1 | ; $Id: cosf.asm 96407 2022-08-22 17:43:14Z vboxsync $
|
---|
2 | ;; @file
|
---|
3 | ; IPRT - No-CRT cosf - AMD64 & X86.
|
---|
4 | ;
|
---|
5 |
|
---|
6 | ;
|
---|
7 | ; Copyright (C) 2006-2022 Oracle and/or its affiliates.
|
---|
8 | ;
|
---|
9 | ; This file is part of VirtualBox base platform packages, as
|
---|
10 | ; available from https://www.virtualbox.org.
|
---|
11 | ;
|
---|
12 | ; This program is free software; you can redistribute it and/or
|
---|
13 | ; modify it under the terms of the GNU General Public License
|
---|
14 | ; as published by the Free Software Foundation, in version 3 of the
|
---|
15 | ; License.
|
---|
16 | ;
|
---|
17 | ; This program is distributed in the hope that it will be useful, but
|
---|
18 | ; WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | ; General Public License for more details.
|
---|
21 | ;
|
---|
22 | ; You should have received a copy of the GNU General Public License
|
---|
23 | ; along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | ;
|
---|
25 | ; The contents of this file may alternatively be used under the terms
|
---|
26 | ; of the Common Development and Distribution License Version 1.0
|
---|
27 | ; (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
|
---|
28 | ; in the VirtualBox distribution, in which case the provisions of the
|
---|
29 | ; CDDL are applicable instead of those of the GPL.
|
---|
30 | ;
|
---|
31 | ; You may elect to license modified versions of this file under the
|
---|
32 | ; terms and conditions of either the GPL or the CDDL or both.
|
---|
33 | ;
|
---|
34 | ; SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
|
---|
35 | ;
|
---|
36 |
|
---|
37 |
|
---|
38 | %define RT_ASM_WITH_SEH64
|
---|
39 | %include "iprt/asmdefs.mac"
|
---|
40 | %include "iprt/x86.mac"
|
---|
41 |
|
---|
42 |
|
---|
43 | BEGINCODE
|
---|
44 |
|
---|
45 | ;;
|
---|
46 | ; Compute the cosine of rf, measured in radians.
|
---|
47 | ;
|
---|
48 | ; @returns st(0) / xmm0
|
---|
49 | ; @param rf [rbp + xCB*2] / xmm0
|
---|
50 | ;
|
---|
51 | RT_NOCRT_BEGINPROC cosf
|
---|
52 | push xBP
|
---|
53 | SEH64_PUSH_xBP
|
---|
54 | mov xBP, xSP
|
---|
55 | SEH64_SET_FRAME_xBP 0
|
---|
56 | sub xSP, 20h
|
---|
57 | SEH64_ALLOCATE_STACK 20h
|
---|
58 | SEH64_END_PROLOGUE
|
---|
59 |
|
---|
60 | %ifdef RT_OS_WINDOWS
|
---|
61 | ;
|
---|
62 | ; Make sure we use full precision and not the windows default of 53 bits.
|
---|
63 | ;
|
---|
64 | ;; @todo not sure if this makes any difference...
|
---|
65 | fnstcw [xBP - 20h]
|
---|
66 | mov ax, [xBP - 20h]
|
---|
67 | or ax, X86_FCW_PC_64 ; includes both bits, so no need to clear the mask.
|
---|
68 | mov [xBP - 1ch], ax
|
---|
69 | fldcw [xBP - 1ch]
|
---|
70 | %endif
|
---|
71 |
|
---|
72 | ;
|
---|
73 | ; Load the input into st0.
|
---|
74 | ;
|
---|
75 | %ifdef RT_ARCH_AMD64
|
---|
76 | movss [xBP - 10h], xmm0
|
---|
77 | fld dword [xBP - 10h]
|
---|
78 | %else
|
---|
79 | fld dword [xBP + xCB*2]
|
---|
80 | %endif
|
---|
81 |
|
---|
82 | ;
|
---|
83 | ; The FCOS instruction has a very narrow range (-3pi/8 to 3pi/8) where it
|
---|
84 | ; works reliably, so outside that we'll use the FSIN instruction instead
|
---|
85 | ; as it has a larger good range (-5pi/4 to 1pi/4 for cosine).
|
---|
86 | ; Input conversion follows: cosf(x) = sinf(x + pi/2)
|
---|
87 | ;
|
---|
88 | ; We examin the input and weed out non-finit numbers first.
|
---|
89 | ;
|
---|
90 |
|
---|
91 | ; We only do the range check on normal finite numbers.
|
---|
92 | fxam
|
---|
93 | fnstsw ax
|
---|
94 | and ax, X86_FSW_C3 | X86_FSW_C2 | X86_FSW_C0
|
---|
95 | cmp ax, X86_FSW_C2 ; Normal finite number (excluding zero)
|
---|
96 | je .finite
|
---|
97 | cmp ax, X86_FSW_C3 ; Zero
|
---|
98 | je .zero
|
---|
99 | cmp ax, X86_FSW_C3 | X86_FSW_C2 ; Denormals - treat them as zero.
|
---|
100 | je .zero
|
---|
101 | cmp ax, X86_FSW_C0 ; NaN - must handle it special,
|
---|
102 | je .nan
|
---|
103 |
|
---|
104 | ; Pass infinities and unsupported inputs to fcos, assuming it does the right thing.
