) { /* Example: "Mon, 1 Jan 1971 23:55:59 GMT" */ size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u GMT", g_apszWeekDays[pTime->u8WeekDay], pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year, pTime->u8Hour, pTime->u8Minute, pTime->u8Second); if ( cch >= 27 && psz[cch - 1] == 'T') return cch; } else { /* Example: "Mon, 1 Jan 1971 00:00:00 -0000" */ size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u -0000", g_apszWeekDays[pTime->u8WeekDay], pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year, pTime->u8Hour, pTime->u8Minute, pTime->u8Second); if ( cch >= 27 && psz[cch - 5] == '-') return cch; } return VERR_BUFFER_OVERFLOW; } RT_EXPORT_SYMBOL(RTTimeToRfc2822); /** * Attempts to convert an RFC-2822 date string to a time structure. * * We're a little forgiving with zero padding, unspecified parts, and leading * and trailing spaces. * * @retval pTime on success, * @retval NULL on failure. * @param pTime Where to store the time on success. * @param pszString The ISO date string to convert. */ RTDECL(PRTTIME) RTTimeFromRfc2822(PRTTIME pTime, const char *pszString) { /* * Fri, 31 Aug 2018 00:00:00 +0200 * Mon, 3 Sep 2018 00:00:00 GMT * Mon, 3 Sep 2018 00:00:00 -0000 * 3 Sep 2018 00:00:00 -0000 (?) * 3 Sep 2018 00:00:00 GMT (?) * */ /* Ignore leading spaces. */ while (RT_C_IS_SPACE(*pszString)) pszString++; /* * Init non date & time parts. */ pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL; pTime->offUTC = 0; /* * The date part. */ /* Optional day of week: */ if (RT_C_IS_ALPHA(pszString[0]) && pszString[1] != '\0') { uint32_t uWeekDay = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]), RT_C_TO_LOWER(pszString[2]), 0); if ( uWeekDay == RT_MAKE_U32_FROM_U8('m', 'o', 'n', 0)) pTime->u8WeekDay = 0; else if (uWeekDay == RT_MAKE_U32_FROM_U8('t', 'u', 'e', 0)) pTime->u8WeekDay = 1; else if (uWeekDay == RT_MAKE_U32_FROM_U8('w', 'e', 'd', 0)) pTime->u8WeekDay = 2; else if (uWeekDay == RT_MAKE_U32_FROM_U8('t', 'h', 'u', 0)) pTime->u8WeekDay = 3; else if (uWeekDay == RT_MAKE_U32_FROM_U8('f', 'r', 'i', 0)) pTime->u8WeekDay = 4; else if (uWeekDay == RT_MAKE_U32_FROM_U8('s', 'a', 't', 0)) pTime->u8WeekDay = 5; else if (uWeekDay == RT_MAKE_U32_FROM_U8('s', 'u', 'n', 0)) pTime->u8WeekDay = 6; else return NULL; pszString += 3; while (RT_C_IS_ALPHA(*pszString)) pszString++; if (*pszString == ',') pszString++; while (RT_C_IS_SPACE(*pszString)) pszString++; if (!RT_C_IS_DIGIT(pszString[0])) return NULL; } else if (RT_C_IS_DIGIT(pszString[0])) pTime->u8WeekDay = UINT8_MAX; else return NULL; /* Day of month.*/ int rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay); if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS) return NULL; while (RT_C_IS_SPACE(*pszString)) pszString++; /* Month of the year. */ if (pszString[0] == '\0' || pszString[1] == '\0' || pszString[2] == '\0') return NULL; uint32_t uMonth = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]), RT_C_TO_LOWER(pszString[2]), 0); if ( uMonth == RT_MAKE_U32_FROM_U8('j', 'a', 'n', 0)) pTime->u8Month = 1; else if (uMonth == RT_MAKE_U32_FROM_U8('f', 'e', 'b', 0)) pTime->u8Month = 2; else if (uMonth == RT_MAKE_U32_FROM_U8('m', 'a', 'r', 0)) pTime->u8Month = 3; else if (uMonth == RT_MAKE_U32_FROM_U8('a', 'p', 'r', 0)) pTime->u8Month = 4; else if (uMonth == RT_MAKE_U32_FROM_U8('m', 