VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrvGip.cpp@ 57585

Last change on this file since 57585 was 57358, checked in by vboxsync, 9 years ago

*: scm cleanup run.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 178.2 KB
Line 
1/* $Id: SUPDrvGip.cpp 57358 2015-08-14 15:16:38Z vboxsync $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code for GIP.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP LOG_GROUP_SUP_DRV
32#define SUPDRV_AGNOSTIC
33#include "SUPDrvInternal.h"
34#ifndef PAGE_SHIFT
35# include <iprt/param.h>
36#endif
37#include <iprt/asm.h>
38#include <iprt/asm-amd64-x86.h>
39#include <iprt/asm-math.h>
40#include <iprt/cpuset.h>
41#include <iprt/handletable.h>
42#include <iprt/mem.h>
43#include <iprt/mp.h>
44#include <iprt/power.h>
45#include <iprt/process.h>
46#include <iprt/semaphore.h>
47#include <iprt/spinlock.h>
48#include <iprt/thread.h>
49#include <iprt/uuid.h>
50#include <iprt/net.h>
51#include <iprt/crc.h>
52#include <iprt/string.h>
53#include <iprt/timer.h>
54#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
55# include <iprt/rand.h>
56# include <iprt/path.h>
57#endif
58#include <iprt/uint128.h>
59#include <iprt/x86.h>
60
61#include <VBox/param.h>
62#include <VBox/log.h>
63#include <VBox/err.h>
64
65#if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
66# include "dtrace/SUPDrv.h"
67#else
68/* ... */
69#endif
70
71
72/*********************************************************************************************************************************
73* Defined Constants And Macros *
74*********************************************************************************************************************************/
75/** The frequency by which we recalculate the u32UpdateHz and
76 * u32UpdateIntervalNS GIP members. The value must be a power of 2.
77 *
78 * Warning: Bumping this too high might overflow u32UpdateIntervalNS.
79 */
80#define GIP_UPDATEHZ_RECALC_FREQ 0x800
81
82/** A reserved TSC value used for synchronization as well as measurement of
83 * TSC deltas. */
84#define GIP_TSC_DELTA_RSVD UINT64_MAX
85/** The number of TSC delta measurement loops in total (includes primer and
86 * read-time loops). */
87#define GIP_TSC_DELTA_LOOPS 96
88/** The number of cache primer loops. */
89#define GIP_TSC_DELTA_PRIMER_LOOPS 4
90/** The number of loops until we keep computing the minumum read time. */
91#define GIP_TSC_DELTA_READ_TIME_LOOPS 24
92
93/** The TSC frequency refinement period in seconds.
94 * The timer fires after 200ms, then every second, this value just says when
95 * to stop it after that. */
96#define GIP_TSC_REFINE_PERIOD_IN_SECS 12
97/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */
98#define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32
99/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */
100#define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448
101/** The TSC delta value for the initial GIP master - 0 in regular builds.
102 * To test the delta code this can be set to a non-zero value. */
103#if 0
104# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */
105#else
106# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0)
107#endif
108
109AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS);
110AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS);
111
112/** @def VBOX_SVN_REV
113 * The makefile should define this if it can. */
114#ifndef VBOX_SVN_REV
115# define VBOX_SVN_REV 0
116#endif
117
118#if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
119# define DO_NOT_START_GIP
120#endif
121
122
123/*********************************************************************************************************************************
124* Internal Functions *
125*********************************************************************************************************************************/
126static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
127static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
128static int supdrvGipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask);
129static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz);
130static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas);
131#ifdef SUPDRV_USE_TSC_DELTA_THREAD
132static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt);
133static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt);
134static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll);
135#else
136static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt);
137static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker);
138#endif
139
140
141/*********************************************************************************************************************************
142* Global Variables *
143*********************************************************************************************************************************/
144DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
145
146
147
148/*
149 *
150 * Misc Common GIP Code
151 * Misc Common GIP Code
152 * Misc Common GIP Code
153 *
154 *
155 */
156
157
158/**
159 * Finds the GIP CPU index corresponding to @a idCpu.
160 *
161 * @returns GIP CPU array index, UINT32_MAX if not found.
162 * @param pGip The GIP.
163 * @param idCpu The CPU ID.
164 */
165static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
166{
167 uint32_t i;
168 for (i = 0; i < pGip->cCpus; i++)
169 if (pGip->aCPUs[i].idCpu == idCpu)
170 return i;
171 return UINT32_MAX;
172}
173
174
175
176/*
177 *
178 * GIP Mapping and Unmapping Related Code.
179 * GIP Mapping and Unmapping Related Code.
180 * GIP Mapping and Unmapping Related Code.
181 *
182 *
183 */
184
185
186/**
187 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
188 * updating.
189 *
190 * @param pGip Pointer to the GIP.
191 * @param pGipCpu The per CPU structure for this CPU.
192 * @param u64NanoTS The current time.
193 */
194static void supdrvGipReInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
195{
196 /*
197 * Here we don't really care about applying the TSC delta. The re-initialization of this
198 * value is not relevant especially while (re)starting the GIP as the first few ones will
199 * be ignored anyway, see supdrvGipDoUpdateCpu().
200 */
201 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
202 pGipCpu->u64NanoTS = u64NanoTS;
203}
204
205
206/**
207 * Set the current TSC and NanoTS value for the CPU.
208 *
209 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
210 * @param pvUser1 Pointer to the ring-0 GIP mapping.
211 * @param pvUser2 Pointer to the variable holding the current time.
212 */
213static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
214{
215 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
216 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
217
218 if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu))
219 supdrvGipReInitCpu(pGip, &pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
220
221 NOREF(pvUser2);
222 NOREF(idCpu);
223}
224
225
226/**
227 * State structure for supdrvGipDetectGetGipCpuCallback.
228 */
229typedef struct SUPDRVGIPDETECTGETCPU
230{
231 /** Bitmap of APIC IDs that has been seen (initialized to zero).
232 * Used to detect duplicate APIC IDs (paranoia). */
233 uint8_t volatile bmApicId[256 / 8];
234 /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set
235 * initially). The callback clears the methods not detected. */
236 uint32_t volatile fSupported;
237 /** The first callback detecting any kind of range issues (initialized to
238 * NIL_RTCPUID). */
239 RTCPUID volatile idCpuProblem;
240} SUPDRVGIPDETECTGETCPU;
241/** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */
242typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU;
243
244
245/**
246 * Checks for alternative ways of getting the CPU ID.
247 *
248 * This also checks the APIC ID, CPU ID and CPU set index values against the
249 * GIP tables.
250 *
251 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
252 * @param pvUser1 Pointer to the state structure.
253 * @param pvUser2 Pointer to the GIP.
254 */
255static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
256{
257 PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1;
258 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2;
259 uint32_t fSupported = 0;
260 uint16_t idApic;
261 int iCpuSet;
262
263 AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */
264
265 /*
266 * Check that the CPU ID and CPU set index are interchangable.
267 */
268 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
269 if ((RTCPUID)iCpuSet == idCpu)
270 {
271 AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS));
272 if ( iCpuSet >= 0
273 && iCpuSet < RTCPUSET_MAX_CPUS
274 && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS))
275 {
276 /*
277 * Check whether the IDTR.LIMIT contains a CPU number.
278 */
279#ifdef RT_ARCH_X86
280 uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256;
281#else
282 uint16_t const cbIdt = sizeof(X86DESCGATE) * 256;
283#endif
284 RTIDTR Idtr;
285 ASMGetIDTR(&Idtr);
286 if (Idtr.cbIdt >= cbIdt)
287 {
288 uint32_t uTmp = Idtr.cbIdt - cbIdt;
289 uTmp &= RTCPUSET_MAX_CPUS - 1;
290 if (uTmp == idCpu)
291 {
292 RTIDTR Idtr2;
293 ASMGetIDTR(&Idtr2);
294 if (Idtr2.cbIdt == Idtr.cbIdt)
295 fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS;
296 }
297 }
298
299 /*
300 * Check whether RDTSCP is an option.
301 */
302 if (ASMHasCpuId())
303 {
304 if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000)))
305 && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
306 {
307 uint32_t uAux;
308 ASMReadTscWithAux(&uAux);
309 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
310 {
311 ASMNopPause();
312 ASMReadTscWithAux(&uAux);
313 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
314 fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS;
315 }
316 }
317 }
318 }
319 }
320
321 /*
322 * Check that the APIC ID is unique.
323 */
324 idApic = ASMGetApicId();
325 if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)
326 && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic)))
327 fSupported |= SUPGIPGETCPU_APIC_ID;
328 else
329 {
330 AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId));
331 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
332 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n",
333 idCpu, iCpuSet, idApic));
334 }
335
336 /*
337 * Check that the iCpuSet is within the expected range.
338 */
339 if (RT_UNLIKELY( iCpuSet < 0
340 || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS
341 || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)))
342 {
343 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
344 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n",
345 idCpu, iCpuSet, idApic));
346 }
347 else
348 {
349 RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet);
350 if (RT_UNLIKELY(idCpu2 != idCpu))
351 {
352 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
353 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n",
354 idCpu, iCpuSet, idApic, idCpu2));
355 }
356 }
357
358 /*
359 * Update the supported feature mask before we return.
360 */
361 ASMAtomicAndU32(&pState->fSupported, fSupported);
362
363 NOREF(pvUser2);
364}
365
366
367/**
368 * Increase the timer freqency on hosts where this is possible (NT).
369 *
370 * The idea is that more interrupts is better for us... Also, it's better than
371 * we increase the timer frequence, because we might end up getting inaccurate
372 * callbacks if someone else does it.
373 *
374 * @param pDevExt Sets u32SystemTimerGranularityGrant if increased.
375 */
376static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
377{
378 if (pDevExt->u32SystemTimerGranularityGrant == 0)
379 {
380 uint32_t u32SystemResolution;
381 if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
382 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
383 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
384 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
385 )
386 {
387 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
388 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
389 }
390 }
391}
392
393
394/**
395 * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem.
396 *
397 * @param pDevExt Clears u32SystemTimerGranularityGrant.
398 */
399static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
400{
401 if (pDevExt->u32SystemTimerGranularityGrant)
402 {
403 int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
404 AssertRC(rc2);
405 pDevExt->u32SystemTimerGranularityGrant = 0;
406 }
407}
408
409
410/**
411 * Maps the GIP into userspace and/or get the physical address of the GIP.
412 *
413 * @returns IPRT status code.
414 * @param pSession Session to which the GIP mapping should belong.
415 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
416 * @param pHCPhysGip Where to store the physical address. (optional)
417 *
418 * @remark There is no reference counting on the mapping, so one call to this function
419 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
420 * and remove the session as a GIP user.
421 */
422SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
423{
424 int rc;
425 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
426 RTR3PTR pGipR3 = NIL_RTR3PTR;
427 RTHCPHYS HCPhys = NIL_RTHCPHYS;
428 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
429
430 /*
431 * Validate
432 */
433 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
434 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
435 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
436
437#ifdef SUPDRV_USE_MUTEX_FOR_GIP
438 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
439#else
440 RTSemFastMutexRequest(pDevExt->mtxGip);
441#endif
442 if (pDevExt->pGip)
443 {
444 /*
445 * Map it?
446 */
447 rc = VINF_SUCCESS;
448 if (ppGipR3)
449 {
450 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
451 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
452 RTMEM_PROT_READ, RTR0ProcHandleSelf());
453 if (RT_SUCCESS(rc))
454 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
455 }
456
457 /*
458 * Get physical address.
459 */
460 if (pHCPhysGip && RT_SUCCESS(rc))
461 HCPhys = pDevExt->HCPhysGip;
462
463 /*
464 * Reference globally.
465 */
466 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
467 {
468 pSession->fGipReferenced = 1;
469 pDevExt->cGipUsers++;
470 if (pDevExt->cGipUsers == 1)
471 {
472 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
473 uint64_t u64NanoTS;
474
475 /*
476 * GIP starts/resumes updating again. On windows we bump the
477 * host timer frequency to make sure we don't get stuck in guest
478 * mode and to get better timer (and possibly clock) accuracy.
479 */
480 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
481
482 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
483
484 /*
485 * document me
486 */
487 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
488 {
489 unsigned i;
490 for (i = 0; i < pGipR0->cCpus; i++)
491 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
492 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
493 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
494 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
495 }
496
497 /*
498 * document me
499 */
500 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
501 if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC
502 || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
503 || RTMpGetOnlineCount() == 1)
504 supdrvGipReInitCpu(pGipR0, &pGipR0->aCPUs[0], u64NanoTS);
505 else
506 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
507
508 /*
509 * Detect alternative ways to figure the CPU ID in ring-3 and
510 * raw-mode context. Check the sanity of the APIC IDs, CPU IDs,
511 * and CPU set indexes while we're at it.
512 */
513 if (RT_SUCCESS(rc))
514 {
515 SUPDRVGIPDETECTGETCPU DetectState;
516 RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId));
517 DetectState.fSupported = UINT32_MAX;
518 DetectState.idCpuProblem = NIL_RTCPUID;
519 rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0);
520 if (DetectState.idCpuProblem == NIL_RTCPUID)
521 {
522 if ( DetectState.fSupported != UINT32_MAX
523 && DetectState.fSupported != 0)
524 {
525 if (pGipR0->fGetGipCpu != DetectState.fSupported)
526 {
527 pGipR0->fGetGipCpu = DetectState.fSupported;
528 LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported));
529 }
530 }
531 else
532 {
533 LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n",
534 DetectState.fSupported));
535 rc = VERR_UNSUPPORTED_CPU;
536 }
537 }
538 else
539 {
540 LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n",
541 DetectState.idCpuProblem, DetectState.idCpuProblem));
542 rc = VERR_INVALID_CPU_ID;
543 }
544 }
545
546 /*
547 * Start the GIP timer if all is well..
548 */
549 if (RT_SUCCESS(rc))
550 {
551#ifndef DO_NOT_START_GIP
552 rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc);
553#endif
554 rc = VINF_SUCCESS;
555 }
556
557 /*
558 * Bail out on error.
559 */
560 if (RT_FAILURE(rc))
561 {
562 LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc));
563 pDevExt->cGipUsers = 0;
564 pSession->fGipReferenced = 0;
565 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
566 {
567 int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2);
568 if (RT_SUCCESS(rc2))
569 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
570 }
571 HCPhys = NIL_RTHCPHYS;
572 pGipR3 = NIL_RTR3PTR;
573 }
574 }
575 }
576 }
577 else
578 {
579 rc = VERR_GENERAL_FAILURE;
580 Log(("SUPR0GipMap: GIP is not available!\n"));
581 }
582#ifdef SUPDRV_USE_MUTEX_FOR_GIP
583 RTSemMutexRelease(pDevExt->mtxGip);
584#else
585 RTSemFastMutexRelease(pDevExt->mtxGip);
586#endif
587
588 /*
589 * Write returns.
590 */
591 if (pHCPhysGip)
592 *pHCPhysGip = HCPhys;
593 if (ppGipR3)
594 *ppGipR3 = pGipR3;
595
596#ifdef DEBUG_DARWIN_GIP
597 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
598#else
599 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
600#endif
601 return rc;
602}
603
604
605/**
606 * Unmaps any user mapping of the GIP and terminates all GIP access
607 * from this session.
608 *
609 * @returns IPRT status code.
610 * @param pSession Session to which the GIP mapping should belong.
611 */
612SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
613{
614 int rc = VINF_SUCCESS;
615 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
616#ifdef DEBUG_DARWIN_GIP
617 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
618 pSession,
619 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
620 pSession->GipMapObjR3));
621#else
622 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
623#endif
624 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
625
626#ifdef SUPDRV_USE_MUTEX_FOR_GIP
627 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
628#else
629 RTSemFastMutexRequest(pDevExt->mtxGip);
630#endif
631
632 /*
633 * GIP test-mode session?
634 */
635 if ( pSession->fGipTestMode
636 && pDevExt->pGip)
637 {
638 supdrvGipSetFlags(pDevExt, pSession, 0, ~SUPGIP_FLAGS_TESTING_ENABLE);
639 Assert(!pSession->fGipTestMode);
640 }
641
642 /*
643 * Unmap anything?
644 */
645 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
646 {
647 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
648 AssertRC(rc);
649 if (RT_SUCCESS(rc))
650 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
651 }
652
653 /*
654 * Dereference global GIP.
655 */
656 if (pSession->fGipReferenced && !rc)
657 {
658 pSession->fGipReferenced = 0;
659 if ( pDevExt->cGipUsers > 0
660 && !--pDevExt->cGipUsers)
661 {
662 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
663#ifndef DO_NOT_START_GIP
664 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
665#endif
666 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
667 }
668 }
669
670#ifdef SUPDRV_USE_MUTEX_FOR_GIP
671 RTSemMutexRelease(pDevExt->mtxGip);
672#else
673 RTSemFastMutexRelease(pDevExt->mtxGip);
674#endif
675
676 return rc;
677}
678
679
680/**
681 * Gets the GIP pointer.
682 *
683 * @returns Pointer to the GIP or NULL.
684 */
685SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
686{
687 return g_pSUPGlobalInfoPage;
688}
689
690
691
692
693
694/*
695 *
696 *
697 * GIP Initialization, Termination and CPU Offline / Online Related Code.
698 * GIP Initialization, Termination and CPU Offline / Online Related Code.
699 * GIP Initialization, Termination and CPU Offline / Online Related Code.
700 *
701 *
702 */
703
704/**
705 * Used by supdrvInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq
706 * to update the TSC frequency related GIP variables.
707 *
708 * @param pGip The GIP.
709 * @param nsElapsed The number of nanoseconds elapsed.
710 * @param cElapsedTscTicks The corresponding number of TSC ticks.
711 * @param iTick The tick number for debugging.
712 */
713static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks, uint32_t iTick)
714{
715 /*
716 * Calculate the frequency.
717 */
718 uint64_t uCpuHz;
719 if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC
720 && nsElapsed < UINT32_MAX)
721 uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed);
722 else
723 {
724 RTUINT128U CpuHz, Tmp, Divisor;
725 CpuHz.s.Lo = CpuHz.s.Hi = 0;
726 RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64);
727 RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed));
728 uCpuHz = CpuHz.s.Lo;
729 }
730
731 /*
732 * Update the GIP.
733 */
734 ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz);
735 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
736 {
737 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz);
738
739 /* For inspecting the frequency calcs using tstGIP-2, debugger or similar. */
740 if (iTick + 1 < pGip->cCpus)
741 ASMAtomicWriteU64(&pGip->aCPUs[iTick + 1].u64CpuHz, uCpuHz);
742 }
743}
744
745
746/**
747 * Timer callback function for TSC frequency refinement in invariant GIP mode.
