1 | /* $NetBSD: qdivrem.c,v 1.12 2005/12/11 12:24:37 christos Exp $ */
|
---|
2 |
|
---|
3 | /*-
|
---|
4 | * Copyright (c) 1992, 1993
|
---|
5 | * The Regents of the University of California. All rights reserved.
|
---|
6 | *
|
---|
7 | * This software was developed by the Computer Systems Engineering group
|
---|
8 | * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
---|
9 | * contributed to Berkeley.
|
---|
10 | *
|
---|
11 | * Redistribution and use in source and binary forms, with or without
|
---|
12 | * modification, are permitted provided that the following conditions
|
---|
13 | * are met:
|
---|
14 | * 1. Redistributions of source code must retain the above copyright
|
---|
15 | * notice, this list of conditions and the following disclaimer.
|
---|
16 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
17 | * notice, this list of conditions and the following disclaimer in the
|
---|
18 | * documentation and/or other materials provided with the distribution.
|
---|
19 | * 3. Neither the name of the University nor the names of its contributors
|
---|
20 | * may be used to endorse or promote products derived from this software
|
---|
21 | * without specific prior written permission.
|
---|
22 | *
|
---|
23 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
24 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
27 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
28 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
29 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
30 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
31 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
32 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
33 | * SUCH DAMAGE.
|
---|
34 | */
|
---|
35 |
|
---|
36 | /*#include <sys/cdefs.h>
|
---|
37 | #if defined(LIBC_SCCS) && !defined(lint)
|
---|
38 | #if 0
|
---|
39 | static char sccsid[] = "@(#)qdivrem.c 8.1 (Berkeley) 6/4/93";
|
---|
40 | #else
|
---|
41 | __RCSID("$NetBSD: qdivrem.c,v 1.12 2005/12/11 12:24:37 christos Exp $");
|
---|
42 | #endif
|
---|
43 | #endif*/ /* LIBC_SCCS and not lint */
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
|
---|
47 | * section 4.3.1, pp. 257--259.
|
---|
48 | */
|
---|
49 |
|
---|
50 | #include "quad.h"
|
---|
51 |
|
---|
52 | #define B ((int)1 << HALF_BITS) /* digit base */
|
---|
53 |
|
---|
54 | /* Combine two `digits' to make a single two-digit number. */
|
---|
55 | #define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
|
---|
56 |
|
---|
57 | /* select a type for digits in base B: use unsigned short if they fit */
|
---|
58 | #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
|
---|
59 | typedef unsigned short digit;
|
---|
60 | #else
|
---|
61 | typedef u_int digit;
|
---|
62 | #endif
|
---|
63 |
|
---|
64 | static void shl __P((digit *p, int len, int sh));
|
---|
65 |
|
---|
66 | /*
|
---|
67 | * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
|
---|
68 | *
|
---|
69 | * We do this in base 2-sup-HALF_BITS, so that all intermediate products
|
---|
70 | * fit within u_int. As a consequence, the maximum length dividend and
|
---|
71 | * divisor are 4 `digits' in this base (they are shorter if they have
|
---|
72 | * leading zeros).
|
---|
73 | */
|
---|
74 | u_quad_t
|
---|
75 | __qdivrem(uq, vq, arq)
|
---|
76 | u_quad_t uq, vq, *arq;
|
---|
77 | {
|
---|
78 | union uu tmp;
|
---|
79 | digit *u, *v, *q;
|
---|
80 | digit v1, v2;
|
---|
81 | u_int qhat, rhat, t;
|
---|
82 | int m, n, d, j, i;
|
---|
83 | digit uspace[5], vspace[5], qspace[5];
|
---|
84 |
|
---|
85 | /*
|
---|
86 | * Take care of special cases: divide by zero, and u < v.