'a', 'y', 0)) pTime->u8Month = 5; else if (uMonth == RT_MAKE_U32_FROM_U8('j', 'u', 'n', 0)) pTime->u8Month = 6; else if (uMonth == RT_MAKE_U32_FROM_U8('j', 'u', 'l', 0)) pTime->u8Month = 7; else if (uMonth == RT_MAKE_U32_FROM_U8('a', 'u', 'g', 0)) pTime->u8Month = 8; else if (uMonth == RT_MAKE_U32_FROM_U8('s', 'e', 'p', 0)) pTime->u8Month = 9; else if (uMonth == RT_MAKE_U32_FROM_U8('o', 'c', 't', 0)) pTime->u8Month = 10; else if (uMonth == RT_MAKE_U32_FROM_U8('n', 'o', 'v', 0)) pTime->u8Month = 11; else if (uMonth == RT_MAKE_U32_FROM_U8('d', 'e', 'c', 0)) pTime->u8Month = 12; else return NULL; pszString += 3; while (RT_C_IS_ALPHA(*pszString)) pszString++; while (RT_C_IS_SPACE(*pszString)) pszString++; /* Year */ const char * const pszStartYear = pszString; rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year); if (rc != VWRN_TRAILING_CHARS) return NULL; if (pszString - pszStartYear >= 4 ) { /* likely */ } else if (pszString - pszStartYear == 3) pTime->i32Year += 1900; else if (pszString - pszStartYear == 2) pTime->i32Year += pTime->i32Year >= 50 ? 1900 : 2000; else return NULL; bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year); if (fLeapYear) pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; while (RT_C_IS_SPACE(*pszString)) pszString++; /* Calculate year day. */ unsigned const cDaysInMonth = fLeapYear ? g_acDaysInMonthsLeap[pTime->u8Month - 1] : g_acDaysInMonths[pTime->u8Month - 1]; if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth) return NULL; pTime->u16YearDay = pTime->u8MonthDay - 1 + (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month - 1] : g_aiDayOfYear[pTime->u8Month - 1]); /* * The time part. */ /* Hour. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour); if (rc != VWRN_TRAILING_CHARS) return NULL; if (pTime->u8Hour > 23) return NULL; if (*pszString++ != ':') return NULL; /* Minute. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute); if (rc != VWRN_TRAILING_CHARS) return NULL; if (pTime->u8Minute > 59) return NULL; if (*pszString++ != ':') return NULL; /* Second. */ rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) return NULL; if (pTime->u8Second > 59) return NULL; /* Non-standard fraction. Handy for testing, though. */ if (*pszString == '.') { const char * const pszStart = ++pszString; rc = RTStrToUInt32Ex(pszString, (char **)&pszString, 10, &pTime->u32Nanosecond); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) return NULL; if (pTime->u32Nanosecond >= 1000000000) return NULL; switch (pszString - pszStart) { case 1: pTime->u32Nanosecond *= 100000000; break; case 2: pTime->u32Nanosecond *= 10000000; break; case 3: pTime->u32Nanosecond *= 1000000; break; case 4: pTime->u32Nanosecond *= 100000; break; case 5: pTime->u32Nanosecond *= 10000; break; case 6: pTime->u32Nanosecond *= 1000; break; case 7: pTime->u32Nanosecond *= 100; break; case 8: pTime->u32Nanosecond *= 10; break; case 9: break; default: return NULL; } if (pTime->u32Nanosecond >= 1000000000) return NULL; } else pTime->u32Nanosecond = 0; while (RT_C_IS_SPACE(*pszString)) pszString++; /* * Time zone. */ if ( *pszString == '+' || *pszString == '-') { if ( !RT_C_IS_DIGIT(pszString[1]) || !RT_C_IS_DIGIT(pszString[2])) return NULL; int8_t cUtcHours = (pszString[1] - '0') * 10 + (pszString[2] - '0'); char