748 *
749 * This is started during driver init and fires once
750 * GIP_TSC_REFINE_PERIOD_IN_SECS seconds later.
751 *
752 * @param pTimer The timer.
753 * @param pvUser Opaque pointer to the device instance data.
754 * @param iTick The timer tick.
755 */
756static DECLCALLBACK(void) supdrvInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
757{
758 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
759 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
760 RTCPUID idCpu;
761 uint64_t cNsElapsed;
762 uint64_t cTscTicksElapsed;
763 uint64_t nsNow;
764 uint64_t uTsc;
765 RTCCUINTREG fEFlags;
766
767 /* Paranoia. */
768 AssertReturnVoid(pGip);
769 AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC);
770
771 /*
772 * If we got a power event, stop the refinement process.
773 */
774 if (pDevExt->fInvTscRefinePowerEvent)
775 {
776 int rc = RTTimerStop(pTimer); AssertRC(rc);
777 return;
778 }
779
780 /*
781 * Read the TSC and time, noting which CPU we are on.
782 *
783 * Don't bother spinning until RTTimeSystemNanoTS changes, since on
784 * systems where it matters we're in a context where we cannot waste that
785 * much time (DPC watchdog, called from clock interrupt).
786 */
787 fEFlags = ASMIntDisableFlags();
788 uTsc = ASMReadTSC();
789 nsNow = RTTimeSystemNanoTS();
790 idCpu = RTMpCpuId();
791 ASMSetFlags(fEFlags);
792
793 cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine;
794 cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine;
795
796 /*
797 * If the above measurement was taken on a different CPU than the one we
798 * started the process on, cTscTicksElapsed will need to be adjusted with
799 * the TSC deltas of both the CPUs.
800 *
801 * We ASSUME that the delta calculation process takes less time than the
802 * TSC frequency refinement timer. If it doesn't, we'll complain and
803 * drop the frequency refinement.
804 *
805 * Note! We cannot entirely trust enmUseTscDelta here because it's
806 * downgraded after each delta calculation.
807 */
808 if ( idCpu != pDevExt->idCpuInvarTscRefine
809 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
810 {
811 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine);
812 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu);
813 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
814 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
815 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
816 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
817 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
818 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
819 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
820 {
821 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
822 {
823 /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */
824 cTscTicksElapsed += iStartTscDelta - iStopTscDelta;
825 }
826 }
827 /*
828 * Allow 5 times the refinement period to elapse before we give up on the TSC delta
829 * calculations.
830 */
831 else if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * 5 * RT_NS_1SEC_64)
832 {
833 SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n",
834 (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PERIOD_IN_SECS);
835 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
836 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
837 int rc = RTTimerStop(pTimer); AssertRC(rc);
838 return;
839 }
840 }
841
842 /*
843 * Calculate and update the CPU frequency variables in GIP.
844 *
845 * If there is a GIP user already and we've already refined the frequency
846 * a couple of times, don't update it as we want a stable frequency value
847 * for all VMs.
848 */
849 if ( pDevExt->cGipUsers == 0
850 || cNsElapsed < RT_NS_1SEC * 2)
851 {
852 supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed, (uint32_t)iTick);
853
854 /*
855 * Stop the timer once we've reached the defined refinement period.
856 */
857 if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * RT_NS_1SEC_64)
858 {
859 int rc = RTTimerStop(pTimer);
860 AssertRC(rc);
861 }
862 }
863 else
864 {
865 int rc = RTTimerStop(pTimer);
866 AssertRC(rc);
867 }
868}
869
870
871/**
872 * @callback_method_impl{FNRTPOWERNOTIFICATION}
873 */
874static DECLCALLBACK(void) supdrvGipPowerNotificationCallback(RTPOWEREVENT enmEvent, void *pvUser)
875{
876 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
877 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
878
879 /*
880 * If the TSC frequency refinement timer is running, we need to cancel it so it
881 * doesn't screw up the frequency after a long suspend.
882 *
883 * Recalculate all TSC-deltas on host resume as it may have changed, seen
884 * on Windows 7 running on the Dell Optiplex Intel Core i5-3570.
885 */
886 if (enmEvent == RTPOWEREVENT_RESUME)
887 {
888 ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
889 if ( RT_LIKELY(pGip)
890 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
891 && !supdrvOSAreCpusOfflinedOnSuspend())
892 {
893#ifdef SUPDRV_USE_TSC_DELTA_THREAD
894 supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */);
895#else
896 RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet);
897 supdrvMeasureInitialTscDeltas(pDevExt);
898#endif
899 }
900 }
901 else if (enmEvent == RTPOWEREVENT_SUSPEND)
902 ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
903}
904
905
906/**
907 * Start the TSC-frequency refinment timer for the invariant TSC GIP mode.
908 *
909 * We cannot use this in the synchronous and asynchronous tsc GIP modes because
910 * the CPU may change the TSC frequence between now and when the timer fires
911 * (supdrvInitAsyncRefineTscTimer).
912 *
913 * @param pDevExt Pointer to the device instance data.
914 * @param pGip Pointer to the GIP.
915 */
916static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip)
917{
918 uint64_t u64NanoTS;
919 RTCCUINTREG fEFlags;
920 int rc;
921
922 /*
923 * Register a power management callback.
924 */
925 pDevExt->fInvTscRefinePowerEvent = false;
926 rc = RTPowerNotificationRegister(supdrvGipPowerNotificationCallback, pDevExt);
927 AssertRC(rc); /* ignore */
928
929 /*
930 * Record the TSC and NanoTS as the starting anchor point for refinement
931 * of the TSC. We try get as close to a clock tick as possible on systems
932 * which does not provide high resolution time.
933 */
934 u64NanoTS = RTTimeSystemNanoTS();
935 while (RTTimeSystemNanoTS() == u64NanoTS)
936 ASMNopPause();
937
938 fEFlags = ASMIntDisableFlags();
939 pDevExt->uTscStartInvarTscRefine = ASMReadTSC();
940 pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS();
941 pDevExt->idCpuInvarTscRefine = RTMpCpuId();
942 ASMSetFlags(fEFlags);
943
944 /*
945 * Create a timer that runs on the same CPU so we won't have a depencency
946 * on the TSC-delta and can run in parallel to it. On systems that does not
947 * implement CPU specific timers we'll apply deltas in the timer callback,
948 * just like we do for CPUs going offline.
949 *
950 * The longer the refinement interval the better the accuracy, at least in
951 * theory. If it's too long though, ring-3 may already be starting its
952 * first VMs before we're done. On most systems we will be loading the
953 * support driver during boot and VMs won't be started for a while yet,
954 * it is really only a problem during development (especially with
955 * on-demand driver starting on windows).
956 *
957 * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq() call
958 * to calculate the frequency during driver loading, the timer is set
959 * to fire after 200 ms the first time. It will then reschedule itself
960 * to fire every second until GIP_TSC_REFINE_PERIOD_IN_SECS has been
961 * reached or it notices that there is a user land client with GIP
962 * mapped (we want a stable frequency for all VMs).
963 */
964 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC,
965 RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)),
966 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
967 if (RT_SUCCESS(rc))
968 {
969 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
970 if (RT_SUCCESS(rc))
971 return;
972 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
973 }
974
975 if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED)
976 {
977 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC, RTTIMER_FLAGS_CPU_ANY,
978 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
979 if (RT_SUCCESS(rc))
980 {
981 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
982 if (RT_SUCCESS(rc))
983 return;
984 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
985 }
986 }
987
988 pDevExt->pInvarTscRefineTimer = NULL;
989 OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc));
990}
991
992
993/**
994 * @callback_method_impl{PFNRTMPWORKER,
995 * RTMpOnSpecific callback for reading TSC and time on the CPU we started
996 * the measurements on.}
997 */
998DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
999{
1000 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1001 uint64_t *puTscStop = (uint64_t *)pvUser1;
1002 uint64_t *pnsStop = (uint64_t *)pvUser2;
1003
1004 *puTscStop = ASMReadTSC();
1005 *pnsStop = RTTimeSystemNanoTS();
1006
1007 ASMSetFlags(fEFlags);
1008}
1009
1010
1011/**
1012 * Measures the TSC frequency of the system.
1013 *
1014 * The TSC frequency can vary on systems which are not reported as invariant.
1015 * On such systems the object of this function is to find out what the nominal,
1016 * maximum TSC frequency under 'normal' CPU operation.
1017 *
1018 * @returns VBox status code.
1019 * @param pDevExt Pointer to the device instance.
1020 * @param pGip Pointer to the GIP.
1021 * @param fRough Set if we're doing the rough calculation that the
1022 * TSC measuring code needs, where accuracy isn't all
1023 * that important (too high is better than too low).
1024 * When clear we try for best accuracy that we can
1025 * achieve in reasonably short time.
1026 */
1027static int supdrvGipInitMeasureTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, bool fRough)
1028{
1029 uint32_t nsTimerIncr = RTTimerGetSystemGranularity();
1030 int cTriesLeft = fRough ? 4 : 2;
1031 while (cTriesLeft-- > 0)
1032 {
1033 RTCCUINTREG fEFlags;
1034 uint64_t nsStart;
1035 uint64_t nsStop;
1036 uint64_t uTscStart;
1037 uint64_t uTscStop;
1038 RTCPUID idCpuStart;
1039 RTCPUID idCpuStop;
1040
1041 /*
1042 * Synchronize with the host OS clock tick on systems without high
1043 * resolution time API (older Windows version for example).
1044 */
1045 nsStart = RTTimeSystemNanoTS();
1046 while (RTTimeSystemNanoTS() == nsStart)
1047 ASMNopPause();
1048
1049 /*
1050 * Read the TSC and current time, noting which CPU we're on.
1051 */
1052 fEFlags = ASMIntDisableFlags();
1053 uTscStart = ASMReadTSC();
1054 nsStart = RTTimeSystemNanoTS();
1055 idCpuStart = RTMpCpuId();
1056 ASMSetFlags(fEFlags);
1057
1058 /*
1059 * Delay for a while.
1060 */
1061 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1062 {
1063 /*
1064 * Sleep-wait since the TSC frequency is constant, it eases host load.
1065 * Shorter interval produces more variance in the frequency (esp. Windows).
1066 */
1067 uint64_t msElapsed = 0;
1068 uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US )
1069 / RT_NS_1MS;
1070 do
1071 {
1072 RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed));
1073 nsStop = RTTimeSystemNanoTS();
1074 msElapsed = (nsStop - nsStart) / RT_NS_1MS;
1075 } while (msElapsed < msDelay);
1076
1077 while (RTTimeSystemNanoTS() == nsStop)
1078 ASMNopPause();
1079 }
1080 else
1081 {
1082 /*
1083 * Busy-wait keeping the frequency up.
1084 */
1085 do
1086 {
1087 ASMNopPause();
1088 nsStop = RTTimeSystemNanoTS();
1089 } while (nsStop - nsStart < RT_NS_100MS);
1090 }
1091
1092 /*
1093 * Read the TSC and time again.
1094 */
1095 fEFlags = ASMIntDisableFlags();
1096 uTscStop = ASMReadTSC();
1097 nsStop = RTTimeSystemNanoTS();
1098 idCpuStop = RTMpCpuId();
1099 ASMSetFlags(fEFlags);
1100
1101 /*
1102 * If the CPU changes, things get a bit complicated and what we
1103 * can get away with depends on the GIP mode / TSC reliability.
1104 */
1105 if (idCpuStop != idCpuStart)
1106 {
1107 bool fDoXCall = false;
1108
1109 /*
1110 * Synchronous TSC mode: we're probably fine as it's unlikely
1111 * that we were rescheduled because of TSC throttling or power
1112 * management reasons, so just go ahead.
1113 */
1114 if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC)
1115 {
1116 /* Probably ok, maybe we should retry once?. */
1117 Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE);
1118 }
1119 /*
1120 * If we're just doing the rough measurement, do the cross call and
1121 * get on with things (we don't have deltas!).
1122 */
1123 else if (fRough)
1124 fDoXCall = true;
1125 /*
1126 * Invariant TSC mode: It doesn't matter if we have delta available
1127 * for both CPUs. That is not something we can assume at this point.
1128 *
1129 * Note! We cannot necessarily trust enmUseTscDelta here because it's
1130 * downgraded after each delta calculation and the delta
1131 * calculations may not be complete yet.
1132 */
1133 else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1134 {
1135/** @todo This section of code is never reached atm, consider dropping it later on... */
1136 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1137 {
1138 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart);
1139 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop);
1140 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1141 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
1142 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1143 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
1144 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
1145 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
1146 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
1147 {
1148 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
1149 {
1150 uTscStart -= iStartTscDelta;
1151 uTscStop -= iStopTscDelta;
1152 }
1153 }
1154 /*
1155 * Invalid CPU indexes are not caused by online/offline races, so
1156 * we have to trigger driver load failure if that happens as GIP
1157 * and IPRT assumptions are busted on this system.
1158 */
1159 else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus)
1160 {
1161 SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n");
1162 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
1163 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
1164 return VERR_INVALID_CPU_INDEX;
1165 }
1166 /*
1167 * No valid deltas. We retry, if we're on our last retry
1168 * we do the cross call instead just to get a result. The
1169 * frequency will be refined in a few seconds anyway.
1170 */
1171 else if (cTriesLeft > 0)
1172 continue;
1173 else
1174 fDoXCall = true;
1175 }
1176 }
1177 /*
1178 * Asynchronous TSC mode: This is bad, as the reason we usually
1179 * use this mode is to deal with variable TSC frequencies and
1180 * deltas. So, we need to get the TSC from the same CPU as
1181 * started it, we also need to keep that CPU busy. So, retry
1182 * and fall back to the cross call on the last attempt.
1183 */
1184 else
1185 {
1186 Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC);
1187 if (cTriesLeft > 0)
1188 continue;
1189 fDoXCall = true;
1190 }
1191
1192 if (fDoXCall)
1193 {
1194 /*
1195 * Try read the TSC and timestamp on the start CPU.
1196 */
1197 int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop);
1198 if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0))
1199 continue;
1200 }
1201 }
1202
1203 /*
1204 * Calculate the TSC frequency and update it (shared with the refinement timer).
1205 */
1206 supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart, 0);
1207 return VINF_SUCCESS;
1208 }
1209
1210 Assert(!fRough);
1211 return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED;
1212}
1213
1214
1215/**
1216 * Finds our (@a idCpu) entry, or allocates a new one if not found.
1217 *
1218 * @returns Index of the CPU in the cache set.
1219 * @param pGip The GIP.
1220 * @param idCpu The CPU ID.
1221 */
1222static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
1223{
1224 uint32_t i, cTries;
1225
1226 /*
1227 * ASSUMES that CPU IDs are constant.
1228 */
1229 for (i = 0; i < pGip->cCpus; i++)
1230 if (pGip->aCPUs[i].idCpu == idCpu)
1231 return i;
1232
1233 cTries = 0;
1234 do
1235 {
1236 for (i = 0; i < pGip->cCpus; i++)
1237 {
1238 bool fRc;
1239 ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc);
1240 if (fRc)
1241 return i;
1242 }
1243 } while (cTries++ < 32);
1244 AssertReleaseFailed();
1245 return i - 1;
1246}
1247
1248
1249/**
1250 * The calling CPU should be accounted as online, update GIP accordingly.
1251 *
1252 * This is used by supdrvGipCreate() as well as supdrvGipMpEvent().
1253 *
1254 * @param pDevExt The device extension.
1255 * @param idCpu The CPU ID.
1256 */
1257static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1258{
1259 int iCpuSet = 0;
1260 uint16_t idApic = UINT16_MAX;
1261 uint32_t i = 0;
1262 uint64_t u64NanoTS = 0;
1263 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1264
1265 AssertPtrReturnVoid(pGip);
1266 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1267 AssertRelease(idCpu == RTMpCpuId());
1268 Assert(pGip->cPossibleCpus == RTMpGetCount());
1269
1270 /*
1271 * Do this behind a spinlock with interrupts disabled as this can fire
1272 * on all CPUs simultaneously, see @bugref{6110}.
1273 */
1274 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1275
1276 /*
1277 * Update the globals.
1278 */
1279 ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount());
1280 ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount());
1281 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1282 if (iCpuSet >= 0)
1283 {
1284 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1285 RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet);
1286 RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet);
1287 }
1288
1289 /*
1290 * Update the entry.
1291 */
1292 u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS;
1293 i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1294
1295 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz);
1296
1297 idApic = ASMGetApicId();
1298 ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic);
1299 ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet);
1300 ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu);
1301
1302 /*
1303 * Update the APIC ID and CPU set index mappings.
1304 */
1305 ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i);
1306 ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i);
1307
1308 /* Add this CPU to this set of CPUs we need to calculate the TSC-delta for. */
1309 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, RTMpCpuIdToSetIndex(idCpu));
1310
1311 /* Update the Mp online/offline counter. */
1312 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1313
1314 /* Commit it. */
1315 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE);
1316
1317 RTSpinlockRelease(pDevExt->hGipSpinlock);
1318}
1319
1320
1321/**
1322 * RTMpOnSpecific callback wrapper for supdrvGipMpEventOnlineOrInitOnCpu().
1323 *
1324 * @param idCpu The CPU ID we are running on.
1325 * @param pvUser1 Opaque pointer to the device instance data.
1326 * @param pvUser2 Not used.
1327 */
1328static DECLCALLBACK(void) supdrvGipMpEventOnlineCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1329{
1330 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser1;
1331 NOREF(pvUser2);
1332 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1333}
1334
1335
1336/**
1337 * The CPU should be accounted as offline, update the GIP accordingly.
1338 *
1339 * This is used by supdrvGipMpEvent.
1340 *
1341 * @param pDevExt The device extension.
1342 * @param idCpu The CPU ID.
1343 */
1344static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1345{
1346 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1347 int iCpuSet;
1348 unsigned i;
1349
1350 AssertPtrReturnVoid(pGip);
1351 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1352
1353 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1354 AssertReturnVoid(iCpuSet >= 0);
1355
1356 i = pGip->aiCpuFromCpuSetIdx[iCpuSet];
1357 AssertReturnVoid(i < pGip->cCpus);
1358 AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu);
1359
1360 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1361 RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet);
1362
1363 /* Update the Mp online/offline counter. */
1364 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1365
1366 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1367 {
1368 /* Reset the TSC delta, we will recalculate it lazily. */
1369 ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX);
1370 /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */
1371 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet);
1372 }
1373
1374 /* Commit it. */
1375 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE);
1376
1377 RTSpinlockRelease(pDevExt->hGipSpinlock);
1378}
1379
1380
1381/**
1382 * Multiprocessor event notification callback.
