/* $Id: VideoRec.cpp 63256 2016-08-10 12:04:54Z vboxsync $ */ /** @file * Encodes the screen content in VPX format. */ /* * Copyright (C) 2012-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #define LOG_GROUP LOG_GROUP_MAIN #include #include #include #include #include #include #include #include #include #include "EbmlWriter.h" #include "VideoRec.h" #define VPX_CODEC_DISABLE_COMPAT 1 #include #include /** Default VPX codec to use */ #define DEFAULTCODEC (vpx_codec_vp8_cx()) static int videoRecEncodeAndWrite(PVIDEORECSTREAM pStrm); static int videoRecRGBToYUV(PVIDEORECSTREAM pStrm); /* state to synchronized between threads */ enum { VIDREC_UNINITIALIZED = 0, /* initialized, idle */ VIDREC_IDLE = 1, /* currently in VideoRecCopyToIntBuf(), delay termination */ VIDREC_COPYING = 2, /* signal that we are terminating */ VIDREC_TERMINATING = 3 }; /* Must be always accessible and therefore cannot be part of VIDEORECCONTEXT */ static uint32_t g_enmState = VIDREC_UNINITIALIZED; typedef struct VIDEORECSTREAM { /* container context */ WebMWriter Ebml; /* VPX codec context */ vpx_codec_ctx_t VpxCodec; /* VPX configuration */ vpx_codec_enc_cfg_t VpxConfig; /* X resolution */ uint32_t uTargetWidth; /* Y resolution */ uint32_t uTargetHeight; /* X resolution of the last encoded picture */ uint32_t uLastSourceWidth; /* Y resolution of the last encoded picture */ uint32_t uLastSourceHeight; /* current frame number */ uint32_t cFrame; /* RGB buffer containing the most recent frame of the framebuffer */ uint8_t *pu8RgbBuf; /* YUV buffer the encode function fetches the frame from */ uint8_t *pu8YuvBuf; /* VPX image context */ vpx_image_t VpxRawImage; /* true if video recording is enabled */ bool fEnabled; /* true if the RGB buffer is filled */ bool fRgbFilled; /* pixel format of the current frame */ uint32_t u32PixelFormat; /* minimal delay between two frames */ uint32_t uDelay; /* time stamp of the last frame we encoded */ uint64_t u64LastTimeStamp; /* time stamp of the current frame */ uint64_t u64TimeStamp; /* encoder deadline */ unsigned int uEncoderDeadline; } VIDEORECSTREAM; typedef struct VIDEORECCONTEXT { /* semaphore to signal the encoding worker thread */ RTSEMEVENT WaitEvent; /* semaphore required during termination */ RTSEMEVENT TermEvent; /* true if video recording is enabled */ bool fEnabled; /* worker thread */ RTTHREAD Thread; /* number of stream contexts */ uint32_t cScreens; /* maximal time stamp */ uint64_t u64MaxTimeStamp; /* maximal file size in MB */ uint32_t uMaxFileSize; /* video recording stream contexts */ VIDEORECSTREAM Strm[1]; } VIDEORECCONTEXT; /** * Iterator class for running through a BGRA32 image buffer and converting * it to RGB. */ class ColorConvBGRA32Iter { private: enum { PIX_SIZE = 4 }; public: ColorConvBGRA32Iter(unsigned aWidth, unsigned aHeight, uint8_t *aBuf) { LogFlow(("width = %d height=%d aBuf=%lx\n", aWidth, aHeight, aBuf)); mPos = 0; mSize = aWidth * aHeight * PIX_SIZE; mBuf = aBuf; } /** * Convert the next pixel to RGB. * @returns