chSign = *pszString; if (chSign == '-') cUtcHours = -cUtcHours; pszString += 3; uint8_t cUtcMin = 0; if (RT_C_IS_DIGIT(pszString[0])) { rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &cUtcMin); if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES) return NULL; } else if (*pszString && !RT_C_IS_BLANK(*pszString)) return NULL; if (cUtcHours >= 0) pTime->offUTC = cUtcHours * 60 + cUtcMin; else pTime->offUTC = cUtcHours * 60 - cUtcMin; if (RT_ABS(pTime->offUTC) > 840) return NULL; /* -0000: GMT isn't necessarily the local time zone, so change flags from local to UTC. */ if (pTime->offUTC == 0 && chSign == '-') { pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; } } else if (RT_C_IS_ALPHA(*pszString)) { uint32_t uTimeZone = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]), RT_C_TO_LOWER(pszString[2]), 0); if (uTimeZone == RT_MAKE_U32_FROM_U8('g', 'm', 't', 0)) { pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; pTime->offUTC = 0; pszString += 3; } else if ((uint16_t)uTimeZone == RT_MAKE_U16('u', 't')) { pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; pTime->offUTC = 0; pszString += 2; } else { static const struct { uint32_t uTimeZone; int32_t offUtc; } s_aLegacyTimeZones[] = { { RT_MAKE_U32_FROM_U8('e', 'd', 't', 0), -4*60 }, { RT_MAKE_U32_FROM_U8('e', 's', 't', 0), -5*60 }, { RT_MAKE_U32_FROM_U8('c', 'd', 't', 0), -5*60 }, { RT_MAKE_U32_FROM_U8('c', 's', 't', 0), -6*60 }, { RT_MAKE_U32_FROM_U8('m', 'd', 't', 0), -6*60 }, { RT_MAKE_U32_FROM_U8('m', 's', 't', 0), -7*60 }, { RT_MAKE_U32_FROM_U8('p', 'd', 't', 0), -7*60 }, { RT_MAKE_U32_FROM_U8('p', 's', 't', 0), -8*60 }, }; size_t i = RT_ELEMENTS(s_aLegacyTimeZones); while (i-- > 0) if (s_aLegacyTimeZones[i].uTimeZone == uTimeZone) { pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL; pTime->offUTC = s_aLegacyTimeZones[i].offUtc; pszString += 3; break; } } } /* else: No time zone given, local with offUTC = 0. */ /* * The rest of the string should be blanks. */ char ch; while ((ch = *pszString++) != '\0') if (!RT_C_IS_BLANK(ch)) return NULL; rtTimeNormalizeInternal(pTime); return pTime; } RT_EXPORT_SYMBOL(RTTimeFromRfc2822); /** * Adds one day to @a pTime. * * ASSUMES it is zulu time so DST can be ignored. */ static PRTTIME rtTimeAdd1Day(PRTTIME pTime) { Assert(!pTime->offUTC); rtTimeNormalizeInternal(pTime); pTime->u8MonthDay += 1; pTime->u16YearDay = 0; return rtTimeNormalizeInternal(pTime); } /** * Subtracts one day from @a pTime. * * ASSUMES it is zulu time so DST can be ignored. */ static PRTTIME rtTimeSub1Day(PRTTIME pTime) { Assert(!pTime->offUTC); rtTimeNormalizeInternal(pTime); if (pTime->u16YearDay > 1) { pTime->u16YearDay -= 1; pTime->u8Month = 0; pTime->u8MonthDay = 0; } else { pTime->i32Year -= 1; pTime->u16YearDay = rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365; pTime->u8MonthDay = 31; pTime->u8Month = 12; pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); } return rtTimeNormalizeInternal(pTime); } /** * Adds a signed number of minutes to @a pTime. * * ASSUMES it is zulu time so DST can be ignored. * * @param pTime The time structure to work on. * @param cAddend Number of minutes to add. * ASSUMES the value isn't all that high! */ static PRTTIME rtTimeAddMinutes(PRTTIME pTime, int32_t cAddend) { Assert(RT_ABS(cAddend) < 31 * 24 * 