1383 *
1384 * This is used to make sure that the GIP master gets passed on to
1385 * another CPU. It also updates the associated CPU data.
1386 *
1387 * @param enmEvent The event.
1388 * @param idCpu The cpu it applies to.
1389 * @param pvUser Pointer to the device extension.
1390 */
1391static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
1392{
1393 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
1394 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1395
1396 if (pGip)
1397 {
1398 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1399 switch (enmEvent)
1400 {
1401 case RTMPEVENT_ONLINE:
1402 {
1403 RTThreadPreemptDisable(&PreemptState);
1404 if (idCpu == RTMpCpuId())
1405 {
1406 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1407 RTThreadPreemptRestore(&PreemptState);
1408 }
1409 else
1410 {
1411 RTThreadPreemptRestore(&PreemptState);
1412 RTMpOnSpecific(idCpu, supdrvGipMpEventOnlineCallback, pDevExt, NULL /* pvUser2 */);
1413 }
1414
1415 /*
1416 * Recompute TSC-delta for the newly online'd CPU.
1417 */
1418 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1419 {
1420#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1421 supdrvTscDeltaThreadStartMeasurement(pDevExt, false /* fForceAll */);
1422#else
1423 uint32_t iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1424 supdrvMeasureTscDeltaOne(pDevExt, iCpu);
1425#endif
1426 }
1427 break;
1428 }
1429
1430 case RTMPEVENT_OFFLINE:
1431 supdrvGipMpEventOffline(pDevExt, idCpu);
1432 break;
1433 }
1434 }
1435
1436 /*
1437 * Make sure there is a master GIP.
1438 */
1439 if (enmEvent == RTMPEVENT_OFFLINE)
1440 {
1441 RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster);
1442 if (idGipMaster == idCpu)
1443 {
1444 /*
1445 * The GIP master is going offline, find a new one.
1446 */
1447 bool fIgnored;
1448 unsigned i;
1449 RTCPUID idNewGipMaster = NIL_RTCPUID;
1450 RTCPUSET OnlineCpus;
1451 RTMpGetOnlineSet(&OnlineCpus);
1452
1453 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
1454 if (RTCpuSetIsMemberByIndex(&OnlineCpus, i))
1455 {
1456 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
1457 if (idCurCpu != idGipMaster)
1458 {
1459 idNewGipMaster = idCurCpu;
1460 break;
1461 }
1462 }
1463
1464 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
1465 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
1466 NOREF(fIgnored);
1467 }
1468 }
1469}
1470
1471
1472/**
1473 * On CPU initialization callback for RTMpOnAll.
1474 *
1475 * @param idCpu The CPU ID.
1476 * @param pvUser1 The device extension.
1477 * @param pvUser2 The GIP.
1478 */
1479static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1480{
1481 /* This is good enough, even though it will update some of the globals a
1482 bit to much. */
1483 supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu);
1484}
1485
1486
1487/**
1488 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
1489 *
1490 * @param idCpu Ignored.
1491 * @param pvUser1 Where to put the TSC.
1492 * @param pvUser2 Ignored.
1493 */
1494static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1495{
1496 Assert(RTMpCpuIdToSetIndex(idCpu) == (intptr_t)pvUser2);
1497 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
1498}
1499
1500
1501/**
1502 * Determine if Async GIP mode is required because of TSC drift.
1503 *
1504 * When using the default/normal timer code it is essential that the time stamp counter
1505 * (TSC) runs never backwards, that is, a read operation to the counter should return
1506 * a bigger value than any previous read operation. This is guaranteed by the latest
1507 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
1508 * case we have to choose the asynchronous timer mode.
1509 *
1510 * @param poffMin Pointer to the determined difference between different
1511 * cores (optional, can be NULL).
1512 * @return false if the time stamp counters appear to be synchronized, true otherwise.
1513 */
1514static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin)
1515{
1516 /*
1517 * Just iterate all the cpus 8 times and make sure that the TSC is
1518 * ever increasing. We don't bother taking TSC rollover into account.
1519 */
1520 int iEndCpu = RTMpGetArraySize();
1521 int iCpu;
1522 int cLoops = 8;
1523 bool fAsync = false;
1524 int rc = VINF_SUCCESS;
1525 uint64_t offMax = 0;
1526 uint64_t offMin = ~(uint64_t)0;
1527 uint64_t PrevTsc = ASMReadTSC();
1528
1529 while (cLoops-- > 0)
1530 {
1531 for (iCpu = 0; iCpu < iEndCpu; iCpu++)
1532 {
1533 uint64_t CurTsc;
1534 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker,
1535 &CurTsc, (void *)(uintptr_t)iCpu);
1536 if (RT_SUCCESS(rc))
1537 {
1538 if (CurTsc <= PrevTsc)
1539 {
1540 fAsync = true;
1541 offMin = offMax = PrevTsc - CurTsc;
1542 Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
1543 iCpu, cLoops, CurTsc, PrevTsc));
1544 break;
1545 }
1546
1547 /* Gather statistics (except the first time). */
1548 if (iCpu != 0 || cLoops != 7)
1549 {
1550 uint64_t off = CurTsc - PrevTsc;
1551 if (off < offMin)
1552 offMin = off;
1553 if (off > offMax)
1554 offMax = off;
1555 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
1556 }
1557
1558 /* Next */
1559 PrevTsc = CurTsc;
1560 }
1561 else if (rc == VERR_NOT_SUPPORTED)
1562 break;
1563 else
1564 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
1565 }
1566
1567 /* broke out of the loop. */
1568 if (iCpu < iEndCpu)
1569 break;
1570 }
1571
1572 if (poffMin)
1573 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
1574 Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
1575 fAsync, iEndCpu, rc, offMin, offMax));
1576#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
1577 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
1578#endif
1579 return fAsync;
1580}
1581
1582
1583/**
1584 * supdrvGipInit() worker that determines the GIP TSC mode.
1585 *
1586 * @returns The most suitable TSC mode.
1587 * @param pDevExt Pointer to the device instance data.
1588 */
1589static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt)
1590{
1591 uint64_t u64DiffCoresIgnored;
1592 uint32_t uEAX, uEBX, uECX, uEDX;
1593
1594 /*
1595 * Establish whether the CPU advertises TSC as invariant, we need that in
1596 * a couple of places below.
1597 */
1598 bool fInvariantTsc = false;
1599 if (ASMHasCpuId())
1600 {
1601 uEAX = ASMCpuId_EAX(0x80000000);
1602 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1603 {
1604 uEDX = ASMCpuId_EDX(0x80000007);
1605 if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR)
1606 fInvariantTsc = true;
1607 }
1608 }
1609
1610 /*
1611 * On single CPU systems, we don't need to consider ASYNC mode.
1612 */
1613 if (RTMpGetCount() <= 1)
1614 return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC;
1615
1616 /*
1617 * Allow the user and/or OS specific bits to force async mode.
1618 */
1619 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
1620 return SUPGIPMODE_ASYNC_TSC;
1621
1622 /*
1623 * Use invariant mode if the CPU says TSC is invariant.
1624 */
1625 if (fInvariantTsc)
1626 return SUPGIPMODE_INVARIANT_TSC;
1627
1628 /*
1629 * TSC is not invariant and we're on SMP, this presents two problems:
1630 *
1631 * (1) There might be a skew between the CPU, so that cpu0
1632 * returns a TSC that is slightly different from cpu1.
1633 * This screw may be due to (2), bad TSC initialization
1634 * or slightly different TSC rates.
1635 *
1636 * (2) Power management (and other things) may cause the TSC
1637 * to run at a non-constant speed, and cause the speed
1638 * to be different on the cpus. This will result in (1).
1639 *
1640 * If any of the above is detected, we will have to use ASYNC mode.
1641 */
1642 /* (1). Try check for current differences between the cpus. */
1643 if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored))
1644 return SUPGIPMODE_ASYNC_TSC;
1645
1646 /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */
1647 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
1648 if ( ASMIsValidStdRange(uEAX)
1649 && ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1650 {
1651 /* Check for APM support. */
1652 uEAX = ASMCpuId_EAX(0x80000000);
1653 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1654 {
1655 uEDX = ASMCpuId_EDX(0x80000007);
1656 if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
1657 return SUPGIPMODE_ASYNC_TSC;
1658 }
1659 }
1660
1661 return SUPGIPMODE_SYNC_TSC;
1662}
1663
1664
1665/**
1666 * Initializes per-CPU GIP information.
1667 *
1668 * @param pGip Pointer to the GIP.
1669 * @param pCpu Pointer to which GIP CPU to initialize.
1670 * @param u64NanoTS The current nanosecond timestamp.
1671 * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know.
1672 */
1673static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz)
1674{
1675 pCpu->u32TransactionId = 2;
1676 pCpu->u64NanoTS = u64NanoTS;
1677 pCpu->u64TSC = ASMReadTSC();
1678 pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD;
1679 pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0;
1680
1681 ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID);
1682 ASMAtomicWriteSize(&pCpu->idCpu, NIL_RTCPUID);
1683 ASMAtomicWriteS16(&pCpu->iCpuSet, -1);
1684 ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX);
1685
1686 /*
1687 * The first time we're called, we don't have a CPU frequency handy,
1688 * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get
1689 * called again and at that point we have a more plausible CPU frequency
1690 * value handy. The frequency history will also be adjusted again on
1691 * the 2nd timer callout (maybe we can skip that now?).
1692 */
1693 if (!uCpuHz)
1694 {
1695 pCpu->u64CpuHz = _4G - 1;
1696 pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz);
1697 }
1698 else
1699 {
1700 pCpu->u64CpuHz = uCpuHz;
1701 pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz);
1702 }
1703 pCpu->au32TSCHistory[0]
1704 = pCpu->au32TSCHistory[1]
1705 = pCpu->au32TSCHistory[2]
1706 = pCpu->au32TSCHistory[3]
1707 = pCpu->au32TSCHistory[4]
1708 = pCpu->au32TSCHistory[5]
1709 = pCpu->au32TSCHistory[6]
1710 = pCpu->au32TSCHistory[7]
1711 = pCpu->u32UpdateIntervalTSC;
1712}
1713
1714
1715/**
1716 * Initializes the GIP data.
1717 *
1718 * @param pDevExt Pointer to the device instance data.
1719 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1720 * @param HCPhys The physical address of the GIP.
1721 * @param u64NanoTS The current nanosecond timestamp.
1722 * @param uUpdateHz The update frequency.
1723 * @param uUpdateIntervalNS The update interval in nanoseconds.
1724 * @param cCpus The CPU count.
1725 */
1726static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys,
1727 uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS, unsigned cCpus)
1728{
1729 size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), PAGE_SIZE);
1730 unsigned i;
1731#ifdef DEBUG_DARWIN_GIP
1732 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1733#else
1734 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1735#endif
1736
1737 /*
1738 * Initialize the structure.
1739 */
1740 memset(pGip, 0, cbGip);
1741
1742 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
1743 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
1744 pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt);
1745 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
1746 /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */)
1747 pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */
1748 ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */;
1749 else
1750 pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE;
1751 pGip->cCpus = (uint16_t)cCpus;
1752 pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE);
1753 pGip->u32UpdateHz = uUpdateHz;
1754 pGip->u32UpdateIntervalNS = uUpdateIntervalNS;
1755 pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID;
1756 RTCpuSetEmpty(&pGip->OnlineCpuSet);
1757 RTCpuSetEmpty(&pGip->PresentCpuSet);
1758 RTMpGetSet(&pGip->PossibleCpuSet);
1759 pGip->cOnlineCpus = RTMpGetOnlineCount();
1760 pGip->cPresentCpus = RTMpGetPresentCount();
1761 pGip->cPossibleCpus = RTMpGetCount();
1762 pGip->idCpuMax = RTMpGetMaxCpuId();
1763 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++)
1764 pGip->aiCpuFromApicId[i] = UINT16_MAX;
1765 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++)
1766 pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX;
1767 for (i = 0; i < cCpus; i++)
1768 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/);
1769
1770 /*
1771 * Link it to the device extension.
1772 */
1773 pDevExt->pGip = pGip;
1774 pDevExt->HCPhysGip = HCPhys;
1775 pDevExt->cGipUsers = 0;
1776}
1777
1778
1779/**
1780 * Creates the GIP.
1781 *
1782 * @returns VBox status code.
1783 * @param pDevExt Instance data. GIP stuff may be updated.
1784 */
1785int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
1786{
1787 PSUPGLOBALINFOPAGE pGip;
1788 RTHCPHYS HCPhysGip;
1789 uint32_t u32SystemResolution;
1790 uint32_t u32Interval;
1791 uint32_t u32MinInterval;
1792 uint32_t uMod;
1793 unsigned cCpus;
1794 int rc;
1795
1796 LogFlow(("supdrvGipCreate:\n"));
1797
1798 /*
1799 * Assert order.
1800 */
1801 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
1802 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
1803 Assert(!pDevExt->pGipTimer);
1804#ifdef SUPDRV_USE_MUTEX_FOR_GIP
1805 Assert(pDevExt->mtxGip != NIL_RTSEMMUTEX);
1806 Assert(pDevExt->mtxTscDelta != NIL_RTSEMMUTEX);
1807#else
1808 Assert(pDevExt->mtxGip != NIL_RTSEMFASTMUTEX);
1809 Assert(pDevExt->mtxTscDelta != NIL_RTSEMFASTMUTEX);
1810#endif
1811
1812 /*
1813 * Check the CPU count.
1814 */
1815 cCpus = RTMpGetArraySize();
1816 if ( cCpus > RTCPUSET_MAX_CPUS
1817 || cCpus > 256 /* ApicId is used for the mappings */)
1818 {
1819 SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256));
1820 return VERR_TOO_MANY_CPUS;
1821 }
1822
1823 /*
1824 * Allocate a contiguous set of pages with a default kernel mapping.
1825 */
1826 rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), false /*fExecutable*/);
1827 if (RT_FAILURE(rc))
1828 {
1829 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
1830 return rc;
1831 }
1832 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
1833 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
1834
1835 /*
1836 * Find a reasonable update interval and initialize the structure.
1837 */
1838 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
1839 /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs.
1840 * See @bugref{6710}. */
1841 u32MinInterval = RT_NS_10MS;
1842 u32SystemResolution = RTTimerGetSystemGranularity();
1843 u32Interval = u32MinInterval;
1844 uMod = u32MinInterval % u32SystemResolution;
1845 if (uMod)
1846 u32Interval += u32SystemResolution - uMod;
1847
1848 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval, cCpus);
1849
1850 /*
1851 * Important sanity check...
1852 */
1853 if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED
1854 && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC
1855 && !supdrvOSGetForcedAsyncTscMode(pDevExt)))
1856 {
1857 OSDBGPRINT(("supdrvGipCreate: Host-OS/user claims the TSC-deltas are zero but we detected async. TSC! Bad.\n"));
1858 return VERR_INTERNAL_ERROR_2;
1859 }
1860
1861 /* It doesn't make sense to do TSC-delta detection on systems we detect as async. */
1862 AssertReturn( pGip->u32Mode != SUPGIPMODE_ASYNC_TSC
1863 || pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED, VERR_INTERNAL_ERROR_3);
1864
1865 /*
1866 * Do the TSC frequency measurements.
1867 *
1868 * If we're in invariant TSC mode, just to a quick preliminary measurement
1869 * that the TSC-delta measurement code can use to yield cross calls.
1870 *
1871 * If we're in any of the other two modes, neither which require MP init,
1872 * notifications or deltas for the job, do the full measurement now so
1873 * that supdrvGipInitOnCpu() can populate the TSC interval and history
1874 * array with more reasonable values.
1875 */
1876 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1877 {
1878 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, true /*fRough*/); /* cannot fail */
1879 supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt, pGip);
1880 }
1881 else
1882 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, false /*fRough*/);
1883 if (RT_SUCCESS(rc))
1884 {
1885 /*
1886 * Start TSC-delta measurement thread before we start getting MP
1887 * events that will try kick it into action (includes the
1888 * RTMpOnAll/supdrvGipInitOnCpu call below).
1889 */
1890 RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet);
1891 RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet);
1892#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1893 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1894 rc = supdrvTscDeltaThreadInit(pDevExt);
1895#endif
1896 if (RT_SUCCESS(rc))
1897 {
1898 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
1899 if (RT_SUCCESS(rc))
1900 {
1901 /*
1902 * Do GIP initialization on all online CPUs. Wake up the
1903 * TSC-delta thread afterwards.
1904 */
1905 rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip);
1906 if (RT_SUCCESS(rc))
1907 {
1908#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1909 supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */);
1910#else
1911 uint16_t iCpu;
1912 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1913 {
1914 /*
1915 * Measure the TSC deltas now that we have MP notifications.
1916 */
1917 int cTries = 5;
1918 do
1919 {
1920 rc = supdrvMeasureInitialTscDeltas(pDevExt);
1921 if ( rc != VERR_TRY_AGAIN
1922 && rc != VERR_CPU_OFFLINE)
1923 break;
1924 } while (--cTries > 0);
1925 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1926 Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta));
1927 }
1928 else
1929 {
1930 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1931 AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode));
1932 }
1933 if (RT_SUCCESS(rc))
1934#endif
1935 {
1936 /*
1937 * Create the timer.
1938 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
1939 */
1940 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
1941 {
1942 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL,
1943 supdrvGipAsyncTimer, pDevExt);
1944 if (rc == VERR_NOT_SUPPORTED)
1945 {
1946 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
1947 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
1948 }
1949 }
1950 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
1951 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */,
1952 supdrvGipSyncAndInvariantTimer, pDevExt);
1953 if (RT_SUCCESS(rc))
1954 {
1955 /*
1956 * We're good.
1957 */
1958 Log(("supdrvGipCreate: %u ns interval.\n", u32Interval));
1959 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
1960
1961 g_pSUPGlobalInfoPage = pGip;
1962 return VINF_SUCCESS;
1963 }
1964
1965 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc));
1966 Assert(!pDevExt->pGipTimer);
1967 }
1968 }
1969 else
1970 OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc));
1971 }
1972 else
1973 OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc));
1974 }
1975 else
1976 OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc));
1977 }
1978 else
1979 OSDBGPRINT(("supdrvGipCreate: supdrvMeasureInitialTscDeltas failed. rc=%Rrc\n", rc));
1980
1981 /* Releases timer frequency increase too. */
1982 supdrvGipDestroy(pDevExt);
1983 return rc;
1984}
1985
1986
1987/**
1988 * Invalidates the GIP data upon termination.