true on success, false if we have reached the end of the buffer * @param aRed where to store the red value * @param aGreen where to store the green value * @param aBlue where to store the blue value */ bool getRGB(unsigned *aRed, unsigned *aGreen, unsigned *aBlue) { bool rc = false; if (mPos + PIX_SIZE <= mSize) { *aRed = mBuf[mPos + 2]; *aGreen = mBuf[mPos + 1]; *aBlue = mBuf[mPos ]; mPos += PIX_SIZE; rc = true; } return rc; } /** * Skip forward by a certain number of pixels * @param aPixels how many pixels to skip */ void skip(unsigned aPixels) { mPos += PIX_SIZE * aPixels; } private: /** Size of the picture buffer */ unsigned mSize; /** Current position in the picture buffer */ unsigned mPos; /** Address of the picture buffer */ uint8_t *mBuf; }; /** * Iterator class for running through an BGR24 image buffer and converting * it to RGB. */ class ColorConvBGR24Iter { private: enum { PIX_SIZE = 3 }; public: ColorConvBGR24Iter(unsigned aWidth, unsigned aHeight, uint8_t *aBuf) { mPos = 0; mSize = aWidth * aHeight * PIX_SIZE; mBuf = aBuf; } /** * Convert the next pixel to RGB. * @returns true on success, false if we have reached the end of the buffer * @param aRed where to store the red value * @param aGreen where to store the green value * @param aBlue where to store the blue value */ bool getRGB(unsigned *aRed, unsigned *aGreen, unsigned *aBlue) { bool rc = false; if (mPos + PIX_SIZE <= mSize) { *aRed = mBuf[mPos + 2]; *aGreen = mBuf[mPos + 1]; *aBlue = mBuf[mPos ]; mPos += PIX_SIZE; rc = true; } return rc; } /** * Skip forward by a certain number of pixels * @param aPixels how many pixels to skip */ void skip(unsigned aPixels) { mPos += PIX_SIZE * aPixels; } private: /** Size of the picture buffer */ unsigned mSize; /** Current position in the picture buffer */ unsigned mPos; /** Address of the picture buffer */ uint8_t *mBuf; }; /** * Iterator class for running through an BGR565 image buffer and converting * it to RGB. */ class ColorConvBGR565Iter { private: enum { PIX_SIZE = 2 }; public: ColorConvBGR565Iter(unsigned aWidth, unsigned aHeight, uint8_t *aBuf) { mPos = 0; mSize = aWidth * aHeight * PIX_SIZE; mBuf = aBuf; } /** * Convert the next pixel to RGB. * @returns true on success, false if we have reached the end of the buffer * @param aRed where to store the red value * @param aGreen where to store the green value * @param aBlue where to store the blue value */ bool getRGB(unsigned *aRed, unsigned *aGreen, unsigned *aBlue) { bool rc = false; if (mPos + PIX_SIZE <= mSize) { unsigned uFull = (((unsigned) mBuf[mPos + 1]) << 8) | ((unsigned) mBuf[mPos]); *aRed = (uFull >> 8) & ~7; *aGreen = (uFull >> 3) & ~3 & 0xff; *aBlue = (uFull << 3) & ~7 & 0xff; mPos += PIX_SIZE; rc = true; } return rc; } /** * Skip forward by a certain number of pixels * @param aPixels how many pixels to skip */ void skip(unsigned aPixels) { mPos += PIX_SIZE * aPixels; } private: /** Size of the picture buffer */ unsigned mSize; /** Current position in the picture buffer */ unsigned mPos; /** Address of the picture buffer */ uint8_t *mBuf; }; /** * Convert an image to YUV420p format * @returns true on success, false on failure * @param aWidth width of image * @param aHeight height of image * @param aDestBuf an allocated memory buffer large enough to hold the * destination image (i.e. width * height * 12bits) * @param aSrcBuf the source image as an array of bytes */ template inline bool colorConvWriteYUV420p(unsigned aWidth, unsigned aHeight, uint8_t *aDestBuf, uint8_t *aSrcBuf) { AssertReturn(!(aWidth & 1), false); AssertReturn(!(aHeight & 1), false); bool fRc = true; T iter1(aWidth, aHeight, aSrcBuf); T iter2 = iter1; iter2.skip(aWidth); unsigned cPixels = aWidth * aHeight; unsigned offY = 0; unsigned offU = cPixels; unsigned offV = cPixels + cPixels / 4; unsigned const cyHalf = aHeight / 2; unsigned const cxHalf = aWidth / 2; for (unsigned i = 0; i < cyHalf && fRc; ++i) { for (unsigned j = 0; j < cxHalf; ++j) { unsigned red, green, blue; fRc = iter1.getRGB(&red, &green, &blue); AssertReturn(fRc, false); aDestBuf[offY] = ((66 * red + 129 * green + 25 * blue + 128) >> 8) + 16; unsigned u = (((-38 * red - 74 * green + 112 * blue + 128) >> 8) + 128) / 4; unsigned v = (((112 * red - 94 * green - 18 * blue + 128) >> 8) + 128) / 4; fRc = iter1.getRGB(&red, &green, &blue); AssertReturn(fRc, false); aDestBuf[offY + 1] = ((66 * red + 129 * green + 25 * blue + 128) >> 8) + 16; u += (((-38 * red - 74 * green + 112 * blue + 128) >> 8) + 128) / 4; v += (((112 * red - 94 * green - 18 * blue + 128) >> 8) + 128) / 4; fRc = iter2.getRGB(&red, &green, &blue); AssertReturn(fRc, false); aDestBuf[offY + aWidth] = ((66 * red + 129 * green + 25 * blue + 128) >> 8) + 16; u += (((-38 * red - 74 * green + 112 * blue + 128) >> 8) + 128) / 4; v += (((112 * red - 94 * green - 18 * blue + 128) >> 8) + 128) / 4; fRc = iter2.getRGB(&red, &green, &blue); AssertReturn(fRc, false); aDestBuf[offY + aWidth + 1] = ((66 * red + 129 * green + 25 * blue + 128) >> 8) + 16; u += (((-38 * red - 74 * green + 112 * blue + 128) >> 8) + 128) / 4; v += (((112 * red - 94 * green - 18 * blue + 128) >> 8) + 128) / 4; aDestBuf[offU] = u; aDestBuf[offV] = v; offY += 2; ++offU; ++offV; } iter1.skip(aWidth); iter2.skip(aWidth); offY += aWidth; } return true; } /** * Convert an image to RGB24 format * @returns true on success, false on failure * @param aWidth width of image * @param aHeight height of image * @param aDestBuf an allocated memory buffer large enough to hold the * destination image (i.e. width * height * 12bits) * @param aSrcBuf the source image as an array of bytes */ template inline bool colorConvWriteRGB24(unsigned aWidth, unsigned aHeight, uint8_t *aDestBuf, uint8_t *aSrcBuf) { enum { PIX_SIZE = 3 }; bool rc = true; AssertReturn(0 == (aWidth & 1), false); AssertReturn(0 == (aHeight & 1), false); T iter(aWidth, aHeight, aSrcBuf); unsigned cPixels = aWidth * aHeight; for (unsigned i = 0; i < cPixels && rc; ++i) { unsigned red, green, blue; rc = iter.getRGB(&red, &green, &blue); if (rc) { aDestBuf[i * PIX_SIZE ] = red; aDestBuf[i * PIX_SIZE + 1] = green; aDestBuf[i * PIX_SIZE + 2] = blue; } } return rc; } /** * Worker thread for all streams. * * RGB/YUV conversion and encoding. */ static DECLCALLBACK(int) videoRecThread(RTTHREAD hThreadSelf, void *pvUser) { RT_NOREF(hThreadSelf); PVIDEORECCONTEXT pCtx = (PVIDEORECCONTEXT)pvUser; for (;;) { int rc = RTSemEventWait(pCtx->WaitEvent, RT_INDEFINITE_WAIT); AssertRCBreak(rc); if (ASMAtomicReadU32(&g_enmState) == VIDREC_TERMINATING) break; for (unsigned uScreen = 0; uScreen < pCtx->cScreens; uScreen++) { PVIDEORECSTREAM pStrm = &pCtx->Strm[uScreen]; if ( pStrm->fEnabled && ASMAtomicReadBool(&pStrm->fRgbFilled)) { rc = videoRecRGBToYUV(pStrm); ASMAtomicWriteBool(&pStrm->fRgbFilled, false); if (RT_SUCCESS(rc)) rc = videoRecEncodeAndWrite(pStrm); if (RT_FAILURE(rc)) { static unsigned cErrors = 100; if (cErrors > 0) { LogRel(("Error %Rrc encoding / writing video frame\n", rc)); cErrors--; } } } } } return VINF_SUCCESS; } /** * VideoRec utility function to create video recording context. * * @returns IPRT status code. * @param ppCtx Video recording context * @param cScreens Number of screens. */ int VideoRecContextCreate(PVIDEORECCONTEXT *ppCtx, uint32_t cScreens) { Assert(ASMAtomicReadU32(&g_enmState) == VIDREC_UNINITIALIZED); PVIDEORECCONTEXT pCtx = (PVIDEORECCONTEXT)RTMemAllocZ(RT_OFFSETOF(VIDEORECCONTEXT, Strm[cScreens])); *ppCtx = pCtx; AssertPtrReturn(pCtx, VERR_NO_MEMORY); pCtx->cScreens = cScreens; for (unsigned uScreen = 0; uScreen < cScreens; uScreen++) { /* Since we allocate without using standard C++ new mechanism * it is required to call placement new for correct initialization * of the object. */ new (&pCtx->Strm[uScreen] + RT_OFFSETOF(VIDEORECSTREAM, Ebml)) WebMWriter(); } int rc = RTSemEventCreate(&pCtx->WaitEvent); AssertRCReturn(rc, rc); rc = RTSemEventCreate(&pCtx->TermEvent); AssertRCReturn(rc, rc); rc = RTThreadCreate(&pCtx->Thread, videoRecThread, (void*)pCtx, 0, RTTHREADTYPE_MAIN_WORKER, RTTHREADFLAGS_WAITABLE, "VideoRec"); AssertRCReturn(rc, rc); ASMAtomicWriteU32(&g_enmState, VIDREC_IDLE); return VINF_SUCCESS; } /** * VideoRec utility function to initialize video recording context. * * @returns IPRT status code. * @param pCtx Pointer to video recording context to initialize Framebuffer width. * @param uScreeen Screen number. * @param strFile File to save the recorded data * @param uTargetWidth Width of the target image in the video recoriding file (movie) * @param uTargetHeight Height of the target image in video recording file. */ int VideoRecStrmInit(PVIDEORECCONTEXT pCtx, uint32_t uScreen, const char *pszFile, uint32_t uWidth, uint32_t uHeight, uint32_t uRate, uint32_t uFps, uint32_t uMaxTime, uint32_t uMaxFileSize, const char *pszOptions) { AssertPtrReturn(pCtx, VERR_INVALID_PARAMETER); AssertReturn(uScreen < pCtx->cScreens, VERR_INVALID_PARAMETER); pCtx->u64MaxTimeStamp = (uMaxTime > 0 ? RTTimeProgramMilliTS() + uMaxTime * 1000 : 0); pCtx->uMaxFileSize = uMaxFileSize; PVIDEORECSTREAM pStrm = &pCtx->Strm[uScreen]; pStrm->uTargetWidth = uWidth; pStrm->uTargetHeight = uHeight; pStrm->pu8RgbBuf = (uint8_t *)RTMemAllocZ(uWidth * uHeight * 4); AssertReturn(pStrm->pu8RgbBuf, VERR_NO_MEMORY); pStrm->uEncoderDeadline = VPX_DL_REALTIME; /* Play safe: the file must not exist, overwriting is potentially * hazardous as nothing prevents the user from picking a file name of some * other important file, causing unintentional data loss. */ int rc = pStrm->Ebml.create(pszFile); if (RT_FAILURE(rc)) { LogRel(("Failed to create the video capture output file \"%s\" (%Rrc)\n", pszFile, rc)); return rc; } vpx_codec_err_t rcv = vpx_codec_enc_config_default(DEFAULTCODEC, &pStrm->VpxConfig, 0); if (rcv != VPX_CODEC_OK) { LogFlow(("Failed to configure codec: %s\n", vpx_codec_err_to_string(rcv))); return VERR_INVALID_PARAMETER; } com::Utf8Str options(pszOptions); size_t pos = 0; do { com::Utf8Str key, value; pos = options.parseKeyValue(key, value, pos); if (key == "quality") { if (value == "realtime") { pStrm->uEncoderDeadline = VPX_DL_REALTIME; } else if (value == "good") { pStrm->uEncoderDeadline = 1000000 / uFps; } else if (value == "best") { pStrm->uEncoderDeadline = VPX_DL_BEST_QUALITY; } else { LogRel(("Settings quality deadline to = %s\n", value.c_str())); pStrm->uEncoderDeadline = value.toUInt32(); } } else LogRel(("Getting unknown option: %s=%s\n", key.c_str(), value.c_str())); } while(pos != com::Utf8Str::npos); /* target bitrate in kilobits per second */ pStrm->VpxConfig.rc_target_bitrate = uRate; /* frame width */ pStrm->VpxConfig.g_w = uWidth; /* frame height */ pStrm->VpxConfig.g_h = uHeight; /* 1ms per frame */ pStrm->VpxConfig.g_timebase.num = 1; pStrm->VpxConfig.g_timebase.den = 1000; /* disable multithreading */ pStrm->VpxConfig.g_threads = 0; pStrm->uDelay = 1000 / uFps; struct vpx_rational arg_framerate = { (int)uFps, 1 }; rc = pStrm->Ebml.writeHeader(&pStrm->VpxConfig, &arg_framerate); AssertRCReturn(rc, rc); /* Initialize codec */ rcv = vpx_codec_enc_init(&pStrm->VpxCodec, DEFAULTCODEC, &pStrm->VpxConfig, 0); if (rcv != VPX_CODEC_OK) { LogFlow(("Failed to initialize VP8 encoder %s", vpx_codec_err_to_string(rcv))); return VERR_INVALID_PARAMETER; } if (!vpx_img_alloc(&pStrm->VpxRawImage, VPX_IMG_FMT_I420, uWidth, uHeight, 1)) { LogFlow(("Failed to allocate image %dx%d", uWidth, uHeight)); return VERR_NO_MEMORY; } pStrm->pu8YuvBuf = pStrm->VpxRawImage.planes[0]; pCtx->fEnabled = true; pStrm->fEnabled = true; return VINF_SUCCESS; } /** * VideoRec utility function to close the video recording context. * * @param pCtx Pointer to video recording context. */ void VideoRecContextClose(PVIDEORECCONTEXT pCtx) { if (!pCtx) return; uint32_t enmState = VIDREC_IDLE; for (;;) { if (ASMAtomicCmpXchgExU32(&g_enmState, VIDREC_TERMINATING, enmState, &enmState)) break; if (enmState == VIDREC_UNINITIALIZED) return; } if (enmState == VIDREC_COPYING) { int rc = RTSemEventWait(pCtx->TermEvent, RT_INDEFINITE_WAIT); AssertRC(rc); } RTSemEventSignal(pCtx->WaitEvent); RTThreadWait(pCtx->Thread, 10000, NULL); RTSemEventDestroy(pCtx->WaitEvent); RTSemEventDestroy(pCtx->TermEvent); for (unsigned uScreen = 0; uScreen < pCtx->cScreens; uScreen++) { PVIDEORECSTREAM pStrm = &pCtx->Strm[uScreen]; if (pStrm->fEnabled) { int rc = pStrm->Ebml.writeFooter(0); AssertRC(rc); pStrm->Ebml.close(); vpx_img_free(&pStrm->VpxRawImage); vpx_codec_err_t rcv = vpx_codec_destroy(&pStrm->VpxCodec); Assert(rcv == VPX_CODEC_OK); RT_NOREF(rcv); RTMemFree(pStrm->pu8RgbBuf); pStrm->pu8RgbBuf = NULL; } /* Explicitly deinitilize Ebml object since it was created using placement new. */ pStrm->Ebml.~WebMWriter(); } RTMemFree(pCtx); ASMAtomicWriteU32(&g_enmState, VIDREC_UNINITIALIZED); } /** * VideoRec utility function to check if recording is enabled. * * @returns true if recording is enabled * @param pCtx Pointer to video recording context. */ bool VideoRecIsEnabled(PVIDEORECCONTEXT pCtx) { RT_NOREF(pCtx); uint32_t enmState = ASMAtomicReadU32(&g_enmState); return ( enmState == VIDREC_IDLE || enmState == VIDREC_COPYING); } /** * VideoRec utility function to check if recording engine is ready to accept a new frame * for the given screen. * * @returns true if recording engine is ready * @param pCtx Pointer to video recording context. * @param uScreen screen id. * @param u64TimeStamp current time stamp */ bool VideoRecIsReady(PVIDEORECCONTEXT pCtx, uint32_t uScreen, uint64_t u64TimeStamp) { uint32_t enmState = ASMAtomicReadU32(&g_enmState); if (enmState != VIDREC_IDLE) return false; PVIDEORECSTREAM pStrm = &pCtx->Strm[uScreen]; if (!pStrm->fEnabled) return false; if (u64TimeStamp < pStrm->u64LastTimeStamp + pStrm->uDelay) return false; if (ASMAtomicReadBool(&pStrm->fRgbFilled)) return false; return true; } /** * VideoRec utility function to check if the file size has reached * specified limits (if any). * * @returns true if any limit has been reached * @param pCtx Pointer to video recording context * @param uScreen screen id * @param u64TimeStamp current time stamp */ bool VideoRecIsFull(PVIDEORECCONTEXT pCtx, uint32_t uScreen, uint64_t u64TimeStamp) { PVIDEORECSTREAM pStrm = &pCtx->Strm[uScreen]; if(!pStrm->fEnabled) return false; if(pCtx->u64MaxTimeStamp > 0 && u64TimeStamp >= pCtx->u64MaxTimeStamp) return true; if (pCtx->uMaxFileSize > 0) { uint64_t sizeInMB = pStrm->Ebml.getFileSize() / (1024 * 1024); if(sizeInMB >= pCtx->uMaxFileSize) return true; } /* Check for available free disk space */ if (pStrm->Ebml.getAvailableSpace() < 0x100000) { LogRel(("Storage has not enough free space available, stopping video capture\n")); return true; } return false; } /** * VideoRec utility function to encode the source image and write the encoded * image to target file. * * @returns IPRT status code. * @param pCtx Pointer to video recording context. * @param uSourceWidth Width of the source image. * @param uSourceHeight Height of the source image. */ static int videoRecEncodeAndWrite(PVIDEORECSTREAM pStrm) { /* presentation time stamp */ vpx_codec_pts_t pts = pStrm->u64TimeStamp; vpx_codec_err_t rcv = vpx_codec_encode(&pStrm->VpxCodec, &pStrm->VpxRawImage, pts /* time stamp */, pStrm->uDelay /* how long to show this frame */, 0 /* flags */, pStrm->uEncoderDeadline /* quality setting */); if (rcv != VPX_CODEC_OK) { LogFlow(("Failed to encode:%s\n", vpx_codec_err_to_string(rcv))); return VERR_GENERAL_FAILURE; } vpx_codec_iter_t iter = NULL; int rc = VERR_NO_DATA; for (;;) { const vpx_codec_cx_pkt_t *pkt = vpx_codec_get_cx_data(&pStrm->VpxCodec, &iter); if (!pkt) break; switch (pkt->kind) { case VPX_CODEC_CX_FRAME_PKT: rc = pStrm->Ebml.writeBlock(&pStrm->VpxConfig, pkt); break; default: LogFlow(("Unexpected CODEC Packet.\n")); break; } } pStrm->cFrame++; return rc; } /** * VideoRec utility function to convert RGB to YUV. * * @returns IPRT status code. * @param pCtx Pointer to video recording context. */ static int videoRecRGBToYUV(PVIDEORECSTREAM pStrm) { switch (pStrm->u32PixelFormat) { case VPX_IMG_FMT_RGB32: LogFlow(("32 bit\n")); if (!colorConvWriteYUV420p(pStrm->uTargetWidth, pStrm->uTargetHeight, pStrm->pu8YuvBuf, pStrm->pu8RgbBuf)) return VERR_GENERAL_FAILURE; break; case VPX_IMG_FMT_RGB24: LogFlow(("24 bit\n")); if (!colorConvWriteYUV420p(pStrm->uTargetWidth, pStrm->uTargetHeight, pStrm->pu8YuvBuf, pStrm->pu8RgbBuf)) return VERR_GENERAL_FAILURE; break; case VPX_IMG_FMT_RGB565: LogFlow(("565 bit\n")); if (!colorConvWriteYUV420p(pStrm->uTargetWidth, pStrm->uTargetHeight, pStrm->pu8YuvBuf, pStrm->pu8RgbBuf)) return VERR_GENERAL_FAILURE; break; default: return VERR_GENERAL_FAILURE; } return VINF_SUCCESS; } /** * VideoRec utility function to copy a source image (FrameBuf) to the intermediate * RGB buffer. This function is executed only once per time. * * @thread EMT * * @returns IPRT status code. * @param pCtx Pointer to the video recording context. * @param uScreen Screen number. * @param x Starting x coordinate of the source buffer (Framebuffer). * @param y Starting y coordinate of the source buffer (Framebuffer). * @param uPixelFormat Pixel Format. * @param uBitsPerPixel Bits Per Pixel * @param uBytesPerLine Bytes per source scanlineName. * @param uSourceWidth Width of the source image (framebuffer). * @param uSourceHeight Height of the source image (framebuffer). * @param pu8BufAddr Pointer to source image(framebuffer). * @param u64TimeStamp Time stamp (milliseconds). */ int VideoRecCopyToIntBuf(PVIDEORECCONTEXT pCtx, uint32_t uScreen, uint32_t x, uint32_t y, uint32_t uPixelFormat, uint32_t uBitsPerPixel, uint32_t uBytesPerLine, uint32_t uSourceWidth, uint32_t uSourceHeight, uint8_t *pu8BufAddr, uint64_t u64TimeStamp) { /* Do not execute during termination and guard against termination */ if (!ASMAtomicCmpXchgU32(&g_enmState, VIDREC_COPYING, VIDREC_IDLE)) return VINF_TRY_AGAIN; int rc = VINF_SUCCESS; do { AssertPtrBreakStmt(pu8BufAddr, rc = VERR_INVALID_PARAMETER); AssertBreakStmt(uSourceWidth, rc = VERR_INVALID_PARAMETER); AssertBreakStmt(uSourceHeight, rc = VERR_INVALID_PARAMETER); AssertBreakStmt(uScreen < pCtx->cScreens, rc = VERR_INVALID_PARAMETER); PVIDEORECSTREAM pStrm = &pCtx->Strm[uScreen]; if (!pStrm->fEnabled) { rc = VINF_TRY_AGAIN; /* not (yet) enabled */ break; } if (u64TimeStamp < pStrm->u64LastTimeStamp + pStrm->uDelay) { rc = VINF_TRY_AGAIN; /* respect maximum frames per second */ break; } if (ASMAtomicReadBool(&pStrm->fRgbFilled)) { rc = VERR_TRY_AGAIN; /* previous frame not yet encoded */ break; } pStrm->u64LastTimeStamp = u64TimeStamp; int xDiff = ((int)pStrm->uTargetWidth - (int)uSourceWidth) / 2; uint32_t w = uSourceWidth; if ((int)w + xDiff + (int)x <= 0) /* nothing visible */ { rc = VERR_INVALID_PARAMETER; break; } uint32_t destX; if ((int)x < -xDiff) { w += xDiff + x; x = -xDiff; destX = 0; } else destX = x + xDiff; uint32_t h = uSourceHeight; int yDiff = ((int)pStrm->uTargetHeight - (int)uSourceHeight) / 2; if ((int)h + yDiff + (int)y <= 0) /* nothing visible */ { rc = VERR_INVALID_PARAMETER; break; } uint32_t destY; if ((int)y < -yDiff) { h += yDiff + (int)y; y = -yDiff; destY = 0; } else destY = y + yDiff; if ( destX > pStrm->uTargetWidth || destY > pStrm->uTargetHeight) { rc = VERR_INVALID_PARAMETER; /* nothing visible */ break; } if (destX + w > pStrm->uTargetWidth) w = pStrm->uTargetWidth - destX; if (destY + h > pStrm->uTargetHeight) h = pStrm->uTargetHeight - destY; /* Calculate bytes per pixel */ uint32_t bpp = 1; if (uPixelFormat == BitmapFormat_BGR) { switch (uBitsPerPixel) { case 32: pStrm->u32PixelFormat = VPX_IMG_FMT_RGB32; bpp = 4; break; case 24: pStrm->u32PixelFormat = VPX_IMG_FMT_RGB24; bpp = 3; break; case 16: pStrm->u32PixelFormat = VPX_IMG_FMT_RGB565; bpp = 2; break; default: AssertMsgFailed(("Unknown color depth! mBitsPerPixel=%d\n", uBitsPerPixel)); break; } } else AssertMsgFailed(("Unknown pixel format! mPixelFormat=%d\n", uPixelFormat)); /* One of the dimensions of the current frame is smaller than before so * clear the entire buffer to prevent artifacts from the previous frame */ if ( uSourceWidth < pStrm->uLastSourceWidth || uSourceHeight < pStrm->uLastSourceHeight) memset(pStrm->pu8RgbBuf, 0, pStrm->uTargetWidth * pStrm->uTargetHeight * 4); pStrm->uLastSourceWidth = uSourceWidth; pStrm->uLastSourceHeight = uSourceHeight; /* Calculate start offset in source and destination buffers */ uint32_t offSrc = y * uBytesPerLine + x * bpp; uint32_t offDst = (destY * pStrm->uTargetWidth + destX) * bpp; /* do the copy */ for (unsigned int i = 0; i < h; i++) { /* Overflow check */ Assert(offSrc + w * bpp <= uSourceHeight * uBytesPerLine); Assert(offDst + w * bpp <= pStrm->uTargetHeight * pStrm->uTargetWidth * bpp); memcpy(pStrm->pu8RgbBuf + offDst, pu8BufAddr + offSrc, w * bpp); offSrc += uBytesPerLine; offDst += pStrm->uTargetWidth * bpp; } pStrm->u64TimeStamp = u64TimeStamp; ASMAtomicWriteBool(&pStrm->fRgbFilled, true); RTSemEventSignal(pCtx->WaitEvent); } while (0); if (!ASMAtomicCmpXchgU32(&g_enmState, VIDREC_IDLE, VIDREC_COPYING)) { rc = RTSemEventSignal(pCtx->TermEvent); AssertRC(rc); } return rc; }