|
---|
105 | ; We also jump here if we get a finite number in the "good" range, see below.
|
---|
106 | .do_fcos:
|
---|
107 | fcos
|
---|
108 | jmp .return_val
|
---|
109 |
|
---|
110 | ;
|
---|
111 | ; Finite number.
|
---|
112 | ;
|
---|
113 | ; First check if it's a very tiny number where we can simply return 1.
|
---|
114 | ; Next check if it's in the range where FCOS is reasonable, otherwise
|
---|
115 | ; go to FSIN to do the work.
|
---|
116 | ;
|
---|
117 | .finite:
|
---|
118 | fld st0
|
---|
119 | fabs
|
---|
120 | fld qword [.s_r64TinyCosTo1 xWrtRIP]
|
---|
121 | fcomip st1
|
---|
122 | ja .zero_extra_pop
|
---|
123 |
|
---|
124 | .not_that_tiny_input:
|
---|
125 | fld qword [.s_r64FCosOkay xWrtRIP]
|
---|
126 | fcomip st1
|
---|
127 | ffreep st0 ; pop fabs(input)
|
---|
128 | ja .do_fcos ; jmp if fabs(input) < .s_r64FCosOkay
|
---|
129 |
|
---|
130 | ;
|
---|
131 | ; If we have a positive number we subtract 3pi/2, for negative we add pi/2.
|
---|
132 | ; We still have the FXAM result in AX.
|
---|
133 | ;
|
---|
134 | .outside_fcos_range:
|
---|
135 | test ax, X86_FSW_C1 ; The sign bit.
|
---|
136 | jnz .adjust_negative_to_sine
|
---|
137 |
|
---|
138 | ; Calc -3pi/2 using FPU-internal pi constant.
|
---|
139 | fldpi
|
---|
140 | fadd st0, st0 ; st0=2pi
|
---|
141 | fldpi
|
---|
142 | fdiv qword [.s_r64Two xWrtRIP] ; st1=2pi; st0=pi/2
|
---|
143 | fsubp st1, st0 ; st0=3pi/2
|
---|
144 | fchs ; st0=-3pi/2
|
---|
145 | jmp .make_sine_adjustment
|
---|
146 |
|
---|
147 | .adjust_negative_to_sine:
|
---|
148 | ; Calc +pi/2.
|
---|
149 | fldpi
|
---|
150 | fdiv qword [.s_r64Two xWrtRIP] ; st1=2pi; st0=pi/2
|
---|
151 |
|
---|
152 | .make_sine_adjustment:
|
---|
153 | faddp st1, st0
|
---|
154 |
|
---|
155 | ;
|
---|
156 | ; Call internal sine worker to calculate st0=sin(st0)
|
---|
157 | ;
|
---|
158 | .do_sine:
|
---|
159 | mov ecx, 0 ; double
|
---|
160 | extern NAME(rtNoCrtMathSinCore)
|
---|
161 | call NAME(rtNoCrtMathSinCore)
|
---|
162 |
|
---|
163 | ;
|
---|
164 | ; Return st0.
|
---|
165 | ;
|
---|
166 | .return_val:
|
---|
167 | %ifdef RT_ARCH_AMD64
|
---|
168 | fstp dword [xBP - 10h]
|
---|
169 | movss xmm0, [xBP - 10h]
|
---|
170 | %endif
|
---|
171 | %ifdef RT_OS_WINDOWS
|
---|
172 | fldcw [xBP - 20h] ; restore original
|
---|
173 | %endif
|
---|
174 | .return:
|
---|
175 | leave
|
---|
176 | ret
|
---|
177 |
|
---|
178 | ;
|
---|
179 | ; cosf(+/-0) = +1.0
|
---|
180 | ;
|
---|
181 | .zero_extra_pop:
|
---|
182 | ffreep st0
|
---|
183 | .zero:
|
---|
184 | ffreep st0
|
---|
185 | fld1
|
---|
186 | jmp .return_val
|
---|
187 |
|
---|
188 | ;
|
---|
189 | ; Input is NaN, output it unmodified as far as we can (FLD changes SNaN
|
---|
190 | ; to QNaN when masked).
|
---|
191 | ;
|
---|
192 | .nan:
|
---|
193 | %ifdef RT_ARCH_AMD64
|
---|
194 | ffreep st0
|
---|
195 | %endif
|
---|
196 | jmp .return
|
---|
197 |
|
---|
198 | ;
|
---|
199 | ; Local constants.
|
---|
200 | ;
|
---|
201 | ALIGNCODE(8)
|
---|
202 | ; About 2**-18. When fabs(input) is below this limit we can consider cosf(input) ~= 1.0.
|
---|
203 | .s_r64TinyCosTo1:
|
---|
204 | dq 0.000244140625
|
---|
205 |
|
---|
206 | ; The absolute limit for the range which FCOS is expected to produce reasonable results.
|
---|
207 | .s_r64FCosOkay:
|
---|
208 | dq 1.1780972450961724644225 ; 3*pi/8
|
---|
209 |
|
---|
210 | .s_r64Two:
|
---|
211 | dq 2.0
|
---|
212 | ENDPROC RT_NOCRT(cosf)
|
---|
213 |
|
---|