/* $Id: asn1-cursor.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * IPRT - ASN.1, Basic Operations. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "internal/iprt.h" #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @def RTASN1_MAX_NESTING * The maximum nesting depth we allow. This limit is enforced to avoid running * out of stack due to malformed ASN.1 input. * * For reference, 'RTSignTool verify-exe RTSignTool.exe', requires a value of 15 * to work without hitting the limit for signatures with simple timestamps, and * 23 (amd64/rel = ~3KB) for the new microsoft timestamp counter signatures. */ #ifdef IN_RING3 # define RTASN1_MAX_NESTING 64 #else # define RTASN1_MAX_NESTING 32 #endif RTDECL(PRTASN1CURSOR) RTAsn1CursorInitPrimary(PRTASN1CURSORPRIMARY pPrimaryCursor, void const *pvFirst, uint32_t cb, PRTERRINFO pErrInfo, PCRTASN1ALLOCATORVTABLE pAllocator, uint32_t fFlags, const char *pszErrorTag) { pPrimaryCursor->Cursor.pbCur = (uint8_t const *)pvFirst; pPrimaryCursor->Cursor.cbLeft = cb; pPrimaryCursor->Cursor.fFlags = (uint8_t)fFlags; Assert(fFlags <= UINT8_MAX); pPrimaryCursor->Cursor.cDepth = 0; pPrimaryCursor->Cursor.abReserved[0] = 0; pPrimaryCursor->Cursor.abReserved[1] = 0; pPrimaryCursor->Cursor.pPrimary = pPrimaryCursor; pPrimaryCursor->Cursor.pUp = NULL; pPrimaryCursor->Cursor.pszErrorTag = pszErrorTag; pPrimaryCursor->pErrInfo = pErrInfo; pPrimaryCursor->pAllocator = pAllocator; pPrimaryCursor->pbFirst = (uint8_t const *)pvFirst; return &pPrimaryCursor->Cursor; } RTDECL(int) RTAsn1CursorInitSub(PRTASN1CURSOR pParent, uint32_t cb, PRTASN1CURSOR pChild, const char *pszErrorTag) { AssertReturn(pParent->pPrimary, VERR_ASN1_INTERNAL_ERROR_1); AssertReturn(pParent->pbCur, VERR_ASN1_INTERNAL_ERROR_2); pChild->pbCur = pParent->pbCur; pChild->cbLeft = cb; pChild->fFlags = pParent->fFlags & ~RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH; pChild->cDepth = pParent->cDepth + 1; AssertReturn(pChild->cDepth < RTASN1_MAX_NESTING, VERR_ASN1_TOO_DEEPLY_NESTED); pChild->abReserved[0] = 0; pChild->abReserved[1] = 0; pChild->pPrimary = pParent->pPrimary; pChild->pUp = pParent; pChild->pszErrorTag = pszErrorTag; AssertReturn(pParent->cbLeft >= cb, VERR_ASN1_INTERNAL_ERROR_3); pParent->pbCur += cb; pParent->cbLeft -= cb; return VINF_SUCCESS; } RTDECL(int) RTAsn1CursorInitSubFromCore(PRTASN1CURSOR pParent, PRTASN1CORE pAsn1Core, PRTASN1CURSOR pChild, const char *pszErrorTag) { AssertReturn(pParent->pPrimary, VERR_ASN1_INTERNAL_ERROR_1); AssertReturn(pParent->pbCur, VERR_ASN1_INTERNAL_ERROR_2); pChild->pbCur = pAsn1Core->uData.pu8; pChild->cbLeft = pAsn1Core->cb; pChild->fFlags = pParent->fFlags & ~RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH; pChild->cDepth = pParent->cDepth + 1; AssertReturn(pChild->cDepth < RTASN1_MAX_NESTING, VERR_ASN1_TOO_DEEPLY_NESTED); pChild->abReserved[0] = 0; pChild->abReserved[1] = 0; pChild->pPrimary = pParent->pPrimary; pChild->pUp = pParent; pChild->pszErrorTag = pszErrorTag; return VINF_SUCCESS; } RTDECL(int) RTAsn1CursorSetInfoV(PRTASN1CURSOR pCursor, int rc, const char *pszMsg, va_list va) { PRTERRINFO pErrInfo = pCursor->pPrimary->pErrInfo; if (pErrInfo) { /* Format the message. */ RTErrInfoSetV(pErrInfo, rc, pszMsg, va); /* Add the prefixes. This isn't the fastest way, but it's the one which eats the least stack. */ char *pszBuf = pErrInfo->pszMsg; size_t cbBuf = pErrInfo->cbMsg; if (pszBuf && cbBuf > 32) { size_t cbMove = strlen(pszBuf) + 1; /* Make sure there is a ': '. */ bool fFirst = false; if (pszMsg[0] != '%' || pszMsg[1] != 's' || pszMsg[2] != ':') { if (cbMove + 2 < cbBuf) { memmove(pszBuf + 2, pszBuf, cbMove); pszBuf[0] = ':'; pszBuf[1] = ' '; cbMove += 2; fFirst = true; } } /* Add the prefixes from the cursor chain. */ while (pCursor) { if (pCursor->pszErrorTag) { size_t cchErrorTag = strlen(pCursor->pszErrorTag); if (cchErrorTag + !fFirst + cbMove > cbBuf) break; memmove(pszBuf + cchErrorTag + !fFirst, pszBuf, cbMove); memcpy(pszBuf, pCursor->pszErrorTag, cchErrorTag); if (!fFirst) pszBuf[cchErrorTag] = '.'; cbMove += cchErrorTag + !fFirst; fFirst = false; } pCursor = pCursor->pUp; } } } return rc; } RTDECL(int) RTAsn1CursorSetInfo(PRTASN1CURSOR pCursor, int rc, const char *pszMsg, ...) { va_list va; va_start(va, pszMsg); rc = RTAsn1CursorSetInfoV(pCursor, rc, pszMsg, va); va_end(va); return rc; } RTDECL(bool) RTAsn1CursorIsEnd(PRTASN1CURSOR pCursor) { if (pCursor->cbLeft == 0) return true; if (!(pCursor->fFlags & RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH)) return false; return pCursor->cbLeft >= 2 && pCursor->pbCur[0] == 0 && pCursor->pbCur[1] == 0; } RTDECL(int) RTAsn1CursorCheckEnd(PRTASN1CURSOR pCursor) { if (!(pCursor->fFlags & RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH)) { if (pCursor->cbLeft == 0) return VINF_SUCCESS; return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "%u (%#x) bytes left over", pCursor->cbLeft, pCursor->cbLeft); } /* * There must be exactly two zero bytes here. */ if (pCursor->cbLeft == 2) { if ( pCursor->pbCur[0] == 0 && pCursor->pbCur[1] == 0) return VINF_SUCCESS; return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "%u (%#x) bytes left over [indef: %.*Rhxs]", pCursor->cbLeft, pCursor->cbLeft, RT_MIN(pCursor->cbLeft, 16), pCursor->pbCur); } return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "%u (%#x) byte(s) left over, exepcted exactly two zero bytes [indef len]", pCursor->cbLeft, pCursor->cbLeft); } /** * Worker for RTAsn1CursorCheckSeqEnd and RTAsn1CursorCheckSetEnd. */ static int rtAsn1CursorCheckSeqOrSetEnd(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core) { if (!(pAsn1Core->fFlags & RTASN1CORE_F_INDEFINITE_LENGTH)) { if (pCursor->cbLeft == 0) return VINF_SUCCESS; return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "%u (%#x) bytes left over", pCursor->cbLeft, pCursor->cbLeft); } if (pCursor->cbLeft >= 2) { if ( pCursor->pbCur[0] == 0 && pCursor->pbCur[1] == 0) { pAsn1Core->cb = (uint32_t)(pCursor->pbCur - pAsn1Core->uData.pu8); pCursor->cbLeft -= 2; pCursor->pbCur += 2; PRTASN1CURSOR pParentCursor = pCursor->pUp; if ( pParentCursor && (pParentCursor->fFlags & RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH)) { pParentCursor->pbCur -= pCursor->cbLeft; pParentCursor->cbLeft += pCursor->cbLeft; return VINF_SUCCESS; } if (pCursor->cbLeft == 0) return VINF_SUCCESS; return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "%u (%#x) bytes left over (parent not indefinite length)", pCursor->cbLeft, pCursor->cbLeft); } return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "%u (%#x) bytes left over [indef: %.