/* $Id: tstCollector.cpp 28800 2010-04-27 08:22:32Z vboxsync $ */ /** @file * * Collector classes test cases. */ /* * Copyright (C) 2008 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #ifdef RT_OS_DARWIN #include "../darwin/PerformanceDarwin.cpp" #endif #ifdef RT_OS_FREEBSD #include "../freebsd/PerformanceFreeBSD.cpp" #endif #ifdef RT_OS_LINUX #include "../linux/PerformanceLinux.cpp" #endif #ifdef RT_OS_OS2 #include "../os2/PerformanceOS2.cpp" #endif #ifdef RT_OS_SOLARIS #include "../solaris/PerformanceSolaris.cpp" #endif #ifdef RT_OS_WINDOWS #define _WIN32_DCOM #include #include #include "../win/PerformanceWin.cpp" #endif #include #include #include #include #include #include #include #define RUN_TIME_MS 1000 #define N_CALLS(n, fn) \ for (int call = 0; call < n; ++call) \ rc = collector->fn; \ if (RT_FAILURE(rc)) \ RTPrintf("tstCollector: "#fn" -> %Rrc\n", rc) #define CALLS_PER_SECOND(fn) \ nCalls = 0; \ start = RTTimeMilliTS(); \ do { \ rc = collector->fn; \ if (RT_FAILURE(rc)) \ break; \ ++nCalls; \ } while(RTTimeMilliTS() - start < RUN_TIME_MS); \ if (RT_FAILURE(rc)) \ { \ RTPrintf("tstCollector: "#fn" -> %Rrc\n", rc); \ } \ else \ RTPrintf("%70s -- %u calls per second\n", #fn, nCalls) void measurePerformance(pm::CollectorHAL *collector, const char *pszName, int cVMs) { static const char * const args[] = { pszName, "-child", NULL }; pm::CollectorHints hints; std::vector processes; hints.collectHostCpuLoad(); hints.collectHostRamUsage(); /* Start fake VMs */ for (int i = 0; i < cVMs; ++i) { RTPROCESS pid; int rc = RTProcCreate(pszName, args, RTENV_DEFAULT, 0, &pid); if (RT_FAILURE(rc)) { hints.getProcesses(processes); std::for_each(processes.begin(), processes.end(), std::ptr_fun(RTProcTerminate)); RTPrintf("tstCollector: RTProcCreate() -> %Rrc\n", rc); return; } hints.collectProcessCpuLoad(pid); hints.collectProcessRamUsage(pid); } hints.getProcesses(processes); RTThreadSleep(30000); // Let children settle for half a minute int rc; ULONG tmp; uint64_t tmp64; uint64_t start; unsigned int nCalls; /* Pre-collect */ CALLS_PER_SECOND(preCollect(hints, 0)); /* Host CPU load */ CALLS_PER_SECOND(getRawHostCpuLoad(&tmp64, &tmp64, &tmp64)); /* Process CPU load */ CALLS_PER_SECOND(getRawProcessCpuLoad(processes[nCalls%cVMs], &tmp64, &tmp64, &tmp64)); /* Host CPU speed */ CALLS_PER_SECOND(getHostCpuMHz(&tmp)); /* Host RAM usage */ CALLS_PER_SECOND(getHostMemoryUsage(&tmp, &tmp, &tmp)); /* Process RAM usage */ CALLS_PER_SECOND(getProcessMemoryUsage(processes[nCalls%cVMs], &tmp)); start = RTTimeNanoTS(); int times; for (times = 0; times < 100; times++) { /* Pre-collect */ N_CALLS(1, preCollect(hints, 0)); /* Host CPU load */ N_CALLS(1, getRawHostCpuLoad(&tmp64, &tmp64, &tmp64)); /* Host CPU speed */ N_CALLS(1, getHostCpuMHz(&tmp)); /* Host RAM usage */ N_CALLS(1, getHostMemoryUsage(&tmp, &tmp, &tmp)); /* Process CPU load */ N_CALLS(cVMs, getRawProcessCpuLoad(processes[call], &tmp64, &tmp64, &tmp64)); /* Process RAM usage */ N_CALLS(cVMs, getProcessMemoryUsage(processes[call], &tmp)); } printf("\n%u VMs -- %.2f%% of CPU time\n", cVMs, (RTTimeNanoTS() - start) / 10000000. / times); /* Shut down fake VMs */ std::for_each(processes.begin(), processes.end(), std::ptr_fun(RTProcTerminate)); } int main(int argc, char *argv[]) { /* * Initialize the VBox runtime without loading * the support driver. */ int rc = RTR3Init(); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: RTR3Init() -> %d\n", rc); return 1; } if (argc > 1 && !strcmp(argv[1], "-child")) { /* We have spawned ourselves as a child process -- scratch the leg */ RTThreadSleep(1000000); return 1; } #ifdef RT_OS_WINDOWS HRESULT hRes = CoInitialize(NULL); /* * Need to initialize security to access performance enumerators. */ hRes = CoInitializeSecurity( NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_NONE, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE, 0); #endif pm::CollectorHAL *collector = pm::createHAL(); if (!collector) { RTPrintf("tstCollector: createMetricFactory() failed\n", rc); return 1; } #if 1 pm::CollectorHints hints; hints.collectHostCpuLoad(); hints.collectHostRamUsage(); hints.collectProcessCpuLoad(RTProcSelf()); hints.collectProcessRamUsage(RTProcSelf()); uint64_t start; uint64_t hostUserStart, hostKernelStart, hostIdleStart; uint64_t hostUserStop, hostKernelStop, hostIdleStop, hostTotal; uint64_t processUserStart, processKernelStart, processTotalStart; uint64_t processUserStop, processKernelStop, processTotalStop; RTPrintf("tstCollector: TESTING - CPU load, sleeping for 5 sec\n"); rc = collector->preCollect(hints, 0); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc); return 1; } rc = collector->getRawHostCpuLoad(&hostUserStart, &hostKernelStart, &hostIdleStart); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc); return 1; } rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStart, &processKernelStart, &processTotalStart); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc); return 1; } RTThreadSleep(5000); // Sleep for 5 seconds rc = collector->preCollect(hints, 0); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc); return 1; } rc = collector->getRawHostCpuLoad(&hostUserStop, &hostKernelStop, &hostIdleStop); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc); return 1; } rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStop, &processKernelStop, &processTotalStop); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc); return 1; } hostTotal = hostUserStop - hostUserStart + hostKernelStop - hostKernelStart + hostIdleStop - hostIdleStart; /*printf("tstCollector: host cpu user = %f sec\n", (hostUserStop - hostUserStart) / 10000000.); printf("tstCollector: host cpu kernel = %f sec\n", (hostKernelStop - hostKernelStart) / 10000000.); printf("tstCollector: host cpu idle = %f sec\n", (hostIdleStop - hostIdleStart) / 10000000.); printf("tstCollector: host cpu total = %f sec\n", hostTotal / 10000000.);*/ RTPrintf("tstCollector: host cpu user = %llu %%\n", (hostUserStop - hostUserStart) * 100 / hostTotal); RTPrintf("tstCollector: host cpu kernel = %llu %%\n", (hostKernelStop - hostKernelStart) * 100 / hostTotal); RTPrintf("tstCollector: host cpu idle = %llu %%\n", (hostIdleStop - hostIdleStart) * 100 / hostTotal); RTPrintf("tstCollector: process cpu user = %llu %%\n", (processUserStop - processUserStart) * 100 / (processTotalStop - processTotalStart)); RTPrintf("tstCollector: process cpu kernel = %llu %%\n\n", (processKernelStop - processKernelStart) * 100 / (processTotalStop - processTotalStart)); RTPrintf("tstCollector: TESTING - CPU load, looping for 5 sec\n"); rc = collector->preCollect(hints, 0); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc); return 1; } rc = collector->getRawHostCpuLoad(&hostUserStart, &hostKernelStart, &hostIdleStart); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc); return 1; } rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStart, &processKernelStart, &processTotalStart); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc); return 1; } start = RTTimeMilliTS(); while(RTTimeMilliTS() - start < 5000) ; // Loop for 5 seconds rc = collector->preCollect(hints, 0); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc); return 1; } rc = collector->getRawHostCpuLoad(&hostUserStop, &hostKernelStop, &hostIdleStop); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc); return 1; } rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStop, &processKernelStop, &processTotalStop); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc); return 1; } hostTotal = hostUserStop - hostUserStart + hostKernelStop - hostKernelStart + hostIdleStop - hostIdleStart; RTPrintf("tstCollector: host cpu user = %llu %%\n", (hostUserStop - hostUserStart) * 100 / hostTotal); RTPrintf("tstCollector: host cpu kernel = %llu %%\n", (hostKernelStop - hostKernelStart) * 100 / hostTotal); RTPrintf("tstCollector: host cpu idle = %llu %%\n", (hostIdleStop - hostIdleStart) * 100 / hostTotal); RTPrintf("tstCollector: process cpu user = %llu %%\n", (processUserStop - processUserStart) * 100 / (processTotalStop - processTotalStart)); RTPrintf("tstCollector: process cpu kernel = %llu %%\n\n", (processKernelStop - processKernelStart) * 100 / (processTotalStop - processTotalStart)); RTPrintf("tstCollector: TESTING - Memory usage\n"); ULONG total, used, available, processUsed; rc = collector->getHostMemoryUsage(&total, &used, &available); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getHostMemoryUsage() -> %Rrc\n", rc); return 1; } rc = collector->getProcessMemoryUsage(RTProcSelf(), &processUsed); if (RT_FAILURE(rc)) { RTPrintf("tstCollector: getProcessMemoryUsage() -> %Rrc\n", rc); return 1; } RTPrintf("tstCollector: host mem total = %lu kB\n", total); RTPrintf("tstCollector: host mem used = %lu kB\n", used); RTPrintf("tstCollector: host mem available = %lu kB\n", available); RTPrintf("tstCollector: process mem used = %lu kB\n", processUsed); #endif RTPrintf("\ntstCollector: TESTING - Performance\n\n"); measurePerformance(collector, argv[0], 100); delete collector; printf ("\ntstCollector FINISHED.\n"); return rc; }