60); /* * Work on minutes of the day. */ int32_t const cMinutesInDay = 24 * 60; int32_t iDayMinute = (unsigned)pTime->u8Hour * 60 + pTime->u8Minute; iDayMinute += cAddend; while (iDayMinute >= cMinutesInDay) { rtTimeAdd1Day(pTime); iDayMinute -= cMinutesInDay; } while (iDayMinute < 0) { rtTimeSub1Day(pTime); iDayMinute += cMinutesInDay; } pTime->u8Hour = iDayMinute / 60; pTime->u8Minute = iDayMinute % 60; return pTime; } /** * Converts @a pTime to zulu time (UTC) if needed. * * @returns pTime. * @param pTime What to convert (in/out). */ static PRTTIME rtTimeConvertToZulu(PRTTIME pTime) { RTTIME_ASSERT_NORMALIZED(pTime); if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC) { int32_t offUTC = pTime->offUTC; pTime->offUTC = 0; pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; if (offUTC != 0) rtTimeAddMinutes(pTime, -offUTC); } return pTime; } /** * Converts a time structure to UTC, relying on UTC offset information if it contains local time. * * @returns pTime on success. * @returns NULL if the data is invalid. * @param pTime The time structure to convert. */ RTDECL(PRTTIME) RTTimeConvertToZulu(PRTTIME pTime) { /* * Validate that we've got the minimum of stuff handy. */ AssertPtrReturn(pTime, NULL); AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL); return rtTimeConvertToZulu(rtTimeNormalizeInternal(pTime)); } RT_EXPORT_SYMBOL(RTTimeConvertToZulu); /** * Compares two normalized time structures. * * @retval 0 if equal. * @retval -1 if @a pLeft is earlier than @a pRight. * @retval 1 if @a pRight is earlier than @a pLeft. * * @param pLeft The left side time. NULL is accepted. * @param pRight The right side time. NULL is accepted. * * @note A NULL time is considered smaller than anything else. If both are * NULL, they are considered equal. */ RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight) { #ifdef RT_STRICT if (pLeft) RTTIME_ASSERT_NORMALIZED(pLeft); if (pRight) RTTIME_ASSERT_NORMALIZED(pRight); #endif int iRet; if (pLeft) { if (pRight) { /* * Only work with normalized zulu time. */ RTTIME TmpLeft; if ( pLeft->offUTC != 0 || pLeft->u16YearDay == 0 || pLeft->u16YearDay > 366 || pLeft->u8Hour >= 60 || pLeft->u8Minute >= 60 || pLeft->u8Second >= 60) { TmpLeft = *pLeft; pLeft = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpLeft)); } RTTIME TmpRight; if ( pRight->offUTC != 0 || pRight->u16YearDay == 0 || pRight->u16YearDay > 366 || pRight->u8Hour >= 60 || pRight->u8Minute >= 60 || pRight->u8Second >= 60) { TmpRight = *pRight; pRight = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpRight)); } /* * Do the comparison. */ if ( pLeft->i32Year != pRight->i32Year) iRet = pLeft->i32Year < pRight->i32Year ? -1 : 1; else if ( pLeft->u16YearDay != pRight->u16YearDay) iRet = pLeft->u16YearDay < pRight->u16YearDay ? -1 : 1; else if ( pLeft->u8Hour != pRight->u8Hour) iRet = pLeft->u8Hour < pRight->u8Hour ? -1 : 1; else if ( pLeft->u8Minute != pRight->u8Minute) iRet = pLeft->u8Minute < pRight->u8Minute ? -1 : 1; else if ( pLeft->u8Second != pRight->u8Second) iRet = pLeft->u8Second < pRight->u8Second ? -1 : 1; else if ( pLeft->u32Nanosecond != pRight->u32Nanosecond) iRet = pLeft->u32Nanosecond < pRight->u32Nanosecond ? -1 : 1; else iRet = 0; } else iRet = 1; } else iRet = pRight ? -1 : 0; return iRet; } RT_EXPORT_SYMBOL(RTTimeCompare);