1989 *
1990 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1991 */
1992static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
1993{
1994 unsigned i;
1995 pGip->u32Magic = 0;
1996 for (i = 0; i < pGip->cCpus; i++)
1997 {
1998 pGip->aCPUs[i].u64NanoTS = 0;
1999 pGip->aCPUs[i].u64TSC = 0;
2000 pGip->aCPUs[i].iTSCHistoryHead = 0;
2001 pGip->aCPUs[i].u64TSCSample = 0;
2002 pGip->aCPUs[i].i64TSCDelta = INT64_MAX;
2003 }
2004}
2005
2006
2007/**
2008 * Terminates the GIP.
2009 *
2010 * @param pDevExt Instance data. GIP stuff may be updated.
2011 */
2012void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
2013{
2014 int rc;
2015#ifdef DEBUG_DARWIN_GIP
2016 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
2017 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
2018 pDevExt->pGipTimer, pDevExt->GipMemObj));
2019#endif
2020
2021 /*
2022 * Stop receiving MP notifications before tearing anything else down.
2023 */
2024 RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt);
2025
2026#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2027 /*
2028 * Terminate the TSC-delta measurement thread and resources.
2029 */
2030 supdrvTscDeltaTerm(pDevExt);
2031#endif
2032
2033 /*
2034 * Destroy the TSC-refinement timer.
2035 */
2036 if (pDevExt->pInvarTscRefineTimer)
2037 {
2038 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
2039 pDevExt->pInvarTscRefineTimer = NULL;
2040 }
2041
2042 /*
2043 * Invalid the GIP data.
2044 */
2045 if (pDevExt->pGip)
2046 {
2047 supdrvGipTerm(pDevExt->pGip);
2048 pDevExt->pGip = NULL;
2049 }
2050 g_pSUPGlobalInfoPage = NULL;
2051
2052 /*
2053 * Destroy the timer and free the GIP memory object.
2054 */
2055 if (pDevExt->pGipTimer)
2056 {
2057 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
2058 pDevExt->pGipTimer = NULL;
2059 }
2060
2061 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
2062 {
2063 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
2064 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
2065 }
2066
2067 /*
2068 * Finally, make sure we've release the system timer resolution request
2069 * if one actually succeeded and is still pending.
2070 */
2071 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
2072}
2073
2074
2075
2076
2077/*
2078 *
2079 *
2080 * GIP Update Timer Related Code
2081 * GIP Update Timer Related Code
2082 * GIP Update Timer Related Code
2083 *
2084 *
2085 */
2086
2087
2088/**
2089 * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that
2090 * updates all the per cpu data except the transaction id.
2091 *
2092 * @param pDevExt The device extension.
2093 * @param pGipCpu Pointer to the per cpu data.
2094 * @param u64NanoTS The current time stamp.
2095 * @param u64TSC The current TSC.
2096 * @param iTick The current timer tick.
2097 *
2098 * @remarks Can be called with interrupts disabled!
2099 */
2100static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
2101{
2102 uint64_t u64TSCDelta;
2103 bool fUpdateCpuHz;
2104 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2105 AssertPtrReturnVoid(pGip);
2106
2107 /* Delta between this and the previous update. */
2108 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
2109
2110 /*
2111 * Update the NanoTS.
2112 */
2113 ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS);
2114
2115 /*
2116 * Calc TSC delta.
2117 */
2118 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
2119 ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC);
2120
2121 /*
2122 * Determine if we need to update the CPU (TSC) frequency calculation.
2123 *
2124 * We don't need to keep recalculating the frequency when it's invariant,
2125 * unless the special tstGIP-2 testing mode is enabled.
2126 */
2127 fUpdateCpuHz = pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC;
2128 if (!(pGip->fFlags & SUPGIP_FLAGS_TESTING))
2129 { /* likely*/ }
2130 else
2131 {
2132 uint32_t fGipFlags = pGip->fFlags;
2133 if (fGipFlags & (SUPGIP_FLAGS_TESTING_ENABLE | SUPGIP_FLAGS_TESTING_START))
2134 {
2135 if (fGipFlags & SUPGIP_FLAGS_TESTING_START)
2136 {
2137 /* Cache the TSC frequency before forcing updates due to test mode. */
2138 if (!fUpdateCpuHz)
2139 pDevExt->uGipTestModeInvariantCpuHz = pGip->aCPUs[0].u64CpuHz;
2140 ASMAtomicAndU32(&pGip->fFlags, ~SUPGIP_FLAGS_TESTING_START);
2141 }
2142 fUpdateCpuHz = true;
2143 }
2144 else if (fGipFlags & SUPGIP_FLAGS_TESTING_STOP)
2145 {
2146 /* Restore the cached TSC frequency if any. */
2147 if (!fUpdateCpuHz)
2148 {
2149 Assert(pDevExt->uGipTestModeInvariantCpuHz);
2150 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, pDevExt->uGipTestModeInvariantCpuHz);
2151 }
2152 ASMAtomicAndU32(&pGip->fFlags, ~(SUPGIP_FLAGS_TESTING_STOP | SUPGIP_FLAGS_TESTING));
2153 }
2154 }
2155
2156 /*
2157 * Calculate the CPU (TSC) frequency if necessary.
2158 */
2159 if (fUpdateCpuHz)
2160 {
2161 uint64_t u64CpuHz;
2162 uint32_t u32UpdateIntervalTSC;
2163 uint32_t u32UpdateIntervalTSCSlack;
2164 uint32_t u32TransactionId;
2165 unsigned iTSCHistoryHead;
2166
2167 if (u64TSCDelta >> 32)
2168 {
2169 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
2170 pGipCpu->cErrors++;
2171 }
2172
2173 /*
2174 * On the 2nd and 3rd callout, reset the history with the current TSC
2175 * interval since the values entered by supdrvGipInit are totally off.
2176 * The interval on the 1st callout completely unreliable, the 2nd is a bit
2177 * better, while the 3rd should be most reliable.
2178 */
2179 /** @todo Could we drop this now that we initializes the history
2180 * with nominal TSC frequency values? */
2181 u32TransactionId = pGipCpu->u32TransactionId;
2182 if (RT_UNLIKELY( ( u32TransactionId == 5
2183 || u32TransactionId == 7)
2184 && ( iTick == 2
2185 || iTick == 3) ))
2186 {
2187 unsigned i;
2188 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
2189 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
2190 }
2191
2192 /*
2193 * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%.
2194 * Wait until we have at least one full history since the above history reset. The
2195 * assumption is that the majority of the previous history values will be tolerable.
2196 * See @bugref{6710#c67}.
2197 */
2198 /** @todo Could we drop the fudging there now that we initializes the history
2199 * with nominal TSC frequency values? */
2200 if ( u32TransactionId > 23 /* 7 + (8 * 2) */
2201 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2202 {
2203 uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200;
2204 if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold
2205 || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold)
2206 {
2207 uint32_t u32;
2208 u32 = pGipCpu->au32TSCHistory[0];
2209 u32 += pGipCpu->au32TSCHistory[1];
2210 u32 += pGipCpu->au32TSCHistory[2];
2211 u32 += pGipCpu->au32TSCHistory[3];
2212 u32 >>= 2;
2213 u64TSCDelta = pGipCpu->au32TSCHistory[4];
2214 u64TSCDelta += pGipCpu->au32TSCHistory[5];
2215 u64TSCDelta += pGipCpu->au32TSCHistory[6];
2216 u64TSCDelta += pGipCpu->au32TSCHistory[7];
2217 u64TSCDelta >>= 2;
2218 u64TSCDelta += u32;
2219 u64TSCDelta >>= 1;
2220 }
2221 }
2222
2223 /*
2224 * TSC History.
2225 */
2226 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
2227 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
2228 ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
2229 ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
2230
2231 /*
2232 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
2233 *
2234 * On Windows, we have an occasional (but recurring) sour value that messed up
2235 * the history but taking only 1 interval reduces the precision overall.
2236 */
2237 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
2238 || pGip->u32UpdateHz >= 1000)
2239 {
2240 uint32_t u32;
2241 u32 = pGipCpu->au32TSCHistory[0];
2242 u32 += pGipCpu->au32TSCHistory[1];
2243 u32 += pGipCpu->au32TSCHistory[2];
2244 u32 += pGipCpu->au32TSCHistory[3];
2245 u32 >>= 2;
2246 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
2247 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
2248 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
2249 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
2250 u32UpdateIntervalTSC >>= 2;
2251 u32UpdateIntervalTSC += u32;
2252 u32UpdateIntervalTSC >>= 1;
2253
2254 /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */
2255 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
2256 }
2257 else if (pGip->u32UpdateHz >= 90)
2258 {
2259 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2260 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
2261 u32UpdateIntervalTSC >>= 1;
2262
2263 /* value chosen on a 2GHz thinkpad running windows */
2264 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
2265 }
2266 else
2267 {
2268 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2269
2270 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
2271 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
2272 }
2273 ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
2274
2275 /*
2276 * CpuHz.
2277 */
2278 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC);
2279 u64CpuHz /= pGip->u32UpdateIntervalNS;
2280 ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz);
2281 }
2282}
2283
2284
2285/**
2286 * Updates the GIP.
2287 *
2288 * @param pDevExt The device extension.
2289 * @param u64NanoTS The current nanosecond timestamp.
2290 * @param u64TSC The current TSC timestamp.
2291 * @param idCpu The CPU ID.
2292 * @param iTick The current timer tick.
2293 *
2294 * @remarks Can be called with interrupts disabled!
2295 */
2296static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick)
2297{
2298 /*
2299 * Determine the relevant CPU data.
2300 */
2301 PSUPGIPCPU pGipCpu;
2302 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2303 AssertPtrReturnVoid(pGip);
2304
2305 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2306 pGipCpu = &pGip->aCPUs[0];
2307 else
2308 {
2309 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
2310 if (RT_UNLIKELY(iCpu >= pGip->cCpus))
2311 return;
2312 pGipCpu = &pGip->aCPUs[iCpu];
2313 if (RT_UNLIKELY(pGipCpu->idCpu != idCpu))
2314 return;
2315 }
2316
2317 /*
2318 * Start update transaction.
2319 */
2320 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2321 {
2322 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
2323 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2324 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2325 pGipCpu->cErrors++;
2326 return;
2327 }
2328
2329 /*
2330 * Recalc the update frequency every 0x800th time.
2331 */
2332 if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariant hosts. */
2333 && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
2334 {
2335 if (pGip->u64NanoTSLastUpdateHz)
2336 {
2337#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
2338 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
2339 uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
2340 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
2341 {
2342 /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency
2343 * calculation on non-invariant hosts if it changes the history decision
2344 * taken in supdrvGipDoUpdateCpu(). */
2345 uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ;
2346 ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz);
2347 ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval);
2348 }
2349#endif
2350 }
2351 ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1);
2352 }
2353
2354 /*
2355 * Update the data.
2356 */
2357 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2358
2359 /*
2360 * Complete transaction.
2361 */
2362 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2363}
2364
2365
2366/**
2367 * Updates the per cpu GIP data for the calling cpu.
2368 *
2369 * @param pDevExt The device extension.
2370 * @param u64NanoTS The current nanosecond timestamp.
2371 * @param u64TSC The current TSC timesaver.
2372 * @param idCpu The CPU ID.
2373 * @param idApic The APIC id for the CPU index.
2374 * @param iTick The current timer tick.
2375 *
2376 * @remarks Can be called with interrupts disabled!
2377 */
2378static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC,
2379 RTCPUID idCpu, uint8_t idApic, uint64_t iTick)
2380{
2381 uint32_t iCpu;
2382 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2383
2384 /*
2385 * Avoid a potential race when a CPU online notification doesn't fire on
2386 * the onlined CPU but the tick creeps in before the event notification is
2387 * run.
2388 */
2389 if (RT_UNLIKELY(iTick == 1))
2390 {
2391 iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
2392 if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE)
2393 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
2394 }
2395
2396 iCpu = pGip->aiCpuFromApicId[idApic];
2397 if (RT_LIKELY(iCpu < pGip->cCpus))
2398 {
2399 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
2400 if (pGipCpu->idCpu == idCpu)
2401 {
2402 /*
2403 * Start update transaction.
2404 */
2405 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2406 {
2407 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2408 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2409 pGipCpu->cErrors++;
2410 return;
2411 }
2412
2413 /*
2414 * Update the data.
2415 */
2416 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2417
2418 /*
2419 * Complete transaction.
2420 */
2421 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2422 }
2423 }
2424}
2425
2426
2427/**
2428 * Timer callback function for the sync and invariant GIP modes.
2429 *
2430 * @param pTimer The timer.
2431 * @param pvUser Opaque pointer to the device extension.
2432 * @param iTick The timer tick.
2433 */
2434static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2435{
2436 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2437 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2438 RTCCUINTREG fEFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2439 uint64_t u64TSC = ASMReadTSC();
2440 uint64_t u64NanoTS = RTTimeSystemNanoTS();
2441
2442 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
2443 {
2444 /*
2445 * The calculations in supdrvGipUpdate() is somewhat timing sensitive,
2446 * missing timer ticks is not an option for GIP because the GIP users
2447 * will end up incrementing the time in 1ns per time getter call until
2448 * there is a complete timer update. So, if the delta has yet to be
2449 * calculated, we just pretend it is zero for now (the GIP users
2450 * probably won't have it for a wee while either and will do the same).
2451 *
2452 * We could maybe on some platforms try cross calling a CPU with a
2453 * working delta here, but it's not worth the hassle since the
2454 * likelihood of this happening is really low. On Windows, Linux, and
2455 * Solaris timers fire on the CPU they were registered/started on.
2456 * Darwin timers doesn't necessarily (they are high priority threads).
2457 */
2458 uint32_t iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
2459 uint16_t iGipCpu = RT_LIKELY(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx))
2460 ? pGip->aiCpuFromCpuSetIdx[iCpuSet] : UINT16_MAX;
2461 Assert(!ASMIntAreEnabled());
2462 if (RT_LIKELY(iGipCpu < pGip->cCpus))
2463 {
2464 int64_t iTscDelta = pGip->aCPUs[iGipCpu].i64TSCDelta;
2465 if (iTscDelta != INT64_MAX)
2466 u64TSC -= iTscDelta;
2467 }
2468 }
2469
2470 supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick);
2471
2472 ASMSetFlags(fEFlags);
2473}
2474
2475
2476/**
2477 * Timer callback function for async GIP mode.
2478 * @param pTimer The timer.
2479 * @param pvUser Opaque pointer to the device extension.
2480 * @param iTick The timer tick.
2481 */
2482static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2483{
2484 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2485 RTCCUINTREG fEFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2486 RTCPUID idCpu = RTMpCpuId();
2487 uint64_t u64TSC = ASMReadTSC();
2488 uint64_t NanoTS = RTTimeSystemNanoTS();
2489
2490 /** @todo reset the transaction number and whatnot when iTick == 1. */
2491 if (pDevExt->idGipMaster == idCpu)
2492 supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick);
2493 else
2494 supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick);
2495
2496 ASMSetFlags(fEFlags);
2497}
2498
2499
2500
2501
2502/*
2503 *
2504 *
2505 * TSC Delta Measurements And Related Code
2506 * TSC Delta Measurements And Related Code
2507 * TSC Delta Measurements And Related Code
2508 *
2509 *
2510 */
2511
2512
2513/*
2514 * Select TSC delta measurement algorithm.
2515 */
2516#if 0
2517# define GIP_TSC_DELTA_METHOD_1
2518#else
2519# define GIP_TSC_DELTA_METHOD_2
2520#endif
2521
2522/** For padding variables to keep them away from other cache lines. Better too
2523 * large than too small!
2524 * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims
2525 * that NetBurst had 128 byte cache lines while the 486 thru Pentium
2526 * III had 32 bytes cache lines. */
2527#define GIP_TSC_DELTA_CACHE_LINE_SIZE 128
2528
2529
2530/**
2531 * TSC delta measurement algorithm \#2 result entry.
2532 */
2533typedef struct SUPDRVTSCDELTAMETHOD2ENTRY
2534{
2535 uint32_t iSeqMine;
2536 uint32_t iSeqOther;
2537 uint64_t uTsc;
2538} SUPDRVTSCDELTAMETHOD2ENTRY;
2539
2540/**
2541 * TSC delta measurement algorithm \#2 Data.
2542 */
2543typedef struct SUPDRVTSCDELTAMETHOD2
2544{
2545 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2546 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2547 /** The current sequence number of this worker. */
2548 uint32_t volatile iCurSeqNo;
2549 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2550 uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1];
2551 /** Result table. */
2552 SUPDRVTSCDELTAMETHOD2ENTRY aResults[64];
2553} SUPDRVTSCDELTAMETHOD2;
2554/** Pointer to the data for TSC delta measurement algorithm \#2 .*/
2555typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2;
2556
2557
2558/**
2559 * The TSC delta synchronization struct, version 2.
2560 *
2561 * The synchronization variable is completely isolated in its own cache line
2562 * (provided our max cache line size estimate is correct).
2563 */
2564typedef struct SUPTSCDELTASYNC2
2565{
2566 /** Padding to make sure the uVar1 is in its own cache line. */
2567 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2568
2569 /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */
2570 volatile uint32_t uSyncVar;
2571 /** Sequence synchronizing variable used for post 'GO' synchronization. */
2572 volatile uint32_t uSyncSeq;
2573
2574 /** Padding to make sure the uVar1 is in its own cache line. */
2575 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2];
2576
2577 /** Start RDTSC value. Put here mainly to save stack space. */
2578 uint64_t uTscStart;
2579 /** Copy of SUPDRVGIPTSCDELTARGS::cMaxTscTicks. */
2580 uint64_t cMaxTscTicks;
2581} SUPTSCDELTASYNC2;
2582AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t));
2583typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2;
2584
2585/** Prestart wait. */
2586#define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0x0ffe)
2587/** Prestart aborted. */
2588#define GIP_TSC_DELTA_SYNC2_PRESTART_ABORT UINT32_C(0x0fff)
2589/** Ready (on your mark). */
2590#define GIP_TSC_DELTA_SYNC2_READY UINT32_C(0x1000)
2591/** Steady (get set). */
2592#define GIP_TSC_DELTA_SYNC2_STEADY UINT32_C(0x1001)
2593/** Go! */
2594#define GIP_TSC_DELTA_SYNC2_GO UINT32_C(0x1002)
2595/** Used by the verification test. */
2596#define GIP_TSC_DELTA_SYNC2_GO_GO UINT32_C(0x1003)
2597
2598/** We reached the time limit. */
2599#define GIP_TSC_DELTA_SYNC2_TIMEOUT UINT32_C(0x1ffe)
2600/** The other party won't touch the sync struct ever again. */
2601#define GIP_TSC_DELTA_SYNC2_FINAL UINT32_C(0x1fff)
2602
2603
2604/**
2605 * Argument package/state passed by supdrvMeasureTscDeltaOne() to the RTMpOn
2606 * callback worker.