*Rhxs]", pCursor->cbLeft, pCursor->cbLeft, RT_MIN(pCursor->cbLeft, 16), pCursor->pbCur); } return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NOT_AT_END, "1 byte left over, expected two for indefinite length end-of-content sequence"); } RTDECL(int) RTAsn1CursorCheckSeqEnd(PRTASN1CURSOR pCursor, PRTASN1SEQUENCECORE pSeqCore) { return rtAsn1CursorCheckSeqOrSetEnd(pCursor, &pSeqCore->Asn1Core); } RTDECL(int) RTAsn1CursorCheckSetEnd(PRTASN1CURSOR pCursor, PRTASN1SETCORE pSetCore) { return rtAsn1CursorCheckSeqOrSetEnd(pCursor, &pSetCore->Asn1Core); } RTDECL(int) RTAsn1CursorCheckOctStrEnd(PRTASN1CURSOR pCursor, PRTASN1OCTETSTRING pOctetString) { return rtAsn1CursorCheckSeqOrSetEnd(pCursor, &pOctetString->Asn1Core); } RTDECL(PRTASN1ALLOCATION) RTAsn1CursorInitAllocation(PRTASN1CURSOR pCursor, PRTASN1ALLOCATION pAllocation) { pAllocation->cbAllocated = 0; pAllocation->cReallocs = 0; pAllocation->uReserved0 = 0; pAllocation->pAllocator = pCursor->pPrimary->pAllocator; return pAllocation; } RTDECL(PRTASN1ARRAYALLOCATION) RTAsn1CursorInitArrayAllocation(PRTASN1CURSOR pCursor, PRTASN1ARRAYALLOCATION pAllocation, size_t cbEntry) { Assert(cbEntry >= sizeof(RTASN1CORE)); Assert(cbEntry < _1M); Assert(RT_ALIGN_Z(cbEntry, sizeof(void *)) == cbEntry); pAllocation->cbEntry = (uint32_t)cbEntry; pAllocation->cPointersAllocated = 0; pAllocation->cEntriesAllocated = 0; pAllocation->cResizeCalls = 0; pAllocation->uReserved0 = 0; pAllocation->pAllocator = pCursor->pPrimary->pAllocator; return pAllocation; } RTDECL(int) RTAsn1CursorReadHdr(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core, const char *pszErrorTag) { /* * Initialize the return structure in case of failure. */ pAsn1Core->uTag = 0; pAsn1Core->fClass = 0; pAsn1Core->uRealTag = 0; pAsn1Core->fRealClass = 0; pAsn1Core->cbHdr = 0; pAsn1Core->cb = 0; pAsn1Core->fFlags = 0; pAsn1Core->uData.pv = NULL; pAsn1Core->pOps = NULL; /* * The header has at least two bytes: Type & length. */ if (pCursor->cbLeft >= 2) { uint32_t uTag = pCursor->pbCur[0]; uint32_t cb = pCursor->pbCur[1]; pCursor->cbLeft -= 2; pCursor->pbCur += 2; pAsn1Core->uRealTag = pAsn1Core->uTag = uTag & ASN1_TAG_MASK; pAsn1Core->fRealClass = pAsn1Core->fClass = uTag & ~ASN1_TAG_MASK; pAsn1Core->cbHdr = 2; if ((uTag & ASN1_TAG_MASK) == ASN1_TAG_USE_LONG_FORM) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_LONG_TAG, "%s: Implement parsing of tags > 30: %#x (length=%#x)", pszErrorTag, uTag, cb); /* Extended length field? */ if (cb & RT_BIT(7)) { if (cb != RT_BIT(7)) { /* Definite form. */ uint8_t cbEnc = cb & 0x7f; if (cbEnc > pCursor->cbLeft) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING, "%s: Extended BER length field longer than available data: %#x vs %#x (uTag=%#x)", pszErrorTag, cbEnc, pCursor->cbLeft, uTag); switch (cbEnc) { case 1: cb = pCursor->pbCur[0]; break; case 2: cb = RT_MAKE_U16(pCursor->pbCur[1], pCursor->pbCur[0]); break; case 3: cb = RT_MAKE_U32_FROM_U8(pCursor->pbCur[2], pCursor->pbCur[1], pCursor->pbCur[0], 0); break; case 4: cb = RT_MAKE_U32_FROM_U8(pCursor->pbCur[3], pCursor->pbCur[2], pCursor->pbCur[1], pCursor->pbCur[0]); break; default: return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING, "%s: Too long/short extended BER length field: %#x (uTag=%#x)", pszErrorTag, cbEnc, uTag); } pCursor->cbLeft -= cbEnc; pCursor->pbCur += cbEnc; pAsn1Core->cbHdr += cbEnc; /* Check the length encoding efficiency (T-REC-X.690-200811 10.1, 9.1). */ if (pCursor->fFlags & (RTASN1CURSOR_FLAGS_DER | RTASN1CURSOR_FLAGS_CER)) { if (cb <= 0x7f) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING, "%s: Invalid DER/CER length encoding: cbEnc=%u cb=%#x uTag=%#x", pszErrorTag, cbEnc, cb, uTag); uint8_t cbNeeded; if (cb <= 0x000000ff) cbNeeded = 1; else if (cb <= 0x0000ffff) cbNeeded = 2; else if (cb <= 0x00ffffff) cbNeeded = 3; else cbNeeded = 4; if (cbNeeded != cbEnc) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH_ENCODING, "%s: Invalid DER/CER length encoding: cb=%#x uTag=%#x cbEnc=%u cbNeeded=%u", pszErrorTag, cb, uTag, cbEnc, cbNeeded); } } /* Indefinite form. */ else if (pCursor->fFlags & RTASN1CURSOR_FLAGS_DER) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_INDEFINITE_LENGTH, "%s: Indefinite length form not allowed in DER mode (uTag=%#x).", pszErrorTag, uTag); else if (!(uTag & ASN1_TAGFLAG_CONSTRUCTED)) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_INDEFINITE_LENGTH, "%s: Indefinite BER/CER encoding is for non-constructed tag (uTag=%#x)", pszErrorTag, uTag); else if ( uTag != (ASN1_TAG_SEQUENCE | ASN1_TAGFLAG_CONSTRUCTED) && uTag != (ASN1_TAG_SET | ASN1_TAGFLAG_CONSTRUCTED) && (uTag & (ASN1_TAGFLAG_CONSTRUCTED | ASN1_TAGCLASS_CONTEXT)) != (ASN1_TAGFLAG_CONSTRUCTED | ASN1_TAGCLASS_CONTEXT) ) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_INDEFINITE_LENGTH, "%s: Indefinite BER/CER encoding not supported for this tag (uTag=%#x)", pszErrorTag, uTag); else if (pCursor->fFlags & RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_INDEFINITE_LENGTH, "%s: Nested indefinite BER/CER encoding. (uTag=%#x)", pszErrorTag, uTag); else if (pCursor->cbLeft < 2) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_INDEFINITE_LENGTH, "%s: Too little data left for indefinite BER/CER encoding (uTag=%#x)", pszErrorTag, uTag); else { pCursor->fFlags |= RTASN1CURSOR_FLAGS_INDEFINITE_LENGTH; pAsn1Core->fFlags |= RTASN1CORE_F_INDEFINITE_LENGTH; cb = pCursor->cbLeft; /* Start out with the whole sequence, adjusted later upon reach the end. */ } } /* else if (cb == 0 && uTag == 0) { end of content } - callers handle this */ /* Check if the length makes sense. */ if (cb > pCursor->cbLeft) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_BAD_LENGTH, "%s: BER value length out of bounds: %#x (max=%#x uTag=%#x)", pszErrorTag, cb, pCursor->cbLeft, uTag); pAsn1Core->fFlags |= RTASN1CORE_F_PRESENT | RTASN1CORE_F_DECODED_CONTENT; pAsn1Core->cb = cb; pAsn1Core->uData.pv = (void *)pCursor->pbCur; return VINF_SUCCESS; } if (pCursor->cbLeft) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TOO_LITTLE_DATA_LEFT, "%s: Too little data left to form a valid BER header", pszErrorTag); return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_NO_MORE_DATA, "%s: No more data reading BER header", pszErrorTag); } RTDECL(int) RTAsn1CursorMatchTagClassFlagsEx(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core, uint32_t uTag, uint32_t fClass, bool fString, uint32_t fFlags, const char *pszErrorTag, const char *pszWhat) { if (pAsn1Core->uTag == uTag) { if (pAsn1Core->fClass == fClass) return VINF_SUCCESS; if ( fString && pAsn1Core->fClass == (fClass | ASN1_TAGFLAG_CONSTRUCTED)) { if (!