|
---|
87 | */
|
---|
88 | if (vq == 0) {
|
---|
89 | /* divide by zero. */
|
---|
90 | static volatile const unsigned int zero = 0;
|
---|
91 |
|
---|
92 | tmp.ul[H] = tmp.ul[L] = 1 / zero;
|
---|
93 | if (arq)
|
---|
94 | *arq = uq;
|
---|
95 | return (tmp.q);
|
---|
96 | }
|
---|
97 | if (uq < vq) {
|
---|
98 | if (arq)
|
---|
99 | *arq = uq;
|
---|
100 | return (0);
|
---|
101 | }
|
---|
102 | u = &uspace[0];
|
---|
103 | v = &vspace[0];
|
---|
104 | q = &qspace[0];
|
---|
105 |
|
---|
106 | /*
|
---|
107 | * Break dividend and divisor into digits in base B, then
|
---|
108 | * count leading zeros to determine m and n. When done, we
|
---|
109 | * will have:
|
---|
110 | * u = (u[1]u[2]...u[m+n]) sub B
|
---|
111 | * v = (v[1]v[2]...v[n]) sub B
|
---|
112 | * v[1] != 0
|
---|
113 | * 1 < n <= 4 (if n = 1, we use a different division algorithm)
|
---|
114 | * m >= 0 (otherwise u < v, which we already checked)
|
---|
115 | * m + n = 4
|
---|
116 | * and thus
|
---|
117 | * m = 4 - n <= 2
|
---|
118 | */
|
---|
119 | tmp.uq = uq;
|
---|
120 | u[0] = 0;
|
---|
121 | u[1] = (digit)HHALF(tmp.ul[H]);
|
---|
122 | u[2] = (digit)LHALF(tmp.ul[H]);
|
---|
123 | u[3] = (digit)HHALF(tmp.ul[L]);
|
---|
124 | u[4] = (digit)LHALF(tmp.ul[L]);
|
---|
125 | tmp.uq = vq;
|
---|
126 | v[1] = (digit)HHALF(tmp.ul[H]);
|
---|
127 | v[2] = (digit)LHALF(tmp.ul[H]);
|
---|
128 | v[3] = (digit)HHALF(tmp.ul[L]);
|
---|
129 | v[4] = (digit)LHALF(tmp.ul[L]);
|
---|
130 | for (n = 4; v[1] == 0; v++) {
|
---|
131 | if (--n == 1) {
|
---|
132 | u_int rbj; /* r*B+u[j] (not root boy jim) */
|
---|
133 | digit q1, q2, q3, q4;
|
---|
134 |
|
---|
135 | /*
|
---|
136 | * Change of plan, per exercise 16.
|
---|
137 | * r = 0;
|
---|
138 | * for j = 1..4:
|
---|
139 | * q[j] = floor((r*B + u[j]) / v),
|
---|
140 | * r = (r*B + u[j]) % v;
|
---|
141 | * We unroll this completely here.
|
---|
142 | */
|
---|
143 | t = v[2]; /* nonzero, by definition */
|
---|
144 | q1 = (digit)(u[1] / t);
|
---|
145 | rbj = COMBINE(u[1] % t, u[2]);
|
---|
146 | q2 = (digit)(rbj / t);
|
---|
147 | rbj = COMBINE(rbj % t, u[3]);
|
---|
148 | q3 = (digit)(rbj / t);
|
---|
149 | rbj = COMBINE(rbj % t, u[4]);
|
---|
150 | q4 = (digit)(rbj / t);
|
---|
151 | if (arq)
|
---|
152 | *arq = rbj % t;
|
---|
153 | tmp.ul[H] = COMBINE(q1, q2);
|
---|
154 | tmp.ul[L] = COMBINE(q3, q4);
|
---|
155 | return (tmp.q);
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | /*
|
---|
160 | * By adjusting q once we determine m, we can guarantee that
|
---|
161 | * there is a complete four-digit quotient at &qspace[1] when
|
---|
162 | * we finally stop.
|
---|
163 | */
|
---|
164 | for (m = 4 - n; u[1] == 0; u++)
|
---|
165 | m--;
|
---|
166 | for (i = 4 - m; --i >= 0;)
|
---|
167 | q[i] = 0;
|
---|
168 | q += 4 - m;
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Here we run Program D, translated from MIX to C and acquiring
|
---|
172 | * a few minor changes.
|
---|
173 | *
|
---|
174 | * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
|
---|
175 | */
|
---|
176 | d = 0;
|
---|
177 | for (t = v[1]; t < B / 2; t <<= 1)
|
---|
178 | d++;
|
---|
179 | if (d > 0) {
|
---|
180 | shl(&u[0], m + n, d); /* u <<= d */
|
---|
181 | shl(&v[1], n - 1, d); /* v <<= d */
|
---|
182 | }
|
---|
183 | /*
|
---|
184 | * D2: j = 0.
|
---|
185 | */
|
---|
186 | j = 0;
|
---|
187 | v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
|
---|
188 | v2 = v[2]; /* for D3 */
|
---|
189 | do {
|
---|
190 | digit uj0, uj1, uj2;
|
---|
191 |
|
---|
192 | /*
|
---|
193 | * D3: Calculate qhat (\^q, in TeX notation).