2607 * @todo add
2608 */
2609typedef struct SUPDRVGIPTSCDELTARGS
2610{
2611 /** The device extension. */
2612 PSUPDRVDEVEXT pDevExt;
2613 /** Pointer to the GIP CPU array entry for the worker. */
2614 PSUPGIPCPU pWorker;
2615 /** Pointer to the GIP CPU array entry for the master. */
2616 PSUPGIPCPU pMaster;
2617 /** The maximum number of ticks to spend in supdrvMeasureTscDeltaCallback.
2618 * (This is what we need a rough TSC frequency for.) */
2619 uint64_t cMaxTscTicks;
2620 /** Used to abort synchronization setup. */
2621 bool volatile fAbortSetup;
2622
2623 /** Padding to make sure the master variables live in its own cache lines. */
2624 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2625
2626 /** @name Master
2627 * @{ */
2628 /** The time the master spent in the MP worker. */
2629 uint64_t cElapsedMasterTscTicks;
2630 /** The iTry value when stopped at. */
2631 uint32_t iTry;
2632 /** Set if the run timed out. */
2633 bool volatile fTimedOut;
2634 /** Pointer to the master's synchronization struct (on stack). */
2635 PSUPTSCDELTASYNC2 volatile pSyncMaster;
2636 /** Master data union. */
2637 union
2638 {
2639 /** Data (master) for delta verification. */
2640 struct
2641 {
2642 /** Verification test TSC values for the master. */
2643 uint64_t volatile auTscs[32];
2644 } Verify;
2645 /** Data (master) for measurement method \#2. */
2646 struct
2647 {
2648 /** Data and sequence number. */
2649 SUPDRVTSCDELTAMETHOD2 Data;
2650 /** The lag setting for the next run. */
2651 bool fLag;
2652 /** Number of hits. */
2653 uint32_t cHits;
2654 } M2;
2655 } uMaster;
2656 /** The verifier verdict, VINF_SUCCESS if ok, VERR_OUT_OF_RANGE if not,
2657 * VERR_TRY_AGAIN on timeout. */
2658 int32_t rcVerify;
2659#ifdef TSCDELTA_VERIFY_WITH_STATS
2660 /** The maximum difference between TSC read during delta verification. */
2661 int64_t cMaxVerifyTscTicks;
2662 /** The minimum difference between two TSC reads during verification. */
2663 int64_t cMinVerifyTscTicks;
2664 /** The bad TSC diff, worker relative to master (= worker - master).
2665 * Negative value means the worker is behind the master. */
2666 int64_t iVerifyBadTscDiff;
2667#endif
2668 /** @} */
2669
2670 /** Padding to make sure the worker variables live is in its own cache line. */
2671 uint64_t au64CacheLinePaddingBetween[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2672
2673 /** @name Proletarian
2674 * @{ */
2675 /** Pointer to the worker's synchronization struct (on stack). */
2676 PSUPTSCDELTASYNC2 volatile pSyncWorker;
2677 /** The time the worker spent in the MP worker. */
2678 uint64_t cElapsedWorkerTscTicks;
2679 /** Worker data union. */
2680 union
2681 {
2682 /** Data (worker) for delta verification. */
2683 struct
2684 {
2685 /** Verification test TSC values for the worker. */
2686 uint64_t volatile auTscs[32];
2687 } Verify;
2688 /** Data (worker) for measurement method \#2. */
2689 struct
2690 {
2691 /** Data and sequence number. */
2692 SUPDRVTSCDELTAMETHOD2 Data;
2693 /** The lag setting for the next run (set by master). */
2694 bool fLag;
2695 } M2;
2696 } uWorker;
2697 /** @} */
2698
2699 /** Padding to make sure the above is in its own cache line. */
2700 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2701} SUPDRVGIPTSCDELTARGS;
2702typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS;
2703
2704
2705/** @name Macros that implements the basic synchronization steps common to
2706 * the algorithms.
2707 *
2708 * Must be used from loop as the timeouts are implemented via 'break' statements
2709 * at the moment.
2710 *
2711 * @{
2712 */
2713#if defined(DEBUG_bird) /* || defined(VBOX_STRICT) */
2714# define TSCDELTA_DBG_VARS() uint32_t iDbgCounter
2715# define TSCDELTA_DBG_START_LOOP() do { iDbgCounter = 0; } while (0)
2716# define TSCDELTA_DBG_CHECK_LOOP() \
2717 do { iDbgCounter++; if ((iDbgCounter & UINT32_C(0x01ffffff)) == 0) RT_BREAKPOINT(); } while (0)
2718#else
2719# define TSCDELTA_DBG_VARS() ((void)0)
2720# define TSCDELTA_DBG_START_LOOP() ((void)0)
2721# define TSCDELTA_DBG_CHECK_LOOP() ((void)0)
2722#endif
2723#if 0
2724# define TSCDELTA_DBG_SYNC_MSG(a_Args) SUPR0Printf a_Args
2725#else
2726# define TSCDELTA_DBG_SYNC_MSG(a_Args) ((void)0)
2727#endif
2728#if 0
2729# define TSCDELTA_DBG_SYNC_MSG2(a_Args) SUPR0Printf a_Args
2730#else
2731# define TSCDELTA_DBG_SYNC_MSG2(a_Args) ((void)0)
2732#endif
2733#if 0
2734# define TSCDELTA_DBG_SYNC_MSG9(a_Args) SUPR0Printf a_Args
2735#else
2736# define TSCDELTA_DBG_SYNC_MSG9(a_Args) ((void)0)
2737#endif
2738
2739
2740static bool supdrvTscDeltaSync2_Before(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2741 bool fIsMaster, PRTCCUINTREG pfEFlags, PSUPDRVGIPTSCDELTARGS pArgs)
2742{
2743 uint32_t iMySeq = fIsMaster ? 0 : 256;
2744 uint32_t const iMaxSeq = iMySeq + 16; /* For the last loop, darn linux/freebsd C-ishness. */
2745 uint32_t u32Tmp;
2746 uint32_t iSync2Loops = 0;
2747 RTCCUINTREG fEFlags;
2748 TSCDELTA_DBG_VARS();
2749
2750 *pfEFlags = X86_EFL_IF | X86_EFL_1; /* should shut up most nagging compilers. */
2751
2752 /*
2753 * The master tells the worker to get on it's mark.
2754 */
2755 if (fIsMaster)
2756 {
2757 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2758 { /* likely*/ }
2759 else
2760 {
2761 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #1 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2762 return false;
2763 }
2764 }
2765
2766 /*
2767 * Wait for the on your mark signal (ack in the master case). We process timeouts here.
2768 */
2769 ASMAtomicWriteU32(&(pMySync)->uSyncSeq, 0);
2770 for (;;)
2771 {
2772 fEFlags = ASMIntDisableFlags();
2773 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2774 if (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY)
2775 break;
2776 ASMSetFlags(fEFlags);
2777 ASMNopPause();
2778
2779 /* Abort? */
2780 if (u32Tmp != GIP_TSC_DELTA_SYNC2_READY)
2781 {
2782 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #2 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp));
2783 return false;
2784 }
2785
2786 /* Check for timeouts every so often (not every loop in case RDTSC is
2787 trapping or something). Must check the first time around. */
2788#if 0 /* For debugging the timeout paths. */
2789 static uint32_t volatile xxx;
2790#endif
2791 if ( ( (iSync2Loops & 0x3ff) == 0
2792 && ASMReadTSC() - pMySync->uTscStart > pMySync->cMaxTscTicks)
2793#if 0 /* This is crazy, I know, but enable this code and the results are markedly better when enabled on the 1.4GHz AMD (debug). */
2794 || (!fIsMaster && (++xxx & 0xf) == 0)
2795#endif
2796 )
2797 {
2798 /* Try switch our own state into timeout mode so the master cannot tell us to 'GO',
2799 ignore the timeout if we've got the go ahead already (simpler). */
2800 if (ASMAtomicCmpXchgU32(&pMySync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_READY))
2801 {
2802 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: timeout\n", fIsMaster ? "master" : "worker"));
2803 ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_STEADY);
2804 ASMAtomicWriteBool(&pArgs->fTimedOut, true);
2805 return false;
2806 }
2807 }
2808 iSync2Loops++;
2809 }
2810
2811 /*
2812 * Interrupts are now disabled and will remain disabled until we do
2813 * TSCDELTA_MASTER_SYNC_AFTER / TSCDELTA_OTHER_SYNC_AFTER.
2814 */
2815 *pfEFlags = fEFlags;
2816
2817 /*
2818 * The worker tells the master that it is on its mark and that the master
2819 * need to get into position as well.
2820 */
2821 if (!fIsMaster)
2822 {
2823 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
2824 { /* likely */ }
2825 else
2826 {
2827 ASMSetFlags(fEFlags);
2828 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #3 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2829 return false;
2830 }
2831 }
2832
2833 /*
2834 * The master sends the 'go' to the worker and wait for ACK.
2835 */
2836 if (fIsMaster)
2837 {
2838 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2839 { /* likely */ }
2840 else
2841 {
2842 ASMSetFlags(fEFlags);
2843 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #4 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2844 return false;
2845 }
2846 }
2847
2848 /*
2849 * Wait for the 'go' signal (ack in the master case).
2850 */
2851 TSCDELTA_DBG_START_LOOP();
2852 for (;;)
2853 {
2854 u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2855 if (u32Tmp == GIP_TSC_DELTA_SYNC2_GO)
2856 break;
2857 if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY))
2858 { /* likely */ }
2859 else
2860 {
2861 ASMSetFlags(fEFlags);
2862 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #5 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp));
2863 return false;
2864 }
2865
2866 TSCDELTA_DBG_CHECK_LOOP();
2867 ASMNopPause();
2868 }
2869
2870 /*
2871 * The worker acks the 'go' (shouldn't fail).
2872 */
2873 if (!fIsMaster)
2874 {
2875 if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
2876 { /* likely */ }
2877 else
2878 {
2879 ASMSetFlags(fEFlags);
2880 TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #6 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
2881 return false;
2882 }
2883 }
2884
2885 /*
2886 * Try enter mostly lockstep execution with it.
2887 */
2888 for (;;)
2889 {
2890 uint32_t iOtherSeq1, iOtherSeq2;
2891 ASMCompilerBarrier();
2892 ASMSerializeInstruction();
2893
2894 ASMAtomicWriteU32(&pMySync->uSyncSeq, iMySeq);
2895 ASMNopPause();
2896 iOtherSeq1 = ASMAtomicXchgU32(&pOtherSync->uSyncSeq, iMySeq);
2897 ASMNopPause();
2898 iOtherSeq2 = ASMAtomicReadU32(&pMySync->uSyncSeq);
2899
2900 ASMCompilerBarrier();
2901 if (iOtherSeq1 == iOtherSeq2)
2902 return true;
2903
2904 /* Did the other guy give up? Should we give up? */
2905 if ( iOtherSeq1 == UINT32_MAX
2906 || iOtherSeq2 == UINT32_MAX)
2907 return true;
2908 if (++iMySeq >= iMaxSeq)
2909 {
2910 ASMAtomicWriteU32(&pMySync->uSyncSeq, UINT32_MAX);
2911 return true;
2912 }
2913 ASMNopPause();
2914 }
2915}
2916
2917#define TSCDELTA_MASTER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \
2918 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_pfEFlags, a_pArgs))) \
2919 { /*likely*/ } \
2920 else if (true) \
2921 { \
2922 TSCDELTA_DBG_SYNC_MSG9(("sync/before/master: #89\n")); \
2923 break; \
2924 } else do {} while (0)
2925#define TSCDELTA_OTHER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \
2926 if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_pfEFlags, a_pArgs))) \
2927 { /*likely*/ } \
2928 else if (true) \
2929 { \
2930 TSCDELTA_DBG_SYNC_MSG9(("sync/before/other: #89\n")); \
2931 break; \
2932 } else do {} while (0)
2933
2934
2935static bool supdrvTscDeltaSync2_After(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
2936 bool fIsMaster, RTCCUINTREG fEFlags)
2937{
2938 TSCDELTA_DBG_VARS();
2939
2940 /*
2941 * Wait for the 'ready' signal. In the master's case, this means the
2942 * worker has completed its data collection, while in the worker's case it
2943 * means the master is done processing the data and it's time for the next
2944 * loop iteration (or whatever).
2945 */
2946 ASMSetFlags(fEFlags);
2947 TSCDELTA_DBG_START_LOOP();
2948 for (;;)
2949 {
2950 uint32_t u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
2951 if ( u32Tmp == GIP_TSC_DELTA_SYNC2_READY
2952 || (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY && !fIsMaster) /* kicked twice => race */ )
2953 return true;
2954 ASMNopPause();
2955 if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_GO))
2956 { /* likely */}
2957 else
2958 {
2959 TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #1 u32Tmp=%#x\n", u32Tmp));
2960 return false; /* shouldn't ever happen! */
2961 }
2962 TSCDELTA_DBG_CHECK_LOOP();
2963 ASMNopPause();
2964 }
2965}
2966
2967#define TSCDELTA_MASTER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \
2968 if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_fEFlags))) \
2969 { /* likely */ } \
2970 else if (true) \
2971 { \
2972 TSCDELTA_DBG_SYNC_MSG9(("sync/after/master: #97\n")); \
2973 break; \
2974 } else do {} while (0)
2975
2976#define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pMySync, a_pOtherSync) \
2977 /* \
2978 * Tell the worker that we're done processing the data and ready for the next round. \
2979 */ \
2980 if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \
2981 { /* likely */ } \
2982 else if (true)\
2983 { \
2984 TSCDELTA_DBG_SYNC_MSG(("sync/after/master: #99 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \
2985 break; \
2986 } else do {} while (0)
2987
2988#define TSCDELTA_OTHER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \
2989 if (true) { \
2990 /* \
2991 * Tell the master that we're done collecting data and wait for the next round to start. \
2992 */ \
2993 if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \
2994 { /* likely */ } \
2995 else \
2996 { \
2997 ASMSetFlags(a_fEFlags); \
2998 TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #0 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \
2999 break; \
3000 } \
3001 if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_fEFlags))) \
3002 { /* likely */ } \
3003 else \
3004 { \
3005 TSCDELTA_DBG_SYNC_MSG9(("sync/after/other: #98\n")); \
3006 break; \
3007 } \
3008 } else do {} while (0)
3009/** @} */
3010
3011
3012#ifdef GIP_TSC_DELTA_METHOD_1
3013/**
3014 * TSC delta measurement algorithm \#1 (GIP_TSC_DELTA_METHOD_1).
3015 *
3016 *
3017 * We ignore the first few runs of the loop in order to prime the
3018 * cache. Also, we need to be careful about using 'pause' instruction
3019 * in critical busy-wait loops in this code - it can cause undesired
3020 * behaviour with hyperthreading.
3021 *
3022 * We try to minimize the measurement error by computing the minimum
3023 * read time of the compare statement in the worker by taking TSC
3024 * measurements across it.
3025 *
3026 * It must be noted that the computed minimum read time is mostly to
3027 * eliminate huge deltas when the worker is too early and doesn't by
3028 * itself help produce more accurate deltas. We allow two times the
3029 * computed minimum as an arbitrary acceptable threshold. Therefore,
3030 * it is still possible to get negative deltas where there are none
3031 * when the worker is earlier. As long as these occasional negative
3032 * deltas are lower than the time it takes to exit guest-context and
3033 * the OS to reschedule EMT on a different CPU, we won't expose a TSC
3034 * that jumped backwards. It is due to the existence of the negative
3035 * deltas that we don't recompute the delta with the master and
3036 * worker interchanged to eliminate the remaining measurement error.
3037 *
3038 *
3039 * @param pArgs The argument/state data.
3040 * @param pMySync My synchronization structure.
3041 * @param pOtherSync My partner's synchronization structure.
3042 * @param fIsMaster Set if master, clear if worker.
3043 * @param iTry The attempt number.
3044 */
3045static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
3046 bool fIsMaster, uint32_t iTry)
3047{
3048 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3049 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3050 uint64_t uMinCmpReadTime = UINT64_MAX;
3051 unsigned iLoop;
3052 NOREF(iTry);
3053
3054 for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++)
3055 {
3056 RTCCUINTREG fEFlags;
3057 if (fIsMaster)
3058 {
3059 /*
3060 * The master.
3061 */
3062 AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD,
3063 ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n",
3064 pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster));
3065 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3066
3067 do
3068 {
3069 ASMSerializeInstruction();
3070 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC());
3071 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
3072
3073 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3074
3075 /* Process the data. */
3076 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
3077 {
3078 if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD)
3079 {
3080 int64_t iDelta = pGipCpuWorker->u64TSCSample
3081 - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta);
3082 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3083 ? iDelta < pGipCpuWorker->i64TSCDelta
3084 : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX)
3085 pGipCpuWorker->i64TSCDelta = iDelta;
3086 }
3087 }
3088
3089 /* Reset our TSC sample and tell the worker to move on. */
3090 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD);
3091 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3092 }
3093 else
3094 {
3095 /*
3096 * The worker.
3097 */
3098 uint64_t uTscWorker;
3099 uint64_t uTscWorkerFlushed;
3100 uint64_t uCmpReadTime;
3101
3102 ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */
3103 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3104
3105 /*
3106 * Keep reading the TSC until we notice that the master has read his. Reading
3107 * the TSC -after- the master has updated the memory is way too late. We thus
3108 * compensate by trying to measure how long it took for the worker to notice
3109 * the memory flushed from the master.
3110 */
3111 do
3112 {
3113 ASMSerializeInstruction();
3114 uTscWorker = ASMReadTSC();
3115 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
3116 ASMSerializeInstruction();
3117 uTscWorkerFlushed = ASMReadTSC();
3118
3119 uCmpReadTime = uTscWorkerFlushed - uTscWorker;
3120 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
3121 {
3122 /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */
3123 if (uCmpReadTime < (uMinCmpReadTime << 1))
3124 {
3125 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker);
3126 if (uCmpReadTime < uMinCmpReadTime)
3127 uMinCmpReadTime = uCmpReadTime;
3128 }
3129 else
3130 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3131 }
3132 else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS)
3133 {
3134 if (uCmpReadTime < uMinCmpReadTime)
3135 uMinCmpReadTime = uCmpReadTime;
3136 }
3137
3138 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3139 }
3140 }
3141
3142 TSCDELTA_DBG_SYNC_MSG9(("sync/method1loop/%s: #92 iLoop=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iLoop,
3143 pMySync->uSyncVar));
3144
3145 /*
3146 * We must reset the worker TSC sample value in case it gets picked as a
3147 * GIP master later on (it's trashed above, naturally).
