/* $Id: alt-md5.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * IPRT - MD5 message digest functions, alternative implementation. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /* The code is virtually unchanged from the original version (see copyright * notice below). Most changes are related to the function names and data * types - in order to fit the code in the IPRT naming style. */ /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * RTMD5CONTEXT structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include "internal/iprt.h" #include /* for memcpy() */ #if defined(RT_BIG_ENDIAN) # include /* RT_LE2H_U32 uses ASMByteSwapU32. */ #endif /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /* The four core functions - F1 is optimized somewhat */ #if 1 /* #define F1(x, y, z) (x & y | ~x & z) */ # define F1(x, y, z) (z ^ (x & (y ^ z))) # define F2(x, y, z) F1(z, x, y) # define F3(x, y, z) (x ^ y ^ z) # define F4(x, y, z) (y ^ (x | ~z)) #else /* gcc 4.0.1 (x86) benefits from the explicitness of F1() here. */ DECL_FORCE_INLINE(uint32_t) F1(uint32_t x, uint32_t y, uint32_t z) { register uint32_t r = y ^ z; r &= x; r ^= z; return r; } # define F2(x, y, z) F1(z, x, y) DECL_FORCE_INLINE(uint32_t) F3(uint32_t x, uint32_t y, uint32_t z) { register uint32_t r = x ^ y; r ^= z; return r; } DECL_FORCE_INLINE(uint32_t) F4(uint32_t x, uint32_t y, uint32_t z) { register uint32_t r = ~z; r |= x; r ^= y; return r; } #endif /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + (data), w = w<>(32-s), w += x ) /** * The core of the MD5 algorithm, this alters an existing MD5 hash to reflect * the addition of 16 longwords of new data. RTMd5Update blocks the data and * converts bytes into longwords for this routine. */ static void rtMd5Transform(uint32_t buf[4], uint32_t const in[16]) { uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; /* fn, w, x, y, z, data, s) */ MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #ifdef RT_BIG_ENDIAN /* * Note: this code is harmless on little-endian machines. */ static void rtMd5ByteReverse(uint32_t *buf, unsigned int longs) { uint32_t t; do { t = *buf; t = RT_LE2H_U32(t); *buf = t; buf++; } while (--longs); } #else /* little endian - do nothing */ # define rtMd5ByteReverse(buf, len) do { /* Nothing */ } while (0) #endif /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ RTDECL(void) RTMd5Init(PRTMD5CONTEXT pCtx) { pCtx->AltPrivate.buf[0] = 0x67452301; pCtx->AltPrivate.buf[1] = 0xefcdab89; pCtx->AltPrivate.buf[2] = 0x98badcfe; pCtx->AltPrivate.buf[3] = 0x10325476; pCtx->AltPrivate.bits[0] = 0; pCtx->AltPrivate.bits[1] = 0; } RT_EXPORT_SYMBOL(RTMd5Init); /* * Update context to reflect the concatenation of another buffer full * of bytes. */ RTDECL(void) RTMd5Update(PRTMD5CONTEXT pCtx, const void *pvBuf, size_t len) { const uint8_t *buf = (const uint8_t *)pvBuf; uint32_t t; /* Update bitcount */ t = pCtx->AltPrivate.bits[0]; if ((pCtx->AltPrivate.bits[0] = t + ((uint32_t) len << 3)) < t) pCtx->AltPrivate.bits[1]++; /* Carry from low to high */ pCtx->AltPrivate.bits[1] += (uint32_t)(len >> 29); t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { uint8_t *p = (uint8_t *) pCtx->AltPrivate.in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); rtMd5ByteReverse(pCtx->AltPrivate.in, 16); rtMd5Transform(pCtx->AltPrivate.buf, pCtx->AltPrivate.in); buf += t; len -= t; } /* Process data in 64-byte chunks */ #ifndef RT_BIG_ENDIAN if (!((uintptr_t)buf & 0x3)) { while (len >= 64) { rtMd5Transform(pCtx->AltPrivate.buf, (uint32_t const *)buf); buf += 64; len -= 64; } } else #endif { while (len >= 64) { memcpy(pCtx->AltPrivate.in, buf, 64); rtMd5ByteReverse(pCtx->AltPrivate.in, 16); rtMd5Transform(pCtx->AltPrivate.buf, pCtx->AltPrivate.in); buf += 64; len -= 64; } } /* Handle any remaining bytes of data */ memcpy(pCtx->AltPrivate.in, buf, len); } RT_EXPORT_SYMBOL(RTMd5Update); /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ RTDECL(void) RTMd5Final(uint8_t digest[16], PRTMD5CONTEXT pCtx) { unsigned int count; uint8_t *p; /* Compute number of bytes mod 64 */ count = (pCtx->AltPrivate.bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = (uint8_t *)pCtx->AltPrivate.in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); rtMd5ByteReverse(pCtx->AltPrivate.in, 16); rtMd5Transform(pCtx->AltPrivate.buf, pCtx->AltPrivate.in); /* Now fill the next block with 56 bytes */ memset(pCtx->AltPrivate.in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } rtMd5ByteReverse(pCtx->AltPrivate.in, 14); /* Append length in bits and transform */ pCtx->AltPrivate.in[14] = pCtx->AltPrivate.bits[0]; pCtx->AltPrivate.in[15] = pCtx->AltPrivate.bits[1]; rtMd5Transform(pCtx->AltPrivate.buf, pCtx->AltPrivate.in); rtMd5ByteReverse(pCtx->AltPrivate.buf, 4); memcpy(digest, pCtx->AltPrivate.buf, 16); memset(pCtx, 0, sizeof(*pCtx)); /* In case it's sensitive */ } RT_EXPORT_SYMBOL(RTMd5Final); RTDECL(void) RTMd5(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTMD5HASHSIZE]) { #if 0 RTMD5CONTEXT Ctx[2]; PRTMD5CONTEXT const pCtx = RT_ALIGN_PT(&Ctx[0], 64, PRTMD5CONTEXT); #else RTMD5CONTEXT Ctx; PRTMD5CONTEXT const pCtx = &Ctx; #endif RTMd5Init(pCtx); for (;;) { uint32_t cb = (uint32_t)RT_MIN(cbBuf, _2M); RTMd5Update(pCtx, pvBuf, cb); if (cb == cbBuf) break; cbBuf -= cb; pvBuf = (uint8_t const *)pvBuf + cb; } RTMd5Final(pabDigest, pCtx); } RT_EXPORT_SYMBOL(RTMd5);