(pCursor->fFlags & (RTASN1CURSOR_FLAGS_DER | RTASN1CURSOR_FLAGS_CER))) return VINF_SUCCESS; if (pCursor->fFlags & RTASN1CURSOR_FLAGS_CER) { if (pAsn1Core->cb > 1000) return VINF_SUCCESS; return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_CONSTRUCTED_STRING, "%s: Constructed %s only allowed for >1000 byte in CER encoding: cb=%#x uTag=%#x fClass=%#x", pszErrorTag, pszWhat, pAsn1Core->cb, pAsn1Core->uTag, pAsn1Core->fClass); } return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_CONSTRUCTED_STRING, "%s: DER encoding does not allow constructed %s (cb=%#x uTag=%#x fClass=%#x)", pszErrorTag, pszWhat, pAsn1Core->cb, pAsn1Core->uTag, pAsn1Core->fClass); } } if (fFlags & RTASN1CURSOR_GET_F_IMPLICIT) { pAsn1Core->fFlags |= RTASN1CORE_F_TAG_IMPLICIT; pAsn1Core->uRealTag = uTag; pAsn1Core->fRealClass = fClass; return VINF_SUCCESS; } return RTAsn1CursorSetInfo(pCursor, pAsn1Core->uTag != uTag ? VERR_ASN1_CURSOR_TAG_MISMATCH : VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH, "%s: Unexpected %s type/flags: %#x/%#x (expected %#x/%#x)", pszErrorTag, pszWhat, pAsn1Core->uTag, pAsn1Core->fClass, uTag, fClass); } static int rtAsn1CursorGetXxxxCursor(PRTASN1CURSOR pCursor, uint32_t fFlags, uint32_t uTag, uint8_t fClass, PRTASN1CORE pAsn1Core, PRTASN1CURSOR pRetCursor, const char *pszErrorTag, const char *pszWhat) { int rc = RTAsn1CursorReadHdr(pCursor, pAsn1Core, pszErrorTag); if (RT_SUCCESS(rc)) { if ( pAsn1Core->uTag == uTag && pAsn1Core->fClass == fClass) rc = VINF_SUCCESS; else if (fFlags & RTASN1CURSOR_GET_F_IMPLICIT) { pAsn1Core->fFlags |= RTASN1CORE_F_TAG_IMPLICIT; pAsn1Core->uRealTag = uTag; pAsn1Core->fRealClass = fClass; rc = VINF_SUCCESS; } else return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_ILLEGAL_CONSTRUCTED_STRING, "%s: Unexpected %s type/flags: %#x/%#x (expected %#x/%#x)", pszErrorTag, pszWhat, pAsn1Core->uTag, pAsn1Core->fClass, uTag, fClass); rc = RTAsn1CursorInitSub(pCursor, pAsn1Core->cb, pRetCursor, pszErrorTag); if (RT_SUCCESS(rc)) { pAsn1Core->fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; return VINF_SUCCESS; } } return rc; } RTDECL(int) RTAsn1CursorGetSequenceCursor(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1SEQUENCECORE pSeqCore, PRTASN1CURSOR pSeqCursor, const char *pszErrorTag) { return rtAsn1CursorGetXxxxCursor(pCursor, fFlags, ASN1_TAG_SEQUENCE, ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED, &pSeqCore->Asn1Core, pSeqCursor, pszErrorTag, "sequence"); } RTDECL(int) RTAsn1CursorGetSetCursor(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1SETCORE pSetCore, PRTASN1CURSOR pSetCursor, const char *pszErrorTag) { return rtAsn1CursorGetXxxxCursor(pCursor, fFlags, ASN1_TAG_SET, ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_CONSTRUCTED, &pSetCore->Asn1Core, pSetCursor, pszErrorTag, "set"); } RTDECL(int) RTAsn1CursorGetContextTagNCursor(PRTASN1CURSOR pCursor, uint32_t fFlags, uint32_t uExpectedTag, PCRTASN1COREVTABLE pVtable, PRTASN1CONTEXTTAG pCtxTag, PRTASN1CURSOR pCtxTagCursor, const char *pszErrorTag) { int rc = rtAsn1CursorGetXxxxCursor(pCursor, fFlags, uExpectedTag, ASN1_TAGCLASS_CONTEXT | ASN1_TAGFLAG_CONSTRUCTED, &pCtxTag->Asn1Core, pCtxTagCursor, pszErrorTag, "ctx tag"); pCtxTag->Asn1Core.pOps = pVtable; return rc; } RTDECL(int) RTAsn1CursorPeek(PRTASN1CURSOR pCursor, PRTASN1CORE pAsn1Core) { uint32_t cbSavedLeft = pCursor->cbLeft; uint8_t const *pbSavedCur = pCursor->pbCur; uint8_t const fSavedFlags = pCursor->fFlags; PRTERRINFO const pErrInfo = pCursor->pPrimary->pErrInfo; pCursor->pPrimary->pErrInfo = NULL; int rc = RTAsn1CursorReadHdr(pCursor, pAsn1Core, "peek"); pCursor->pPrimary->pErrInfo = pErrInfo; pCursor->pbCur = pbSavedCur; pCursor->cbLeft = cbSavedLeft; pCursor->fFlags = fSavedFlags; return rc; } RTDECL(bool) RTAsn1CursorIsNextEx(PRTASN1CURSOR pCursor, uint32_t uTag, uint8_t fClass) { RTASN1CORE Asn1Core; int rc = RTAsn1CursorPeek(pCursor, &Asn1Core); if (RT_SUCCESS(rc)) return uTag == Asn1Core.uTag && fClass == Asn1Core.fClass; return false; } /** @name Legacy Interfaces. * @{ */ RTDECL(int) RTAsn1CursorGetCore(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1CORE pAsn1Core, const char *pszErrorTag) { return RTAsn1Core_DecodeAsn1(pCursor, fFlags, pAsn1Core, pszErrorTag); } RTDECL(int) RTAsn1CursorGetNull(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1NULL pNull, const char *pszErrorTag) { return RTAsn1Null_DecodeAsn1(pCursor, fFlags, pNull, pszErrorTag); } RTDECL(int) RTAsn1CursorGetInteger(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1INTEGER pInteger, const char *pszErrorTag) { return RTAsn1Integer_DecodeAsn1(pCursor, fFlags, pInteger, pszErrorTag); } RTDECL(int) RTAsn1CursorGetBoolean(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1BOOLEAN pBoolean, const char *pszErrorTag) { return RTAsn1Boolean_DecodeAsn1(pCursor, fFlags, pBoolean, pszErrorTag); } RTDECL(int) RTAsn1CursorGetObjId(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1OBJID pObjId, const char *pszErrorTag) { return RTAsn1ObjId_DecodeAsn1(pCursor, fFlags, pObjId, pszErrorTag); } RTDECL(int) RTAsn1CursorGetTime(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pTime, const char *pszErrorTag) { return RTAsn1Time_DecodeAsn1(pCursor, fFlags, pTime, pszErrorTag); } RTDECL(int) RTAsn1CursorGetBitStringEx(PRTASN1CURSOR pCursor, uint32_t fFlags, uint32_t cMaxBits, PRTASN1BITSTRING pBitString, const char *pszErrorTag) { return RTAsn1BitString_DecodeAsn1Ex(pCursor, fFlags, cMaxBits, pBitString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetBitString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1BITSTRING pBitString, const char *pszErrorTag) { return RTAsn1BitString_DecodeAsn1(pCursor, fFlags, pBitString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetOctetString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1OCTETSTRING pOctetString, const char *pszErrorTag) { return RTAsn1OctetString_DecodeAsn1(pCursor, fFlags, pOctetString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag) { return RTAsn1String_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetIa5String(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag) { return RTAsn1Ia5String_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetUtf8String(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag) { return RTAsn1Utf8String_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetBmpString(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1STRING pString, const char *pszErrorTag) { return RTAsn1BmpString_DecodeAsn1(pCursor, fFlags, pString, pszErrorTag); } RTDECL(int) RTAsn1CursorGetDynType(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1DYNTYPE pDynType, const char *pszErrorTag) { return RTAsn1DynType_DecodeAsn1(pCursor, fFlags, pDynType, pszErrorTag); } /** @} */