3148 */
3149 if (!fIsMaster)
3150 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
3151}
3152#endif /* GIP_TSC_DELTA_METHOD_1 */
3153
3154
3155#ifdef GIP_TSC_DELTA_METHOD_2
3156/*
3157 * TSC delta measurement algorithm \#2 configuration and code - Experimental!!
3158 */
3159
3160# define GIP_TSC_DELTA_M2_LOOPS (7 + GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3161# define GIP_TSC_DELTA_M2_PRIMER_LOOPS 0
3162
3163
3164static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs, uint32_t iLoop)
3165{
3166 int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta;
3167 int64_t iBestDelta = pArgs->pWorker->i64TSCDelta;
3168 uint32_t idxResult;
3169 uint32_t cHits = 0;
3170
3171 /*
3172 * Look for matching entries in the master and worker tables.
3173 */
3174 for (idxResult = 0; idxResult < RT_ELEMENTS(pArgs->uMaster.M2.Data.aResults); idxResult++)
3175 {
3176 uint32_t idxOther = pArgs->uMaster.M2.Data.aResults[idxResult].iSeqOther;
3177 if (idxOther & 1)
3178 {
3179 idxOther >>= 1;
3180 if (idxOther < RT_ELEMENTS(pArgs->uWorker.M2.Data.aResults))
3181 {
3182 if (pArgs->uWorker.M2.Data.aResults[idxOther].iSeqOther == pArgs->uMaster.M2.Data.aResults[idxResult].iSeqMine)
3183 {
3184 int64_t iDelta;
3185 iDelta = pArgs->uWorker.M2.Data.aResults[idxOther].uTsc
3186 - (pArgs->uMaster.M2.Data.aResults[idxResult].uTsc - iMasterTscDelta);
3187 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
3188 ? iDelta < iBestDelta
3189 : iDelta > iBestDelta || iBestDelta == INT64_MAX)
3190 iBestDelta = iDelta;
3191 cHits++;
3192 }
3193 }
3194 }
3195 }
3196
3197 /*
3198 * Save the results.
3199 */
3200 if (cHits > 2)
3201 pArgs->pWorker->i64TSCDelta = iBestDelta;
3202 pArgs->uMaster.M2.cHits += cHits;
3203}
3204
3205
3206/**
3207 * The core function of the 2nd TSC delta measurement algorithm.
3208 *
3209 * The idea here is that we have the two CPUs execute the exact same code
3210 * collecting a largish set of TSC samples. The code has one data dependency on
3211 * the other CPU which intention it is to synchronize the execution as well as
3212 * help cross references the two sets of TSC samples (the sequence numbers).
3213 *
3214 * The @a fLag parameter is used to modify the execution a tiny bit on one or
3215 * both of the CPUs. When @a fLag differs between the CPUs, it is thought that
3216 * it will help with making the CPUs enter lock step execution occasionally.
3217 *
3218 */
3219static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag)
3220{
3221 SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0];
3222 uint32_t cLeft = RT_ELEMENTS(pMyData->aResults);
3223
3224 ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0);
3225 ASMSerializeInstruction();
3226 while (cLeft-- > 0)
3227 {
3228 uint64_t uTsc;
3229 uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo);
3230 uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo);
3231 ASMCompilerBarrier();
3232 ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */
3233 uTsc = ASMReadTSC();
3234 ASMAtomicIncU32(&pMyData->iCurSeqNo);
3235 ASMCompilerBarrier();
3236 ASMSerializeInstruction();
3237 pEntry->iSeqMine = iSeqMine;
3238 pEntry->iSeqOther = iSeqOther;
3239 pEntry->uTsc = uTsc;
3240 pEntry++;
3241 ASMSerializeInstruction();
3242 if (fLag)
3243 ASMNopPause();
3244 }
3245}
3246
3247
3248/**
3249 * TSC delta measurement algorithm \#2 (GIP_TSC_DELTA_METHOD_2).
3250 *
3251 * See supdrvTscDeltaMethod2CollectData for algorithm details.
3252 *
3253 * @param pArgs The argument/state data.
3254 * @param pMySync My synchronization structure.
3255 * @param pOtherSync My partner's synchronization structure.
3256 * @param fIsMaster Set if master, clear if worker.
3257 * @param iTry The attempt number.
3258 */
3259static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
3260 bool fIsMaster, uint32_t iTry)
3261{
3262 unsigned iLoop;
3263
3264 for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++)
3265 {
3266 RTCCUINTREG fEFlags;
3267 if (fIsMaster)
3268 {
3269 /*
3270 * Adjust the loop lag fudge.
3271 */
3272# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3273 if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3274 {
3275 /* Lag during the priming to be nice to everyone.. */
3276 pArgs->uMaster.M2.fLag = true;
3277 pArgs->uWorker.M2.fLag = true;
3278 }
3279 else
3280# endif
3281 if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4)
3282 {
3283 /* 25 % of the body without lagging. */
3284 pArgs->uMaster.M2.fLag = false;
3285 pArgs->uWorker.M2.fLag = false;
3286 }
3287 else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2)
3288 {
3289 /* 25 % of the body with both lagging. */
3290 pArgs->uMaster.M2.fLag = true;
3291 pArgs->uWorker.M2.fLag = true;
3292 }
3293 else
3294 {
3295 /* 50% of the body with alternating lag. */
3296 pArgs->uMaster.M2.fLag = (iLoop & 1) == 0;
3297 pArgs->uWorker.M2.fLag= (iLoop & 1) == 1;
3298 }
3299
3300 /*
3301 * Sync up with the worker and collect data.
3302 */
3303 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3304 supdrvTscDeltaMethod2CollectData(&pArgs->uMaster.M2.Data, &pArgs->uWorker.M2.Data.iCurSeqNo, pArgs->uMaster.M2.fLag);
3305 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3306
3307 /*
3308 * Process the data.
3309 */
3310# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3311 if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3312# endif
3313 supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs, iLoop);
3314
3315 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3316 }
3317 else
3318 {
3319 /*
3320 * The worker.
3321 */
3322 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3323 supdrvTscDeltaMethod2CollectData(&pArgs->uWorker.M2.Data, &pArgs->uMaster.M2.Data.iCurSeqNo, pArgs->uWorker.M2.fLag);
3324 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3325 }
3326 }
3327}
3328
3329#endif /* GIP_TSC_DELTA_METHOD_2 */
3330
3331
3332
3333static int supdrvTscDeltaVerify(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync,
3334 PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, int64_t iWorkerTscDelta)
3335{
3336 /*PSUPGIPCPU pGipCpuWorker = pArgs->pWorker; - unused */
3337 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3338 uint32_t i;
3339 TSCDELTA_DBG_VARS();
3340
3341 for (;;)
3342 {
3343 RTCCUINTREG fEFlags;
3344 AssertCompile((RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) & 1) == 0);
3345 AssertCompile(RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) == RT_ELEMENTS(pArgs->uWorker.Verify.auTscs));
3346
3347 if (fIsMaster)
3348 {
3349 uint64_t uTscWorker;
3350 TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3351
3352 /*
3353 * Collect TSC, master goes first.
3354 */
3355 for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i += 2)
3356 {
3357 /* Read, kick & wait #1. */
3358 uint64_t register uTsc = ASMReadTSC();
3359 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
3360 ASMSerializeInstruction();
3361 pArgs->uMaster.Verify.auTscs[i] = uTsc;
3362 TSCDELTA_DBG_START_LOOP();
3363 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
3364 {
3365 TSCDELTA_DBG_CHECK_LOOP();
3366 ASMNopPause();
3367 }
3368
3369 /* Read, kick & wait #2. */
3370 uTsc = ASMReadTSC();
3371 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
3372 ASMSerializeInstruction();
3373 pArgs->uMaster.Verify.auTscs[i + 1] = uTsc;
3374 TSCDELTA_DBG_START_LOOP();
3375 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
3376 {
3377 TSCDELTA_DBG_CHECK_LOOP();
3378 ASMNopPause();
3379 }
3380 }
3381
3382 TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3383
3384 /*
3385 * Process the data.
3386 */
3387#ifdef TSCDELTA_VERIFY_WITH_STATS
3388 pArgs->cMaxVerifyTscTicks = INT64_MIN;
3389 pArgs->cMinVerifyTscTicks = INT64_MAX;
3390 pArgs->iVerifyBadTscDiff = 0;
3391#endif
3392 ASMAtomicWriteS32(&pArgs->rcVerify, VINF_SUCCESS);
3393 uTscWorker = 0;
3394 for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i++)
3395 {
3396 /* Master vs previous worker entry. */
3397 uint64_t uTscMaster = pArgs->uMaster.Verify.auTscs[i] - pGipCpuMaster->i64TSCDelta;
3398 int64_t iDiff;
3399 if (i > 0)
3400 {
3401 iDiff = uTscMaster - uTscWorker;
3402#ifdef TSCDELTA_VERIFY_WITH_STATS
3403 if (iDiff > pArgs->cMaxVerifyTscTicks)
3404 pArgs->cMaxVerifyTscTicks = iDiff;
3405 if (iDiff < pArgs->cMinVerifyTscTicks)
3406 pArgs->cMinVerifyTscTicks = iDiff;
3407#endif
3408 if (iDiff < 0)
3409 {
3410#ifdef TSCDELTA_VERIFY_WITH_STATS
3411 pArgs->iVerifyBadTscDiff = -iDiff;
3412#endif
3413 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
3414 break;
3415 }
3416 }
3417
3418 /* Worker vs master. */
3419 uTscWorker = pArgs->uWorker.Verify.auTscs[i] - iWorkerTscDelta;
3420 iDiff = uTscWorker - uTscMaster;
3421#ifdef TSCDELTA_VERIFY_WITH_STATS
3422 if (iDiff > pArgs->cMaxVerifyTscTicks)
3423 pArgs->cMaxVerifyTscTicks = iDiff;
3424 if (iDiff < pArgs->cMinVerifyTscTicks)
3425 pArgs->cMinVerifyTscTicks = iDiff;
3426#endif
3427 if (iDiff < 0)
3428 {
3429#ifdef TSCDELTA_VERIFY_WITH_STATS
3430 pArgs->iVerifyBadTscDiff = iDiff;
3431#endif
3432 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
3433 break;
3434 }
3435 }
3436
3437 /* Done. */
3438 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
3439 }
3440 else
3441 {
3442 /*
3443 * The worker, master leads.
3444 */
3445 TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
3446
3447 for (i = 0; i < RT_ELEMENTS(pArgs->uWorker.Verify.auTscs); i += 2)
3448 {
3449 uint64_t register uTsc;
3450
3451 /* Wait, Read and Kick #1. */
3452 TSCDELTA_DBG_START_LOOP();
3453 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
3454 {
3455 TSCDELTA_DBG_CHECK_LOOP();
3456 ASMNopPause();
3457 }
3458 uTsc = ASMReadTSC();
3459 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
3460 ASMSerializeInstruction();
3461 pArgs->uWorker.Verify.auTscs[i] = uTsc;
3462
3463 /* Wait, Read and Kick #2. */
3464 TSCDELTA_DBG_START_LOOP();
3465 while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
3466 {
3467 TSCDELTA_DBG_CHECK_LOOP();
3468 ASMNopPause();
3469 }
3470 uTsc = ASMReadTSC();
3471 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
3472 ASMSerializeInstruction();
3473 pArgs->uWorker.Verify.auTscs[i + 1] = uTsc;
3474 }
3475
3476 TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
3477 }
3478 return pArgs->rcVerify;
3479 }
3480
3481 /*
3482 * Timed out, please retry.
3483 */
3484 ASMAtomicWriteS32(&pArgs->rcVerify, VERR_TRY_AGAIN);
3485 return VERR_TIMEOUT;
3486}
3487
3488
3489
3490/**
3491 * Handles the special abort procedure during synchronization setup in
3492 * supdrvMeasureTscDeltaCallbackUnwrapped().
3493 *
3494 * @returns 0 (dummy, ignored)
3495 * @param pArgs Pointer to argument/state data.
3496 * @param pMySync Pointer to my sync structure.
3497 * @param fIsMaster Set if we're the master, clear if worker.
3498 * @param fTimeout Set if it's a timeout.
3499 */
3500DECL_NO_INLINE(static, int)
3501supdrvMeasureTscDeltaCallbackAbortSyncSetup(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, bool fIsMaster, bool fTimeout)
3502{
3503 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3504 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3505 TSCDELTA_DBG_VARS();
3506
3507 /*
3508 * Clear our sync pointer and make sure the abort flag is set.
3509 */
3510 ASMAtomicWriteNullPtr(ppMySync);
3511 ASMAtomicWriteBool(&pArgs->fAbortSetup, true);
3512 if (fTimeout)
3513 ASMAtomicWriteBool(&pArgs->fTimedOut, true);
3514
3515 /*
3516 * Make sure the other party is out of there and won't be touching our
3517 * sync state again (would cause stack corruption).
3518 */
3519 TSCDELTA_DBG_START_LOOP();
3520 while (ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2) != NULL)
3521 {
3522 ASMNopPause();
3523 ASMNopPause();
3524 ASMNopPause();
3525 TSCDELTA_DBG_CHECK_LOOP();
3526 }
3527
3528 return 0;
3529}
3530
3531
3532/**
3533 * This is used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3534 * and compute the delta between them.
3535 *
3536 * To reduce code size a good when timeout handling was added, a dummy return
3537 * value had to be added (saves 1-3 lines per timeout case), thus this
3538 * 'Unwrapped' function and the dummy 0 return value.
3539 *
3540 * @returns 0 (dummy, ignored)
3541 * @param idCpu The CPU we are current scheduled on.
3542 * @param pArgs Pointer to a parameter package.
3543 *
3544 * @remarks Measuring TSC deltas between the CPUs is tricky because we need to
3545 * read the TSC at exactly the same time on both the master and the
3546 * worker CPUs. Due to DMA, bus arbitration, cache locality,
3547 * contention, SMI, pipelining etc. there is no guaranteed way of
3548 * doing this on x86 CPUs.
3549 */
3550static int supdrvMeasureTscDeltaCallbackUnwrapped(RTCPUID idCpu, PSUPDRVGIPTSCDELTARGS pArgs)
3551{
3552 PSUPDRVDEVEXT pDevExt = pArgs->pDevExt;
3553 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3554 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3555 bool const fIsMaster = idCpu == pGipCpuMaster->idCpu;
3556 uint32_t iTry;
3557 PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
3558 PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
3559 SUPTSCDELTASYNC2 MySync;
3560 PSUPTSCDELTASYNC2 pOtherSync;
3561 int rc;
3562 TSCDELTA_DBG_VARS();
3563
3564 /* A bit of paranoia first. */
3565 if (!pGipCpuMaster || !pGipCpuWorker)
3566 return 0;
3567
3568 /*
3569 * If the CPU isn't part of the measurement, return immediately.
3570 */
3571 if ( !fIsMaster
3572 && idCpu != pGipCpuWorker->idCpu)
3573 return 0;
3574
3575 /*
3576 * Set up my synchronization stuff and wait for the other party to show up.
3577 *
3578 * We don't wait forever since the other party may be off fishing (offline,
3579 * spinning with ints disables, whatever), we must play nice to the rest of
3580 * the system as this context generally isn't one in which we will get
3581 * preempted and we may hold up a number of lower priority interrupts.
3582 */
3583 ASMAtomicWriteU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT);
3584 ASMAtomicWritePtr(ppMySync, &MySync);
3585 MySync.uTscStart = ASMReadTSC();
3586 MySync.cMaxTscTicks = pArgs->cMaxTscTicks;
3587
3588 /* Look for the partner, might not be here yet... Special abort considerations. */
3589 iTry = 0;
3590 TSCDELTA_DBG_START_LOOP();
3591 while ((pOtherSync = ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2)) == NULL)
3592 {
3593 ASMNopPause();
3594 if ( ASMAtomicReadBool(&pArgs->fAbortSetup)
3595 || !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu) )
3596 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3597 if ( (iTry++ & 0xff) == 0
3598 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3599 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3600 TSCDELTA_DBG_CHECK_LOOP();
3601 ASMNopPause();
3602 }
3603
3604 /* I found my partner, waiting to be found... Special abort considerations. */
3605 if (fIsMaster)
3606 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* parnaoia */
3607 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3608
3609 iTry = 0;
3610 TSCDELTA_DBG_START_LOOP();
3611 while (ASMAtomicReadU32(&MySync.uSyncVar) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)
3612 {
3613 ASMNopPause();
3614 if (ASMAtomicReadBool(&pArgs->fAbortSetup))
3615 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3616 if ( (iTry++ & 0xff) == 0
3617 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
3618 {
3619 if ( fIsMaster
3620 && !ASMAtomicCmpXchgU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_ABORT, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT))
3621 break; /* race #1: slave has moved on, handle timeout in loop instead. */
3622 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
3623 }
3624 TSCDELTA_DBG_CHECK_LOOP();
3625 }
3626
3627 if (!fIsMaster)
3628 if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* race #1 */
3629 return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
3630
3631/** @todo Add a resumable state to pArgs so we don't waste time if we time
3632 * out or something. Timeouts are legit, any of the two CPUs may get
3633 * interrupted. */
3634
3635 /*
3636 * Start by seeing if we have a zero delta between the two CPUs.
3637 * This should normally be the case.
3638 */
3639 rc = supdrvTscDeltaVerify(pArgs, &MySync, pOtherSync, fIsMaster, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3640 if (RT_SUCCESS(rc))
3641 {
3642 if (fIsMaster)
3643 {
3644 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3645 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3646 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3647 }
3648 }
3649 /*
3650 * If the verification didn't time out, do regular delta measurements.
3651 * We retry this until we get a reasonable value.
3652 */
3653 else if (rc != VERR_TIMEOUT)
3654 {
3655 Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX);
3656 for (iTry = 0; iTry < 12; iTry++)
3657 {
3658 /*
3659 * Check the state before we start.
3660 */
3661 uint32_t u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar);
3662 if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY
3663 && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ )
3664 {
3665 TSCDELTA_DBG_SYNC_MSG(("sync/loop/%s: #0 iTry=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iTry, u32Tmp));
3666 break;
3667 }
3668
3669 /*
3670 * Do the measurements.