|
---|
194 | * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
|
---|
195 | * let rhat = (u[j]*B + u[j+1]) mod v[1].
|
---|
196 | * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
|
---|
197 | * decrement qhat and increase rhat correspondingly.
|
---|
198 | * Note that if rhat >= B, v[2]*qhat < rhat*B.
|
---|
199 | */
|
---|
200 | uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
|
---|
201 | uj1 = u[j + 1]; /* for D3 only */
|
---|
202 | uj2 = u[j + 2]; /* for D3 only */
|
---|
203 | if (uj0 == v1) {
|
---|
204 | qhat = B;
|
---|
205 | rhat = uj1;
|
---|
206 | goto qhat_too_big;
|
---|
207 | } else {
|
---|
208 | u_int nn = COMBINE(uj0, uj1);
|
---|
209 | qhat = nn / v1;
|
---|
210 | rhat = nn % v1;
|
---|
211 | }
|
---|
212 | while (v2 * qhat > COMBINE(rhat, uj2)) {
|
---|
213 | qhat_too_big:
|
---|
214 | qhat--;
|
---|
215 | if ((rhat += v1) >= B)
|
---|
216 | break;
|
---|
217 | }
|
---|
218 | /*
|
---|
219 | * D4: Multiply and subtract.
|
---|
220 | * The variable `t' holds any borrows across the loop.
|
---|
221 | * We split this up so that we do not require v[0] = 0,
|
---|
222 | * and to eliminate a final special case.
|
---|
223 | */
|
---|
224 | for (t = 0, i = n; i > 0; i--) {
|
---|
225 | t = u[i + j] - v[i] * qhat - t;
|
---|
226 | u[i + j] = (digit)LHALF(t);
|
---|
227 | t = (B - HHALF(t)) & (B - 1);
|
---|
228 | }
|
---|
229 | t = u[j] - t;
|
---|
230 | u[j] = (digit)LHALF(t);
|
---|
231 | /*
|
---|
232 | * D5: test remainder.
|
---|
233 | * There is a borrow if and only if HHALF(t) is nonzero;
|
---|
234 | * in that (rare) case, qhat was too large (by exactly 1).
|
---|
235 | * Fix it by adding v[1..n] to u[j..j+n].
|
---|
236 | */
|
---|
237 | if (HHALF(t)) {
|
---|
238 | qhat--;
|
---|
239 | for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
|
---|
240 | t += u[i + j] + v[i];
|
---|
241 | u[i + j] = (digit)LHALF(t);
|
---|
242 | t = HHALF(t);
|
---|
243 | }
|
---|
244 | u[j] = (digit)LHALF(u[j] + t);
|
---|
245 | }
|
---|
246 | q[j] = (digit)qhat;
|
---|
247 | } while (++j <= m); /* D7: loop on j. */
|
---|
248 |
|
---|
249 | /*
|
---|
250 | * If caller wants the remainder, we have to calculate it as
|
---|
251 | * u[m..m+n] >> d (this is at most n digits and thus fits in
|
---|
252 | * u[m+1..m+n], but we may need more source digits).
|
---|
253 | */
|
---|
254 | if (arq) {
|
---|
255 | if (d) {
|
---|
256 | for (i = m + n; i > m; --i)
|
---|
257 | u[i] = (digit)(((u_int)u[i] >> d) |
|
---|
258 | LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
|
---|
259 | u[i] = 0;
|
---|
260 | }
|
---|
261 | tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
|
---|
262 | tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
|
---|
263 | *arq = tmp.q;
|
---|
264 | }
|
---|
265 |
|
---|
266 | tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
|
---|
267 | tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
|
---|
268 | return (tmp.q);
|
---|
269 | }
|
---|
270 |
|
---|
271 | /*
|
---|
272 | * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
|
---|
273 | * `fall out' the left (there never will be any such anyway).
|
---|
274 | * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
|
---|
275 | */
|
---|
276 | static void
|
---|
277 | shl(digit *p, int len, int sh)
|
---|
278 | {
|
---|
279 | int i;
|
---|
280 |
|
---|
281 | for (i = 0; i < len; i++)
|
---|
282 | p[i] = (digit)(LHALF((u_int)p[i] << sh) |
|
---|
283 | ((u_int)p[i + 1] >> (HALF_BITS - sh)));
|
---|
284 | p[i] = (digit)(LHALF((u_int)p[i] << sh));
|
---|
285 | }
|
---|