3671 */
3672#ifdef GIP_TSC_DELTA_METHOD_1
3673 supdrvTscDeltaMethod1Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3674#elif defined(GIP_TSC_DELTA_METHOD_2)
3675 supdrvTscDeltaMethod2Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
3676#else
3677# error "huh??"
3678#endif
3679
3680 /*
3681 * Check the state.
3682 */
3683 u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar);
3684 if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY
3685 && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ )
3686 {
3687 if (fIsMaster)
3688 TSCDELTA_DBG_SYNC_MSG(("sync/loop/master: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp));
3689 else
3690 TSCDELTA_DBG_SYNC_MSG2(("sync/loop/worker: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp));
3691 break;
3692 }
3693
3694 /*
3695 * Success? If so, stop trying. Master decides.
3696 */
3697 if (fIsMaster)
3698 {
3699 if (pGipCpuWorker->i64TSCDelta != INT64_MAX)
3700 {
3701 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3702 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3703 TSCDELTA_DBG_SYNC_MSG2(("sync/loop/master: #9 iTry=%u MyState=%#x\n", iTry, MySync.uSyncVar));
3704 break;
3705 }
3706 }
3707 }
3708 if (fIsMaster)
3709 pArgs->iTry = iTry;
3710 }
3711
3712 /*
3713 * End the synchronization dance. We tell the other that we're done,
3714 * then wait for the same kind of reply.
3715 */
3716 ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_FINAL);
3717 ASMAtomicWriteNullPtr(ppMySync);
3718 iTry = 0;
3719 TSCDELTA_DBG_START_LOOP();
3720 while (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_FINAL)
3721 {
3722 iTry++;
3723 if ( iTry == 0
3724 && !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu))
3725 break; /* this really shouldn't happen. */
3726 TSCDELTA_DBG_CHECK_LOOP();
3727 ASMNopPause();
3728 }
3729
3730 /*
3731 * Collect some runtime stats.
3732 */
3733 if (fIsMaster)
3734 pArgs->cElapsedMasterTscTicks = ASMReadTSC() - MySync.uTscStart;
3735 else
3736 pArgs->cElapsedWorkerTscTicks = ASMReadTSC() - MySync.uTscStart;
3737 return 0;
3738}
3739
3740/**
3741 * Callback used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3742 * and compute the delta between them.
3743 *
3744 * @param idCpu The CPU we are current scheduled on.
3745 * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS).
3746 * @param pvUser2 Unused.
3747 */
3748static DECLCALLBACK(void) supdrvMeasureTscDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3749{
3750 supdrvMeasureTscDeltaCallbackUnwrapped(idCpu, (PSUPDRVGIPTSCDELTARGS)pvUser1);
3751}
3752
3753
3754/**
3755 * Measures the TSC delta between the master GIP CPU and one specified worker
3756 * CPU.
3757 *
3758 * @returns VBox status code.
3759 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement
3760 * failure.
3761 * @param pDevExt Pointer to the device instance data.
3762 * @param idxWorker The index of the worker CPU from the GIP's array of
3763 * CPUs.
3764 *
3765 * @remarks This must be called with preemption enabled!
3766 */
3767static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker)
3768{
3769 int rc;
3770 int rc2;
3771 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3772 RTCPUID idMaster = pDevExt->idGipMaster;
3773 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker];
3774 PSUPGIPCPU pGipCpuMaster;
3775 uint32_t iGipCpuMaster;
3776 uint32_t u32Tmp;
3777
3778 /* Validate input a bit. */
3779 AssertReturn(pGip, VERR_INVALID_PARAMETER);
3780 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3781 Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3782
3783 /*
3784 * Don't attempt measuring the delta for the GIP master.
3785 */
3786 if (pGipCpuWorker->idCpu == idMaster)
3787 {
3788 if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */
3789 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3790 return VINF_SUCCESS;
3791 }
3792
3793 /*
3794 * One measurement at a time, at least for now. We might be using
3795 * broadcast IPIs so, so be nice to the rest of the system.
3796 */
3797#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3798 rc = RTSemMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT);
3799#else
3800 rc = RTSemFastMutexRequest(pDevExt->mtxTscDelta);
3801#endif
3802 if (RT_FAILURE(rc))
3803 return rc;
3804
3805 /*
3806 * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent,
3807 * try pick a different master. (This fudge only works with multi core systems.)
3808 * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core.
3809 *
3810 * We skip this on AMDs for now as their HTT is different from Intel's and
3811 * it doesn't seem to have any favorable effect on the results.
3812 *
3813 * If the master is offline, we need a new master too, so share the code.
3814 */
3815 iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster);
3816 AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID);
3817 pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster];
3818 if ( ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1)
3819 && pGip->cOnlineCpus > 2
3820 && ASMHasCpuId()
3821 && ASMIsValidStdRange(ASMCpuId_EAX(0))
3822 && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT)
3823 && ( !ASMIsAmdCpu()
3824 || ASMGetCpuFamily(u32Tmp = ASMCpuId_EAX(1)) > 0x15
3825 || ( ASMGetCpuFamily(u32Tmp) == 0x15 /* Piledriver+, not bulldozer (FX-4150 didn't like it). */
3826 && ASMGetCpuModelAMD(u32Tmp) >= 0x02) ) )
3827 || !RTMpIsCpuOnline(idMaster) )
3828 {
3829 uint32_t i;
3830 for (i = 0; i < pGip->cCpus; i++)
3831 if ( i != iGipCpuMaster
3832 && i != idxWorker
3833 && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE
3834 && pGip->aCPUs[i].i64TSCDelta != INT64_MAX
3835 && pGip->aCPUs[i].idCpu != NIL_RTCPUID
3836 && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */
3837 && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu
3838 && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic
3839 && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic
3840 && RTMpIsCpuOnline(pGip->aCPUs[i].idCpu))
3841 {
3842 iGipCpuMaster = i;
3843 pGipCpuMaster = &pGip->aCPUs[i];
3844 idMaster = pGipCpuMaster->idCpu;
3845 break;
3846 }
3847 }
3848
3849 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet))
3850 {
3851 /*
3852 * Initialize data package for the RTMpOnPair callback.
3853 */
3854 PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)RTMemAllocZ(sizeof(*pArgs));
3855 if (pArgs)
3856 {
3857 pArgs->pWorker = pGipCpuWorker;
3858 pArgs->pMaster = pGipCpuMaster;
3859 pArgs->pDevExt = pDevExt;
3860 pArgs->pSyncMaster = NULL;
3861 pArgs->pSyncWorker = NULL;
3862 pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 512; /* 1953 us */
3863
3864 /*
3865 * Do the RTMpOnPair call. We reset i64TSCDelta first so we
3866 * and supdrvMeasureTscDeltaCallback can use it as a success check.
3867 */
3868 /** @todo Store the i64TSCDelta result in pArgs first? Perhaps deals with
3869 * that when doing the restart loop reorg. */
3870 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3871 rc = RTMpOnPair(pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, RTMPON_F_CONCURRENT_EXEC,
3872 supdrvMeasureTscDeltaCallback, pArgs, NULL);
3873 if (RT_SUCCESS(rc))
3874 {
3875#if 0
3876 SUPR0Printf("mponpair ticks: %9llu %9llu max: %9llu iTry: %u%s\n", pArgs->cElapsedMasterTscTicks,
3877 pArgs->cElapsedWorkerTscTicks, pArgs->cMaxTscTicks, pArgs->iTry,
3878 pArgs->fTimedOut ? " timed out" :"");
3879#endif
3880#if 0
3881 SUPR0Printf("rcVerify=%d iVerifyBadTscDiff=%lld cMinVerifyTscTicks=%lld cMaxVerifyTscTicks=%lld\n",
3882 pArgs->rcVerify, pArgs->iVerifyBadTscDiff, pArgs->cMinVerifyTscTicks, pArgs->cMaxVerifyTscTicks);
3883#endif
3884 if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX))
3885 {
3886 /*
3887 * Work the TSC delta applicability rating. It starts
3888 * optimistic in supdrvGipInit, we downgrade it here.
3889 */
3890 SUPGIPUSETSCDELTA enmRating;
3891 if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO
3892 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO)
3893 enmRating = SUPGIPUSETSCDELTA_NOT_ZERO;
3894 else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO
3895 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO)
3896 enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO;
3897 else
3898 enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO;
3899 if (pGip->enmUseTscDelta < enmRating)
3900 {
3901 AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t));
3902 ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating);
3903 }
3904 }
3905 else
3906 rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
3907 }
3908 /** @todo return try-again if we get an offline CPU error. */
3909
3910 RTMemFree(pArgs);
3911 }
3912 else
3913 rc = VERR_NO_MEMORY;
3914 }
3915 else
3916 rc = VERR_CPU_OFFLINE;
3917
3918 /*
3919 * We're done now.
3920 */
3921#ifdef SUPDRV_USE_MUTEX_FOR_GIP
3922 rc2 = RTSemMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3923#else
3924 rc2 = RTSemFastMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
3925#endif
3926 return rc;
3927}
3928
3929
3930/**
3931 * Resets the TSC-delta related TSC samples and optionally the deltas
3932 * themselves.
3933 *
3934 * @param pDevExt Pointer to the device instance data.
3935 * @param fResetTscDeltas Whether the TSC-deltas are also to be reset.
3936 *
3937 * @remarks This might be called while holding a spinlock!
3938 */
3939static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fResetTscDeltas)
3940{
3941 unsigned iCpu;
3942 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3943 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3944 {
3945 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
3946 ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD);
3947 if (fResetTscDeltas)
3948 {
3949 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpu->iCpuSet);
3950 ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX);
3951 }
3952 }
3953}
3954
3955
3956/**
3957 * Picks an online CPU as the master TSC for TSC-delta computations.
3958 *
3959 * @returns VBox status code.
3960 * @param pDevExt Pointer to the device instance data.
3961 * @param pidxMaster Where to store the CPU array index of the chosen
3962 * master. Optional, can be NULL.
3963 */
3964static int supdrvTscPickMaster(PSUPDRVDEVEXT pDevExt, uint32_t *pidxMaster)
3965{
3966 /*
3967 * Pick the first CPU online as the master TSC and make it the new GIP master based
3968 * on the APIC ID.
3969 *
3970 * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0
3971 * in most cases making it nicer/easier for comparisons. It is safe to update the GIP
3972 * master as this point since the sync/async timer isn't created yet.
3973 */
3974 unsigned iCpu;
3975 uint32_t idxMaster = UINT32_MAX;
3976 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3977 for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++)
3978 {
3979 uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu];
3980 if (idxCpu != UINT16_MAX)
3981 {
3982 PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu];
3983 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet))
3984 {
3985 idxMaster = idxCpu;
3986 pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE;
3987 ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpu->idCpu);
3988 if (pidxMaster)
3989 *pidxMaster = idxMaster;
3990 return VINF_SUCCESS;
3991 }
3992 }
3993 }
3994 return VERR_CPU_OFFLINE;
3995}
3996
3997
3998/**
3999 * Performs the initial measurements of the TSC deltas between CPUs.
4000 *
4001 * This is called by supdrvGipCreate(), supdrvGipPowerNotificationCallback() or
4002 * triggered by it if threaded.
4003 *
4004 * @returns VBox status code.
4005 * @param pDevExt Pointer to the device instance data.
4006 *
4007 * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses
4008 * idCpu, GIP's online CPU set which are populated in
4009 * supdrvGipInitOnCpu().
4010 */
4011static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt)
4012{
4013 PSUPGIPCPU pGipCpuMaster;
4014 unsigned iCpu;
4015 unsigned iOddEven;
4016 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4017 uint32_t idxMaster = UINT32_MAX;
4018 uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents);
4019
4020 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
4021 supdrvTscResetSamples(pDevExt, true /* fClearDeltas */);
4022 int rc = supdrvTscPickMaster(pDevExt, &idxMaster);
4023 if (RT_FAILURE(rc))
4024 {
4025 SUPR0Printf("Failed to pick a CPU master for TSC-delta measurements rc=%Rrc\n", rc);
4026 return rc;
4027 }
4028 AssertReturn(idxMaster < pGip->cCpus, VERR_INVALID_CPU_INDEX);
4029 pGipCpuMaster = &pGip->aCPUs[idxMaster];
4030 Assert(pDevExt->idGipMaster == pGipCpuMaster->idCpu);
4031
4032 /*
4033 * If there is only a single CPU online we have nothing to do.
4034 */
4035 if (pGip->cOnlineCpus <= 1)
4036 {
4037 AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5);
4038 return VINF_SUCCESS;
4039 }
4040
4041 /*
4042 * Loop thru the GIP CPU array and get deltas for each CPU (except the
4043 * master). We do the CPUs with the even numbered APIC IDs first so that
4044 * we've got alternative master CPUs to pick from on hyper-threaded systems.
4045 */
4046 for (iOddEven = 0; iOddEven < 2; iOddEven++)
4047 {
4048 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
4049 {
4050 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
4051 if ( iCpu != idxMaster
4052 && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0)
4053 && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
4054 {
4055 rc = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
4056 if (RT_FAILURE(rc))
4057 {
4058 SUPR0Printf("supdrvMeasureTscDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu,
4059 pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu);
4060 break;
4061 }
4062
4063 if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents)
4064 {
4065 SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n");
4066 rc = VERR_TRY_AGAIN;
4067 break;
4068 }
4069 }
4070 }
4071 }
4072
4073 return rc;
4074}
4075
4076
4077#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4078
4079/**
4080 * Switches the TSC-delta measurement thread into the butchered state.
4081 *
4082 * @returns VBox status code.
4083 * @param pDevExt Pointer to the device instance data.
4084 * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not.
4085 * @param pszFailed An error message to log.
4086 * @param rcFailed The error code to exit the thread with.
4087 */
4088static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed)
4089{
4090 if (!fSpinlockHeld)
4091 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4092
4093 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered;
4094 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4095 OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", rcFailed));
4096 return rcFailed;
4097}
4098
4099
4100/**
4101 * The TSC-delta measurement thread.
4102 *
4103 * @returns VBox status code.
4104 * @param hThread The thread handle.
4105 * @param pvUser Opaque pointer to the device instance data.
4106 */
4107static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser)
4108{
4109 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
4110 uint32_t cConsecutiveTimeouts = 0;
4111 int rc = VERR_INTERNAL_ERROR_2;
4112 for (;;)
4113 {
4114 /*
4115 * Switch on the current state.
4116 */
4117 SUPDRVTSCDELTATHREADSTATE enmState;
4118 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4119 enmState = pDevExt->enmTscDeltaThreadState;
4120 switch (enmState)
4121 {
4122 case kTscDeltaThreadState_Creating:
4123 {
4124 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
4125 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent);
4126 if (RT_FAILURE(rc))
4127 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
4128 /* fall thru */
4129 }
4130
4131 case kTscDeltaThreadState_Listening:
4132 {
4133 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4134
4135 /*
4136 * Linux counts uninterruptible sleeps as load, hence we shall do a
4137 * regular, interruptible sleep here and ignore wake ups due to signals.
4138 * See task_contributes_to_load() in include/linux/sched.h in the Linux sources.
4139 */
4140 rc = RTThreadUserWaitNoResume(pDevExt->hTscDeltaThread, pDevExt->cMsTscDeltaTimeout);
4141 if ( RT_FAILURE(rc)
4142 && rc != VERR_TIMEOUT
4143 && rc != VERR_INTERRUPTED)
4144 return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc);
4145 RTThreadUserReset(pDevExt->hTscDeltaThread);
4146 break;
4147 }
4148
4149 case kTscDeltaThreadState_WaitAndMeasure:
4150 {
4151 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring;
4152 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */
4153 if (RT_FAILURE(rc))
4154 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
4155 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4156 RTThreadSleep(1);
4157 /* fall thru */
4158 }
4159
4160 case kTscDeltaThreadState_Measuring:
4161 {
4162 cConsecutiveTimeouts = 0;
4163 if (pDevExt->fTscThreadRecomputeAllDeltas)
4164 {
4165 int cTries = 8;
4166 int cMsWaitPerTry = 10;
4167 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4168 Assert(pGip);
4169 do
4170 {
4171 RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet);
4172 rc = supdrvMeasureInitialTscDeltas(pDevExt);
4173 if ( RT_SUCCESS(rc)
4174 || ( RT_FAILURE(rc)
4175 && rc != VERR_TRY_AGAIN
4176 && rc != VERR_CPU_OFFLINE))
4177 {
4178 break;
4179 }
4180 RTThreadSleep(cMsWaitPerTry);
4181 } while (cTries-- > 0);
4182 pDevExt->fTscThreadRecomputeAllDeltas = false;
4183 }
4184 else
4185 {
4186 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4187 unsigned iCpu;
4188
4189 /* Measure TSC-deltas only for the CPUs that are in the set. */
4190 rc = VINF_SUCCESS;
4191 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
4192 {
4193 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
4194 if (RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
4195 {
4196 if (pGipCpuWorker->i64TSCDelta == INT64_MAX)
4197 {
4198 int rc2 = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
4199 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4200 rc = rc2;
4201 }
4202 else
4203 {
4204 /*
4205 * The thread/someone must've called SUPR0TscDeltaMeasureBySetIndex(),
4206 * mark the delta as fine to get the timer thread off our back.
4207 */
4208 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
4209 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
4210 }
4211 }
4212 }
4213 }
4214 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4215 if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4216 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
4217 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4218 Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as init value, see supdrvTscDeltaThreadInit(). */
4219 ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc);
4220 break;
4221 }
4222
4223 case kTscDeltaThreadState_Terminating:
4224 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed;
4225 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4226 return VINF_SUCCESS;
4227
4228 case kTscDeltaThreadState_Butchered:
4229 default:
4230 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE);
4231 }
4232 }
4233
4234 return rc;
4235}
4236
4237
4238/**
4239 * Waits for the TSC-delta measurement thread to respond to a state change.
4240 *
4241 * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time,
4242 * other error code on internal error.
4243 *
4244 * @param pThis Pointer to the grant service instance data.
4245 * @param enmCurState The current state.
4246 * @param enmNewState The new state we're waiting for it to enter.
4247 */
4248static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState,
4249 SUPDRVTSCDELTATHREADSTATE enmNewState)
4250{
4251 /*
4252 * Wait a short while for the expected state transition.
4253 */
4254 int rc;
4255 RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC);
4256 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4257 if (pDevExt->enmTscDeltaThreadState == enmNewState)
4258 {
4259 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4260 rc = VINF_SUCCESS;
4261 }
4262 else if (pDevExt->enmTscDeltaThreadState == enmCurState)
4263 {
4264 /*
4265 * Wait longer if the state has not yet transitioned to the one we want.
4266 */
4267 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4268 rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC);
4269 if ( RT_SUCCESS(rc)
4270 || rc == VERR_TIMEOUT)
4271 {
4272 /*
4273 * Check the state whether we've succeeded.
4274 */
4275 SUPDRVTSCDELTATHREADSTATE enmState;
4276 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4277 enmState = pDevExt->enmTscDeltaThreadState;
4278 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4279 if (enmState == enmNewState)
4280 rc = VINF_SUCCESS;
4281 else if (enmState == enmCurState)
4282 {
4283 rc = VERR_TIMEOUT;
4284 OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmState=%d enmNewState=%d\n", enmState,
4285 enmNewState));
4286 }
4287 else
4288 {
4289 rc = VERR_INTERNAL_ERROR;
4290 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState,
4291 enmState, enmNewState));
4292 }
4293 }
4294 else
4295 OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc));
4296 }
4297 else
4298 {
4299 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4300 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d\n", enmCurState, enmNewState));
4301 rc = VERR_INTERNAL_ERROR;
4302 }
4303
4304 return rc;
4305}
4306
4307
4308/**
4309 * Signals the TSC-delta thread to start measuring TSC-deltas.
4310 *
4311 * @param pDevExt Pointer to the device instance data.
4312 * @param fForceAll Force re-calculating TSC-deltas on all CPUs.
4313 */
4314static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll)
4315{
4316 if (pDevExt->hTscDeltaThread != NIL_RTTHREAD)
4317 {
4318 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4319 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4320 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4321 {
4322 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4323 if (fForceAll)
4324 pDevExt->fTscThreadRecomputeAllDeltas = true;
4325 }
4326 else if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_WaitAndMeasure
4327 && fForceAll)
4328 pDevExt->fTscThreadRecomputeAllDeltas = true;
4329 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4330 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4331 }
4332}
4333
4334
4335/**
4336 * Terminates the actual thread running supdrvTscDeltaThread().
4337 *
4338 * This is an internal worker function for supdrvTscDeltaThreadInit() and
4339 * supdrvTscDeltaTerm().
4340 *
4341 * @param pDevExt Pointer to the device instance data.
4342 */
4343static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt)
4344{
4345 int rc;
4346 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4347 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating;
4348 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4349 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4350 rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */);
4351 if (RT_FAILURE(rc))
4352 {
4353 /* Signal a few more times before giving up. */
4354 int cTriesLeft = 5;
4355 while (--cTriesLeft > 0)
4356 {
4357 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4358 rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */);
4359 if (rc != VERR_TIMEOUT)
4360 break;
4361 }
4362 }
4363}
4364
4365
4366/**
4367 * Initializes and spawns the TSC-delta measurement thread.
4368 *
4369 * A thread is required for servicing re-measurement requests from events like
4370 * CPUs coming online, suspend/resume etc. as it cannot be done synchronously
4371 * under all contexts on all OSs.
4372 *
4373 * @returns VBox status code.
4374 * @param pDevExt Pointer to the device instance data.
4375 *
4376 * @remarks Must only be called -after- initializing GIP and setting up MP
4377 * notifications!
4378 */
4379static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt)
4380{
4381 int rc;
4382 Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
4383 rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck");
4384 if (RT_SUCCESS(rc))
4385 {
4386 rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent);
4387 if (RT_SUCCESS(rc))
4388 {
4389 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating;
4390 pDevExt->cMsTscDeltaTimeout = 60000;
4391 rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */,
4392 RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread");
4393 if (RT_SUCCESS(rc))
4394 {
4395 rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening);
4396 if (RT_SUCCESS(rc))
4397 {
4398 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4399 return rc;
4400 }
4401
4402 OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc));
4403 supdrvTscDeltaThreadTerminate(pDevExt);
4404 }
4405 else
4406 OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc));
4407 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4408 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4409 }
4410 else
4411 OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc));
4412 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4413 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4414 }
4415 else
4416 OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc));
4417
4418 return rc;
4419}
4420
4421
4422/**
4423 * Terminates the TSC-delta measurement thread and cleanup.
4424 *
4425 * @param pDevExt Pointer to the device instance data.
4426 */
4427static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt)
4428{
4429 if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK
4430 && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4431 {
4432 supdrvTscDeltaThreadTerminate(pDevExt);
4433 }
4434
4435 if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK)
4436 {
4437 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
4438 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
4439 }
4440
4441 if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
4442 {
4443 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
4444 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
4445 }
4446
4447 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
4448}
4449
4450#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4451
4452/**
4453 * Measure the TSC delta for the CPU given by its CPU set index.
4454 *
4455 * @returns VBox status code.
4456 * @retval VERR_INTERRUPTED if interrupted while waiting.
4457 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a
4458 * measurement.
4459 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
4460 *
4461 * @param pSession The caller's session. GIP must've been mapped.
4462 * @param iCpuSet The CPU set index of the CPU to measure.
4463 * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX.
4464 * @param cMsWaitRetry Number of milliseconds to wait between each retry.
4465 * @param cMsWaitThread Number of milliseconds to wait for the thread to get
4466 * ready.
4467 * @param cTries Number of times to try, pass 0 for the default.
4468 */
4469SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags,
4470 RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries)
4471{
4472 PSUPDRVDEVEXT pDevExt;
4473 PSUPGLOBALINFOPAGE pGip;
4474 uint16_t iGipCpu;
4475 int rc;
4476#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4477 uint64_t msTsStartWait;
4478 uint32_t iWaitLoop;
4479#endif
4480
4481 /*
4482 * Validate and adjust the input.
4483 */
4484 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
4485 if (!pSession->fGipReferenced)
4486 return VERR_WRONG_ORDER;
4487
4488 pDevExt = pSession->pDevExt;
4489 AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER);
4490
4491 pGip = pDevExt->pGip;
4492 AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2);
4493
4494 AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX);
4495 AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX);
4496 iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
4497 AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX);
4498
4499 if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK)
4500 return VERR_INVALID_FLAGS;
4501
4502 /*
4503 * The request is a noop if the TSC delta isn't being used.
4504 */
4505 if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4506 return VINF_SUCCESS;
4507
4508 if (cTries == 0)
4509 cTries = 12;
4510 else if (cTries > 256)
4511 cTries = 256;
4512
4513 if (cMsWaitRetry == 0)
4514 cMsWaitRetry = 2;
4515 else if (cMsWaitRetry > 1000)
4516 cMsWaitRetry = 1000;
4517
4518#ifdef SUPDRV_USE_TSC_DELTA_THREAD
4519 /*
4520 * Has the TSC already been measured and we're not forced to redo it?
4521 */
4522 if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX
4523 && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE))
4524 return VINF_SUCCESS;
4525
4526 /*
4527 * Asynchronous request? Forward it to the thread, no waiting.
4528 */
4529 if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC)
4530 {
4531 /** @todo Async. doesn't implement options like retries, waiting. We'll need
4532 * to pass those options to the thread somehow and implement it in the
4533 * thread. Check if anyone uses/needs fAsync before implementing this. */
4534 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4535 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
4536 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
4537 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
4538 {
4539 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
4540 rc = VINF_SUCCESS;
4541 }
4542 else if (pDevExt->enmTscDeltaThreadState != kTscDeltaThreadState_WaitAndMeasure)
4543 rc = VERR_THREAD_IS_DEAD;
4544 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4545 RTThreadUserSignal(pDevExt->hTscDeltaThread);
4546 return VINF_SUCCESS;
4547 }
4548
4549 /*
4550 * If a TSC-delta measurement request is already being serviced by the thread,
4551 * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy.
4552 */
4553 msTsStartWait = RTTimeSystemMilliTS();
4554 for (iWaitLoop = 0;; iWaitLoop++)
4555 {
4556 uint64_t cMsElapsed;
4557 SUPDRVTSCDELTATHREADSTATE enmState;
4558 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
4559 enmState = pDevExt->enmTscDeltaThreadState;
4560 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
4561
4562 if (enmState == kTscDeltaThreadState_Measuring)
4563 { /* Must wait, the thread is busy. */ }
4564 else if (enmState == kTscDeltaThreadState_WaitAndMeasure)
4565 { /* Must wait, this state only says what will happen next. */ }
4566 else if (enmState == kTscDeltaThreadState_Terminating)
4567 { /* Must wait, this state only says what should happen next. */ }
4568 else
4569 break; /* All other states, the thread is either idly listening or dead. */
4570
4571 /* Wait or fail. */
4572 if (cMsWaitThread == 0)
4573 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4574 cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait;
4575 if (cMsElapsed >= cMsWaitThread)
4576 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4577
4578 rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10)));
4579 if (rc == VERR_INTERRUPTED)
4580 return rc;
4581 }
4582#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4583
4584 /*
4585 * Try measure the TSC delta the given number of times.
4586 */
4587 for (;;)
4588 {
4589 /* Unless we're forced to measure the delta, check whether it's done already. */
4590 if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)
4591 && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX)
4592 {
4593 rc = VINF_SUCCESS;
4594 break;
4595 }
4596
4597 /* Measure it. */
4598 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4599 if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED)
4600 {
4601 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4602 break;
4603 }
4604
4605 /* Retry? */
4606 if (cTries <= 1)
4607 break;
4608 cTries--;
4609
4610 /* Always delay between retries (be nice to the rest of the system
4611 and avoid the BSOD hounds). */
4612 rc = RTThreadSleep(cMsWaitRetry);
4613 if (rc == VERR_INTERRUPTED)
4614 break;
4615 }
4616
4617 return rc;
4618}
4619
4620
4621/**
4622 * Service a TSC-delta measurement request.
4623 *
4624 * @returns VBox status code.
4625 * @param pDevExt Pointer to the device instance data.
4626 * @param pSession The support driver session.
4627 * @param pReq Pointer to the TSC-delta measurement request.
4628 */
4629int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq)
4630{
4631 uint32_t cTries;
4632 uint32_t iCpuSet;
4633 uint32_t fFlags;
4634 RTMSINTERVAL cMsWaitRetry;
4635
4636 /*
4637 * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex.
4638 */
4639 AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */
4640
4641 if (pReq->u.In.idCpu == NIL_RTCPUID)
4642 return VERR_INVALID_CPU_ID;
4643 iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu);
4644 if (iCpuSet >= RTCPUSET_MAX_CPUS)
4645 return VERR_INVALID_CPU_ID;
4646
4647 cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1;
4648
4649 cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5);
4650
4651 fFlags = 0;
4652 if (pReq->u.In.fAsync)
4653 fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC;
4654 if (pReq->u.In.fForce)
4655 fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE;
4656
4657 return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry,
4658 cTries == 0 ? 5 * RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/,
4659 cTries);
4660}
4661
4662
4663/**
4664 * Reads TSC with delta applied.
4665 *
4666 * Will try to resolve delta value INT64_MAX before applying it. This is the
4667 * main purpose of this function, to handle the case where the delta needs to be
4668 * determined.
4669 *
4670 * @returns VBox status code.
4671 * @param pDevExt Pointer to the device instance data.
4672 * @param pSession The support driver session.
4673 * @param pReq Pointer to the TSC-read request.
4674 */
4675int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq)
4676{
4677 PSUPGLOBALINFOPAGE pGip;
4678 int rc;
4679
4680 /*
4681 * Validate. We require the client to have mapped GIP (no asserting on
4682 * ring-3 preconditions).
4683 */
4684 AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */
4685 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4686 return VERR_WRONG_ORDER;
4687 pGip = pDevExt->pGip;
4688 AssertReturn(pGip, VERR_INTERNAL_ERROR_2);
4689
4690 /*
4691 * We're usually here because we need to apply delta, but we shouldn't be
4692 * upset if the GIP is some different mode.
4693 */
4694 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4695 {
4696 uint32_t cTries = 0;
4697 for (;;)
4698 {
4699 /*
4700 * Start by gathering the data, using CLI for disabling preemption
4701 * while we do that.
4702 */
4703 RTCCUINTREG fEFlags = ASMIntDisableFlags();
4704 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4705 int iGipCpu;
4706 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4707 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4708 {
4709 int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta;
4710 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4711 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4712 ASMSetFlags(fEFlags);
4713
4714 /*
4715 * If we're lucky we've got a delta, but no predictions here
4716 * as this I/O control is normally only used when the TSC delta
4717 * is set to INT64_MAX.
4718 */
4719 if (i64Delta != INT64_MAX)
4720 {
4721 pReq->u.Out.u64AdjustedTsc -= i64Delta;
4722 rc = VINF_SUCCESS;
4723 break;
4724 }
4725
4726 /* Give up after a few times. */
4727 if (cTries >= 4)
4728 {
4729 rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
4730 break;
4731 }
4732
4733 /* Need to measure the delta an try again. */
4734 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4735 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4736 /** @todo should probably delay on failure... dpc watchdogs */
4737 }
4738 else
4739 {
4740 /* This really shouldn't happen. */
4741 AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet));
4742 pReq->u.Out.idApic = ASMGetApicId();
4743 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4744 ASMSetFlags(fEFlags);
4745 rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */
4746 break;
4747 }
4748 }
4749 }
4750 else
4751 {
4752 /*
4753 * No delta to apply. Easy. Deal with preemption the lazy way.
4754 */
4755 RTCCUINTREG fEFlags = ASMIntDisableFlags();
4756 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4757 int iGipCpu;
4758 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4759 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4760 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4761 else
4762 pReq->u.Out.idApic = ASMGetApicId();
4763 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4764 ASMSetFlags(fEFlags);
4765 rc = VINF_SUCCESS;
4766 }
4767
4768 return rc;
4769}
4770
4771
4772/**
4773 * Worker for supdrvIOCtl_GipSetFlags.
4774 *
4775 * @returns VBox status code.
4776 * @retval VERR_WRONG_ORDER if an enable-once-per-session flag is set again for
4777 * a session.
4778 *
4779 * @param pDevExt Pointer to the device instance data.
4780 * @param pSession The support driver session.
4781 * @param fOrMask The OR mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4782 * @param fAndMask The AND mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4783 *
4784 * @remarks Caller must own the GIP mutex.
4785 *
4786 * @remarks This function doesn't validate any of the flags.
4787 */
4788static int supdrvGipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask)
4789{
4790 uint32_t cRefs;
4791 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
4792 AssertMsg((fOrMask & fAndMask) == fOrMask, ("%#x & %#x\n", fOrMask, fAndMask)); /* ASSUMED by code below */
4793
4794 /*
4795 * Compute GIP test-mode flags.
4796 */
4797 if (fOrMask & SUPGIP_FLAGS_TESTING_ENABLE)
4798 {
4799 if (!pSession->fGipTestMode)
4800 {
4801 Assert(pDevExt->cGipTestModeRefs < _64K);
4802 pSession->fGipTestMode = true;
4803 cRefs = ++pDevExt->cGipTestModeRefs;
4804 if (cRefs == 1)
4805 {
4806 fOrMask |= SUPGIP_FLAGS_TESTING | SUPGIP_FLAGS_TESTING_START;
4807 fAndMask &= ~SUPGIP_FLAGS_TESTING_STOP;
4808 }
4809 }
4810 else
4811 {
4812 LogRelMax(10, ("supdrvGipSetFlags: SUPGIP_FLAGS_TESTING_ENABLE already set for this session\n"));
4813 return VERR_WRONG_ORDER;
4814 }
4815 }
4816 else if ( !(fAndMask & SUPGIP_FLAGS_TESTING_ENABLE)
4817 && pSession->fGipTestMode)
4818 {
4819 Assert(pDevExt->cGipTestModeRefs > 0);
4820 Assert(pDevExt->cGipTestModeRefs < _64K);
4821 pSession->fGipTestMode = false;
4822 cRefs = --pDevExt->cGipTestModeRefs;
4823 if (!cRefs)
4824 fOrMask |= SUPGIP_FLAGS_TESTING_STOP;
4825 else
4826 fAndMask |= SUPGIP_FLAGS_TESTING_ENABLE;
4827 }
4828
4829 /*
4830 * Commit the flags. This should be done as atomically as possible
4831 * since the flag consumers won't be holding the GIP mutex.
4832 */
4833 ASMAtomicOrU32(&pGip->fFlags, fOrMask);
4834 ASMAtomicAndU32(&pGip->fFlags, fAndMask);
4835
4836 return VINF_SUCCESS;
4837}
4838
4839
4840/**
4841 * Sets GIP test mode parameters.
4842 *
4843 * @returns VBox status code.
4844 * @param pDevExt Pointer to the device instance data.
4845 * @param pSession The support driver session.
4846 * @param fOrMask The OR mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4847 * @param fAndMask The AND mask of the GIP flags, see SUPGIP_FLAGS_XXX.
4848 */
4849int VBOXCALL supdrvIOCtl_GipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask)
4850{
4851 PSUPGLOBALINFOPAGE pGip;
4852 int rc;
4853
4854 /*
4855 * Validate. We require the client to have mapped GIP (no asserting on
4856 * ring-3 preconditions).
4857 */
4858 AssertPtr(pDevExt); AssertPtr(pSession); /* paranoia^2 */
4859 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4860 return VERR_WRONG_ORDER;
4861 pGip = pDevExt->pGip;
4862 AssertReturn(pGip, VERR_INTERNAL_ERROR_3);
4863
4864 if (fOrMask & ~SUPGIP_FLAGS_VALID_MASK)
4865 return VERR_INVALID_PARAMETER;
4866 if ((fAndMask & ~SUPGIP_FLAGS_VALID_MASK) != ~SUPGIP_FLAGS_VALID_MASK)
4867 return VERR_INVALID_PARAMETER;
4868
4869 /*
4870 * Don't confuse supdrvGipSetFlags or anyone else by both setting
4871 * and clearing the same flags. AND takes precedence.
4872 */
4873 fOrMask &= fAndMask;
4874
4875 /*
4876 * Take the loader lock to avoid having to think about races between two
4877 * clients changing the flags at the same time (state is not simple).
4878 */
4879#ifdef SUPDRV_USE_MUTEX_FOR_GIP
4880 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
4881#else
4882 RTSemFastMutexRequest(pDevExt->mtxGip);
4883#endif
4884
4885 rc = supdrvGipSetFlags(pDevExt, pSession, fOrMask, fAndMask);
4886
4887#ifdef SUPDRV_USE_MUTEX_FOR_GIP
4888 RTSemMutexRelease(pDevExt->mtxGip);
4889#else
4890 RTSemFastMutexRelease(pDevExt->mtxGip);
4891#endif
4892 return rc;
4893}
4894
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette