1 | /* $Id: SUPDrvGip.cpp 54581 2015-03-02 14:56:02Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * VBoxDrv - The VirtualBox Support Driver - Common code for GIP.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 | /*******************************************************************************
|
---|
28 | * Header Files *
|
---|
29 | *******************************************************************************/
|
---|
30 | #define LOG_GROUP LOG_GROUP_SUP_DRV
|
---|
31 | #define SUPDRV_AGNOSTIC
|
---|
32 | #include "SUPDrvInternal.h"
|
---|
33 | #ifndef PAGE_SHIFT
|
---|
34 | # include <iprt/param.h>
|
---|
35 | #endif
|
---|
36 | #include <iprt/asm.h>
|
---|
37 | #include <iprt/asm-amd64-x86.h>
|
---|
38 | #include <iprt/asm-math.h>
|
---|
39 | #include <iprt/cpuset.h>
|
---|
40 | #include <iprt/handletable.h>
|
---|
41 | #include <iprt/mem.h>
|
---|
42 | #include <iprt/mp.h>
|
---|
43 | #include <iprt/power.h>
|
---|
44 | #include <iprt/process.h>
|
---|
45 | #include <iprt/semaphore.h>
|
---|
46 | #include <iprt/spinlock.h>
|
---|
47 | #include <iprt/thread.h>
|
---|
48 | #include <iprt/uuid.h>
|
---|
49 | #include <iprt/net.h>
|
---|
50 | #include <iprt/crc.h>
|
---|
51 | #include <iprt/string.h>
|
---|
52 | #include <iprt/timer.h>
|
---|
53 | #if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
|
---|
54 | # include <iprt/rand.h>
|
---|
55 | # include <iprt/path.h>
|
---|
56 | #endif
|
---|
57 | #include <iprt/uint128.h>
|
---|
58 | #include <iprt/x86.h>
|
---|
59 |
|
---|
60 | #include <VBox/param.h>
|
---|
61 | #include <VBox/log.h>
|
---|
62 | #include <VBox/err.h>
|
---|
63 |
|
---|
64 | #if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
|
---|
65 | # include "dtrace/SUPDrv.h"
|
---|
66 | #else
|
---|
67 | /* ... */
|
---|
68 | #endif
|
---|
69 |
|
---|
70 |
|
---|
71 | /*******************************************************************************
|
---|
72 | * Defined Constants And Macros *
|
---|
73 | *******************************************************************************/
|
---|
74 | /** The frequency by which we recalculate the u32UpdateHz and
|
---|
75 | * u32UpdateIntervalNS GIP members. The value must be a power of 2.
|
---|
76 | *
|
---|
77 | * Warning: Bumping this too high might overflow u32UpdateIntervalNS.
|
---|
78 | */
|
---|
79 | #define GIP_UPDATEHZ_RECALC_FREQ 0x800
|
---|
80 |
|
---|
81 | /** A reserved TSC value used for synchronization as well as measurement of
|
---|
82 | * TSC deltas. */
|
---|
83 | #define GIP_TSC_DELTA_RSVD UINT64_MAX
|
---|
84 | /** The number of TSC delta measurement loops in total (includes primer and
|
---|
85 | * read-time loops). */
|
---|
86 | #define GIP_TSC_DELTA_LOOPS 96
|
---|
87 | /** The number of cache primer loops. */
|
---|
88 | #define GIP_TSC_DELTA_PRIMER_LOOPS 4
|
---|
89 | /** The number of loops until we keep computing the minumum read time. */
|
---|
90 | #define GIP_TSC_DELTA_READ_TIME_LOOPS 24
|
---|
91 |
|
---|
92 | /** The TSC frequency refinement period in seconds.
|
---|
93 | * The timer fires after 200ms, then every second, this value just says when
|
---|
94 | * to stop it after that. */
|
---|
95 | #define GIP_TSC_REFINE_PERIOD_IN_SECS 12
|
---|
96 | /** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */
|
---|
97 | #define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32
|
---|
98 | /** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */
|
---|
99 | #define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448
|
---|
100 | /** The TSC delta value for the initial GIP master - 0 in regular builds.
|
---|
101 | * To test the delta code this can be set to a non-zero value. */
|
---|
102 | #if 0
|
---|
103 | # define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */
|
---|
104 | #else
|
---|
105 | # define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0)
|
---|
106 | #endif
|
---|
107 |
|
---|
108 | AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS);
|
---|
109 | AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS);
|
---|
110 |
|
---|
111 | /** @def VBOX_SVN_REV
|
---|
112 | * The makefile should define this if it can. */
|
---|
113 | #ifndef VBOX_SVN_REV
|
---|
114 | # define VBOX_SVN_REV 0
|
---|
115 | #endif
|
---|
116 |
|
---|
117 | #if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
|
---|
118 | # define DO_NOT_START_GIP
|
---|
119 | #endif
|
---|
120 |
|
---|
121 |
|
---|
122 | /*******************************************************************************
|
---|
123 | * Internal Functions *
|
---|
124 | *******************************************************************************/
|
---|
125 | static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
|
---|
126 | static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
|
---|
127 | static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz);
|
---|
128 | static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas);
|
---|
129 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
130 | static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt);
|
---|
131 | static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt);
|
---|
132 | static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll);
|
---|
133 | #else
|
---|
134 | static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt);
|
---|
135 | static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker);
|
---|
136 | #endif
|
---|
137 |
|
---|
138 |
|
---|
139 | /*******************************************************************************
|
---|
140 | * Global Variables *
|
---|
141 | *******************************************************************************/
|
---|
142 | DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
|
---|
143 |
|
---|
144 |
|
---|
145 |
|
---|
146 | /*
|
---|
147 | *
|
---|
148 | * Misc Common GIP Code
|
---|
149 | * Misc Common GIP Code
|
---|
150 | * Misc Common GIP Code
|
---|
151 | *
|
---|
152 | *
|
---|
153 | */
|
---|
154 |
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Finds the GIP CPU index corresponding to @a idCpu.
|
---|
158 | *
|
---|
159 | * @returns GIP CPU array index, UINT32_MAX if not found.
|
---|
160 | * @param pGip The GIP.
|
---|
161 | * @param idCpu The CPU ID.
|
---|
162 | */
|
---|
163 | static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
|
---|
164 | {
|
---|
165 | uint32_t i;
|
---|
166 | for (i = 0; i < pGip->cCpus; i++)
|
---|
167 | if (pGip->aCPUs[i].idCpu == idCpu)
|
---|
168 | return i;
|
---|
169 | return UINT32_MAX;
|
---|
170 | }
|
---|
171 |
|
---|
172 |
|
---|
173 |
|
---|
174 | /*
|
---|
175 | *
|
---|
176 | * GIP Mapping and Unmapping Related Code.
|
---|
177 | * GIP Mapping and Unmapping Related Code.
|
---|
178 | * GIP Mapping and Unmapping Related Code.
|
---|
179 | *
|
---|
180 | *
|
---|
181 | */
|
---|
182 |
|
---|
183 |
|
---|
184 | /**
|
---|
185 | * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
|
---|
186 | * updating.
|
---|
187 | *
|
---|
188 | * @param pGip Pointer to the GIP.
|
---|
189 | * @param pGipCpu The per CPU structure for this CPU.
|
---|
190 | * @param u64NanoTS The current time.
|
---|
191 | */
|
---|
192 | static void supdrvGipReInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
|
---|
193 | {
|
---|
194 | /*
|
---|
195 | * Here we don't really care about applying the TSC delta. The re-initialization of this
|
---|
196 | * value is not relevant especially while (re)starting the GIP as the first few ones will
|
---|
197 | * be ignored anyway, see supdrvGipDoUpdateCpu().
|
---|
198 | */
|
---|
199 | pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
|
---|
200 | pGipCpu->u64NanoTS = u64NanoTS;
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | /**
|
---|
205 | * Set the current TSC and NanoTS value for the CPU.
|
---|
206 | *
|
---|
207 | * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
|
---|
208 | * @param pvUser1 Pointer to the ring-0 GIP mapping.
|
---|
209 | * @param pvUser2 Pointer to the variable holding the current time.
|
---|
210 | */
|
---|
211 | static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
212 | {
|
---|
213 | PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
|
---|
214 | unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
|
---|
215 |
|
---|
216 | if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu))
|
---|
217 | supdrvGipReInitCpu(pGip, &pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
|
---|
218 |
|
---|
219 | NOREF(pvUser2);
|
---|
220 | NOREF(idCpu);
|
---|
221 | }
|
---|
222 |
|
---|
223 |
|
---|
224 | /**
|
---|
225 | * State structure for supdrvGipDetectGetGipCpuCallback.
|
---|
226 | */
|
---|
227 | typedef struct SUPDRVGIPDETECTGETCPU
|
---|
228 | {
|
---|
229 | /** Bitmap of APIC IDs that has been seen (initialized to zero).
|
---|
230 | * Used to detect duplicate APIC IDs (paranoia). */
|
---|
231 | uint8_t volatile bmApicId[256 / 8];
|
---|
232 | /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set
|
---|
233 | * initially). The callback clears the methods not detected. */
|
---|
234 | uint32_t volatile fSupported;
|
---|
235 | /** The first callback detecting any kind of range issues (initialized to
|
---|
236 | * NIL_RTCPUID). */
|
---|
237 | RTCPUID volatile idCpuProblem;
|
---|
238 | } SUPDRVGIPDETECTGETCPU;
|
---|
239 | /** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */
|
---|
240 | typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU;
|
---|
241 |
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Checks for alternative ways of getting the CPU ID.
|
---|
245 | *
|
---|
246 | * This also checks the APIC ID, CPU ID and CPU set index values against the
|
---|
247 | * GIP tables.
|
---|
248 | *
|
---|
249 | * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
|
---|
250 | * @param pvUser1 Pointer to the state structure.
|
---|
251 | * @param pvUser2 Pointer to the GIP.
|
---|
252 | */
|
---|
253 | static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
254 | {
|
---|
255 | PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1;
|
---|
256 | PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2;
|
---|
257 | uint32_t fSupported = 0;
|
---|
258 | uint16_t idApic;
|
---|
259 | int iCpuSet;
|
---|
260 |
|
---|
261 | AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */
|
---|
262 |
|
---|
263 | /*
|
---|
264 | * Check that the CPU ID and CPU set index are interchangable.
|
---|
265 | */
|
---|
266 | iCpuSet = RTMpCpuIdToSetIndex(idCpu);
|
---|
267 | if ((RTCPUID)iCpuSet == idCpu)
|
---|
268 | {
|
---|
269 | AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS));
|
---|
270 | if ( iCpuSet >= 0
|
---|
271 | && iCpuSet < RTCPUSET_MAX_CPUS
|
---|
272 | && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS))
|
---|
273 | {
|
---|
274 | /*
|
---|
275 | * Check whether the IDTR.LIMIT contains a CPU number.
|
---|
276 | */
|
---|
277 | #ifdef RT_ARCH_X86
|
---|
278 | uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256;
|
---|
279 | #else
|
---|
280 | uint16_t const cbIdt = sizeof(X86DESCGATE) * 256;
|
---|
281 | #endif
|
---|
282 | RTIDTR Idtr;
|
---|
283 | ASMGetIDTR(&Idtr);
|
---|
284 | if (Idtr.cbIdt >= cbIdt)
|
---|
285 | {
|
---|
286 | uint32_t uTmp = Idtr.cbIdt - cbIdt;
|
---|
287 | uTmp &= RTCPUSET_MAX_CPUS - 1;
|
---|
288 | if (uTmp == idCpu)
|
---|
289 | {
|
---|
290 | RTIDTR Idtr2;
|
---|
291 | ASMGetIDTR(&Idtr2);
|
---|
292 | if (Idtr2.cbIdt == Idtr.cbIdt)
|
---|
293 | fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS;
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | /*
|
---|
298 | * Check whether RDTSCP is an option.
|
---|
299 | */
|
---|
300 | if (ASMHasCpuId())
|
---|
301 | {
|
---|
302 | if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000)))
|
---|
303 | && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
|
---|
304 | {
|
---|
305 | uint32_t uAux;
|
---|
306 | ASMReadTscWithAux(&uAux);
|
---|
307 | if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
|
---|
308 | {
|
---|
309 | ASMNopPause();
|
---|
310 | ASMReadTscWithAux(&uAux);
|
---|
311 | if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
|
---|
312 | fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS;
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 | }
|
---|
317 | }
|
---|
318 |
|
---|
319 | /*
|
---|
320 | * Check that the APIC ID is unique.
|
---|
321 | */
|
---|
322 | idApic = ASMGetApicId();
|
---|
323 | if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)
|
---|
324 | && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic)))
|
---|
325 | fSupported |= SUPGIPGETCPU_APIC_ID;
|
---|
326 | else
|
---|
327 | {
|
---|
328 | AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId));
|
---|
329 | ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
|
---|
330 | LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n",
|
---|
331 | idCpu, iCpuSet, idApic));
|
---|
332 | }
|
---|
333 |
|
---|
334 | /*
|
---|
335 | * Check that the iCpuSet is within the expected range.
|
---|
336 | */
|
---|
337 | if (RT_UNLIKELY( iCpuSet < 0
|
---|
338 | || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS
|
---|
339 | || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)))
|
---|
340 | {
|
---|
341 | ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
|
---|
342 | LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n",
|
---|
343 | idCpu, iCpuSet, idApic));
|
---|
344 | }
|
---|
345 | else
|
---|
346 | {
|
---|
347 | RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet);
|
---|
348 | if (RT_UNLIKELY(idCpu2 != idCpu))
|
---|
349 | {
|
---|
350 | ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
|
---|
351 | LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n",
|
---|
352 | idCpu, iCpuSet, idApic, idCpu2));
|
---|
353 | }
|
---|
354 | }
|
---|
355 |
|
---|
356 | /*
|
---|
357 | * Update the supported feature mask before we return.
|
---|
358 | */
|
---|
359 | ASMAtomicAndU32(&pState->fSupported, fSupported);
|
---|
360 |
|
---|
361 | NOREF(pvUser2);
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | /**
|
---|
366 | * Increase the timer freqency on hosts where this is possible (NT).
|
---|
367 | *
|
---|
368 | * The idea is that more interrupts is better for us... Also, it's better than
|
---|
369 | * we increase the timer frequence, because we might end up getting inaccurate
|
---|
370 | * callbacks if someone else does it.
|
---|
371 | *
|
---|
372 | * @param pDevExt Sets u32SystemTimerGranularityGrant if increased.
|
---|
373 | */
|
---|
374 | static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
|
---|
375 | {
|
---|
376 | if (pDevExt->u32SystemTimerGranularityGrant == 0)
|
---|
377 | {
|
---|
378 | uint32_t u32SystemResolution;
|
---|
379 | if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
|
---|
380 | || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
|
---|
381 | || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
|
---|
382 | || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
|
---|
383 | )
|
---|
384 | {
|
---|
385 | Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
|
---|
386 | pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
|
---|
387 | }
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 |
|
---|
392 | /**
|
---|
393 | * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem.
|
---|
394 | *
|
---|
395 | * @param pDevExt Clears u32SystemTimerGranularityGrant.
|
---|
396 | */
|
---|
397 | static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
|
---|
398 | {
|
---|
399 | if (pDevExt->u32SystemTimerGranularityGrant)
|
---|
400 | {
|
---|
401 | int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
|
---|
402 | AssertRC(rc2);
|
---|
403 | pDevExt->u32SystemTimerGranularityGrant = 0;
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 |
|
---|
408 | /**
|
---|
409 | * Maps the GIP into userspace and/or get the physical address of the GIP.
|
---|
410 | *
|
---|
411 | * @returns IPRT status code.
|
---|
412 | * @param pSession Session to which the GIP mapping should belong.
|
---|
413 | * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
|
---|
414 | * @param pHCPhysGip Where to store the physical address. (optional)
|
---|
415 | *
|
---|
416 | * @remark There is no reference counting on the mapping, so one call to this function
|
---|
417 | * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
|
---|
418 | * and remove the session as a GIP user.
|
---|
419 | */
|
---|
420 | SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
|
---|
421 | {
|
---|
422 | int rc;
|
---|
423 | PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
|
---|
424 | RTR3PTR pGipR3 = NIL_RTR3PTR;
|
---|
425 | RTHCPHYS HCPhys = NIL_RTHCPHYS;
|
---|
426 | LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
|
---|
427 |
|
---|
428 | /*
|
---|
429 | * Validate
|
---|
430 | */
|
---|
431 | AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
|
---|
432 | AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
|
---|
433 | AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
|
---|
434 |
|
---|
435 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
436 | RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
|
---|
437 | #else
|
---|
438 | RTSemFastMutexRequest(pDevExt->mtxGip);
|
---|
439 | #endif
|
---|
440 | if (pDevExt->pGip)
|
---|
441 | {
|
---|
442 | /*
|
---|
443 | * Map it?
|
---|
444 | */
|
---|
445 | rc = VINF_SUCCESS;
|
---|
446 | if (ppGipR3)
|
---|
447 | {
|
---|
448 | if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
|
---|
449 | rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
|
---|
450 | RTMEM_PROT_READ, RTR0ProcHandleSelf());
|
---|
451 | if (RT_SUCCESS(rc))
|
---|
452 | pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
|
---|
453 | }
|
---|
454 |
|
---|
455 | /*
|
---|
456 | * Get physical address.
|
---|
457 | */
|
---|
458 | if (pHCPhysGip && RT_SUCCESS(rc))
|
---|
459 | HCPhys = pDevExt->HCPhysGip;
|
---|
460 |
|
---|
461 | /*
|
---|
462 | * Reference globally.
|
---|
463 | */
|
---|
464 | if (!pSession->fGipReferenced && RT_SUCCESS(rc))
|
---|
465 | {
|
---|
466 | pSession->fGipReferenced = 1;
|
---|
467 | pDevExt->cGipUsers++;
|
---|
468 | if (pDevExt->cGipUsers == 1)
|
---|
469 | {
|
---|
470 | PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
|
---|
471 | uint64_t u64NanoTS;
|
---|
472 |
|
---|
473 | /*
|
---|
474 | * GIP starts/resumes updating again. On windows we bump the
|
---|
475 | * host timer frequency to make sure we don't get stuck in guest
|
---|
476 | * mode and to get better timer (and possibly clock) accuracy.
|
---|
477 | */
|
---|
478 | LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
|
---|
479 |
|
---|
480 | supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
|
---|
481 |
|
---|
482 | /*
|
---|
483 | * document me
|
---|
484 | */
|
---|
485 | if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
|
---|
486 | {
|
---|
487 | unsigned i;
|
---|
488 | for (i = 0; i < pGipR0->cCpus; i++)
|
---|
489 | ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
|
---|
490 | (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
|
---|
491 | & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
|
---|
492 | ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
|
---|
493 | }
|
---|
494 |
|
---|
495 | /*
|
---|
496 | * document me
|
---|
497 | */
|
---|
498 | u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
|
---|
499 | if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC
|
---|
500 | || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
|
---|
501 | || RTMpGetOnlineCount() == 1)
|
---|
502 | supdrvGipReInitCpu(pGipR0, &pGipR0->aCPUs[0], u64NanoTS);
|
---|
503 | else
|
---|
504 | RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
|
---|
505 |
|
---|
506 | /*
|
---|
507 | * Detect alternative ways to figure the CPU ID in ring-3 and
|
---|
508 | * raw-mode context. Check the sanity of the APIC IDs, CPU IDs,
|
---|
509 | * and CPU set indexes while we're at it.
|
---|
510 | */
|
---|
511 | if (RT_SUCCESS(rc))
|
---|
512 | {
|
---|
513 | SUPDRVGIPDETECTGETCPU DetectState;
|
---|
514 | RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId));
|
---|
515 | DetectState.fSupported = UINT32_MAX;
|
---|
516 | DetectState.idCpuProblem = NIL_RTCPUID;
|
---|
517 | rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0);
|
---|
518 | if (DetectState.idCpuProblem == NIL_RTCPUID)
|
---|
519 | {
|
---|
520 | if ( DetectState.fSupported != UINT32_MAX
|
---|
521 | && DetectState.fSupported != 0)
|
---|
522 | {
|
---|
523 | if (pGipR0->fGetGipCpu != DetectState.fSupported)
|
---|
524 | {
|
---|
525 | pGipR0->fGetGipCpu = DetectState.fSupported;
|
---|
526 | LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported));
|
---|
527 | }
|
---|
528 | }
|
---|
529 | else
|
---|
530 | {
|
---|
531 | LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n",
|
---|
532 | DetectState.fSupported));
|
---|
533 | rc = VERR_UNSUPPORTED_CPU;
|
---|
534 | }
|
---|
535 | }
|
---|
536 | else
|
---|
537 | {
|
---|
538 | LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n",
|
---|
539 | DetectState.idCpuProblem, DetectState.idCpuProblem));
|
---|
540 | rc = VERR_INVALID_CPU_ID;
|
---|
541 | }
|
---|
542 | }
|
---|
543 |
|
---|
544 | /*
|
---|
545 | * Start the GIP timer if all is well..
|
---|
546 | */
|
---|
547 | if (RT_SUCCESS(rc))
|
---|
548 | {
|
---|
549 | #ifndef DO_NOT_START_GIP
|
---|
550 | rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc);
|
---|
551 | #endif
|
---|
552 | rc = VINF_SUCCESS;
|
---|
553 | }
|
---|
554 |
|
---|
555 | /*
|
---|
556 | * Bail out on error.
|
---|
557 | */
|
---|
558 | if (RT_FAILURE(rc))
|
---|
559 | {
|
---|
560 | LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc));
|
---|
561 | pDevExt->cGipUsers = 0;
|
---|
562 | pSession->fGipReferenced = 0;
|
---|
563 | if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
|
---|
564 | {
|
---|
565 | int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2);
|
---|
566 | if (RT_SUCCESS(rc2))
|
---|
567 | pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
|
---|
568 | }
|
---|
569 | HCPhys = NIL_RTHCPHYS;
|
---|
570 | pGipR3 = NIL_RTR3PTR;
|
---|
571 | }
|
---|
572 | }
|
---|
573 | }
|
---|
574 | }
|
---|
575 | else
|
---|
576 | {
|
---|
577 | rc = VERR_GENERAL_FAILURE;
|
---|
578 | Log(("SUPR0GipMap: GIP is not available!\n"));
|
---|
579 | }
|
---|
580 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
581 | RTSemMutexRelease(pDevExt->mtxGip);
|
---|
582 | #else
|
---|
583 | RTSemFastMutexRelease(pDevExt->mtxGip);
|
---|
584 | #endif
|
---|
585 |
|
---|
586 | /*
|
---|
587 | * Write returns.
|
---|
588 | */
|
---|
589 | if (pHCPhysGip)
|
---|
590 | *pHCPhysGip = HCPhys;
|
---|
591 | if (ppGipR3)
|
---|
592 | *ppGipR3 = pGipR3;
|
---|
593 |
|
---|
594 | #ifdef DEBUG_DARWIN_GIP
|
---|
595 | OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
|
---|
596 | #else
|
---|
597 | LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
|
---|
598 | #endif
|
---|
599 | return rc;
|
---|
600 | }
|
---|
601 |
|
---|
602 |
|
---|
603 | /**
|
---|
604 | * Unmaps any user mapping of the GIP and terminates all GIP access
|
---|
605 | * from this session.
|
---|
606 | *
|
---|
607 | * @returns IPRT status code.
|
---|
608 | * @param pSession Session to which the GIP mapping should belong.
|
---|
609 | */
|
---|
610 | SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
|
---|
611 | {
|
---|
612 | int rc = VINF_SUCCESS;
|
---|
613 | PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
|
---|
614 | #ifdef DEBUG_DARWIN_GIP
|
---|
615 | OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
|
---|
616 | pSession,
|
---|
617 | pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
|
---|
618 | pSession->GipMapObjR3));
|
---|
619 | #else
|
---|
620 | LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
|
---|
621 | #endif
|
---|
622 | AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
|
---|
623 |
|
---|
624 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
625 | RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
|
---|
626 | #else
|
---|
627 | RTSemFastMutexRequest(pDevExt->mtxGip);
|
---|
628 | #endif
|
---|
629 |
|
---|
630 | /*
|
---|
631 | * Unmap anything?
|
---|
632 | */
|
---|
633 | if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
|
---|
634 | {
|
---|
635 | rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
|
---|
636 | AssertRC(rc);
|
---|
637 | if (RT_SUCCESS(rc))
|
---|
638 | pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
|
---|
639 | }
|
---|
640 |
|
---|
641 | /*
|
---|
642 | * Dereference global GIP.
|
---|
643 | */
|
---|
644 | if (pSession->fGipReferenced && !rc)
|
---|
645 | {
|
---|
646 | pSession->fGipReferenced = 0;
|
---|
647 | if ( pDevExt->cGipUsers > 0
|
---|
648 | && !--pDevExt->cGipUsers)
|
---|
649 | {
|
---|
650 | LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
|
---|
651 | #ifndef DO_NOT_START_GIP
|
---|
652 | rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
|
---|
653 | #endif
|
---|
654 | supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
|
---|
655 | }
|
---|
656 | }
|
---|
657 |
|
---|
658 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
659 | RTSemMutexRelease(pDevExt->mtxGip);
|
---|
660 | #else
|
---|
661 | RTSemFastMutexRelease(pDevExt->mtxGip);
|
---|
662 | #endif
|
---|
663 |
|
---|
664 | return rc;
|
---|
665 | }
|
---|
666 |
|
---|
667 |
|
---|
668 | /**
|
---|
669 | * Gets the GIP pointer.
|
---|
670 | *
|
---|
671 | * @returns Pointer to the GIP or NULL.
|
---|
672 | */
|
---|
673 | SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
|
---|
674 | {
|
---|
675 | return g_pSUPGlobalInfoPage;
|
---|
676 | }
|
---|
677 |
|
---|
678 |
|
---|
679 |
|
---|
680 |
|
---|
681 |
|
---|
682 | /*
|
---|
683 | *
|
---|
684 | *
|
---|
685 | * GIP Initialization, Termination and CPU Offline / Online Related Code.
|
---|
686 | * GIP Initialization, Termination and CPU Offline / Online Related Code.
|
---|
687 | * GIP Initialization, Termination and CPU Offline / Online Related Code.
|
---|
688 | *
|
---|
689 | *
|
---|
690 | */
|
---|
691 |
|
---|
692 | /**
|
---|
693 | * Used by supdrvInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq
|
---|
694 | * to update the TSC frequency related GIP variables.
|
---|
695 | *
|
---|
696 | * @param pGip The GIP.
|
---|
697 | * @param nsElapsed The number of nano seconds elapsed.
|
---|
698 | * @param cElapsedTscTicks The corresponding number of TSC ticks.
|
---|
699 | * @param iTick The tick number for debugging.
|
---|
700 | */
|
---|
701 | static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks, uint32_t iTick)
|
---|
702 | {
|
---|
703 | /*
|
---|
704 | * Calculate the frequency.
|
---|
705 | */
|
---|
706 | uint64_t uCpuHz;
|
---|
707 | if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC
|
---|
708 | && nsElapsed < UINT32_MAX)
|
---|
709 | uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed);
|
---|
710 | else
|
---|
711 | {
|
---|
712 | RTUINT128U CpuHz, Tmp, Divisor;
|
---|
713 | CpuHz.s.Lo = CpuHz.s.Hi = 0;
|
---|
714 | RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64);
|
---|
715 | RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed));
|
---|
716 | uCpuHz = CpuHz.s.Lo;
|
---|
717 | }
|
---|
718 |
|
---|
719 | /*
|
---|
720 | * Update the GIP.
|
---|
721 | */
|
---|
722 | ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz);
|
---|
723 | if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
|
---|
724 | {
|
---|
725 | ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz);
|
---|
726 |
|
---|
727 | /* For inspecting the frequency calcs using tstGIP-2, debugger or similar. */
|
---|
728 | if (iTick + 1 < pGip->cCpus)
|
---|
729 | ASMAtomicWriteU64(&pGip->aCPUs[iTick + 1].u64CpuHz, uCpuHz);
|
---|
730 | }
|
---|
731 | }
|
---|
732 |
|
---|
733 |
|
---|
734 | /**
|
---|
735 | * Timer callback function for TSC frequency refinement in invariant GIP mode.
|
---|
736 | *
|
---|
737 | * This is started during driver init and fires once
|
---|
738 | * GIP_TSC_REFINE_PERIOD_IN_SECS seconds later.
|
---|
739 | *
|
---|
740 | * @param pTimer The timer.
|
---|
741 | * @param pvUser Opaque pointer to the device instance data.
|
---|
742 | * @param iTick The timer tick.
|
---|
743 | */
|
---|
744 | static DECLCALLBACK(void) supdrvInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
|
---|
745 | {
|
---|
746 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
|
---|
747 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
748 | RTCPUID idCpu;
|
---|
749 | uint64_t cNsElapsed;
|
---|
750 | uint64_t cTscTicksElapsed;
|
---|
751 | uint64_t nsNow;
|
---|
752 | uint64_t uTsc;
|
---|
753 | RTCCUINTREG fEFlags;
|
---|
754 |
|
---|
755 | /* Paranoia. */
|
---|
756 | AssertReturnVoid(pGip);
|
---|
757 | AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC);
|
---|
758 |
|
---|
759 | /*
|
---|
760 | * If we got a power event, stop the refinement process.
|
---|
761 | */
|
---|
762 | if (pDevExt->fInvTscRefinePowerEvent)
|
---|
763 | {
|
---|
764 | int rc = RTTimerStop(pTimer); AssertRC(rc);
|
---|
765 | return;
|
---|
766 | }
|
---|
767 |
|
---|
768 | /*
|
---|
769 | * Read the TSC and time, noting which CPU we are on.
|
---|
770 | *
|
---|
771 | * Don't bother spinning until RTTimeSystemNanoTS changes, since on
|
---|
772 | * systems where it matters we're in a context where we cannot waste that
|
---|
773 | * much time (DPC watchdog, called from clock interrupt).
|
---|
774 | */
|
---|
775 | fEFlags = ASMIntDisableFlags();
|
---|
776 | uTsc = ASMReadTSC();
|
---|
777 | nsNow = RTTimeSystemNanoTS();
|
---|
778 | idCpu = RTMpCpuId();
|
---|
779 | ASMSetFlags(fEFlags);
|
---|
780 |
|
---|
781 | cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine;
|
---|
782 | cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine;
|
---|
783 |
|
---|
784 | /*
|
---|
785 | * If the above measurement was taken on a different CPU than the one we
|
---|
786 | * started the process on, cTscTicksElapsed will need to be adjusted with
|
---|
787 | * the TSC deltas of both the CPUs.
|
---|
788 | *
|
---|
789 | * We ASSUME that the delta calculation process takes less time than the
|
---|
790 | * TSC frequency refinement timer. If it doesn't, we'll complain and
|
---|
791 | * drop the frequency refinement.
|
---|
792 | *
|
---|
793 | * Note! We cannot entirely trust enmUseTscDelta here because it's
|
---|
794 | * downgraded after each delta calculation.
|
---|
795 | */
|
---|
796 | if ( idCpu != pDevExt->idCpuInvarTscRefine
|
---|
797 | && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
798 | {
|
---|
799 | uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine);
|
---|
800 | uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu);
|
---|
801 | uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
|
---|
802 | ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
|
---|
803 | uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
|
---|
804 | ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
|
---|
805 | int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
|
---|
806 | int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
|
---|
807 | if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
|
---|
808 | {
|
---|
809 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
|
---|
810 | {
|
---|
811 | /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */
|
---|
812 | cTscTicksElapsed += iStartTscDelta - iStopTscDelta;
|
---|
813 | }
|
---|
814 | }
|
---|
815 | /*
|
---|
816 | * Allow 5 times the refinement period to elapse before we give up on the TSC delta
|
---|
817 | * calculations.
|
---|
818 | */
|
---|
819 | else if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * 5 * RT_NS_1SEC_64)
|
---|
820 | {
|
---|
821 | SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n",
|
---|
822 | (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PERIOD_IN_SECS);
|
---|
823 | SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
|
---|
824 | iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
|
---|
825 | int rc = RTTimerStop(pTimer); AssertRC(rc);
|
---|
826 | return;
|
---|
827 | }
|
---|
828 | }
|
---|
829 |
|
---|
830 | /*
|
---|
831 | * Calculate and update the CPU frequency variables in GIP.
|
---|
832 | *
|
---|
833 | * If there is a GIP user already and we've already refined the frequency
|
---|
834 | * a couple of times, don't update it as we want a stable frequency value
|
---|
835 | * for all VMs.
|
---|
836 | */
|
---|
837 | if ( pDevExt->cGipUsers == 0
|
---|
838 | || cNsElapsed < RT_NS_1SEC * 2)
|
---|
839 | {
|
---|
840 | supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed, (uint32_t)iTick);
|
---|
841 |
|
---|
842 | /*
|
---|
843 | * Stop the timer once we've reached the defined refinement period.
|
---|
844 | */
|
---|
845 | if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * RT_NS_1SEC_64)
|
---|
846 | {
|
---|
847 | int rc = RTTimerStop(pTimer);
|
---|
848 | AssertRC(rc);
|
---|
849 | }
|
---|
850 | }
|
---|
851 | else
|
---|
852 | {
|
---|
853 | int rc = RTTimerStop(pTimer);
|
---|
854 | AssertRC(rc);
|
---|
855 | }
|
---|
856 | }
|
---|
857 |
|
---|
858 |
|
---|
859 | /**
|
---|
860 | * @callback_method_impl{FNRTPOWERNOTIFICATION}
|
---|
861 | */
|
---|
862 | static DECLCALLBACK(void) supdrvGipPowerNotificationCallback(RTPOWEREVENT enmEvent, void *pvUser)
|
---|
863 | {
|
---|
864 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
|
---|
865 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
866 |
|
---|
867 | /*
|
---|
868 | * If the TSC frequency refinement timer is running, we need to cancel it so it
|
---|
869 | * doesn't screw up the frequency after a long suspend.
|
---|
870 | *
|
---|
871 | * Recalculate all TSC-deltas on host resume as it may have changed, seen
|
---|
872 | * on Windows 7 running on the Dell Optiplex Intel Core i5-3570.
|
---|
873 | */
|
---|
874 | if (enmEvent == RTPOWEREVENT_RESUME)
|
---|
875 | {
|
---|
876 | ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
|
---|
877 | if ( RT_LIKELY(pGip)
|
---|
878 | && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
|
---|
879 | && !supdrvOSAreCpusOfflinedOnSuspend())
|
---|
880 | {
|
---|
881 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
882 | supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */);
|
---|
883 | #else
|
---|
884 | RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet);
|
---|
885 | supdrvMeasureInitialTscDeltas(pDevExt);
|
---|
886 | #endif
|
---|
887 | }
|
---|
888 | }
|
---|
889 | else if (enmEvent == RTPOWEREVENT_SUSPEND)
|
---|
890 | ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true);
|
---|
891 | }
|
---|
892 |
|
---|
893 |
|
---|
894 | /**
|
---|
895 | * Start the TSC-frequency refinment timer for the invariant TSC GIP mode.
|
---|
896 | *
|
---|
897 | * We cannot use this in the synchronous and asynchronous tsc GIP modes because
|
---|
898 | * the CPU may change the TSC frequence between now and when the timer fires
|
---|
899 | * (supdrvInitAsyncRefineTscTimer).
|
---|
900 | *
|
---|
901 | * @param pDevExt Pointer to the device instance data.
|
---|
902 | * @param pGip Pointer to the GIP.
|
---|
903 | */
|
---|
904 | static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip)
|
---|
905 | {
|
---|
906 | uint64_t u64NanoTS;
|
---|
907 | RTCCUINTREG fEFlags;
|
---|
908 | int rc;
|
---|
909 |
|
---|
910 | /*
|
---|
911 | * Register a power management callback.
|
---|
912 | */
|
---|
913 | pDevExt->fInvTscRefinePowerEvent = false;
|
---|
914 | rc = RTPowerNotificationRegister(supdrvGipPowerNotificationCallback, pDevExt);
|
---|
915 | AssertRC(rc); /* ignore */
|
---|
916 |
|
---|
917 | /*
|
---|
918 | * Record the TSC and NanoTS as the starting anchor point for refinement
|
---|
919 | * of the TSC. We try get as close to a clock tick as possible on systems
|
---|
920 | * which does not provide high resolution time.
|
---|
921 | */
|
---|
922 | u64NanoTS = RTTimeSystemNanoTS();
|
---|
923 | while (RTTimeSystemNanoTS() == u64NanoTS)
|
---|
924 | ASMNopPause();
|
---|
925 |
|
---|
926 | fEFlags = ASMIntDisableFlags();
|
---|
927 | pDevExt->uTscStartInvarTscRefine = ASMReadTSC();
|
---|
928 | pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS();
|
---|
929 | pDevExt->idCpuInvarTscRefine = RTMpCpuId();
|
---|
930 | ASMSetFlags(fEFlags);
|
---|
931 |
|
---|
932 | /*
|
---|
933 | * Create a timer that runs on the same CPU so we won't have a depencency
|
---|
934 | * on the TSC-delta and can run in parallel to it. On systems that does not
|
---|
935 | * implement CPU specific timers we'll apply deltas in the timer callback,
|
---|
936 | * just like we do for CPUs going offline.
|
---|
937 | *
|
---|
938 | * The longer the refinement interval the better the accuracy, at least in
|
---|
939 | * theory. If it's too long though, ring-3 may already be starting its
|
---|
940 | * first VMs before we're done. On most systems we will be loading the
|
---|
941 | * support driver during boot and VMs won't be started for a while yet,
|
---|
942 | * it is really only a problem during development (especially with
|
---|
943 | * on-demand driver starting on windows).
|
---|
944 | *
|
---|
945 | * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq() call
|
---|
946 | * to calculate the frequency during driver loading, the timer is set
|
---|
947 | * to fire after 200 ms the first time. It will then reschedule itself
|
---|
948 | * to fire every second until GIP_TSC_REFINE_PERIOD_IN_SECS has been
|
---|
949 | * reached or it notices that there is a user land client with GIP
|
---|
950 | * mapped (we want a stable frequency for all VMs).
|
---|
951 | */
|
---|
952 | rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC,
|
---|
953 | RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)),
|
---|
954 | supdrvInitRefineInvariantTscFreqTimer, pDevExt);
|
---|
955 | if (RT_SUCCESS(rc))
|
---|
956 | {
|
---|
957 | rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
|
---|
958 | if (RT_SUCCESS(rc))
|
---|
959 | return;
|
---|
960 | RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
|
---|
961 | }
|
---|
962 |
|
---|
963 | if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED)
|
---|
964 | {
|
---|
965 | rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC, RTTIMER_FLAGS_CPU_ANY,
|
---|
966 | supdrvInitRefineInvariantTscFreqTimer, pDevExt);
|
---|
967 | if (RT_SUCCESS(rc))
|
---|
968 | {
|
---|
969 | rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
|
---|
970 | if (RT_SUCCESS(rc))
|
---|
971 | return;
|
---|
972 | RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
|
---|
973 | }
|
---|
974 | }
|
---|
975 |
|
---|
976 | pDevExt->pInvarTscRefineTimer = NULL;
|
---|
977 | OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc));
|
---|
978 | }
|
---|
979 |
|
---|
980 |
|
---|
981 | /**
|
---|
982 | * @callback_method_impl{PFNRTMPWORKER,
|
---|
983 | * RTMpOnSpecific callback for reading TSC and time on the CPU we started
|
---|
984 | * the measurements on.}
|
---|
985 | */
|
---|
986 | DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
987 | {
|
---|
988 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
989 | uint64_t *puTscStop = (uint64_t *)pvUser1;
|
---|
990 | uint64_t *pnsStop = (uint64_t *)pvUser2;
|
---|
991 |
|
---|
992 | *puTscStop = ASMReadTSC();
|
---|
993 | *pnsStop = RTTimeSystemNanoTS();
|
---|
994 |
|
---|
995 | ASMSetFlags(fEFlags);
|
---|
996 | }
|
---|
997 |
|
---|
998 |
|
---|
999 | /**
|
---|
1000 | * Measures the TSC frequency of the system.
|
---|
1001 | *
|
---|
1002 | * The TSC frequency can vary on systems which are not reported as invariant.
|
---|
1003 | * On such systems the object of this function is to find out what the nominal,
|
---|
1004 | * maximum TSC frequency under 'normal' CPU operation.
|
---|
1005 | *
|
---|
1006 | * @returns VBox status code.
|
---|
1007 | * @param pDevExt Pointer to the device instance.
|
---|
1008 | * @param pGip Pointer to the GIP.
|
---|
1009 | * @param fRough Set if we're doing the rough calculation that the
|
---|
1010 | * TSC measuring code needs, where accuracy isn't all
|
---|
1011 | * that important (too high is better than to low).
|
---|
1012 | * When clear we try for best accuracy that we can
|
---|
1013 | * achieve in reasonably short time.
|
---|
1014 | */
|
---|
1015 | static int supdrvGipInitMeasureTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, bool fRough)
|
---|
1016 | {
|
---|
1017 | uint32_t nsTimerIncr = RTTimerGetSystemGranularity();
|
---|
1018 | int cTriesLeft = fRough ? 4 : 2;
|
---|
1019 | while (cTriesLeft-- > 0)
|
---|
1020 | {
|
---|
1021 | RTCCUINTREG fEFlags;
|
---|
1022 | uint64_t nsStart;
|
---|
1023 | uint64_t nsStop;
|
---|
1024 | uint64_t uTscStart;
|
---|
1025 | uint64_t uTscStop;
|
---|
1026 | RTCPUID idCpuStart;
|
---|
1027 | RTCPUID idCpuStop;
|
---|
1028 |
|
---|
1029 | /*
|
---|
1030 | * Synchronize with the host OS clock tick on systems without high
|
---|
1031 | * resolution time API (older Windows version for example).
|
---|
1032 | */
|
---|
1033 | nsStart = RTTimeSystemNanoTS();
|
---|
1034 | while (RTTimeSystemNanoTS() == nsStart)
|
---|
1035 | ASMNopPause();
|
---|
1036 |
|
---|
1037 | /*
|
---|
1038 | * Read the TSC and current time, noting which CPU we're on.
|
---|
1039 | */
|
---|
1040 | fEFlags = ASMIntDisableFlags();
|
---|
1041 | uTscStart = ASMReadTSC();
|
---|
1042 | nsStart = RTTimeSystemNanoTS();
|
---|
1043 | idCpuStart = RTMpCpuId();
|
---|
1044 | ASMSetFlags(fEFlags);
|
---|
1045 |
|
---|
1046 | /*
|
---|
1047 | * Delay for a while.
|
---|
1048 | */
|
---|
1049 | if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
|
---|
1050 | {
|
---|
1051 | /*
|
---|
1052 | * Sleep-wait since the TSC frequency is constant, it eases host load.
|
---|
1053 | * Shorter interval produces more variance in the frequency (esp. Windows).
|
---|
1054 | */
|
---|
1055 | uint64_t msElapsed = 0;
|
---|
1056 | uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US )
|
---|
1057 | / RT_NS_1MS;
|
---|
1058 | do
|
---|
1059 | {
|
---|
1060 | RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed));
|
---|
1061 | nsStop = RTTimeSystemNanoTS();
|
---|
1062 | msElapsed = (nsStop - nsStart) / RT_NS_1MS;
|
---|
1063 | } while (msElapsed < msDelay);
|
---|
1064 |
|
---|
1065 | while (RTTimeSystemNanoTS() == nsStop)
|
---|
1066 | ASMNopPause();
|
---|
1067 | }
|
---|
1068 | else
|
---|
1069 | {
|
---|
1070 | /*
|
---|
1071 | * Busy-wait keeping the frequency up.
|
---|
1072 | */
|
---|
1073 | do
|
---|
1074 | {
|
---|
1075 | ASMNopPause();
|
---|
1076 | nsStop = RTTimeSystemNanoTS();
|
---|
1077 | } while (nsStop - nsStart < RT_NS_100MS);
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | /*
|
---|
1081 | * Read the TSC and time again.
|
---|
1082 | */
|
---|
1083 | fEFlags = ASMIntDisableFlags();
|
---|
1084 | uTscStop = ASMReadTSC();
|
---|
1085 | nsStop = RTTimeSystemNanoTS();
|
---|
1086 | idCpuStop = RTMpCpuId();
|
---|
1087 | ASMSetFlags(fEFlags);
|
---|
1088 |
|
---|
1089 | /*
|
---|
1090 | * If the CPU changes things get a bit complicated and what we
|
---|
1091 | * can get away with depends on the GIP mode / TSC reliablity.
|
---|
1092 | */
|
---|
1093 | if (idCpuStop != idCpuStart)
|
---|
1094 | {
|
---|
1095 | bool fDoXCall = false;
|
---|
1096 |
|
---|
1097 | /*
|
---|
1098 | * Synchronous TSC mode: we're probably fine as it's unlikely
|
---|
1099 | * that we were rescheduled because of TSC throttling or power
|
---|
1100 | * management reasons, so just go ahead.
|
---|
1101 | */
|
---|
1102 | if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC)
|
---|
1103 | {
|
---|
1104 | /* Probably ok, maybe we should retry once?. */
|
---|
1105 | Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE);
|
---|
1106 | }
|
---|
1107 | /*
|
---|
1108 | * If we're just doing the rough measurement, do the cross call and
|
---|
1109 | * get on with things (we don't have deltas!).
|
---|
1110 | */
|
---|
1111 | else if (fRough)
|
---|
1112 | fDoXCall = true;
|
---|
1113 | /*
|
---|
1114 | * Invariant TSC mode: It doesn't matter if we have delta available
|
---|
1115 | * for both CPUs. That is not something we can assume at this point.
|
---|
1116 | *
|
---|
1117 | * Note! We cannot necessarily trust enmUseTscDelta here because it's
|
---|
1118 | * downgraded after each delta calculation and the delta
|
---|
1119 | * calculations may not be complete yet.
|
---|
1120 | */
|
---|
1121 | else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
|
---|
1122 | {
|
---|
1123 | /** @todo This section of code is never reached atm, consider dropping it later on... */
|
---|
1124 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
1125 | {
|
---|
1126 | uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart);
|
---|
1127 | uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop);
|
---|
1128 | uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
|
---|
1129 | ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
|
---|
1130 | uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
|
---|
1131 | ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
|
---|
1132 | int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
|
---|
1133 | int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
|
---|
1134 | if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX))
|
---|
1135 | {
|
---|
1136 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
|
---|
1137 | {
|
---|
1138 | uTscStart -= iStartTscDelta;
|
---|
1139 | uTscStop -= iStopTscDelta;
|
---|
1140 | }
|
---|
1141 | }
|
---|
1142 | /*
|
---|
1143 | * Invalid CPU indexes are not caused by online/offline races, so
|
---|
1144 | * we have to trigger driver load failure if that happens as GIP
|
---|
1145 | * and IPRT assumptions are busted on this system.
|
---|
1146 | */
|
---|
1147 | else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus)
|
---|
1148 | {
|
---|
1149 | SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n");
|
---|
1150 | SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
|
---|
1151 | iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
|
---|
1152 | return VERR_INVALID_CPU_INDEX;
|
---|
1153 | }
|
---|
1154 | /*
|
---|
1155 | * No valid deltas. We retry, if we're on our last retry
|
---|
1156 | * we do the cross call instead just to get a result. The
|
---|
1157 | * frequency will be refined in a few seconds anyways.
|
---|
1158 | */
|
---|
1159 | else if (cTriesLeft > 0)
|
---|
1160 | continue;
|
---|
1161 | else
|
---|
1162 | fDoXCall = true;
|
---|
1163 | }
|
---|
1164 | }
|
---|
1165 | /*
|
---|
1166 | * Asynchronous TSC mode: This is bad as the reason we usually
|
---|
1167 | * use this mode is to deal with variable TSC frequencies and
|
---|
1168 | * deltas. So, we need to get the TSC from the same CPU as
|
---|
1169 | * started it, we also need to keep that CPU busy. So, retry
|
---|
1170 | * and fall back to the cross call on the last attempt.
|
---|
1171 | */
|
---|
1172 | else
|
---|
1173 | {
|
---|
1174 | Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC);
|
---|
1175 | if (cTriesLeft > 0)
|
---|
1176 | continue;
|
---|
1177 | fDoXCall = true;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | if (fDoXCall)
|
---|
1181 | {
|
---|
1182 | /*
|
---|
1183 | * Try read the TSC and timestamp on the start CPU.
|
---|
1184 | */
|
---|
1185 | int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop);
|
---|
1186 | if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0))
|
---|
1187 | continue;
|
---|
1188 | }
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | /*
|
---|
1192 | * Calculate the TSC frequency and update it (shared with the refinement timer).
|
---|
1193 | */
|
---|
1194 | supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart, 0);
|
---|
1195 | return VINF_SUCCESS;
|
---|
1196 | }
|
---|
1197 |
|
---|
1198 | Assert(!fRough);
|
---|
1199 | return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED;
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 |
|
---|
1203 | /**
|
---|
1204 | * Finds our (@a idCpu) entry, or allocates a new one if not found.
|
---|
1205 | *
|
---|
1206 | * @returns Index of the CPU in the cache set.
|
---|
1207 | * @param pGip The GIP.
|
---|
1208 | * @param idCpu The CPU ID.
|
---|
1209 | */
|
---|
1210 | static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
|
---|
1211 | {
|
---|
1212 | uint32_t i, cTries;
|
---|
1213 |
|
---|
1214 | /*
|
---|
1215 | * ASSUMES that CPU IDs are constant.
|
---|
1216 | */
|
---|
1217 | for (i = 0; i < pGip->cCpus; i++)
|
---|
1218 | if (pGip->aCPUs[i].idCpu == idCpu)
|
---|
1219 | return i;
|
---|
1220 |
|
---|
1221 | cTries = 0;
|
---|
1222 | do
|
---|
1223 | {
|
---|
1224 | for (i = 0; i < pGip->cCpus; i++)
|
---|
1225 | {
|
---|
1226 | bool fRc;
|
---|
1227 | ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc);
|
---|
1228 | if (fRc)
|
---|
1229 | return i;
|
---|
1230 | }
|
---|
1231 | } while (cTries++ < 32);
|
---|
1232 | AssertReleaseFailed();
|
---|
1233 | return i - 1;
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 |
|
---|
1237 | /**
|
---|
1238 | * The calling CPU should be accounted as online, update GIP accordingly.
|
---|
1239 | *
|
---|
1240 | * This is used by supdrvGipCreate() as well as supdrvGipMpEvent().
|
---|
1241 | *
|
---|
1242 | * @param pDevExt The device extension.
|
---|
1243 | * @param idCpu The CPU ID.
|
---|
1244 | */
|
---|
1245 | static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
|
---|
1246 | {
|
---|
1247 | int iCpuSet = 0;
|
---|
1248 | uint16_t idApic = UINT16_MAX;
|
---|
1249 | uint32_t i = 0;
|
---|
1250 | uint64_t u64NanoTS = 0;
|
---|
1251 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
1252 |
|
---|
1253 | AssertPtrReturnVoid(pGip);
|
---|
1254 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1255 | AssertRelease(idCpu == RTMpCpuId());
|
---|
1256 | Assert(pGip->cPossibleCpus == RTMpGetCount());
|
---|
1257 |
|
---|
1258 | /*
|
---|
1259 | * Do this behind a spinlock with interrupts disabled as this can fire
|
---|
1260 | * on all CPUs simultaneously, see @bugref{6110}.
|
---|
1261 | */
|
---|
1262 | RTSpinlockAcquire(pDevExt->hGipSpinlock);
|
---|
1263 |
|
---|
1264 | /*
|
---|
1265 | * Update the globals.
|
---|
1266 | */
|
---|
1267 | ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount());
|
---|
1268 | ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount());
|
---|
1269 | iCpuSet = RTMpCpuIdToSetIndex(idCpu);
|
---|
1270 | if (iCpuSet >= 0)
|
---|
1271 | {
|
---|
1272 | Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
|
---|
1273 | RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet);
|
---|
1274 | RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet);
|
---|
1275 | }
|
---|
1276 |
|
---|
1277 | /*
|
---|
1278 | * Update the entry.
|
---|
1279 | */
|
---|
1280 | u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS;
|
---|
1281 | i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
|
---|
1282 |
|
---|
1283 | supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz);
|
---|
1284 |
|
---|
1285 | idApic = ASMGetApicId();
|
---|
1286 | ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic);
|
---|
1287 | ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet);
|
---|
1288 | ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu);
|
---|
1289 |
|
---|
1290 | /*
|
---|
1291 | * Update the APIC ID and CPU set index mappings.
|
---|
1292 | */
|
---|
1293 | ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i);
|
---|
1294 | ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i);
|
---|
1295 |
|
---|
1296 | /* Add this CPU to this set of CPUs we need to calculate the TSC-delta for. */
|
---|
1297 | RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, RTMpCpuIdToSetIndex(idCpu));
|
---|
1298 |
|
---|
1299 | /* Update the Mp online/offline counter. */
|
---|
1300 | ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
|
---|
1301 |
|
---|
1302 | /* Commit it. */
|
---|
1303 | ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE);
|
---|
1304 |
|
---|
1305 | RTSpinlockRelease(pDevExt->hGipSpinlock);
|
---|
1306 | }
|
---|
1307 |
|
---|
1308 |
|
---|
1309 | /**
|
---|
1310 | * RTMpOnSpecific callback wrapper for supdrvGipMpEventOnlineOrInitOnCpu().
|
---|
1311 | *
|
---|
1312 | * @param idCpu The CPU ID we are running on.
|
---|
1313 | * @param pvUser1 Opaque pointer to the device instance data.
|
---|
1314 | * @param pvUser2 Not used.
|
---|
1315 | */
|
---|
1316 | static DECLCALLBACK(void) supdrvGipMpEventOnlineCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
1317 | {
|
---|
1318 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser1;
|
---|
1319 | NOREF(pvUser2);
|
---|
1320 | supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
|
---|
1321 | }
|
---|
1322 |
|
---|
1323 |
|
---|
1324 | /**
|
---|
1325 | * The CPU should be accounted as offline, update the GIP accordingly.
|
---|
1326 | *
|
---|
1327 | * This is used by supdrvGipMpEvent.
|
---|
1328 | *
|
---|
1329 | * @param pDevExt The device extension.
|
---|
1330 | * @param idCpu The CPU ID.
|
---|
1331 | */
|
---|
1332 | static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
|
---|
1333 | {
|
---|
1334 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
1335 | int iCpuSet;
|
---|
1336 | unsigned i;
|
---|
1337 |
|
---|
1338 | AssertPtrReturnVoid(pGip);
|
---|
1339 | RTSpinlockAcquire(pDevExt->hGipSpinlock);
|
---|
1340 |
|
---|
1341 | iCpuSet = RTMpCpuIdToSetIndex(idCpu);
|
---|
1342 | AssertReturnVoid(iCpuSet >= 0);
|
---|
1343 |
|
---|
1344 | i = pGip->aiCpuFromCpuSetIdx[iCpuSet];
|
---|
1345 | AssertReturnVoid(i < pGip->cCpus);
|
---|
1346 | AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu);
|
---|
1347 |
|
---|
1348 | Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
|
---|
1349 | RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet);
|
---|
1350 |
|
---|
1351 | /* Update the Mp online/offline counter. */
|
---|
1352 | ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
|
---|
1353 |
|
---|
1354 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
1355 | {
|
---|
1356 | /* Reset the TSC delta, we will recalculate it lazily. */
|
---|
1357 | ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX);
|
---|
1358 | /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */
|
---|
1359 | RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet);
|
---|
1360 | }
|
---|
1361 |
|
---|
1362 | /* Commit it. */
|
---|
1363 | ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE);
|
---|
1364 |
|
---|
1365 | RTSpinlockRelease(pDevExt->hGipSpinlock);
|
---|
1366 | }
|
---|
1367 |
|
---|
1368 |
|
---|
1369 | /**
|
---|
1370 | * Multiprocessor event notification callback.
|
---|
1371 | *
|
---|
1372 | * This is used to make sure that the GIP master gets passed on to
|
---|
1373 | * another CPU. It also updates the associated CPU data.
|
---|
1374 | *
|
---|
1375 | * @param enmEvent The event.
|
---|
1376 | * @param idCpu The cpu it applies to.
|
---|
1377 | * @param pvUser Pointer to the device extension.
|
---|
1378 | */
|
---|
1379 | static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
|
---|
1380 | {
|
---|
1381 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
|
---|
1382 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
1383 |
|
---|
1384 | if (pGip)
|
---|
1385 | {
|
---|
1386 | RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
|
---|
1387 | switch (enmEvent)
|
---|
1388 | {
|
---|
1389 | case RTMPEVENT_ONLINE:
|
---|
1390 | {
|
---|
1391 | RTThreadPreemptDisable(&PreemptState);
|
---|
1392 | if (idCpu == RTMpCpuId())
|
---|
1393 | {
|
---|
1394 | supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
|
---|
1395 | RTThreadPreemptRestore(&PreemptState);
|
---|
1396 | }
|
---|
1397 | else
|
---|
1398 | {
|
---|
1399 | RTThreadPreemptRestore(&PreemptState);
|
---|
1400 | RTMpOnSpecific(idCpu, supdrvGipMpEventOnlineCallback, pDevExt, NULL /* pvUser2 */);
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 | /*
|
---|
1404 | * Recompute TSC-delta for the newly online'd CPU.
|
---|
1405 | */
|
---|
1406 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
1407 | {
|
---|
1408 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
1409 | supdrvTscDeltaThreadStartMeasurement(pDevExt, false /* fForceAll */);
|
---|
1410 | #else
|
---|
1411 | uint32_t iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
|
---|
1412 | supdrvMeasureTscDeltaOne(pDevExt, iCpu);
|
---|
1413 | #endif
|
---|
1414 | }
|
---|
1415 | break;
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 | case RTMPEVENT_OFFLINE:
|
---|
1419 | supdrvGipMpEventOffline(pDevExt, idCpu);
|
---|
1420 | break;
|
---|
1421 | }
|
---|
1422 | }
|
---|
1423 |
|
---|
1424 | /*
|
---|
1425 | * Make sure there is a master GIP.
|
---|
1426 | */
|
---|
1427 | if (enmEvent == RTMPEVENT_OFFLINE)
|
---|
1428 | {
|
---|
1429 | RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster);
|
---|
1430 | if (idGipMaster == idCpu)
|
---|
1431 | {
|
---|
1432 | /*
|
---|
1433 | * The GIP master is going offline, find a new one.
|
---|
1434 | */
|
---|
1435 | bool fIgnored;
|
---|
1436 | unsigned i;
|
---|
1437 | RTCPUID idNewGipMaster = NIL_RTCPUID;
|
---|
1438 | RTCPUSET OnlineCpus;
|
---|
1439 | RTMpGetOnlineSet(&OnlineCpus);
|
---|
1440 |
|
---|
1441 | for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
|
---|
1442 | if (RTCpuSetIsMemberByIndex(&OnlineCpus, i))
|
---|
1443 | {
|
---|
1444 | RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
|
---|
1445 | if (idCurCpu != idGipMaster)
|
---|
1446 | {
|
---|
1447 | idNewGipMaster = idCurCpu;
|
---|
1448 | break;
|
---|
1449 | }
|
---|
1450 | }
|
---|
1451 |
|
---|
1452 | Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
|
---|
1453 | ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
|
---|
1454 | NOREF(fIgnored);
|
---|
1455 | }
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | /**
|
---|
1461 | * On CPU initialization callback for RTMpOnAll.
|
---|
1462 | *
|
---|
1463 | * @param idCpu The CPU ID.
|
---|
1464 | * @param pvUser1 The device extension.
|
---|
1465 | * @param pvUser2 The GIP.
|
---|
1466 | */
|
---|
1467 | static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
1468 | {
|
---|
1469 | /* This is good enough, even though it will update some of the globals a
|
---|
1470 | bit to much. */
|
---|
1471 | supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu);
|
---|
1472 | }
|
---|
1473 |
|
---|
1474 |
|
---|
1475 | /**
|
---|
1476 | * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
|
---|
1477 | *
|
---|
1478 | * @param idCpu Ignored.
|
---|
1479 | * @param pvUser1 Where to put the TSC.
|
---|
1480 | * @param pvUser2 Ignored.
|
---|
1481 | */
|
---|
1482 | static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
1483 | {
|
---|
1484 | Assert(RTMpCpuIdToSetIndex(idCpu) == (intptr_t)pvUser2);
|
---|
1485 | ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 |
|
---|
1489 | /**
|
---|
1490 | * Determine if Async GIP mode is required because of TSC drift.
|
---|
1491 | *
|
---|
1492 | * When using the default/normal timer code it is essential that the time stamp counter
|
---|
1493 | * (TSC) runs never backwards, that is, a read operation to the counter should return
|
---|
1494 | * a bigger value than any previous read operation. This is guaranteed by the latest
|
---|
1495 | * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
|
---|
1496 | * case we have to choose the asynchronous timer mode.
|
---|
1497 | *
|
---|
1498 | * @param poffMin Pointer to the determined difference between different
|
---|
1499 | * cores (optional, can be NULL).
|
---|
1500 | * @return false if the time stamp counters appear to be synchronized, true otherwise.
|
---|
1501 | */
|
---|
1502 | static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin)
|
---|
1503 | {
|
---|
1504 | /*
|
---|
1505 | * Just iterate all the cpus 8 times and make sure that the TSC is
|
---|
1506 | * ever increasing. We don't bother taking TSC rollover into account.
|
---|
1507 | */
|
---|
1508 | int iEndCpu = RTMpGetArraySize();
|
---|
1509 | int iCpu;
|
---|
1510 | int cLoops = 8;
|
---|
1511 | bool fAsync = false;
|
---|
1512 | int rc = VINF_SUCCESS;
|
---|
1513 | uint64_t offMax = 0;
|
---|
1514 | uint64_t offMin = ~(uint64_t)0;
|
---|
1515 | uint64_t PrevTsc = ASMReadTSC();
|
---|
1516 |
|
---|
1517 | while (cLoops-- > 0)
|
---|
1518 | {
|
---|
1519 | for (iCpu = 0; iCpu < iEndCpu; iCpu++)
|
---|
1520 | {
|
---|
1521 | uint64_t CurTsc;
|
---|
1522 | rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker,
|
---|
1523 | &CurTsc, (void *)(uintptr_t)iCpu);
|
---|
1524 | if (RT_SUCCESS(rc))
|
---|
1525 | {
|
---|
1526 | if (CurTsc <= PrevTsc)
|
---|
1527 | {
|
---|
1528 | fAsync = true;
|
---|
1529 | offMin = offMax = PrevTsc - CurTsc;
|
---|
1530 | Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
|
---|
1531 | iCpu, cLoops, CurTsc, PrevTsc));
|
---|
1532 | break;
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | /* Gather statistics (except the first time). */
|
---|
1536 | if (iCpu != 0 || cLoops != 7)
|
---|
1537 | {
|
---|
1538 | uint64_t off = CurTsc - PrevTsc;
|
---|
1539 | if (off < offMin)
|
---|
1540 | offMin = off;
|
---|
1541 | if (off > offMax)
|
---|
1542 | offMax = off;
|
---|
1543 | Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | /* Next */
|
---|
1547 | PrevTsc = CurTsc;
|
---|
1548 | }
|
---|
1549 | else if (rc == VERR_NOT_SUPPORTED)
|
---|
1550 | break;
|
---|
1551 | else
|
---|
1552 | AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
|
---|
1553 | }
|
---|
1554 |
|
---|
1555 | /* broke out of the loop. */
|
---|
1556 | if (iCpu < iEndCpu)
|
---|
1557 | break;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | if (poffMin)
|
---|
1561 | *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
|
---|
1562 | Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
|
---|
1563 | fAsync, iEndCpu, rc, offMin, offMax));
|
---|
1564 | #if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
|
---|
1565 | OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
|
---|
1566 | #endif
|
---|
1567 | return fAsync;
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 |
|
---|
1571 | /**
|
---|
1572 | * supdrvGipInit() worker that determines the GIP TSC mode.
|
---|
1573 | *
|
---|
1574 | * @returns The most suitable TSC mode.
|
---|
1575 | * @param pDevExt Pointer to the device instance data.
|
---|
1576 | */
|
---|
1577 | static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt)
|
---|
1578 | {
|
---|
1579 | uint64_t u64DiffCoresIgnored;
|
---|
1580 | uint32_t uEAX, uEBX, uECX, uEDX;
|
---|
1581 |
|
---|
1582 | /*
|
---|
1583 | * Establish whether the CPU advertises TSC as invariant, we need that in
|
---|
1584 | * a couple of places below.
|
---|
1585 | */
|
---|
1586 | bool fInvariantTsc = false;
|
---|
1587 | if (ASMHasCpuId())
|
---|
1588 | {
|
---|
1589 | uEAX = ASMCpuId_EAX(0x80000000);
|
---|
1590 | if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
|
---|
1591 | {
|
---|
1592 | uEDX = ASMCpuId_EDX(0x80000007);
|
---|
1593 | if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR)
|
---|
1594 | fInvariantTsc = true;
|
---|
1595 | }
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | /*
|
---|
1599 | * On single CPU systems, we don't need to consider ASYNC mode.
|
---|
1600 | */
|
---|
1601 | if (RTMpGetCount() <= 1)
|
---|
1602 | return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC;
|
---|
1603 |
|
---|
1604 | /*
|
---|
1605 | * Allow the user and/or OS specific bits to force async mode.
|
---|
1606 | */
|
---|
1607 | if (supdrvOSGetForcedAsyncTscMode(pDevExt))
|
---|
1608 | return SUPGIPMODE_ASYNC_TSC;
|
---|
1609 |
|
---|
1610 | /*
|
---|
1611 | * Use invariant mode if the CPU says TSC is invariant.
|
---|
1612 | */
|
---|
1613 | if (fInvariantTsc)
|
---|
1614 | return SUPGIPMODE_INVARIANT_TSC;
|
---|
1615 |
|
---|
1616 | /*
|
---|
1617 | * TSC is not invariant and we're on SMP, this presents two problems:
|
---|
1618 | *
|
---|
1619 | * (1) There might be a skew between the CPU, so that cpu0
|
---|
1620 | * returns a TSC that is slightly different from cpu1.
|
---|
1621 | * This screw may be due to (2), bad TSC initialization
|
---|
1622 | * or slightly different TSC rates.
|
---|
1623 | *
|
---|
1624 | * (2) Power management (and other things) may cause the TSC
|
---|
1625 | * to run at a non-constant speed, and cause the speed
|
---|
1626 | * to be different on the cpus. This will result in (1).
|
---|
1627 | *
|
---|
1628 | * If any of the above is detected, we will have to use ASYNC mode.
|
---|
1629 | */
|
---|
1630 | /* (1). Try check for current differences between the cpus. */
|
---|
1631 | if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored))
|
---|
1632 | return SUPGIPMODE_ASYNC_TSC;
|
---|
1633 |
|
---|
1634 | /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */
|
---|
1635 | ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
|
---|
1636 | if ( ASMIsValidStdRange(uEAX)
|
---|
1637 | && ASMIsAmdCpuEx(uEBX, uECX, uEDX))
|
---|
1638 | {
|
---|
1639 | /* Check for APM support. */
|
---|
1640 | uEAX = ASMCpuId_EAX(0x80000000);
|
---|
1641 | if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
|
---|
1642 | {
|
---|
1643 | uEDX = ASMCpuId_EDX(0x80000007);
|
---|
1644 | if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
|
---|
1645 | return SUPGIPMODE_ASYNC_TSC;
|
---|
1646 | }
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 | return SUPGIPMODE_SYNC_TSC;
|
---|
1650 | }
|
---|
1651 |
|
---|
1652 |
|
---|
1653 | /**
|
---|
1654 | * Initializes per-CPU GIP information.
|
---|
1655 | *
|
---|
1656 | * @param pGip Pointer to the GIP.
|
---|
1657 | * @param pCpu Pointer to which GIP CPU to initalize.
|
---|
1658 | * @param u64NanoTS The current nanosecond timestamp.
|
---|
1659 | * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know.
|
---|
1660 | */
|
---|
1661 | static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz)
|
---|
1662 | {
|
---|
1663 | pCpu->u32TransactionId = 2;
|
---|
1664 | pCpu->u64NanoTS = u64NanoTS;
|
---|
1665 | pCpu->u64TSC = ASMReadTSC();
|
---|
1666 | pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD;
|
---|
1667 | pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0;
|
---|
1668 |
|
---|
1669 | ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID);
|
---|
1670 | ASMAtomicWriteSize(&pCpu->idCpu, NIL_RTCPUID);
|
---|
1671 | ASMAtomicWriteS16(&pCpu->iCpuSet, -1);
|
---|
1672 | ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX);
|
---|
1673 |
|
---|
1674 | /*
|
---|
1675 | * The first time we're called, we don't have a CPU frequency handy,
|
---|
1676 | * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get
|
---|
1677 | * called again and at that point we have a more plausible CPU frequency
|
---|
1678 | * value handy. The frequency history will also be adjusted again on
|
---|
1679 | * the 2nd timer callout (maybe we can skip that now?).
|
---|
1680 | */
|
---|
1681 | if (!uCpuHz)
|
---|
1682 | {
|
---|
1683 | pCpu->u64CpuHz = _4G - 1;
|
---|
1684 | pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz);
|
---|
1685 | }
|
---|
1686 | else
|
---|
1687 | {
|
---|
1688 | pCpu->u64CpuHz = uCpuHz;
|
---|
1689 | pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz);
|
---|
1690 | }
|
---|
1691 | pCpu->au32TSCHistory[0]
|
---|
1692 | = pCpu->au32TSCHistory[1]
|
---|
1693 | = pCpu->au32TSCHistory[2]
|
---|
1694 | = pCpu->au32TSCHistory[3]
|
---|
1695 | = pCpu->au32TSCHistory[4]
|
---|
1696 | = pCpu->au32TSCHistory[5]
|
---|
1697 | = pCpu->au32TSCHistory[6]
|
---|
1698 | = pCpu->au32TSCHistory[7]
|
---|
1699 | = pCpu->u32UpdateIntervalTSC;
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 |
|
---|
1703 | /**
|
---|
1704 | * Initializes the GIP data.
|
---|
1705 | *
|
---|
1706 | * @param pDevExt Pointer to the device instance data.
|
---|
1707 | * @param pGip Pointer to the read-write kernel mapping of the GIP.
|
---|
1708 | * @param HCPhys The physical address of the GIP.
|
---|
1709 | * @param u64NanoTS The current nanosecond timestamp.
|
---|
1710 | * @param uUpdateHz The update frequency.
|
---|
1711 | * @param uUpdateIntervalNS The update interval in nanoseconds.
|
---|
1712 | * @param cCpus The CPU count.
|
---|
1713 | */
|
---|
1714 | static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys,
|
---|
1715 | uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS, unsigned cCpus)
|
---|
1716 | {
|
---|
1717 | size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), PAGE_SIZE);
|
---|
1718 | unsigned i;
|
---|
1719 | #ifdef DEBUG_DARWIN_GIP
|
---|
1720 | OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
|
---|
1721 | #else
|
---|
1722 | LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
|
---|
1723 | #endif
|
---|
1724 |
|
---|
1725 | /*
|
---|
1726 | * Initialize the structure.
|
---|
1727 | */
|
---|
1728 | memset(pGip, 0, cbGip);
|
---|
1729 |
|
---|
1730 | pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
|
---|
1731 | pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
|
---|
1732 | pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt);
|
---|
1733 | if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
|
---|
1734 | /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */)
|
---|
1735 | pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */
|
---|
1736 | ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */;
|
---|
1737 | else
|
---|
1738 | pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE;
|
---|
1739 | pGip->cCpus = (uint16_t)cCpus;
|
---|
1740 | pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE);
|
---|
1741 | pGip->u32UpdateHz = uUpdateHz;
|
---|
1742 | pGip->u32UpdateIntervalNS = uUpdateIntervalNS;
|
---|
1743 | pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID;
|
---|
1744 | RTCpuSetEmpty(&pGip->OnlineCpuSet);
|
---|
1745 | RTCpuSetEmpty(&pGip->PresentCpuSet);
|
---|
1746 | RTMpGetSet(&pGip->PossibleCpuSet);
|
---|
1747 | pGip->cOnlineCpus = RTMpGetOnlineCount();
|
---|
1748 | pGip->cPresentCpus = RTMpGetPresentCount();
|
---|
1749 | pGip->cPossibleCpus = RTMpGetCount();
|
---|
1750 | pGip->idCpuMax = RTMpGetMaxCpuId();
|
---|
1751 | for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++)
|
---|
1752 | pGip->aiCpuFromApicId[i] = UINT16_MAX;
|
---|
1753 | for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++)
|
---|
1754 | pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX;
|
---|
1755 | for (i = 0; i < cCpus; i++)
|
---|
1756 | supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/);
|
---|
1757 |
|
---|
1758 | /*
|
---|
1759 | * Link it to the device extension.
|
---|
1760 | */
|
---|
1761 | pDevExt->pGip = pGip;
|
---|
1762 | pDevExt->HCPhysGip = HCPhys;
|
---|
1763 | pDevExt->cGipUsers = 0;
|
---|
1764 | }
|
---|
1765 |
|
---|
1766 |
|
---|
1767 | /**
|
---|
1768 | * Creates the GIP.
|
---|
1769 | *
|
---|
1770 | * @returns VBox status code.
|
---|
1771 | * @param pDevExt Instance data. GIP stuff may be updated.
|
---|
1772 | */
|
---|
1773 | int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
|
---|
1774 | {
|
---|
1775 | PSUPGLOBALINFOPAGE pGip;
|
---|
1776 | RTHCPHYS HCPhysGip;
|
---|
1777 | uint32_t u32SystemResolution;
|
---|
1778 | uint32_t u32Interval;
|
---|
1779 | uint32_t u32MinInterval;
|
---|
1780 | uint32_t uMod;
|
---|
1781 | unsigned cCpus;
|
---|
1782 | int rc;
|
---|
1783 |
|
---|
1784 | LogFlow(("supdrvGipCreate:\n"));
|
---|
1785 |
|
---|
1786 | /*
|
---|
1787 | * Assert order.
|
---|
1788 | */
|
---|
1789 | Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
|
---|
1790 | Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
|
---|
1791 | Assert(!pDevExt->pGipTimer);
|
---|
1792 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
1793 | Assert(pDevExt->mtxGip != NIL_RTSEMMUTEX);
|
---|
1794 | Assert(pDevExt->mtxTscDelta != NIL_RTSEMMUTEX);
|
---|
1795 | #else
|
---|
1796 | Assert(pDevExt->mtxGip != NIL_RTSEMFASTMUTEX);
|
---|
1797 | Assert(pDevExt->mtxTscDelta != NIL_RTSEMFASTMUTEX);
|
---|
1798 | #endif
|
---|
1799 |
|
---|
1800 | /*
|
---|
1801 | * Check the CPU count.
|
---|
1802 | */
|
---|
1803 | cCpus = RTMpGetArraySize();
|
---|
1804 | if ( cCpus > RTCPUSET_MAX_CPUS
|
---|
1805 | || cCpus > 256 /* ApicId is used for the mappings */)
|
---|
1806 | {
|
---|
1807 | SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256));
|
---|
1808 | return VERR_TOO_MANY_CPUS;
|
---|
1809 | }
|
---|
1810 |
|
---|
1811 | /*
|
---|
1812 | * Allocate a contiguous set of pages with a default kernel mapping.
|
---|
1813 | */
|
---|
1814 | rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), false /*fExecutable*/);
|
---|
1815 | if (RT_FAILURE(rc))
|
---|
1816 | {
|
---|
1817 | OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
|
---|
1818 | return rc;
|
---|
1819 | }
|
---|
1820 | pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
|
---|
1821 | HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
|
---|
1822 |
|
---|
1823 | /*
|
---|
1824 | * Find a reasonable update interval and initialize the structure.
|
---|
1825 | */
|
---|
1826 | supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
|
---|
1827 | /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs.
|
---|
1828 | * See @bugref{6710}. */
|
---|
1829 | u32MinInterval = RT_NS_10MS;
|
---|
1830 | u32SystemResolution = RTTimerGetSystemGranularity();
|
---|
1831 | u32Interval = u32MinInterval;
|
---|
1832 | uMod = u32MinInterval % u32SystemResolution;
|
---|
1833 | if (uMod)
|
---|
1834 | u32Interval += u32SystemResolution - uMod;
|
---|
1835 |
|
---|
1836 | supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval, cCpus);
|
---|
1837 |
|
---|
1838 | /*
|
---|
1839 | * Important sanity check...
|
---|
1840 | */
|
---|
1841 | if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED
|
---|
1842 | && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC
|
---|
1843 | && !supdrvOSGetForcedAsyncTscMode(pDevExt)))
|
---|
1844 | {
|
---|
1845 | OSDBGPRINT(("supdrvGipCreate: Host-OS/user claims the TSC-deltas are zero but we detected async. TSC! Bad.\n"));
|
---|
1846 | return VERR_INTERNAL_ERROR_2;
|
---|
1847 | }
|
---|
1848 |
|
---|
1849 | /* It doesn't make sense to do TSC-delta detection on systems we detect as async. */
|
---|
1850 | AssertReturn( pGip->u32Mode != SUPGIPMODE_ASYNC_TSC
|
---|
1851 | || pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED, VERR_INTERNAL_ERROR_3);
|
---|
1852 |
|
---|
1853 | /*
|
---|
1854 | * Do the TSC frequency measurements.
|
---|
1855 | *
|
---|
1856 | * If we're in invariant TSC mode, just to a quick preliminary measurement
|
---|
1857 | * that the TSC-delta measurement code can use to yield cross calls.
|
---|
1858 | *
|
---|
1859 | * If we're in any of the other two modes, neither which require MP init,
|
---|
1860 | * notifications or deltas for the job, do the full measurement now so
|
---|
1861 | * that supdrvGipInitOnCpu() can populate the TSC interval and history
|
---|
1862 | * array with more reasonable values.
|
---|
1863 | */
|
---|
1864 | if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
|
---|
1865 | {
|
---|
1866 | rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, true /*fRough*/); /* cannot fail */
|
---|
1867 | supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt, pGip);
|
---|
1868 | }
|
---|
1869 | else
|
---|
1870 | rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, false /*fRough*/);
|
---|
1871 | if (RT_SUCCESS(rc))
|
---|
1872 | {
|
---|
1873 | /*
|
---|
1874 | * Start TSC-delta measurement thread before we start getting MP
|
---|
1875 | * events that will try kick it into action (includes the
|
---|
1876 | * RTMpOnAll/supdrvGipInitOnCpu call below).
|
---|
1877 | */
|
---|
1878 | RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet);
|
---|
1879 | RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet);
|
---|
1880 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
1881 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
1882 | rc = supdrvTscDeltaThreadInit(pDevExt);
|
---|
1883 | #endif
|
---|
1884 | if (RT_SUCCESS(rc))
|
---|
1885 | {
|
---|
1886 | rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
|
---|
1887 | if (RT_SUCCESS(rc))
|
---|
1888 | {
|
---|
1889 | /*
|
---|
1890 | * Do GIP initialization on all online CPUs. Wake up the
|
---|
1891 | * TSC-delta thread afterwards.
|
---|
1892 | */
|
---|
1893 | rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip);
|
---|
1894 | if (RT_SUCCESS(rc))
|
---|
1895 | {
|
---|
1896 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
1897 | supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */);
|
---|
1898 | #else
|
---|
1899 | uint16_t iCpu;
|
---|
1900 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
1901 | {
|
---|
1902 | /*
|
---|
1903 | * Measure the TSC deltas now that we have MP notifications.
|
---|
1904 | */
|
---|
1905 | int cTries = 5;
|
---|
1906 | do
|
---|
1907 | {
|
---|
1908 | rc = supdrvMeasureInitialTscDeltas(pDevExt);
|
---|
1909 | if ( rc != VERR_TRY_AGAIN
|
---|
1910 | && rc != VERR_CPU_OFFLINE)
|
---|
1911 | break;
|
---|
1912 | } while (--cTries > 0);
|
---|
1913 | for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
|
---|
1914 | Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta));
|
---|
1915 | }
|
---|
1916 | else
|
---|
1917 | {
|
---|
1918 | for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
|
---|
1919 | AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode));
|
---|
1920 | }
|
---|
1921 | if (RT_SUCCESS(rc))
|
---|
1922 | #endif
|
---|
1923 | {
|
---|
1924 | /*
|
---|
1925 | * Create the timer.
|
---|
1926 | * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
|
---|
1927 | */
|
---|
1928 | if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
|
---|
1929 | {
|
---|
1930 | rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL,
|
---|
1931 | supdrvGipAsyncTimer, pDevExt);
|
---|
1932 | if (rc == VERR_NOT_SUPPORTED)
|
---|
1933 | {
|
---|
1934 | OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
|
---|
1935 | pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
|
---|
1936 | }
|
---|
1937 | }
|
---|
1938 | if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
|
---|
1939 | rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */,
|
---|
1940 | supdrvGipSyncAndInvariantTimer, pDevExt);
|
---|
1941 | if (RT_SUCCESS(rc))
|
---|
1942 | {
|
---|
1943 | /*
|
---|
1944 | * We're good.
|
---|
1945 | */
|
---|
1946 | Log(("supdrvGipCreate: %u ns interval.\n", u32Interval));
|
---|
1947 | supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
|
---|
1948 |
|
---|
1949 | g_pSUPGlobalInfoPage = pGip;
|
---|
1950 | return VINF_SUCCESS;
|
---|
1951 | }
|
---|
1952 |
|
---|
1953 | OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc));
|
---|
1954 | Assert(!pDevExt->pGipTimer);
|
---|
1955 | }
|
---|
1956 | }
|
---|
1957 | else
|
---|
1958 | OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc));
|
---|
1959 | }
|
---|
1960 | else
|
---|
1961 | OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc));
|
---|
1962 | }
|
---|
1963 | else
|
---|
1964 | OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc));
|
---|
1965 | }
|
---|
1966 | else
|
---|
1967 | OSDBGPRINT(("supdrvGipCreate: supdrvMeasureInitialTscDeltas failed. rc=%Rrc\n", rc));
|
---|
1968 |
|
---|
1969 | /* Releases timer frequency increase too. */
|
---|
1970 | supdrvGipDestroy(pDevExt);
|
---|
1971 | return rc;
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 |
|
---|
1975 | /**
|
---|
1976 | * Invalidates the GIP data upon termination.
|
---|
1977 | *
|
---|
1978 | * @param pGip Pointer to the read-write kernel mapping of the GIP.
|
---|
1979 | */
|
---|
1980 | static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
|
---|
1981 | {
|
---|
1982 | unsigned i;
|
---|
1983 | pGip->u32Magic = 0;
|
---|
1984 | for (i = 0; i < pGip->cCpus; i++)
|
---|
1985 | {
|
---|
1986 | pGip->aCPUs[i].u64NanoTS = 0;
|
---|
1987 | pGip->aCPUs[i].u64TSC = 0;
|
---|
1988 | pGip->aCPUs[i].iTSCHistoryHead = 0;
|
---|
1989 | pGip->aCPUs[i].u64TSCSample = 0;
|
---|
1990 | pGip->aCPUs[i].i64TSCDelta = INT64_MAX;
|
---|
1991 | }
|
---|
1992 | }
|
---|
1993 |
|
---|
1994 |
|
---|
1995 | /**
|
---|
1996 | * Terminates the GIP.
|
---|
1997 | *
|
---|
1998 | * @param pDevExt Instance data. GIP stuff may be updated.
|
---|
1999 | */
|
---|
2000 | void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
|
---|
2001 | {
|
---|
2002 | int rc;
|
---|
2003 | #ifdef DEBUG_DARWIN_GIP
|
---|
2004 | OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
|
---|
2005 | pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
|
---|
2006 | pDevExt->pGipTimer, pDevExt->GipMemObj));
|
---|
2007 | #endif
|
---|
2008 |
|
---|
2009 | /*
|
---|
2010 | * Stop receiving MP notifications before tearing anything else down.
|
---|
2011 | */
|
---|
2012 | RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt);
|
---|
2013 |
|
---|
2014 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
2015 | /*
|
---|
2016 | * Terminate the TSC-delta measurement thread and resources.
|
---|
2017 | */
|
---|
2018 | supdrvTscDeltaTerm(pDevExt);
|
---|
2019 | #endif
|
---|
2020 |
|
---|
2021 | /*
|
---|
2022 | * Destroy the TSC-refinement timer.
|
---|
2023 | */
|
---|
2024 | if (pDevExt->pInvarTscRefineTimer)
|
---|
2025 | {
|
---|
2026 | RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
|
---|
2027 | pDevExt->pInvarTscRefineTimer = NULL;
|
---|
2028 | }
|
---|
2029 |
|
---|
2030 | /*
|
---|
2031 | * Invalid the GIP data.
|
---|
2032 | */
|
---|
2033 | if (pDevExt->pGip)
|
---|
2034 | {
|
---|
2035 | supdrvGipTerm(pDevExt->pGip);
|
---|
2036 | pDevExt->pGip = NULL;
|
---|
2037 | }
|
---|
2038 | g_pSUPGlobalInfoPage = NULL;
|
---|
2039 |
|
---|
2040 | /*
|
---|
2041 | * Destroy the timer and free the GIP memory object.
|
---|
2042 | */
|
---|
2043 | if (pDevExt->pGipTimer)
|
---|
2044 | {
|
---|
2045 | rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
|
---|
2046 | pDevExt->pGipTimer = NULL;
|
---|
2047 | }
|
---|
2048 |
|
---|
2049 | if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
|
---|
2050 | {
|
---|
2051 | rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
|
---|
2052 | pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
|
---|
2053 | }
|
---|
2054 |
|
---|
2055 | /*
|
---|
2056 | * Finally, make sure we've release the system timer resolution request
|
---|
2057 | * if one actually succeeded and is still pending.
|
---|
2058 | */
|
---|
2059 | supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
|
---|
2060 | }
|
---|
2061 |
|
---|
2062 |
|
---|
2063 |
|
---|
2064 |
|
---|
2065 | /*
|
---|
2066 | *
|
---|
2067 | *
|
---|
2068 | * GIP Update Timer Related Code
|
---|
2069 | * GIP Update Timer Related Code
|
---|
2070 | * GIP Update Timer Related Code
|
---|
2071 | *
|
---|
2072 | *
|
---|
2073 | */
|
---|
2074 |
|
---|
2075 |
|
---|
2076 | /**
|
---|
2077 | * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that
|
---|
2078 | * updates all the per cpu data except the transaction id.
|
---|
2079 | *
|
---|
2080 | * @param pDevExt The device extension.
|
---|
2081 | * @param pGipCpu Pointer to the per cpu data.
|
---|
2082 | * @param u64NanoTS The current time stamp.
|
---|
2083 | * @param u64TSC The current TSC.
|
---|
2084 | * @param iTick The current timer tick.
|
---|
2085 | *
|
---|
2086 | * @remarks Can be called with interrupts disabled!
|
---|
2087 | */
|
---|
2088 | static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
|
---|
2089 | {
|
---|
2090 | uint64_t u64TSCDelta;
|
---|
2091 | uint32_t u32UpdateIntervalTSC;
|
---|
2092 | uint32_t u32UpdateIntervalTSCSlack;
|
---|
2093 | unsigned iTSCHistoryHead;
|
---|
2094 | uint64_t u64CpuHz;
|
---|
2095 | uint32_t u32TransactionId;
|
---|
2096 |
|
---|
2097 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
2098 | AssertPtrReturnVoid(pGip);
|
---|
2099 |
|
---|
2100 | /* Delta between this and the previous update. */
|
---|
2101 | ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
|
---|
2102 |
|
---|
2103 | /*
|
---|
2104 | * Update the NanoTS.
|
---|
2105 | */
|
---|
2106 | ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS);
|
---|
2107 |
|
---|
2108 | /*
|
---|
2109 | * Calc TSC delta.
|
---|
2110 | */
|
---|
2111 | u64TSCDelta = u64TSC - pGipCpu->u64TSC;
|
---|
2112 | ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC);
|
---|
2113 |
|
---|
2114 | /*
|
---|
2115 | * We don't need to keep realculating the frequency when it's invariant, so
|
---|
2116 | * the remainder of this function is only for the sync and async TSC modes.
|
---|
2117 | */
|
---|
2118 | if (pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC)
|
---|
2119 | {
|
---|
2120 | if (u64TSCDelta >> 32)
|
---|
2121 | {
|
---|
2122 | u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
|
---|
2123 | pGipCpu->cErrors++;
|
---|
2124 | }
|
---|
2125 |
|
---|
2126 | /*
|
---|
2127 | * On the 2nd and 3rd callout, reset the history with the current TSC
|
---|
2128 | * interval since the values entered by supdrvGipInit are totally off.
|
---|
2129 | * The interval on the 1st callout completely unreliable, the 2nd is a bit
|
---|
2130 | * better, while the 3rd should be most reliable.
|
---|
2131 | */
|
---|
2132 | /** @todo Could we drop this now that we initializes the history
|
---|
2133 | * with nominal TSC frequency values? */
|
---|
2134 | u32TransactionId = pGipCpu->u32TransactionId;
|
---|
2135 | if (RT_UNLIKELY( ( u32TransactionId == 5
|
---|
2136 | || u32TransactionId == 7)
|
---|
2137 | && ( iTick == 2
|
---|
2138 | || iTick == 3) ))
|
---|
2139 | {
|
---|
2140 | unsigned i;
|
---|
2141 | for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
|
---|
2142 | ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
|
---|
2143 | }
|
---|
2144 |
|
---|
2145 | /*
|
---|
2146 | * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%.
|
---|
2147 | * Wait until we have at least one full history since the above history reset. The
|
---|
2148 | * assumption is that the majority of the previous history values will be tolerable.
|
---|
2149 | * See @bugref{6710} comment #67.
|
---|
2150 | */
|
---|
2151 | /** @todo Could we drop the fuding there now that we initializes the history
|
---|
2152 | * with nominal TSC frequency values? */
|
---|
2153 | if ( u32TransactionId > 23 /* 7 + (8 * 2) */
|
---|
2154 | && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
|
---|
2155 | {
|
---|
2156 | uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200;
|
---|
2157 | if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold
|
---|
2158 | || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold)
|
---|
2159 | {
|
---|
2160 | uint32_t u32;
|
---|
2161 | u32 = pGipCpu->au32TSCHistory[0];
|
---|
2162 | u32 += pGipCpu->au32TSCHistory[1];
|
---|
2163 | u32 += pGipCpu->au32TSCHistory[2];
|
---|
2164 | u32 += pGipCpu->au32TSCHistory[3];
|
---|
2165 | u32 >>= 2;
|
---|
2166 | u64TSCDelta = pGipCpu->au32TSCHistory[4];
|
---|
2167 | u64TSCDelta += pGipCpu->au32TSCHistory[5];
|
---|
2168 | u64TSCDelta += pGipCpu->au32TSCHistory[6];
|
---|
2169 | u64TSCDelta += pGipCpu->au32TSCHistory[7];
|
---|
2170 | u64TSCDelta >>= 2;
|
---|
2171 | u64TSCDelta += u32;
|
---|
2172 | u64TSCDelta >>= 1;
|
---|
2173 | }
|
---|
2174 | }
|
---|
2175 |
|
---|
2176 | /*
|
---|
2177 | * TSC History.
|
---|
2178 | */
|
---|
2179 | Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
|
---|
2180 | iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
|
---|
2181 | ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
|
---|
2182 | ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
|
---|
2183 |
|
---|
2184 | /*
|
---|
2185 | * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
|
---|
2186 | *
|
---|
2187 | * On Windows, we have an occasional (but recurring) sour value that messed up
|
---|
2188 | * the history but taking only 1 interval reduces the precision overall.
|
---|
2189 | */
|
---|
2190 | if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
|
---|
2191 | || pGip->u32UpdateHz >= 1000)
|
---|
2192 | {
|
---|
2193 | uint32_t u32;
|
---|
2194 | u32 = pGipCpu->au32TSCHistory[0];
|
---|
2195 | u32 += pGipCpu->au32TSCHistory[1];
|
---|
2196 | u32 += pGipCpu->au32TSCHistory[2];
|
---|
2197 | u32 += pGipCpu->au32TSCHistory[3];
|
---|
2198 | u32 >>= 2;
|
---|
2199 | u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
|
---|
2200 | u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
|
---|
2201 | u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
|
---|
2202 | u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
|
---|
2203 | u32UpdateIntervalTSC >>= 2;
|
---|
2204 | u32UpdateIntervalTSC += u32;
|
---|
2205 | u32UpdateIntervalTSC >>= 1;
|
---|
2206 |
|
---|
2207 | /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */
|
---|
2208 | u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
|
---|
2209 | }
|
---|
2210 | else if (pGip->u32UpdateHz >= 90)
|
---|
2211 | {
|
---|
2212 | u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
|
---|
2213 | u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
|
---|
2214 | u32UpdateIntervalTSC >>= 1;
|
---|
2215 |
|
---|
2216 | /* value chosen on a 2GHz thinkpad running windows */
|
---|
2217 | u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
|
---|
2218 | }
|
---|
2219 | else
|
---|
2220 | {
|
---|
2221 | u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
|
---|
2222 |
|
---|
2223 | /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
|
---|
2224 | u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
|
---|
2225 | }
|
---|
2226 | ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
|
---|
2227 |
|
---|
2228 | /*
|
---|
2229 | * CpuHz.
|
---|
2230 | */
|
---|
2231 | u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC);
|
---|
2232 | u64CpuHz /= pGip->u32UpdateIntervalNS;
|
---|
2233 | ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz);
|
---|
2234 | }
|
---|
2235 | }
|
---|
2236 |
|
---|
2237 |
|
---|
2238 | /**
|
---|
2239 | * Updates the GIP.
|
---|
2240 | *
|
---|
2241 | * @param pDevExt The device extension.
|
---|
2242 | * @param u64NanoTS The current nanosecond timesamp.
|
---|
2243 | * @param u64TSC The current TSC timesamp.
|
---|
2244 | * @param idCpu The CPU ID.
|
---|
2245 | * @param iTick The current timer tick.
|
---|
2246 | *
|
---|
2247 | * @remarks Can be called with interrupts disabled!
|
---|
2248 | */
|
---|
2249 | static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick)
|
---|
2250 | {
|
---|
2251 | /*
|
---|
2252 | * Determine the relevant CPU data.
|
---|
2253 | */
|
---|
2254 | PSUPGIPCPU pGipCpu;
|
---|
2255 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
2256 | AssertPtrReturnVoid(pGip);
|
---|
2257 |
|
---|
2258 | if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
|
---|
2259 | pGipCpu = &pGip->aCPUs[0];
|
---|
2260 | else
|
---|
2261 | {
|
---|
2262 | unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
|
---|
2263 | if (RT_UNLIKELY(iCpu >= pGip->cCpus))
|
---|
2264 | return;
|
---|
2265 | pGipCpu = &pGip->aCPUs[iCpu];
|
---|
2266 | if (RT_UNLIKELY(pGipCpu->idCpu != idCpu))
|
---|
2267 | return;
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 | /*
|
---|
2271 | * Start update transaction.
|
---|
2272 | */
|
---|
2273 | if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
|
---|
2274 | {
|
---|
2275 | /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
|
---|
2276 | AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
|
---|
2277 | ASMAtomicIncU32(&pGipCpu->u32TransactionId);
|
---|
2278 | pGipCpu->cErrors++;
|
---|
2279 | return;
|
---|
2280 | }
|
---|
2281 |
|
---|
2282 | /*
|
---|
2283 | * Recalc the update frequency every 0x800th time.
|
---|
2284 | */
|
---|
2285 | if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariants hosts. */
|
---|
2286 | && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
|
---|
2287 | {
|
---|
2288 | if (pGip->u64NanoTSLastUpdateHz)
|
---|
2289 | {
|
---|
2290 | #ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
|
---|
2291 | uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
|
---|
2292 | uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
|
---|
2293 | if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
|
---|
2294 | {
|
---|
2295 | /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency
|
---|
2296 | * calculation on non-invariant hosts if it changes the history decision
|
---|
2297 | * taken in supdrvGipDoUpdateCpu(). */
|
---|
2298 | uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ;
|
---|
2299 | ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz);
|
---|
2300 | ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval);
|
---|
2301 | }
|
---|
2302 | #endif
|
---|
2303 | }
|
---|
2304 | ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1);
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 | /*
|
---|
2308 | * Update the data.
|
---|
2309 | */
|
---|
2310 | supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
|
---|
2311 |
|
---|
2312 | /*
|
---|
2313 | * Complete transaction.
|
---|
2314 | */
|
---|
2315 | ASMAtomicIncU32(&pGipCpu->u32TransactionId);
|
---|
2316 | }
|
---|
2317 |
|
---|
2318 |
|
---|
2319 | /**
|
---|
2320 | * Updates the per cpu GIP data for the calling cpu.
|
---|
2321 | *
|
---|
2322 | * @param pDevExt The device extension.
|
---|
2323 | * @param u64NanoTS The current nanosecond timesamp.
|
---|
2324 | * @param u64TSC The current TSC timesamp.
|
---|
2325 | * @param idCpu The CPU ID.
|
---|
2326 | * @param idApic The APIC id for the CPU index.
|
---|
2327 | * @param iTick The current timer tick.
|
---|
2328 | *
|
---|
2329 | * @remarks Can be called with interrupts disabled!
|
---|
2330 | */
|
---|
2331 | static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC,
|
---|
2332 | RTCPUID idCpu, uint8_t idApic, uint64_t iTick)
|
---|
2333 | {
|
---|
2334 | uint32_t iCpu;
|
---|
2335 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
2336 |
|
---|
2337 | /*
|
---|
2338 | * Avoid a potential race when a CPU online notification doesn't fire on
|
---|
2339 | * the onlined CPU but the tick creeps in before the event notification is
|
---|
2340 | * run.
|
---|
2341 | */
|
---|
2342 | if (RT_UNLIKELY(iTick == 1))
|
---|
2343 | {
|
---|
2344 | iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
|
---|
2345 | if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE)
|
---|
2346 | supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
|
---|
2347 | }
|
---|
2348 |
|
---|
2349 | iCpu = pGip->aiCpuFromApicId[idApic];
|
---|
2350 | if (RT_LIKELY(iCpu < pGip->cCpus))
|
---|
2351 | {
|
---|
2352 | PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
|
---|
2353 | if (pGipCpu->idCpu == idCpu)
|
---|
2354 | {
|
---|
2355 | /*
|
---|
2356 | * Start update transaction.
|
---|
2357 | */
|
---|
2358 | if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
|
---|
2359 | {
|
---|
2360 | AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
|
---|
2361 | ASMAtomicIncU32(&pGipCpu->u32TransactionId);
|
---|
2362 | pGipCpu->cErrors++;
|
---|
2363 | return;
|
---|
2364 | }
|
---|
2365 |
|
---|
2366 | /*
|
---|
2367 | * Update the data.
|
---|
2368 | */
|
---|
2369 | supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
|
---|
2370 |
|
---|
2371 | /*
|
---|
2372 | * Complete transaction.
|
---|
2373 | */
|
---|
2374 | ASMAtomicIncU32(&pGipCpu->u32TransactionId);
|
---|
2375 | }
|
---|
2376 | }
|
---|
2377 | }
|
---|
2378 |
|
---|
2379 |
|
---|
2380 | /**
|
---|
2381 | * Timer callback function for the sync and invariant GIP modes.
|
---|
2382 | *
|
---|
2383 | * @param pTimer The timer.
|
---|
2384 | * @param pvUser Opaque pointer to the device extension.
|
---|
2385 | * @param iTick The timer tick.
|
---|
2386 | */
|
---|
2387 | static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
|
---|
2388 | {
|
---|
2389 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
|
---|
2390 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
2391 | RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
|
---|
2392 | uint64_t u64TSC = ASMReadTSC();
|
---|
2393 | uint64_t u64NanoTS = RTTimeSystemNanoTS();
|
---|
2394 |
|
---|
2395 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
|
---|
2396 | {
|
---|
2397 | /*
|
---|
2398 | * The calculations in supdrvGipUpdate() is somewhat timing sensitive,
|
---|
2399 | * missing timer ticks is not an option for GIP because the GIP users
|
---|
2400 | * will end up incrementing the time in 1ns per time getter call until
|
---|
2401 | * there is a complete timer update. So, if the delta has yet to be
|
---|
2402 | * calculated, we just pretend it is zero for now (the GIP users
|
---|
2403 | * probably won't have it for a wee while either and will do the same).
|
---|
2404 | *
|
---|
2405 | * We could maybe on some platforms try cross calling a CPU with a
|
---|
2406 | * working delta here, but it's not worth the hassle since the
|
---|
2407 | * likelyhood of this happening is really low. On Windows, Linux, and
|
---|
2408 | * Solaris timers fire on the CPU they were registered/started on.
|
---|
2409 | * Darwin timers doesn't necessarily (they are high priority threads).
|
---|
2410 | */
|
---|
2411 | uint32_t iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
|
---|
2412 | uint16_t iGipCpu = RT_LIKELY(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx))
|
---|
2413 | ? pGip->aiCpuFromCpuSetIdx[iCpuSet] : UINT16_MAX;
|
---|
2414 | Assert(!ASMIntAreEnabled());
|
---|
2415 | if (RT_LIKELY(iGipCpu < pGip->cCpus))
|
---|
2416 | {
|
---|
2417 | int64_t iTscDelta = pGip->aCPUs[iGipCpu].i64TSCDelta;
|
---|
2418 | if (iTscDelta != INT64_MAX)
|
---|
2419 | u64TSC -= iTscDelta;
|
---|
2420 | }
|
---|
2421 | }
|
---|
2422 |
|
---|
2423 | supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick);
|
---|
2424 |
|
---|
2425 | ASMSetFlags(fOldFlags);
|
---|
2426 | }
|
---|
2427 |
|
---|
2428 |
|
---|
2429 | /**
|
---|
2430 | * Timer callback function for async GIP mode.
|
---|
2431 | * @param pTimer The timer.
|
---|
2432 | * @param pvUser Opaque pointer to the device extension.
|
---|
2433 | * @param iTick The timer tick.
|
---|
2434 | */
|
---|
2435 | static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
|
---|
2436 | {
|
---|
2437 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
|
---|
2438 | RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
|
---|
2439 | RTCPUID idCpu = RTMpCpuId();
|
---|
2440 | uint64_t u64TSC = ASMReadTSC();
|
---|
2441 | uint64_t NanoTS = RTTimeSystemNanoTS();
|
---|
2442 |
|
---|
2443 | /** @todo reset the transaction number and whatnot when iTick == 1. */
|
---|
2444 | if (pDevExt->idGipMaster == idCpu)
|
---|
2445 | supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick);
|
---|
2446 | else
|
---|
2447 | supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick);
|
---|
2448 |
|
---|
2449 | ASMSetFlags(fOldFlags);
|
---|
2450 | }
|
---|
2451 |
|
---|
2452 |
|
---|
2453 |
|
---|
2454 |
|
---|
2455 | /*
|
---|
2456 | *
|
---|
2457 | *
|
---|
2458 | * TSC Delta Measurements And Related Code
|
---|
2459 | * TSC Delta Measurements And Related Code
|
---|
2460 | * TSC Delta Measurements And Related Code
|
---|
2461 | *
|
---|
2462 | *
|
---|
2463 | */
|
---|
2464 |
|
---|
2465 |
|
---|
2466 | /*
|
---|
2467 | * Select TSC delta measurement algorithm.
|
---|
2468 | */
|
---|
2469 | #if 0
|
---|
2470 | # define GIP_TSC_DELTA_METHOD_1
|
---|
2471 | #else
|
---|
2472 | # define GIP_TSC_DELTA_METHOD_2
|
---|
2473 | #endif
|
---|
2474 |
|
---|
2475 | /** For padding variables to keep them away from other cache lines. Better too
|
---|
2476 | * large than too small!
|
---|
2477 | * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims
|
---|
2478 | * that NetBurst had 128 byte cache lines while the 486 thru Pentium
|
---|
2479 | * III had 32 bytes cache lines. */
|
---|
2480 | #define GIP_TSC_DELTA_CACHE_LINE_SIZE 128
|
---|
2481 |
|
---|
2482 |
|
---|
2483 | /**
|
---|
2484 | * TSC delta measurment algorithm \#2 result entry.
|
---|
2485 | */
|
---|
2486 | typedef struct SUPDRVTSCDELTAMETHOD2ENTRY
|
---|
2487 | {
|
---|
2488 | uint32_t iSeqMine;
|
---|
2489 | uint32_t iSeqOther;
|
---|
2490 | uint64_t uTsc;
|
---|
2491 | } SUPDRVTSCDELTAMETHOD2ENTRY;
|
---|
2492 |
|
---|
2493 | /**
|
---|
2494 | * TSC delta measurment algorithm \#2 Data.
|
---|
2495 | */
|
---|
2496 | typedef struct SUPDRVTSCDELTAMETHOD2
|
---|
2497 | {
|
---|
2498 | /** Padding to make sure the iCurSeqNo is in its own cache line. */
|
---|
2499 | uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
|
---|
2500 | /** The current sequence number of this worker. */
|
---|
2501 | uint32_t volatile iCurSeqNo;
|
---|
2502 | /** Padding to make sure the iCurSeqNo is in its own cache line. */
|
---|
2503 | uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1];
|
---|
2504 | /** Result table. */
|
---|
2505 | SUPDRVTSCDELTAMETHOD2ENTRY aResults[64];
|
---|
2506 | } SUPDRVTSCDELTAMETHOD2;
|
---|
2507 | /** Pointer to the data for TSC delta mesurment algorithm \#2 .*/
|
---|
2508 | typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2;
|
---|
2509 |
|
---|
2510 |
|
---|
2511 | /**
|
---|
2512 | * The TSC delta synchronization struct, version 2.
|
---|
2513 | *
|
---|
2514 | * The syncrhonization variable is completely isolated in its own cache line
|
---|
2515 | * (provided our max cache line size estimate is correct).
|
---|
2516 | */
|
---|
2517 | typedef struct SUPTSCDELTASYNC2
|
---|
2518 | {
|
---|
2519 | /** Padding to make sure the uVar1 is in its own cache line. */
|
---|
2520 | uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
|
---|
2521 |
|
---|
2522 | /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */
|
---|
2523 | volatile uint32_t uSyncVar;
|
---|
2524 | /** Sequence synchronizing variable used for post 'GO' synchronization. */
|
---|
2525 | volatile uint32_t uSyncSeq;
|
---|
2526 |
|
---|
2527 | /** Padding to make sure the uVar1 is in its own cache line. */
|
---|
2528 | uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2];
|
---|
2529 |
|
---|
2530 | /** Start RDTSC value. Put here mainly to save stack space. */
|
---|
2531 | uint64_t uTscStart;
|
---|
2532 | /** Copy of SUPDRVGIPTSCDELTARGS::cMaxTscTicks. */
|
---|
2533 | uint64_t cMaxTscTicks;
|
---|
2534 | } SUPTSCDELTASYNC2;
|
---|
2535 | AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t));
|
---|
2536 | typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2;
|
---|
2537 |
|
---|
2538 | /** Prestart wait. */
|
---|
2539 | #define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0x0ffe)
|
---|
2540 | /** Prestart aborted. */
|
---|
2541 | #define GIP_TSC_DELTA_SYNC2_PRESTART_ABORT UINT32_C(0x0fff)
|
---|
2542 | /** Ready (on your mark). */
|
---|
2543 | #define GIP_TSC_DELTA_SYNC2_READY UINT32_C(0x1000)
|
---|
2544 | /** Steady (get set). */
|
---|
2545 | #define GIP_TSC_DELTA_SYNC2_STEADY UINT32_C(0x1001)
|
---|
2546 | /** Go! */
|
---|
2547 | #define GIP_TSC_DELTA_SYNC2_GO UINT32_C(0x1002)
|
---|
2548 | /** Used by the verfication test. */
|
---|
2549 | #define GIP_TSC_DELTA_SYNC2_GO_GO UINT32_C(0x1003)
|
---|
2550 |
|
---|
2551 | /** We reached the time limit. */
|
---|
2552 | #define GIP_TSC_DELTA_SYNC2_TIMEOUT UINT32_C(0x1ffe)
|
---|
2553 | /** The other party won't touch the sync struct ever again. */
|
---|
2554 | #define GIP_TSC_DELTA_SYNC2_FINAL UINT32_C(0x1fff)
|
---|
2555 |
|
---|
2556 |
|
---|
2557 | /**
|
---|
2558 | * Argument package/state passed by supdrvMeasureTscDeltaOne() to the RTMpOn
|
---|
2559 | * callback worker.
|
---|
2560 | * @todo add
|
---|
2561 | */
|
---|
2562 | typedef struct SUPDRVGIPTSCDELTARGS
|
---|
2563 | {
|
---|
2564 | /** The device extension. */
|
---|
2565 | PSUPDRVDEVEXT pDevExt;
|
---|
2566 | /** Pointer to the GIP CPU array entry for the worker. */
|
---|
2567 | PSUPGIPCPU pWorker;
|
---|
2568 | /** Pointer to the GIP CPU array entry for the master. */
|
---|
2569 | PSUPGIPCPU pMaster;
|
---|
2570 | /** The maximum number of ticks to spend in supdrvMeasureTscDeltaCallback.
|
---|
2571 | * (This is what we need a rough TSC frequency for.) */
|
---|
2572 | uint64_t cMaxTscTicks;
|
---|
2573 | /** Used to abort synchronization setup. */
|
---|
2574 | bool volatile fAbortSetup;
|
---|
2575 |
|
---|
2576 | /** Padding to make sure the master variables live in its own cache lines. */
|
---|
2577 | uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
|
---|
2578 |
|
---|
2579 | /** @name Master
|
---|
2580 | * @{ */
|
---|
2581 | /** The time the master spent in the MP worker. */
|
---|
2582 | uint64_t cElapsedMasterTscTicks;
|
---|
2583 | /** The iTry value when stopped at. */
|
---|
2584 | uint32_t iTry;
|
---|
2585 | /** Set if the run timed out. */
|
---|
2586 | bool volatile fTimedOut;
|
---|
2587 | /** Pointer to the master's synchronization struct (on stack). */
|
---|
2588 | PSUPTSCDELTASYNC2 volatile pSyncMaster;
|
---|
2589 | /** Master data union. */
|
---|
2590 | union
|
---|
2591 | {
|
---|
2592 | /** Data (master) for delta verification. */
|
---|
2593 | struct
|
---|
2594 | {
|
---|
2595 | /** Verification test TSC values for the master. */
|
---|
2596 | uint64_t volatile auTscs[32];
|
---|
2597 | } Verify;
|
---|
2598 | /** Data (master) for measurement method \#2. */
|
---|
2599 | struct
|
---|
2600 | {
|
---|
2601 | /** Data and sequence number. */
|
---|
2602 | SUPDRVTSCDELTAMETHOD2 Data;
|
---|
2603 | /** The lag setting for the next run. */
|
---|
2604 | bool fLag;
|
---|
2605 | /** Number of hits. */
|
---|
2606 | uint32_t cHits;
|
---|
2607 | } M2;
|
---|
2608 | } uMaster;
|
---|
2609 | /** The verifier verdict, VINF_SUCCESS if ok, VERR_OUT_OF_RANGE if not,
|
---|
2610 | * VERR_TRY_AGAIN on timeout. */
|
---|
2611 | int32_t rcVerify;
|
---|
2612 | #ifdef TSCDELTA_VERIFY_WITH_STATS
|
---|
2613 | /** The maximum difference between TSC read during delta verification. */
|
---|
2614 | int64_t cMaxVerifyTscTicks;
|
---|
2615 | /** The minimum difference between two TSC reads during verification. */
|
---|
2616 | int64_t cMinVerifyTscTicks;
|
---|
2617 | /** The bad TSC diff, worker relative to master (= worker - master).
|
---|
2618 | * Negative value means the worker is behind the master. */
|
---|
2619 | int64_t iVerifyBadTscDiff;
|
---|
2620 | #endif
|
---|
2621 | /** @} */
|
---|
2622 |
|
---|
2623 | /** Padding to make sure the worker variables live is in its own cache line. */
|
---|
2624 | uint64_t au64CacheLinePaddingBetween[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
|
---|
2625 |
|
---|
2626 | /** @name Proletarian
|
---|
2627 | * @{ */
|
---|
2628 | /** Pointer to the worker's synchronization struct (on stack). */
|
---|
2629 | PSUPTSCDELTASYNC2 volatile pSyncWorker;
|
---|
2630 | /** The time the worker spent in the MP worker. */
|
---|
2631 | uint64_t cElapsedWorkerTscTicks;
|
---|
2632 | /** Worker data union. */
|
---|
2633 | union
|
---|
2634 | {
|
---|
2635 | /** Data (worker) for delta verification. */
|
---|
2636 | struct
|
---|
2637 | {
|
---|
2638 | /** Verification test TSC values for the worker. */
|
---|
2639 | uint64_t volatile auTscs[32];
|
---|
2640 | } Verify;
|
---|
2641 | /** Data (worker) for measurement method \#2. */
|
---|
2642 | struct
|
---|
2643 | {
|
---|
2644 | /** Data and sequence number. */
|
---|
2645 | SUPDRVTSCDELTAMETHOD2 Data;
|
---|
2646 | /** The lag setting for the next run (set by master). */
|
---|
2647 | bool fLag;
|
---|
2648 | } M2;
|
---|
2649 | } uWorker;
|
---|
2650 | /** @} */
|
---|
2651 |
|
---|
2652 | /** Padding to make sure the above is in its own cache line. */
|
---|
2653 | uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
|
---|
2654 | } SUPDRVGIPTSCDELTARGS;
|
---|
2655 | typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS;
|
---|
2656 |
|
---|
2657 |
|
---|
2658 | /** @name Macros that implements the basic synchronization steps common to
|
---|
2659 | * the algorithms.
|
---|
2660 | *
|
---|
2661 | * Must be used from loop as the timeouts are implemented via 'break' statements
|
---|
2662 | * at the moment.
|
---|
2663 | *
|
---|
2664 | * @{
|
---|
2665 | */
|
---|
2666 | #if defined(DEBUG_bird) /* || defined(VBOX_STRICT) */
|
---|
2667 | # define TSCDELTA_DBG_VARS() uint32_t iDbgCounter
|
---|
2668 | # define TSCDELTA_DBG_START_LOOP() do { iDbgCounter = 0; } while (0)
|
---|
2669 | # define TSCDELTA_DBG_CHECK_LOOP() \
|
---|
2670 | do { iDbgCounter++; if ((iDbgCounter & UINT32_C(0x01ffffff)) == 0) RT_BREAKPOINT(); } while (0)
|
---|
2671 | #else
|
---|
2672 | # define TSCDELTA_DBG_VARS() ((void)0)
|
---|
2673 | # define TSCDELTA_DBG_START_LOOP() ((void)0)
|
---|
2674 | # define TSCDELTA_DBG_CHECK_LOOP() ((void)0)
|
---|
2675 | #endif
|
---|
2676 | #if 0
|
---|
2677 | # define TSCDELTA_DBG_SYNC_MSG(a_Args) SUPR0Printf a_Args
|
---|
2678 | #else
|
---|
2679 | # define TSCDELTA_DBG_SYNC_MSG(a_Args) ((void)0)
|
---|
2680 | #endif
|
---|
2681 | #if 0
|
---|
2682 | # define TSCDELTA_DBG_SYNC_MSG2(a_Args) SUPR0Printf a_Args
|
---|
2683 | #else
|
---|
2684 | # define TSCDELTA_DBG_SYNC_MSG2(a_Args) ((void)0)
|
---|
2685 | #endif
|
---|
2686 | #if 0
|
---|
2687 | # define TSCDELTA_DBG_SYNC_MSG9(a_Args) SUPR0Printf a_Args
|
---|
2688 | #else
|
---|
2689 | # define TSCDELTA_DBG_SYNC_MSG9(a_Args) ((void)0)
|
---|
2690 | #endif
|
---|
2691 |
|
---|
2692 |
|
---|
2693 | static bool supdrvTscDeltaSync2_Before(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
|
---|
2694 | bool fIsMaster, PRTCCUINTREG pfEFlags, PSUPDRVGIPTSCDELTARGS pArgs)
|
---|
2695 | {
|
---|
2696 | uint32_t iMySeq = fIsMaster ? 0 : 256;
|
---|
2697 | uint32_t const iMaxSeq = iMySeq + 16; /* For the last loop, darn linux/freebsd C-ishness. */
|
---|
2698 | uint32_t u32Tmp;
|
---|
2699 | uint32_t iSync2Loops = 0;
|
---|
2700 | RTCCUINTREG fEFlags;
|
---|
2701 | TSCDELTA_DBG_VARS();
|
---|
2702 |
|
---|
2703 | *pfEFlags = X86_EFL_IF | X86_EFL_1; /* should shut up most nagging compilers. */
|
---|
2704 |
|
---|
2705 | /*
|
---|
2706 | * The master tells the worker to get on it's mark.
|
---|
2707 | */
|
---|
2708 | if (fIsMaster)
|
---|
2709 | {
|
---|
2710 | if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
|
---|
2711 | { /* likely*/ }
|
---|
2712 | else
|
---|
2713 | {
|
---|
2714 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #1 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
|
---|
2715 | return false;
|
---|
2716 | }
|
---|
2717 | }
|
---|
2718 |
|
---|
2719 | /*
|
---|
2720 | * Wait for the on your mark signal (ack in the master case). We process timeouts here.
|
---|
2721 | */
|
---|
2722 | ASMAtomicWriteU32(&(pMySync)->uSyncSeq, 0);
|
---|
2723 | for (;;)
|
---|
2724 | {
|
---|
2725 | fEFlags = ASMIntDisableFlags();
|
---|
2726 | u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
|
---|
2727 | if (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY)
|
---|
2728 | break;
|
---|
2729 | ASMSetFlags(fEFlags);
|
---|
2730 | ASMNopPause();
|
---|
2731 |
|
---|
2732 | /* Abort? */
|
---|
2733 | if (u32Tmp != GIP_TSC_DELTA_SYNC2_READY)
|
---|
2734 | {
|
---|
2735 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #2 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp));
|
---|
2736 | return false;
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | /* Check for timeouts every so often (not every loop in case RDTSC is
|
---|
2740 | trapping or something). Must check the first time around. */
|
---|
2741 | #if 0 /* For debugging the timeout paths. */
|
---|
2742 | static uint32_t volatile xxx;
|
---|
2743 | #endif
|
---|
2744 | if ( ( (iSync2Loops & 0x3ff) == 0
|
---|
2745 | && ASMReadTSC() - pMySync->uTscStart > pMySync->cMaxTscTicks)
|
---|
2746 | #if 0 /* This is crazy, I know, but enable this code and the results are markedly better when enabled on the 1.4GHz AMD (debug). */
|
---|
2747 | || (!fIsMaster && (++xxx & 0xf) == 0)
|
---|
2748 | #endif
|
---|
2749 | )
|
---|
2750 | {
|
---|
2751 | /* Try switch our own state into timeout mode so the master cannot tell us to 'GO',
|
---|
2752 | ignore the timeout if we've got the go ahead already (simpler). */
|
---|
2753 | if (ASMAtomicCmpXchgU32(&pMySync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_READY))
|
---|
2754 | {
|
---|
2755 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: timeout\n", fIsMaster ? "master" : "worker"));
|
---|
2756 | ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_STEADY);
|
---|
2757 | ASMAtomicWriteBool(&pArgs->fTimedOut, true);
|
---|
2758 | return false;
|
---|
2759 | }
|
---|
2760 | }
|
---|
2761 | iSync2Loops++;
|
---|
2762 | }
|
---|
2763 |
|
---|
2764 | /*
|
---|
2765 | * Interrupts are now disabled and will remain disabled until we do
|
---|
2766 | * TSCDELTA_MASTER_SYNC_AFTER / TSCDELTA_OTHER_SYNC_AFTER.
|
---|
2767 | */
|
---|
2768 | *pfEFlags = fEFlags;
|
---|
2769 |
|
---|
2770 | /*
|
---|
2771 | * The worker tells the master that it is on its mark and that the master
|
---|
2772 | * need to get into position as well.
|
---|
2773 | */
|
---|
2774 | if (!fIsMaster)
|
---|
2775 | {
|
---|
2776 | if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY)))
|
---|
2777 | { /* likely */ }
|
---|
2778 | else
|
---|
2779 | {
|
---|
2780 | ASMSetFlags(fEFlags);
|
---|
2781 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #3 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
|
---|
2782 | return false;
|
---|
2783 | }
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 | /*
|
---|
2787 | * The master sends the 'go' to the worker and wait for ACK.
|
---|
2788 | */
|
---|
2789 | if (fIsMaster)
|
---|
2790 | {
|
---|
2791 | if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
|
---|
2792 | { /* likely */ }
|
---|
2793 | else
|
---|
2794 | {
|
---|
2795 | ASMSetFlags(fEFlags);
|
---|
2796 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #4 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
|
---|
2797 | return false;
|
---|
2798 | }
|
---|
2799 | }
|
---|
2800 |
|
---|
2801 | /*
|
---|
2802 | * Wait for the 'go' signal (ack in the master case).
|
---|
2803 | */
|
---|
2804 | TSCDELTA_DBG_START_LOOP();
|
---|
2805 | for (;;)
|
---|
2806 | {
|
---|
2807 | u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
|
---|
2808 | if (u32Tmp == GIP_TSC_DELTA_SYNC2_GO)
|
---|
2809 | break;
|
---|
2810 | if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY))
|
---|
2811 | { /* likely */ }
|
---|
2812 | else
|
---|
2813 | {
|
---|
2814 | ASMSetFlags(fEFlags);
|
---|
2815 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #5 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp));
|
---|
2816 | return false;
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
2820 | ASMNopPause();
|
---|
2821 | }
|
---|
2822 |
|
---|
2823 | /*
|
---|
2824 | * The worker acks the 'go' (shouldn't fail).
|
---|
2825 | */
|
---|
2826 | if (!fIsMaster)
|
---|
2827 | {
|
---|
2828 | if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY)))
|
---|
2829 | { /* likely */ }
|
---|
2830 | else
|
---|
2831 | {
|
---|
2832 | ASMSetFlags(fEFlags);
|
---|
2833 | TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #6 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar));
|
---|
2834 | return false;
|
---|
2835 | }
|
---|
2836 | }
|
---|
2837 |
|
---|
2838 | /*
|
---|
2839 | * Try enter mostly lockstep execution with it.
|
---|
2840 | */
|
---|
2841 | for (;;)
|
---|
2842 | {
|
---|
2843 | uint32_t iOtherSeq1, iOtherSeq2;
|
---|
2844 | ASMCompilerBarrier();
|
---|
2845 | ASMSerializeInstruction();
|
---|
2846 |
|
---|
2847 | ASMAtomicWriteU32(&pMySync->uSyncSeq, iMySeq);
|
---|
2848 | ASMNopPause();
|
---|
2849 | iOtherSeq1 = ASMAtomicXchgU32(&pOtherSync->uSyncSeq, iMySeq);
|
---|
2850 | ASMNopPause();
|
---|
2851 | iOtherSeq2 = ASMAtomicReadU32(&pMySync->uSyncSeq);
|
---|
2852 |
|
---|
2853 | ASMCompilerBarrier();
|
---|
2854 | if (iOtherSeq1 == iOtherSeq2)
|
---|
2855 | return true;
|
---|
2856 |
|
---|
2857 | /* Did the other guy give up? Should we give up? */
|
---|
2858 | if ( iOtherSeq1 == UINT32_MAX
|
---|
2859 | || iOtherSeq2 == UINT32_MAX)
|
---|
2860 | return true;
|
---|
2861 | if (++iMySeq >= iMaxSeq)
|
---|
2862 | {
|
---|
2863 | ASMAtomicWriteU32(&pMySync->uSyncSeq, UINT32_MAX);
|
---|
2864 | return true;
|
---|
2865 | }
|
---|
2866 | ASMNopPause();
|
---|
2867 | }
|
---|
2868 | }
|
---|
2869 |
|
---|
2870 | #define TSCDELTA_MASTER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \
|
---|
2871 | if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_pfEFlags, a_pArgs))) \
|
---|
2872 | { /*likely*/ } \
|
---|
2873 | else if (true) \
|
---|
2874 | { \
|
---|
2875 | TSCDELTA_DBG_SYNC_MSG9(("sync/before/master: #89\n")); \
|
---|
2876 | break; \
|
---|
2877 | } else do {} while (0)
|
---|
2878 | #define TSCDELTA_OTHER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \
|
---|
2879 | if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_pfEFlags, a_pArgs))) \
|
---|
2880 | { /*likely*/ } \
|
---|
2881 | else if (true) \
|
---|
2882 | { \
|
---|
2883 | TSCDELTA_DBG_SYNC_MSG9(("sync/before/other: #89\n")); \
|
---|
2884 | break; \
|
---|
2885 | } else do {} while (0)
|
---|
2886 |
|
---|
2887 |
|
---|
2888 | static bool supdrvTscDeltaSync2_After(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
|
---|
2889 | bool fIsMaster, RTCCUINTREG fEFlags)
|
---|
2890 | {
|
---|
2891 | TSCDELTA_DBG_VARS();
|
---|
2892 |
|
---|
2893 | /*
|
---|
2894 | * Wait for the 'ready' signal. In the master's case, this means the
|
---|
2895 | * worker has completed its data collection, while in the worker's case it
|
---|
2896 | * means the master is done processing the data and it's time for the next
|
---|
2897 | * loop iteration (or whatever).
|
---|
2898 | */
|
---|
2899 | ASMSetFlags(fEFlags);
|
---|
2900 | TSCDELTA_DBG_START_LOOP();
|
---|
2901 | for (;;)
|
---|
2902 | {
|
---|
2903 | uint32_t u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar);
|
---|
2904 | if ( u32Tmp == GIP_TSC_DELTA_SYNC2_READY
|
---|
2905 | || (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY && !fIsMaster) /* kicked twice => race */ )
|
---|
2906 | return true;
|
---|
2907 | ASMNopPause();
|
---|
2908 | if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_GO))
|
---|
2909 | { /* likely */}
|
---|
2910 | else
|
---|
2911 | {
|
---|
2912 | TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #1 u32Tmp=%#x\n", u32Tmp));
|
---|
2913 | return false; /* shouldn't ever happen! */
|
---|
2914 | }
|
---|
2915 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
2916 | ASMNopPause();
|
---|
2917 | }
|
---|
2918 | }
|
---|
2919 |
|
---|
2920 | #define TSCDELTA_MASTER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \
|
---|
2921 | if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_fEFlags))) \
|
---|
2922 | { /* likely */ } \
|
---|
2923 | else if (true) \
|
---|
2924 | { \
|
---|
2925 | TSCDELTA_DBG_SYNC_MSG9(("sync/after/master: #97\n")); \
|
---|
2926 | break; \
|
---|
2927 | } else do {} while (0)
|
---|
2928 |
|
---|
2929 | #define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pMySync, a_pOtherSync) \
|
---|
2930 | /* \
|
---|
2931 | * Tell the worker that we're done processing the data and ready for the next round. \
|
---|
2932 | */ \
|
---|
2933 | if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \
|
---|
2934 | { /* likely */ } \
|
---|
2935 | else if (true)\
|
---|
2936 | { \
|
---|
2937 | TSCDELTA_DBG_SYNC_MSG(("sync/after/master: #99 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \
|
---|
2938 | break; \
|
---|
2939 | } else do {} while (0)
|
---|
2940 |
|
---|
2941 | #define TSCDELTA_OTHER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \
|
---|
2942 | if (true) { \
|
---|
2943 | /* \
|
---|
2944 | * Tell the master that we're done collecting data and wait for the next round to start. \
|
---|
2945 | */ \
|
---|
2946 | if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \
|
---|
2947 | { /* likely */ } \
|
---|
2948 | else \
|
---|
2949 | { \
|
---|
2950 | ASMSetFlags(a_fEFlags); \
|
---|
2951 | TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #0 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \
|
---|
2952 | break; \
|
---|
2953 | } \
|
---|
2954 | if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_fEFlags))) \
|
---|
2955 | { /* likely */ } \
|
---|
2956 | else \
|
---|
2957 | { \
|
---|
2958 | TSCDELTA_DBG_SYNC_MSG9(("sync/after/other: #98\n")); \
|
---|
2959 | break; \
|
---|
2960 | } \
|
---|
2961 | } else do {} while (0)
|
---|
2962 | /** @} */
|
---|
2963 |
|
---|
2964 |
|
---|
2965 | #ifdef GIP_TSC_DELTA_METHOD_1
|
---|
2966 | /**
|
---|
2967 | * TSC delta measurment algorithm \#1 (GIP_TSC_DELTA_METHOD_1).
|
---|
2968 | *
|
---|
2969 | *
|
---|
2970 | * We ignore the first few runs of the loop in order to prime the
|
---|
2971 | * cache. Also, we need to be careful about using 'pause' instruction
|
---|
2972 | * in critical busy-wait loops in this code - it can cause undesired
|
---|
2973 | * behaviour with hyperthreading.
|
---|
2974 | *
|
---|
2975 | * We try to minimize the measurement error by computing the minimum
|
---|
2976 | * read time of the compare statement in the worker by taking TSC
|
---|
2977 | * measurements across it.
|
---|
2978 | *
|
---|
2979 | * It must be noted that the computed minimum read time is mostly to
|
---|
2980 | * eliminate huge deltas when the worker is too early and doesn't by
|
---|
2981 | * itself help produce more accurate deltas. We allow two times the
|
---|
2982 | * computed minimum as an arbibtrary acceptable threshold. Therefore,
|
---|
2983 | * it is still possible to get negative deltas where there are none
|
---|
2984 | * when the worker is earlier. As long as these occasional negative
|
---|
2985 | * deltas are lower than the time it takes to exit guest-context and
|
---|
2986 | * the OS to reschedule EMT on a different CPU we won't expose a TSC
|
---|
2987 | * that jumped backwards. It is because of the existence of the
|
---|
2988 | * negative deltas we don't recompute the delta with the master and
|
---|
2989 | * worker interchanged to eliminate the remaining measurement error.
|
---|
2990 | *
|
---|
2991 | *
|
---|
2992 | * @param pArgs The argument/state data.
|
---|
2993 | * @param pMySync My synchronization structure.
|
---|
2994 | * @param pOtherSync My partner's synchronization structure.
|
---|
2995 | * @param fIsMaster Set if master, clear if worker.
|
---|
2996 | * @param iTry The attempt number.
|
---|
2997 | */
|
---|
2998 | static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
|
---|
2999 | bool fIsMaster, uint32_t iTry)
|
---|
3000 | {
|
---|
3001 | PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
|
---|
3002 | PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
|
---|
3003 | uint64_t uMinCmpReadTime = UINT64_MAX;
|
---|
3004 | unsigned iLoop;
|
---|
3005 | NOREF(iTry);
|
---|
3006 |
|
---|
3007 | for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++)
|
---|
3008 | {
|
---|
3009 | RTCCUINTREG fEFlags;
|
---|
3010 | if (fIsMaster)
|
---|
3011 | {
|
---|
3012 | /*
|
---|
3013 | * The master.
|
---|
3014 | */
|
---|
3015 | AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD,
|
---|
3016 | ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n",
|
---|
3017 | pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster));
|
---|
3018 | TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
|
---|
3019 |
|
---|
3020 | do
|
---|
3021 | {
|
---|
3022 | ASMSerializeInstruction();
|
---|
3023 | ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC());
|
---|
3024 | } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
|
---|
3025 |
|
---|
3026 | TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
|
---|
3027 |
|
---|
3028 | /* Process the data. */
|
---|
3029 | if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
|
---|
3030 | {
|
---|
3031 | if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD)
|
---|
3032 | {
|
---|
3033 | int64_t iDelta = pGipCpuWorker->u64TSCSample
|
---|
3034 | - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta);
|
---|
3035 | if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
|
---|
3036 | ? iDelta < pGipCpuWorker->i64TSCDelta
|
---|
3037 | : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX)
|
---|
3038 | pGipCpuWorker->i64TSCDelta = iDelta;
|
---|
3039 | }
|
---|
3040 | }
|
---|
3041 |
|
---|
3042 | /* Reset our TSC sample and tell the worker to move on. */
|
---|
3043 | ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD);
|
---|
3044 | TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
|
---|
3045 | }
|
---|
3046 | else
|
---|
3047 | {
|
---|
3048 | /*
|
---|
3049 | * The worker.
|
---|
3050 | */
|
---|
3051 | uint64_t uTscWorker;
|
---|
3052 | uint64_t uTscWorkerFlushed;
|
---|
3053 | uint64_t uCmpReadTime;
|
---|
3054 |
|
---|
3055 | ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */
|
---|
3056 | TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
|
---|
3057 |
|
---|
3058 | /*
|
---|
3059 | * Keep reading the TSC until we notice that the master has read his. Reading
|
---|
3060 | * the TSC -after- the master has updated the memory is way too late. We thus
|
---|
3061 | * compensate by trying to measure how long it took for the worker to notice
|
---|
3062 | * the memory flushed from the master.
|
---|
3063 | */
|
---|
3064 | do
|
---|
3065 | {
|
---|
3066 | ASMSerializeInstruction();
|
---|
3067 | uTscWorker = ASMReadTSC();
|
---|
3068 | } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
|
---|
3069 | ASMSerializeInstruction();
|
---|
3070 | uTscWorkerFlushed = ASMReadTSC();
|
---|
3071 |
|
---|
3072 | uCmpReadTime = uTscWorkerFlushed - uTscWorker;
|
---|
3073 | if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
|
---|
3074 | {
|
---|
3075 | /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */
|
---|
3076 | if (uCmpReadTime < (uMinCmpReadTime << 1))
|
---|
3077 | {
|
---|
3078 | ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker);
|
---|
3079 | if (uCmpReadTime < uMinCmpReadTime)
|
---|
3080 | uMinCmpReadTime = uCmpReadTime;
|
---|
3081 | }
|
---|
3082 | else
|
---|
3083 | ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
|
---|
3084 | }
|
---|
3085 | else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS)
|
---|
3086 | {
|
---|
3087 | if (uCmpReadTime < uMinCmpReadTime)
|
---|
3088 | uMinCmpReadTime = uCmpReadTime;
|
---|
3089 | }
|
---|
3090 |
|
---|
3091 | TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
|
---|
3092 | }
|
---|
3093 | }
|
---|
3094 |
|
---|
3095 | TSCDELTA_DBG_SYNC_MSG9(("sync/method1loop/%s: #92 iLoop=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iLoop,
|
---|
3096 | pMySync->uSyncVar));
|
---|
3097 |
|
---|
3098 | /*
|
---|
3099 | * We must reset the worker TSC sample value in case it gets picked as a
|
---|
3100 | * GIP master later on (it's trashed above, naturally).
|
---|
3101 | */
|
---|
3102 | if (!fIsMaster)
|
---|
3103 | ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
|
---|
3104 | }
|
---|
3105 | #endif /* GIP_TSC_DELTA_METHOD_1 */
|
---|
3106 |
|
---|
3107 |
|
---|
3108 | #ifdef GIP_TSC_DELTA_METHOD_2
|
---|
3109 | /*
|
---|
3110 | * TSC delta measurement algorithm \#2 configuration and code - Experimental!!
|
---|
3111 | */
|
---|
3112 |
|
---|
3113 | # define GIP_TSC_DELTA_M2_LOOPS (7 + GIP_TSC_DELTA_M2_PRIMER_LOOPS)
|
---|
3114 | # define GIP_TSC_DELTA_M2_PRIMER_LOOPS 0
|
---|
3115 |
|
---|
3116 |
|
---|
3117 | static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs, uint32_t iLoop)
|
---|
3118 | {
|
---|
3119 | int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta;
|
---|
3120 | int64_t iBestDelta = pArgs->pWorker->i64TSCDelta;
|
---|
3121 | uint32_t idxResult;
|
---|
3122 | uint32_t cHits = 0;
|
---|
3123 |
|
---|
3124 | /*
|
---|
3125 | * Look for matching entries in the master and worker tables.
|
---|
3126 | */
|
---|
3127 | for (idxResult = 0; idxResult < RT_ELEMENTS(pArgs->uMaster.M2.Data.aResults); idxResult++)
|
---|
3128 | {
|
---|
3129 | uint32_t idxOther = pArgs->uMaster.M2.Data.aResults[idxResult].iSeqOther;
|
---|
3130 | if (idxOther & 1)
|
---|
3131 | {
|
---|
3132 | idxOther >>= 1;
|
---|
3133 | if (idxOther < RT_ELEMENTS(pArgs->uWorker.M2.Data.aResults))
|
---|
3134 | {
|
---|
3135 | if (pArgs->uWorker.M2.Data.aResults[idxOther].iSeqOther == pArgs->uMaster.M2.Data.aResults[idxResult].iSeqMine)
|
---|
3136 | {
|
---|
3137 | int64_t iDelta;
|
---|
3138 | iDelta = pArgs->uWorker.M2.Data.aResults[idxOther].uTsc
|
---|
3139 | - (pArgs->uMaster.M2.Data.aResults[idxResult].uTsc - iMasterTscDelta);
|
---|
3140 | if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
|
---|
3141 | ? iDelta < iBestDelta
|
---|
3142 | : iDelta > iBestDelta || iBestDelta == INT64_MAX)
|
---|
3143 | iBestDelta = iDelta;
|
---|
3144 | cHits++;
|
---|
3145 | }
|
---|
3146 | }
|
---|
3147 | }
|
---|
3148 | }
|
---|
3149 |
|
---|
3150 | /*
|
---|
3151 | * Save the results.
|
---|
3152 | */
|
---|
3153 | if (cHits > 2)
|
---|
3154 | pArgs->pWorker->i64TSCDelta = iBestDelta;
|
---|
3155 | pArgs->uMaster.M2.cHits += cHits;
|
---|
3156 | }
|
---|
3157 |
|
---|
3158 |
|
---|
3159 | /**
|
---|
3160 | * The core function of the 2nd TSC delta mesurment algorithm.
|
---|
3161 | *
|
---|
3162 | * The idea here is that we have the two CPUs execute the exact same code
|
---|
3163 | * collecting a largish set of TSC samples. The code has one data dependency on
|
---|
3164 | * the other CPU which intention it is to synchronize the execution as well as
|
---|
3165 | * help cross references the two sets of TSC samples (the sequence numbers).
|
---|
3166 | *
|
---|
3167 | * The @a fLag parameter is used to modify the execution a tiny bit on one or
|
---|
3168 | * both of the CPUs. When @a fLag differs between the CPUs, it is thought that
|
---|
3169 | * it will help with making the CPUs enter lock step execution occationally.
|
---|
3170 | *
|
---|
3171 | */
|
---|
3172 | static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag)
|
---|
3173 | {
|
---|
3174 | SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0];
|
---|
3175 | uint32_t cLeft = RT_ELEMENTS(pMyData->aResults);
|
---|
3176 |
|
---|
3177 | ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0);
|
---|
3178 | ASMSerializeInstruction();
|
---|
3179 | while (cLeft-- > 0)
|
---|
3180 | {
|
---|
3181 | uint64_t uTsc;
|
---|
3182 | uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo);
|
---|
3183 | uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo);
|
---|
3184 | ASMCompilerBarrier();
|
---|
3185 | ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */
|
---|
3186 | uTsc = ASMReadTSC();
|
---|
3187 | ASMAtomicIncU32(&pMyData->iCurSeqNo);
|
---|
3188 | ASMCompilerBarrier();
|
---|
3189 | ASMSerializeInstruction();
|
---|
3190 | pEntry->iSeqMine = iSeqMine;
|
---|
3191 | pEntry->iSeqOther = iSeqOther;
|
---|
3192 | pEntry->uTsc = uTsc;
|
---|
3193 | pEntry++;
|
---|
3194 | ASMSerializeInstruction();
|
---|
3195 | if (fLag)
|
---|
3196 | ASMNopPause();
|
---|
3197 | }
|
---|
3198 | }
|
---|
3199 |
|
---|
3200 |
|
---|
3201 | /**
|
---|
3202 | * TSC delta measurment algorithm \#2 (GIP_TSC_DELTA_METHOD_2).
|
---|
3203 | *
|
---|
3204 | * See supdrvTscDeltaMethod2CollectData for algorithm details.
|
---|
3205 | *
|
---|
3206 | * @param pArgs The argument/state data.
|
---|
3207 | * @param pMySync My synchronization structure.
|
---|
3208 | * @param pOtherSync My partner's synchronization structure.
|
---|
3209 | * @param fIsMaster Set if master, clear if worker.
|
---|
3210 | * @param iTry The attempt number.
|
---|
3211 | */
|
---|
3212 | static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync,
|
---|
3213 | bool fIsMaster, uint32_t iTry)
|
---|
3214 | {
|
---|
3215 | unsigned iLoop;
|
---|
3216 |
|
---|
3217 | for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++)
|
---|
3218 | {
|
---|
3219 | RTCCUINTREG fEFlags;
|
---|
3220 | if (fIsMaster)
|
---|
3221 | {
|
---|
3222 | /*
|
---|
3223 | * Adjust the loop lag fudge.
|
---|
3224 | */
|
---|
3225 | # if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
|
---|
3226 | if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS)
|
---|
3227 | {
|
---|
3228 | /* Lag during the priming to be nice to everyone.. */
|
---|
3229 | pArgs->uMaster.M2.fLag = true;
|
---|
3230 | pArgs->uWorker.M2.fLag = true;
|
---|
3231 | }
|
---|
3232 | else
|
---|
3233 | # endif
|
---|
3234 | if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4)
|
---|
3235 | {
|
---|
3236 | /* 25 % of the body without lagging. */
|
---|
3237 | pArgs->uMaster.M2.fLag = false;
|
---|
3238 | pArgs->uWorker.M2.fLag = false;
|
---|
3239 | }
|
---|
3240 | else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2)
|
---|
3241 | {
|
---|
3242 | /* 25 % of the body with both lagging. */
|
---|
3243 | pArgs->uMaster.M2.fLag = true;
|
---|
3244 | pArgs->uWorker.M2.fLag = true;
|
---|
3245 | }
|
---|
3246 | else
|
---|
3247 | {
|
---|
3248 | /* 50% of the body with alternating lag. */
|
---|
3249 | pArgs->uMaster.M2.fLag = (iLoop & 1) == 0;
|
---|
3250 | pArgs->uWorker.M2.fLag= (iLoop & 1) == 1;
|
---|
3251 | }
|
---|
3252 |
|
---|
3253 | /*
|
---|
3254 | * Sync up with the worker and collect data.
|
---|
3255 | */
|
---|
3256 | TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
|
---|
3257 | supdrvTscDeltaMethod2CollectData(&pArgs->uMaster.M2.Data, &pArgs->uWorker.M2.Data.iCurSeqNo, pArgs->uMaster.M2.fLag);
|
---|
3258 | TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
|
---|
3259 |
|
---|
3260 | /*
|
---|
3261 | * Process the data.
|
---|
3262 | */
|
---|
3263 | # if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
|
---|
3264 | if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS)
|
---|
3265 | # endif
|
---|
3266 | supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs, iLoop);
|
---|
3267 |
|
---|
3268 | TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
|
---|
3269 | }
|
---|
3270 | else
|
---|
3271 | {
|
---|
3272 | /*
|
---|
3273 | * The worker.
|
---|
3274 | */
|
---|
3275 | TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
|
---|
3276 | supdrvTscDeltaMethod2CollectData(&pArgs->uWorker.M2.Data, &pArgs->uMaster.M2.Data.iCurSeqNo, pArgs->uWorker.M2.fLag);
|
---|
3277 | TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
|
---|
3278 | }
|
---|
3279 | }
|
---|
3280 | }
|
---|
3281 |
|
---|
3282 | #endif /* GIP_TSC_DELTA_METHOD_2 */
|
---|
3283 |
|
---|
3284 |
|
---|
3285 |
|
---|
3286 | static int supdrvTscDeltaVerify(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync,
|
---|
3287 | PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, int64_t iWorkerTscDelta)
|
---|
3288 | {
|
---|
3289 | /*PSUPGIPCPU pGipCpuWorker = pArgs->pWorker; - unused */
|
---|
3290 | PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
|
---|
3291 | uint32_t i;
|
---|
3292 | TSCDELTA_DBG_VARS();
|
---|
3293 |
|
---|
3294 | for (;;)
|
---|
3295 | {
|
---|
3296 | RTCCUINTREG fEFlags;
|
---|
3297 | AssertCompile((RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) & 1) == 0);
|
---|
3298 | AssertCompile(RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) == RT_ELEMENTS(pArgs->uWorker.Verify.auTscs));
|
---|
3299 |
|
---|
3300 | if (fIsMaster)
|
---|
3301 | {
|
---|
3302 | uint64_t uTscWorker;
|
---|
3303 | TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
|
---|
3304 |
|
---|
3305 | /*
|
---|
3306 | * Collect TSC, master goes first.
|
---|
3307 | */
|
---|
3308 | for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i += 2)
|
---|
3309 | {
|
---|
3310 | /* Read, kick & wait #1. */
|
---|
3311 | uint64_t register uTsc = ASMReadTSC();
|
---|
3312 | ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
|
---|
3313 | ASMSerializeInstruction();
|
---|
3314 | pArgs->uMaster.Verify.auTscs[i] = uTsc;
|
---|
3315 | TSCDELTA_DBG_START_LOOP();
|
---|
3316 | while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
|
---|
3317 | {
|
---|
3318 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3319 | ASMNopPause();
|
---|
3320 | }
|
---|
3321 |
|
---|
3322 | /* Read, kick & wait #2. */
|
---|
3323 | uTsc = ASMReadTSC();
|
---|
3324 | ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
|
---|
3325 | ASMSerializeInstruction();
|
---|
3326 | pArgs->uMaster.Verify.auTscs[i + 1] = uTsc;
|
---|
3327 | TSCDELTA_DBG_START_LOOP();
|
---|
3328 | while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
|
---|
3329 | {
|
---|
3330 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3331 | ASMNopPause();
|
---|
3332 | }
|
---|
3333 | }
|
---|
3334 |
|
---|
3335 | TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
|
---|
3336 |
|
---|
3337 | /*
|
---|
3338 | * Process the data.
|
---|
3339 | */
|
---|
3340 | #ifdef TSCDELTA_VERIFY_WITH_STATS
|
---|
3341 | pArgs->cMaxVerifyTscTicks = INT64_MIN;
|
---|
3342 | pArgs->cMinVerifyTscTicks = INT64_MAX;
|
---|
3343 | pArgs->iVerifyBadTscDiff = 0;
|
---|
3344 | #endif
|
---|
3345 | ASMAtomicWriteS32(&pArgs->rcVerify, VINF_SUCCESS);
|
---|
3346 | uTscWorker = 0;
|
---|
3347 | for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i++)
|
---|
3348 | {
|
---|
3349 | /* Master vs previous worker entry. */
|
---|
3350 | uint64_t uTscMaster = pArgs->uMaster.Verify.auTscs[i] - pGipCpuMaster->i64TSCDelta;
|
---|
3351 | int64_t iDiff;
|
---|
3352 | if (i > 0)
|
---|
3353 | {
|
---|
3354 | iDiff = uTscMaster - uTscWorker;
|
---|
3355 | #ifdef TSCDELTA_VERIFY_WITH_STATS
|
---|
3356 | if (iDiff > pArgs->cMaxVerifyTscTicks)
|
---|
3357 | pArgs->cMaxVerifyTscTicks = iDiff;
|
---|
3358 | if (iDiff < pArgs->cMinVerifyTscTicks)
|
---|
3359 | pArgs->cMinVerifyTscTicks = iDiff;
|
---|
3360 | #endif
|
---|
3361 | if (iDiff < 0)
|
---|
3362 | {
|
---|
3363 | #ifdef TSCDELTA_VERIFY_WITH_STATS
|
---|
3364 | pArgs->iVerifyBadTscDiff = -iDiff;
|
---|
3365 | #endif
|
---|
3366 | ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
|
---|
3367 | break;
|
---|
3368 | }
|
---|
3369 | }
|
---|
3370 |
|
---|
3371 | /* Worker vs master. */
|
---|
3372 | uTscWorker = pArgs->uWorker.Verify.auTscs[i] - iWorkerTscDelta;
|
---|
3373 | iDiff = uTscWorker - uTscMaster;
|
---|
3374 | #ifdef TSCDELTA_VERIFY_WITH_STATS
|
---|
3375 | if (iDiff > pArgs->cMaxVerifyTscTicks)
|
---|
3376 | pArgs->cMaxVerifyTscTicks = iDiff;
|
---|
3377 | if (iDiff < pArgs->cMinVerifyTscTicks)
|
---|
3378 | pArgs->cMinVerifyTscTicks = iDiff;
|
---|
3379 | #endif
|
---|
3380 | if (iDiff < 0)
|
---|
3381 | {
|
---|
3382 | #ifdef TSCDELTA_VERIFY_WITH_STATS
|
---|
3383 | pArgs->iVerifyBadTscDiff = iDiff;
|
---|
3384 | #endif
|
---|
3385 | ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE);
|
---|
3386 | break;
|
---|
3387 | }
|
---|
3388 | }
|
---|
3389 |
|
---|
3390 | /* Done. */
|
---|
3391 | TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync);
|
---|
3392 | }
|
---|
3393 | else
|
---|
3394 | {
|
---|
3395 | /*
|
---|
3396 | * The worker, master leads.
|
---|
3397 | */
|
---|
3398 | TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs);
|
---|
3399 |
|
---|
3400 | for (i = 0; i < RT_ELEMENTS(pArgs->uWorker.Verify.auTscs); i += 2)
|
---|
3401 | {
|
---|
3402 | uint64_t register uTsc;
|
---|
3403 |
|
---|
3404 | /* Wait, Read and Kick #1. */
|
---|
3405 | TSCDELTA_DBG_START_LOOP();
|
---|
3406 | while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO)
|
---|
3407 | {
|
---|
3408 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3409 | ASMNopPause();
|
---|
3410 | }
|
---|
3411 | uTsc = ASMReadTSC();
|
---|
3412 | ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO);
|
---|
3413 | ASMSerializeInstruction();
|
---|
3414 | pArgs->uWorker.Verify.auTscs[i] = uTsc;
|
---|
3415 |
|
---|
3416 | /* Wait, Read and Kick #2. */
|
---|
3417 | TSCDELTA_DBG_START_LOOP();
|
---|
3418 | while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO)
|
---|
3419 | {
|
---|
3420 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3421 | ASMNopPause();
|
---|
3422 | }
|
---|
3423 | uTsc = ASMReadTSC();
|
---|
3424 | ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO);
|
---|
3425 | ASMSerializeInstruction();
|
---|
3426 | pArgs->uWorker.Verify.auTscs[i + 1] = uTsc;
|
---|
3427 | }
|
---|
3428 |
|
---|
3429 | TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags);
|
---|
3430 | }
|
---|
3431 | return pArgs->rcVerify;
|
---|
3432 | }
|
---|
3433 |
|
---|
3434 | /*
|
---|
3435 | * Timed out, please retry.
|
---|
3436 | */
|
---|
3437 | ASMAtomicWriteS32(&pArgs->rcVerify, VERR_TRY_AGAIN);
|
---|
3438 | return VERR_TIMEOUT;
|
---|
3439 | }
|
---|
3440 |
|
---|
3441 |
|
---|
3442 |
|
---|
3443 | /**
|
---|
3444 | * Handles the special abort procedure during synchronization setup in
|
---|
3445 | * supdrvMeasureTscDeltaCallbackUnwrapped().
|
---|
3446 | *
|
---|
3447 | * @returns 0 (dummy, ignored)
|
---|
3448 | * @param pArgs Pointer to argument/state data.
|
---|
3449 | * @param pMySync Pointer to my sync structure.
|
---|
3450 | * @param fIsMaster Set if we're the master, clear if worker.
|
---|
3451 | * @param fTimeout Set if it's a timeout.
|
---|
3452 | */
|
---|
3453 | DECL_NO_INLINE(static, int)
|
---|
3454 | supdrvMeasureTscDeltaCallbackAbortSyncSetup(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, bool fIsMaster, bool fTimeout)
|
---|
3455 | {
|
---|
3456 | PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
|
---|
3457 | PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
|
---|
3458 | TSCDELTA_DBG_VARS();
|
---|
3459 |
|
---|
3460 | /*
|
---|
3461 | * Clear our sync pointer and make sure the abort flag is set.
|
---|
3462 | */
|
---|
3463 | ASMAtomicWriteNullPtr(ppMySync);
|
---|
3464 | ASMAtomicWriteBool(&pArgs->fAbortSetup, true);
|
---|
3465 | if (fTimeout)
|
---|
3466 | ASMAtomicWriteBool(&pArgs->fTimedOut, true);
|
---|
3467 |
|
---|
3468 | /*
|
---|
3469 | * Make sure the other party is out of there and won't be touching our
|
---|
3470 | * sync state again (would cause stack corruption).
|
---|
3471 | */
|
---|
3472 | TSCDELTA_DBG_START_LOOP();
|
---|
3473 | while (ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2) != NULL)
|
---|
3474 | {
|
---|
3475 | ASMNopPause();
|
---|
3476 | ASMNopPause();
|
---|
3477 | ASMNopPause();
|
---|
3478 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3479 | }
|
---|
3480 |
|
---|
3481 | return 0;
|
---|
3482 | }
|
---|
3483 |
|
---|
3484 |
|
---|
3485 | /**
|
---|
3486 | * This is used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
|
---|
3487 | * and compute the delta between them.
|
---|
3488 | *
|
---|
3489 | * To reduce code size a good when timeout handling was added, a dummy return
|
---|
3490 | * value had to be added (saves 1-3 lines per timeout case), thus this
|
---|
3491 | * 'Unwrapped' function and the dummy 0 return value.
|
---|
3492 | *
|
---|
3493 | * @returns 0 (dummy, ignored)
|
---|
3494 | * @param idCpu The CPU we are current scheduled on.
|
---|
3495 | * @param pArgs Pointer to a parameter package.
|
---|
3496 | *
|
---|
3497 | * @remarks Measuring TSC deltas between the CPUs is tricky because we need to
|
---|
3498 | * read the TSC at exactly the same time on both the master and the
|
---|
3499 | * worker CPUs. Due to DMA, bus arbitration, cache locality,
|
---|
3500 | * contention, SMI, pipelining etc. there is no guaranteed way of
|
---|
3501 | * doing this on x86 CPUs.
|
---|
3502 | */
|
---|
3503 | static int supdrvMeasureTscDeltaCallbackUnwrapped(RTCPUID idCpu, PSUPDRVGIPTSCDELTARGS pArgs)
|
---|
3504 | {
|
---|
3505 | PSUPDRVDEVEXT pDevExt = pArgs->pDevExt;
|
---|
3506 | PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
|
---|
3507 | PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
|
---|
3508 | bool const fIsMaster = idCpu == pGipCpuMaster->idCpu;
|
---|
3509 | uint32_t iTry;
|
---|
3510 | PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker;
|
---|
3511 | PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster;
|
---|
3512 | SUPTSCDELTASYNC2 MySync;
|
---|
3513 | PSUPTSCDELTASYNC2 pOtherSync;
|
---|
3514 | int rc;
|
---|
3515 | TSCDELTA_DBG_VARS();
|
---|
3516 |
|
---|
3517 | /* A bit of paranoia first. */
|
---|
3518 | if (!pGipCpuMaster || !pGipCpuWorker)
|
---|
3519 | return 0;
|
---|
3520 |
|
---|
3521 | /*
|
---|
3522 | * If the CPU isn't part of the measurement, return immediately.
|
---|
3523 | */
|
---|
3524 | if ( !fIsMaster
|
---|
3525 | && idCpu != pGipCpuWorker->idCpu)
|
---|
3526 | return 0;
|
---|
3527 |
|
---|
3528 | /*
|
---|
3529 | * Set up my synchronization stuff and wait for the other party to show up.
|
---|
3530 | *
|
---|
3531 | * We don't wait forever since the other party may be off fishing (offline,
|
---|
3532 | * spinning with ints disables, whatever), we must play nice to the rest of
|
---|
3533 | * the system as this context generally isn't one in which we will get
|
---|
3534 | * preempted and we may hold up a number of lower priority interrupts.
|
---|
3535 | */
|
---|
3536 | ASMAtomicWriteU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT);
|
---|
3537 | ASMAtomicWritePtr(ppMySync, &MySync);
|
---|
3538 | MySync.uTscStart = ASMReadTSC();
|
---|
3539 | MySync.cMaxTscTicks = pArgs->cMaxTscTicks;
|
---|
3540 |
|
---|
3541 | /* Look for the partner, might not be here yet... Special abort considerations. */
|
---|
3542 | iTry = 0;
|
---|
3543 | TSCDELTA_DBG_START_LOOP();
|
---|
3544 | while ((pOtherSync = ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2)) == NULL)
|
---|
3545 | {
|
---|
3546 | ASMNopPause();
|
---|
3547 | if ( ASMAtomicReadBool(&pArgs->fAbortSetup)
|
---|
3548 | || !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu) )
|
---|
3549 | return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
|
---|
3550 | if ( (iTry++ & 0xff) == 0
|
---|
3551 | && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
|
---|
3552 | return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
|
---|
3553 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3554 | ASMNopPause();
|
---|
3555 | }
|
---|
3556 |
|
---|
3557 | /* I found my partner, waiting to be found... Special abort considerations. */
|
---|
3558 | if (fIsMaster)
|
---|
3559 | if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* parnaoia */
|
---|
3560 | return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
|
---|
3561 |
|
---|
3562 | iTry = 0;
|
---|
3563 | TSCDELTA_DBG_START_LOOP();
|
---|
3564 | while (ASMAtomicReadU32(&MySync.uSyncVar) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)
|
---|
3565 | {
|
---|
3566 | ASMNopPause();
|
---|
3567 | if (ASMAtomicReadBool(&pArgs->fAbortSetup))
|
---|
3568 | return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
|
---|
3569 | if ( (iTry++ & 0xff) == 0
|
---|
3570 | && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks)
|
---|
3571 | {
|
---|
3572 | if ( fIsMaster
|
---|
3573 | && !ASMAtomicCmpXchgU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_ABORT, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT))
|
---|
3574 | break; /* race #1: slave has moved on, handle timeout in loop instead. */
|
---|
3575 | return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/);
|
---|
3576 | }
|
---|
3577 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3578 | }
|
---|
3579 |
|
---|
3580 | if (!fIsMaster)
|
---|
3581 | if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* race #1 */
|
---|
3582 | return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/);
|
---|
3583 |
|
---|
3584 | /** @todo Add a resumable state to pArgs so we don't waste time if we time
|
---|
3585 | * out or something. Timeouts are legit, any of the two CPUs may get
|
---|
3586 | * interrupted. */
|
---|
3587 |
|
---|
3588 | /*
|
---|
3589 | * Start by seeing if we have a zero delta between the two CPUs.
|
---|
3590 | * This should normally be the case.
|
---|
3591 | */
|
---|
3592 | rc = supdrvTscDeltaVerify(pArgs, &MySync, pOtherSync, fIsMaster, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
|
---|
3593 | if (RT_SUCCESS(rc))
|
---|
3594 | {
|
---|
3595 | if (fIsMaster)
|
---|
3596 | {
|
---|
3597 | ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
|
---|
3598 | RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
|
---|
3599 | RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
|
---|
3600 | }
|
---|
3601 | }
|
---|
3602 | /*
|
---|
3603 | * If the verification didn't time out, do regular delta measurements.
|
---|
3604 | * We retry this until we get a reasonable value.
|
---|
3605 | */
|
---|
3606 | else if (rc != VERR_TIMEOUT)
|
---|
3607 | {
|
---|
3608 | Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX);
|
---|
3609 | for (iTry = 0; iTry < 12; iTry++)
|
---|
3610 | {
|
---|
3611 | /*
|
---|
3612 | * Check the state before we start.
|
---|
3613 | */
|
---|
3614 | uint32_t u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar);
|
---|
3615 | if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY
|
---|
3616 | && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ )
|
---|
3617 | {
|
---|
3618 | TSCDELTA_DBG_SYNC_MSG(("sync/loop/%s: #0 iTry=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iTry, u32Tmp));
|
---|
3619 | break;
|
---|
3620 | }
|
---|
3621 |
|
---|
3622 | /*
|
---|
3623 | * Do the measurements.
|
---|
3624 | */
|
---|
3625 | #ifdef GIP_TSC_DELTA_METHOD_1
|
---|
3626 | supdrvTscDeltaMethod1Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
|
---|
3627 | #elif defined(GIP_TSC_DELTA_METHOD_2)
|
---|
3628 | supdrvTscDeltaMethod2Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry);
|
---|
3629 | #else
|
---|
3630 | # error "huh??"
|
---|
3631 | #endif
|
---|
3632 |
|
---|
3633 | /*
|
---|
3634 | * Check the state.
|
---|
3635 | */
|
---|
3636 | u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar);
|
---|
3637 | if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY
|
---|
3638 | && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ )
|
---|
3639 | {
|
---|
3640 | if (fIsMaster)
|
---|
3641 | TSCDELTA_DBG_SYNC_MSG(("sync/loop/master: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp));
|
---|
3642 | else
|
---|
3643 | TSCDELTA_DBG_SYNC_MSG2(("sync/loop/worker: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp));
|
---|
3644 | break;
|
---|
3645 | }
|
---|
3646 |
|
---|
3647 | /*
|
---|
3648 | * Success? If so, stop trying. Master decides.
|
---|
3649 | */
|
---|
3650 | if (fIsMaster)
|
---|
3651 | {
|
---|
3652 | if (pGipCpuWorker->i64TSCDelta != INT64_MAX)
|
---|
3653 | {
|
---|
3654 | RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
|
---|
3655 | RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
|
---|
3656 | TSCDELTA_DBG_SYNC_MSG2(("sync/loop/master: #9 iTry=%u MyState=%#x\n", iTry, MySync.uSyncVar));
|
---|
3657 | break;
|
---|
3658 | }
|
---|
3659 | }
|
---|
3660 | }
|
---|
3661 | if (fIsMaster)
|
---|
3662 | pArgs->iTry = iTry;
|
---|
3663 | }
|
---|
3664 |
|
---|
3665 | /*
|
---|
3666 | * End the synchroniziation dance. We tell the other that we're done,
|
---|
3667 | * then wait for the same kind of reply.
|
---|
3668 | */
|
---|
3669 | ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_FINAL);
|
---|
3670 | ASMAtomicWriteNullPtr(ppMySync);
|
---|
3671 | iTry = 0;
|
---|
3672 | TSCDELTA_DBG_START_LOOP();
|
---|
3673 | while (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_FINAL)
|
---|
3674 | {
|
---|
3675 | iTry++;
|
---|
3676 | if ( iTry == 0
|
---|
3677 | && !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu))
|
---|
3678 | break; /* this really shouldn't happen. */
|
---|
3679 | TSCDELTA_DBG_CHECK_LOOP();
|
---|
3680 | ASMNopPause();
|
---|
3681 | }
|
---|
3682 |
|
---|
3683 | /*
|
---|
3684 | * Collect some runtime stats.
|
---|
3685 | */
|
---|
3686 | if (fIsMaster)
|
---|
3687 | pArgs->cElapsedMasterTscTicks = ASMReadTSC() - MySync.uTscStart;
|
---|
3688 | else
|
---|
3689 | pArgs->cElapsedWorkerTscTicks = ASMReadTSC() - MySync.uTscStart;
|
---|
3690 | return 0;
|
---|
3691 | }
|
---|
3692 |
|
---|
3693 | /**
|
---|
3694 | * Callback used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
|
---|
3695 | * and compute the delta between them.
|
---|
3696 | *
|
---|
3697 | * @param idCpu The CPU we are current scheduled on.
|
---|
3698 | * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS).
|
---|
3699 | * @param pvUser2 Unused.
|
---|
3700 | */
|
---|
3701 | static DECLCALLBACK(void) supdrvMeasureTscDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
3702 | {
|
---|
3703 | supdrvMeasureTscDeltaCallbackUnwrapped(idCpu, (PSUPDRVGIPTSCDELTARGS)pvUser1);
|
---|
3704 | }
|
---|
3705 |
|
---|
3706 |
|
---|
3707 | /**
|
---|
3708 | * Measures the TSC delta between the master GIP CPU and one specified worker
|
---|
3709 | * CPU.
|
---|
3710 | *
|
---|
3711 | * @returns VBox status code.
|
---|
3712 | * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement
|
---|
3713 | * failure.
|
---|
3714 | * @param pDevExt Pointer to the device instance data.
|
---|
3715 | * @param idxWorker The index of the worker CPU from the GIP's array of
|
---|
3716 | * CPUs.
|
---|
3717 | *
|
---|
3718 | * @remarks This must be called with preemption enabled!
|
---|
3719 | */
|
---|
3720 | static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker)
|
---|
3721 | {
|
---|
3722 | int rc;
|
---|
3723 | int rc2;
|
---|
3724 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
3725 | RTCPUID idMaster = pDevExt->idGipMaster;
|
---|
3726 | PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker];
|
---|
3727 | PSUPGIPCPU pGipCpuMaster;
|
---|
3728 | uint32_t iGipCpuMaster;
|
---|
3729 |
|
---|
3730 | /* Validate input a bit. */
|
---|
3731 | AssertReturn(pGip, VERR_INVALID_PARAMETER);
|
---|
3732 | Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
|
---|
3733 | Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3734 |
|
---|
3735 | /*
|
---|
3736 | * Don't attempt measuring the delta for the GIP master.
|
---|
3737 | */
|
---|
3738 | if (pGipCpuWorker->idCpu == idMaster)
|
---|
3739 | {
|
---|
3740 | if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */
|
---|
3741 | ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
|
---|
3742 | return VINF_SUCCESS;
|
---|
3743 | }
|
---|
3744 |
|
---|
3745 | /*
|
---|
3746 | * One measurement at at time, at least for now. We might be using
|
---|
3747 | * broadcast IPIs so, so be nice to the rest of the system.
|
---|
3748 | */
|
---|
3749 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
3750 | rc = RTSemMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT);
|
---|
3751 | #else
|
---|
3752 | rc = RTSemFastMutexRequest(pDevExt->mtxTscDelta);
|
---|
3753 | #endif
|
---|
3754 | if (RT_FAILURE(rc))
|
---|
3755 | return rc;
|
---|
3756 |
|
---|
3757 | /*
|
---|
3758 | * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent,
|
---|
3759 | * try pick a different master. (This fudge only works with multi core systems.)
|
---|
3760 | * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core.
|
---|
3761 | *
|
---|
3762 | * We skip this on AMDs for now as their HTT is different from intel's and
|
---|
3763 | * it doesn't seem to have any favorable effect on the results.
|
---|
3764 | *
|
---|
3765 | * If the master is offline, we need a new master too, so share the code.
|
---|
3766 | */
|
---|
3767 | iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster);
|
---|
3768 | AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID);
|
---|
3769 | pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster];
|
---|
3770 | if ( ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1)
|
---|
3771 | && ASMHasCpuId()
|
---|
3772 | && ASMIsValidStdRange(ASMCpuId_EAX(0))
|
---|
3773 | && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT)
|
---|
3774 | && !ASMIsAmdCpu()
|
---|
3775 | && pGip->cOnlineCpus > 2)
|
---|
3776 | || !RTMpIsCpuOnline(idMaster) )
|
---|
3777 | {
|
---|
3778 | uint32_t i;
|
---|
3779 | for (i = 0; i < pGip->cCpus; i++)
|
---|
3780 | if ( i != iGipCpuMaster
|
---|
3781 | && i != idxWorker
|
---|
3782 | && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE
|
---|
3783 | && pGip->aCPUs[i].i64TSCDelta != INT64_MAX
|
---|
3784 | && pGip->aCPUs[i].idCpu != NIL_RTCPUID
|
---|
3785 | && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */
|
---|
3786 | && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu
|
---|
3787 | && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic
|
---|
3788 | && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic
|
---|
3789 | && RTMpIsCpuOnline(pGip->aCPUs[i].idCpu))
|
---|
3790 | {
|
---|
3791 | iGipCpuMaster = i;
|
---|
3792 | pGipCpuMaster = &pGip->aCPUs[i];
|
---|
3793 | idMaster = pGipCpuMaster->idCpu;
|
---|
3794 | break;
|
---|
3795 | }
|
---|
3796 | }
|
---|
3797 |
|
---|
3798 | if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet))
|
---|
3799 | {
|
---|
3800 | /*
|
---|
3801 | * Initialize data package for the RTMpOnPair callback.
|
---|
3802 | */
|
---|
3803 | PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)RTMemAllocZ(sizeof(*pArgs));
|
---|
3804 | if (pArgs)
|
---|
3805 | {
|
---|
3806 | pArgs->pWorker = pGipCpuWorker;
|
---|
3807 | pArgs->pMaster = pGipCpuMaster;
|
---|
3808 | pArgs->pDevExt = pDevExt;
|
---|
3809 | pArgs->pSyncMaster = NULL;
|
---|
3810 | pArgs->pSyncWorker = NULL;
|
---|
3811 | pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 512; /* 1953 us */
|
---|
3812 |
|
---|
3813 | /*
|
---|
3814 | * Do the RTMpOnPair call. We reset i64TSCDelta first so we
|
---|
3815 | * and supdrvMeasureTscDeltaCallback can use it as a success check.
|
---|
3816 | */
|
---|
3817 | /** @todo Store the i64TSCDelta result in pArgs first? Perhaps deals with
|
---|
3818 | * that when doing the restart loop reorg. */
|
---|
3819 | ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
|
---|
3820 | rc = RTMpOnPair(pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, RTMPON_F_CONCURRENT_EXEC,
|
---|
3821 | supdrvMeasureTscDeltaCallback, pArgs, NULL);
|
---|
3822 | if (RT_SUCCESS(rc))
|
---|
3823 | {
|
---|
3824 | #if 0
|
---|
3825 | SUPR0Printf("mponpair ticks: %9llu %9llu max: %9llu iTry: %u%s\n", pArgs->cElapsedMasterTscTicks,
|
---|
3826 | pArgs->cElapsedWorkerTscTicks, pArgs->cMaxTscTicks, pArgs->iTry,
|
---|
3827 | pArgs->fTimedOut ? " timed out" :"");
|
---|
3828 | #endif
|
---|
3829 | #if 0
|
---|
3830 | SUPR0Printf("rcVerify=%d iVerifyBadTscDiff=%lld cMinVerifyTscTicks=%lld cMaxVerifyTscTicks=%lld\n",
|
---|
3831 | pArgs->rcVerify, pArgs->iVerifyBadTscDiff, pArgs->cMinVerifyTscTicks, pArgs->cMaxVerifyTscTicks);
|
---|
3832 | #endif
|
---|
3833 | if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX))
|
---|
3834 | {
|
---|
3835 | /*
|
---|
3836 | * Work the TSC delta applicability rating. It starts
|
---|
3837 | * optimistic in supdrvGipInit, we downgrade it here.
|
---|
3838 | */
|
---|
3839 | SUPGIPUSETSCDELTA enmRating;
|
---|
3840 | if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO
|
---|
3841 | || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO)
|
---|
3842 | enmRating = SUPGIPUSETSCDELTA_NOT_ZERO;
|
---|
3843 | else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO
|
---|
3844 | || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO)
|
---|
3845 | enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO;
|
---|
3846 | else
|
---|
3847 | enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO;
|
---|
3848 | if (pGip->enmUseTscDelta < enmRating)
|
---|
3849 | {
|
---|
3850 | AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t));
|
---|
3851 | ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating);
|
---|
3852 | }
|
---|
3853 | }
|
---|
3854 | else
|
---|
3855 | rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
|
---|
3856 | }
|
---|
3857 | /** @todo return try-again if we get an offline CPU error. */
|
---|
3858 |
|
---|
3859 | RTMemFree(pArgs);
|
---|
3860 | }
|
---|
3861 | else
|
---|
3862 | rc = VERR_NO_MEMORY;
|
---|
3863 | }
|
---|
3864 | else
|
---|
3865 | rc = VERR_CPU_OFFLINE;
|
---|
3866 |
|
---|
3867 | /*
|
---|
3868 | * We're done now.
|
---|
3869 | */
|
---|
3870 | #ifdef SUPDRV_USE_MUTEX_FOR_GIP
|
---|
3871 | rc2 = RTSemMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
|
---|
3872 | #else
|
---|
3873 | rc2 = RTSemFastMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2);
|
---|
3874 | #endif
|
---|
3875 | return rc;
|
---|
3876 | }
|
---|
3877 |
|
---|
3878 |
|
---|
3879 | /**
|
---|
3880 | * Resets the TSC-delta related TSC samples and optionally the deltas
|
---|
3881 | * themselves.
|
---|
3882 | *
|
---|
3883 | * @param pDevExt Pointer to the device instance data.
|
---|
3884 | * @param fResetTscDeltas Whether the TSC-deltas are also to be reset.
|
---|
3885 | *
|
---|
3886 | * @remarks This might be called while holding a spinlock!
|
---|
3887 | */
|
---|
3888 | static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fResetTscDeltas)
|
---|
3889 | {
|
---|
3890 | unsigned iCpu;
|
---|
3891 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
3892 | for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
|
---|
3893 | {
|
---|
3894 | PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
|
---|
3895 | ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD);
|
---|
3896 | if (fResetTscDeltas)
|
---|
3897 | {
|
---|
3898 | RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpu->iCpuSet);
|
---|
3899 | ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX);
|
---|
3900 | }
|
---|
3901 | }
|
---|
3902 | }
|
---|
3903 |
|
---|
3904 |
|
---|
3905 | /**
|
---|
3906 | * Picks an online CPU as the master TSC for TSC-delta computations.
|
---|
3907 | *
|
---|
3908 | * @returns VBox status code.
|
---|
3909 | * @param pDevExt Pointer to the device instance data.
|
---|
3910 | * @param pidxMaster Where to store the CPU array index of the chosen
|
---|
3911 | * master. Optional, can be NULL.
|
---|
3912 | */
|
---|
3913 | static int supdrvTscPickMaster(PSUPDRVDEVEXT pDevExt, uint32_t *pidxMaster)
|
---|
3914 | {
|
---|
3915 | /*
|
---|
3916 | * Pick the first CPU online as the master TSC and make it the new GIP master based
|
---|
3917 | * on the APIC ID.
|
---|
3918 | *
|
---|
3919 | * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0
|
---|
3920 | * in most cases making it nicer/easier for comparisons. It is safe to update the GIP
|
---|
3921 | * master as this point since the sync/async timer isn't created yet.
|
---|
3922 | */
|
---|
3923 | unsigned iCpu;
|
---|
3924 | uint32_t idxMaster = UINT32_MAX;
|
---|
3925 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
3926 | for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++)
|
---|
3927 | {
|
---|
3928 | uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu];
|
---|
3929 | if (idxCpu != UINT16_MAX)
|
---|
3930 | {
|
---|
3931 | PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu];
|
---|
3932 | if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet))
|
---|
3933 | {
|
---|
3934 | idxMaster = idxCpu;
|
---|
3935 | pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE;
|
---|
3936 | ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpu->idCpu);
|
---|
3937 | if (pidxMaster)
|
---|
3938 | *pidxMaster = idxMaster;
|
---|
3939 | return VINF_SUCCESS;
|
---|
3940 | }
|
---|
3941 | }
|
---|
3942 | }
|
---|
3943 | return VERR_CPU_OFFLINE;
|
---|
3944 | }
|
---|
3945 |
|
---|
3946 |
|
---|
3947 | /**
|
---|
3948 | * Performs the initial measurements of the TSC deltas between CPUs.
|
---|
3949 | *
|
---|
3950 | * This is called by supdrvGipCreate(), supdrvGipPowerNotificationCallback() or
|
---|
3951 | * triggered by it if threaded.
|
---|
3952 | *
|
---|
3953 | * @returns VBox status code.
|
---|
3954 | * @param pDevExt Pointer to the device instance data.
|
---|
3955 | *
|
---|
3956 | * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses
|
---|
3957 | * idCpu, GIP's online CPU set which are populated in
|
---|
3958 | * supdrvGipInitOnCpu().
|
---|
3959 | */
|
---|
3960 | static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt)
|
---|
3961 | {
|
---|
3962 | PSUPGIPCPU pGipCpuMaster;
|
---|
3963 | unsigned iCpu;
|
---|
3964 | unsigned iOddEven;
|
---|
3965 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
3966 | uint32_t idxMaster = UINT32_MAX;
|
---|
3967 | uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents);
|
---|
3968 |
|
---|
3969 | Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
|
---|
3970 | supdrvTscResetSamples(pDevExt, true /* fClearDeltas */);
|
---|
3971 | int rc = supdrvTscPickMaster(pDevExt, &idxMaster);
|
---|
3972 | if (RT_FAILURE(rc))
|
---|
3973 | {
|
---|
3974 | SUPR0Printf("Failed to pick a CPU master for TSC-delta measurements rc=%Rrc\n", rc);
|
---|
3975 | return rc;
|
---|
3976 | }
|
---|
3977 | AssertReturn(idxMaster < pGip->cCpus, VERR_INVALID_CPU_INDEX);
|
---|
3978 | pGipCpuMaster = &pGip->aCPUs[idxMaster];
|
---|
3979 | Assert(pDevExt->idGipMaster == pGipCpuMaster->idCpu);
|
---|
3980 |
|
---|
3981 | /*
|
---|
3982 | * If there is only a single CPU online we have nothing to do.
|
---|
3983 | */
|
---|
3984 | if (pGip->cOnlineCpus <= 1)
|
---|
3985 | {
|
---|
3986 | AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5);
|
---|
3987 | return VINF_SUCCESS;
|
---|
3988 | }
|
---|
3989 |
|
---|
3990 | /*
|
---|
3991 | * Loop thru the GIP CPU array and get deltas for each CPU (except the
|
---|
3992 | * master). We do the CPUs with the even numbered APIC IDs first so that
|
---|
3993 | * we've got alternative master CPUs to pick from on hyper-threaded systems.
|
---|
3994 | */
|
---|
3995 | for (iOddEven = 0; iOddEven < 2; iOddEven++)
|
---|
3996 | {
|
---|
3997 | for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
|
---|
3998 | {
|
---|
3999 | PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
|
---|
4000 | if ( iCpu != idxMaster
|
---|
4001 | && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0)
|
---|
4002 | && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
|
---|
4003 | {
|
---|
4004 | rc = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
|
---|
4005 | if (RT_FAILURE(rc))
|
---|
4006 | {
|
---|
4007 | SUPR0Printf("supdrvMeasureTscDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu,
|
---|
4008 | pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu);
|
---|
4009 | break;
|
---|
4010 | }
|
---|
4011 |
|
---|
4012 | if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents)
|
---|
4013 | {
|
---|
4014 | SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n");
|
---|
4015 | rc = VERR_TRY_AGAIN;
|
---|
4016 | break;
|
---|
4017 | }
|
---|
4018 | }
|
---|
4019 | }
|
---|
4020 | }
|
---|
4021 |
|
---|
4022 | return rc;
|
---|
4023 | }
|
---|
4024 |
|
---|
4025 |
|
---|
4026 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
4027 |
|
---|
4028 | /**
|
---|
4029 | * Switches the TSC-delta measurement thread into the butchered state.
|
---|
4030 | *
|
---|
4031 | * @returns VBox status code.
|
---|
4032 | * @param pDevExt Pointer to the device instance data.
|
---|
4033 | * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not.
|
---|
4034 | * @param pszFailed An error message to log.
|
---|
4035 | * @param rcFailed The error code to exit the thread with.
|
---|
4036 | */
|
---|
4037 | static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed)
|
---|
4038 | {
|
---|
4039 | if (!fSpinlockHeld)
|
---|
4040 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4041 |
|
---|
4042 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered;
|
---|
4043 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4044 | OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", rcFailed));
|
---|
4045 | return rcFailed;
|
---|
4046 | }
|
---|
4047 |
|
---|
4048 |
|
---|
4049 | /**
|
---|
4050 | * The TSC-delta measurement thread.
|
---|
4051 | *
|
---|
4052 | * @returns VBox status code.
|
---|
4053 | * @param hThread The thread handle.
|
---|
4054 | * @param pvUser Opaque pointer to the device instance data.
|
---|
4055 | */
|
---|
4056 | static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser)
|
---|
4057 | {
|
---|
4058 | PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
|
---|
4059 | uint32_t cConsecutiveTimeouts = 0;
|
---|
4060 | int rc = VERR_INTERNAL_ERROR_2;
|
---|
4061 | for (;;)
|
---|
4062 | {
|
---|
4063 | /*
|
---|
4064 | * Switch on the current state.
|
---|
4065 | */
|
---|
4066 | SUPDRVTSCDELTATHREADSTATE enmState;
|
---|
4067 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4068 | enmState = pDevExt->enmTscDeltaThreadState;
|
---|
4069 | switch (enmState)
|
---|
4070 | {
|
---|
4071 | case kTscDeltaThreadState_Creating:
|
---|
4072 | {
|
---|
4073 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
|
---|
4074 | rc = RTSemEventSignal(pDevExt->hTscDeltaEvent);
|
---|
4075 | if (RT_FAILURE(rc))
|
---|
4076 | return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
|
---|
4077 | /* fall thru */
|
---|
4078 | }
|
---|
4079 |
|
---|
4080 | case kTscDeltaThreadState_Listening:
|
---|
4081 | {
|
---|
4082 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4083 |
|
---|
4084 | /* Simple adaptive timeout. */
|
---|
4085 | if (cConsecutiveTimeouts++ == 10)
|
---|
4086 | {
|
---|
4087 | if (pDevExt->cMsTscDeltaTimeout == 1) /* 10 ms */
|
---|
4088 | pDevExt->cMsTscDeltaTimeout = 10;
|
---|
4089 | else if (pDevExt->cMsTscDeltaTimeout == 10) /* +100 ms */
|
---|
4090 | pDevExt->cMsTscDeltaTimeout = 100;
|
---|
4091 | else if (pDevExt->cMsTscDeltaTimeout == 100) /* +1000 ms */
|
---|
4092 | pDevExt->cMsTscDeltaTimeout = 500;
|
---|
4093 | cConsecutiveTimeouts = 0;
|
---|
4094 | }
|
---|
4095 | rc = RTThreadUserWait(pDevExt->hTscDeltaThread, pDevExt->cMsTscDeltaTimeout);
|
---|
4096 | if ( RT_FAILURE(rc)
|
---|
4097 | && rc != VERR_TIMEOUT)
|
---|
4098 | return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc);
|
---|
4099 | RTThreadUserReset(pDevExt->hTscDeltaThread);
|
---|
4100 | break;
|
---|
4101 | }
|
---|
4102 |
|
---|
4103 | case kTscDeltaThreadState_WaitAndMeasure:
|
---|
4104 | {
|
---|
4105 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring;
|
---|
4106 | rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */
|
---|
4107 | if (RT_FAILURE(rc))
|
---|
4108 | return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
|
---|
4109 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4110 | pDevExt->cMsTscDeltaTimeout = 1;
|
---|
4111 | RTThreadSleep(1);
|
---|
4112 | /* fall thru */
|
---|
4113 | }
|
---|
4114 |
|
---|
4115 | case kTscDeltaThreadState_Measuring:
|
---|
4116 | {
|
---|
4117 | cConsecutiveTimeouts = 0;
|
---|
4118 | if (pDevExt->fTscThreadRecomputeAllDeltas)
|
---|
4119 | {
|
---|
4120 | int cTries = 8;
|
---|
4121 | int cMsWaitPerTry = 10;
|
---|
4122 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
4123 | Assert(pGip);
|
---|
4124 | do
|
---|
4125 | {
|
---|
4126 | RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet);
|
---|
4127 | rc = supdrvMeasureInitialTscDeltas(pDevExt);
|
---|
4128 | if ( RT_SUCCESS(rc)
|
---|
4129 | || ( RT_FAILURE(rc)
|
---|
4130 | && rc != VERR_TRY_AGAIN
|
---|
4131 | && rc != VERR_CPU_OFFLINE))
|
---|
4132 | {
|
---|
4133 | break;
|
---|
4134 | }
|
---|
4135 | RTThreadSleep(cMsWaitPerTry);
|
---|
4136 | } while (cTries-- > 0);
|
---|
4137 | pDevExt->fTscThreadRecomputeAllDeltas = false;
|
---|
4138 | }
|
---|
4139 | else
|
---|
4140 | {
|
---|
4141 | PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
|
---|
4142 | unsigned iCpu;
|
---|
4143 |
|
---|
4144 | /* Measure TSC-deltas only for the CPUs that are in the set. */
|
---|
4145 | rc = VINF_SUCCESS;
|
---|
4146 | for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
|
---|
4147 | {
|
---|
4148 | PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
|
---|
4149 | if (RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
|
---|
4150 | {
|
---|
4151 | if (pGipCpuWorker->i64TSCDelta == INT64_MAX)
|
---|
4152 | {
|
---|
4153 | int rc2 = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
|
---|
4154 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4155 | rc = rc2;
|
---|
4156 | }
|
---|
4157 | else
|
---|
4158 | {
|
---|
4159 | /*
|
---|
4160 | * The thread/someone must've called SUPR0TscDeltaMeasureBySetIndex(),
|
---|
4161 | * mark the delta as fine to get the timer thread off our back.
|
---|
4162 | */
|
---|
4163 | RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
|
---|
4164 | RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
|
---|
4165 | }
|
---|
4166 | }
|
---|
4167 | }
|
---|
4168 | }
|
---|
4169 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4170 | if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
|
---|
4171 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
|
---|
4172 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4173 | Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as init value, see supdrvTscDeltaThreadInit(). */
|
---|
4174 | ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc);
|
---|
4175 | break;
|
---|
4176 | }
|
---|
4177 |
|
---|
4178 | case kTscDeltaThreadState_Terminating:
|
---|
4179 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed;
|
---|
4180 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4181 | return VINF_SUCCESS;
|
---|
4182 |
|
---|
4183 | case kTscDeltaThreadState_Butchered:
|
---|
4184 | default:
|
---|
4185 | return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE);
|
---|
4186 | }
|
---|
4187 | }
|
---|
4188 |
|
---|
4189 | return rc;
|
---|
4190 | }
|
---|
4191 |
|
---|
4192 |
|
---|
4193 | /**
|
---|
4194 | * Waits for the TSC-delta measurement thread to respond to a state change.
|
---|
4195 | *
|
---|
4196 | * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time,
|
---|
4197 | * other error code on internal error.
|
---|
4198 | *
|
---|
4199 | * @param pThis Pointer to the grant service instance data.
|
---|
4200 | * @param enmCurState The current state.
|
---|
4201 | * @param enmNewState The new state we're waiting for it to enter.
|
---|
4202 | */
|
---|
4203 | static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState,
|
---|
4204 | SUPDRVTSCDELTATHREADSTATE enmNewState)
|
---|
4205 | {
|
---|
4206 | /*
|
---|
4207 | * Wait a short while for the expected state transition.
|
---|
4208 | */
|
---|
4209 | int rc;
|
---|
4210 | RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC);
|
---|
4211 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4212 | if (pDevExt->enmTscDeltaThreadState == enmNewState)
|
---|
4213 | {
|
---|
4214 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4215 | rc = VINF_SUCCESS;
|
---|
4216 | }
|
---|
4217 | else if (pDevExt->enmTscDeltaThreadState == enmCurState)
|
---|
4218 | {
|
---|
4219 | /*
|
---|
4220 | * Wait longer if the state has not yet transitioned to the one we want.
|
---|
4221 | */
|
---|
4222 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4223 | rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC);
|
---|
4224 | if ( RT_SUCCESS(rc)
|
---|
4225 | || rc == VERR_TIMEOUT)
|
---|
4226 | {
|
---|
4227 | /*
|
---|
4228 | * Check the state whether we've succeeded.
|
---|
4229 | */
|
---|
4230 | SUPDRVTSCDELTATHREADSTATE enmState;
|
---|
4231 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4232 | enmState = pDevExt->enmTscDeltaThreadState;
|
---|
4233 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4234 | if (enmState == enmNewState)
|
---|
4235 | rc = VINF_SUCCESS;
|
---|
4236 | else if (enmState == enmCurState)
|
---|
4237 | {
|
---|
4238 | rc = VERR_TIMEOUT;
|
---|
4239 | OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmState=%d enmNewState=%d\n", enmState,
|
---|
4240 | enmNewState));
|
---|
4241 | }
|
---|
4242 | else
|
---|
4243 | {
|
---|
4244 | rc = VERR_INTERNAL_ERROR;
|
---|
4245 | OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState,
|
---|
4246 | enmState, enmNewState));
|
---|
4247 | }
|
---|
4248 | }
|
---|
4249 | else
|
---|
4250 | OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc));
|
---|
4251 | }
|
---|
4252 | else
|
---|
4253 | {
|
---|
4254 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4255 | OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d\n", enmCurState, enmNewState));
|
---|
4256 | rc = VERR_INTERNAL_ERROR;
|
---|
4257 | }
|
---|
4258 |
|
---|
4259 | return rc;
|
---|
4260 | }
|
---|
4261 |
|
---|
4262 |
|
---|
4263 | /**
|
---|
4264 | * Signals the TSC-delta thread to start measuring TSC-deltas.
|
---|
4265 | *
|
---|
4266 | * @param pDevExt Pointer to the device instance data.
|
---|
4267 | * @param fForceAll Force re-calculating TSC-deltas on all CPUs.
|
---|
4268 | */
|
---|
4269 | static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll)
|
---|
4270 | {
|
---|
4271 | if (pDevExt->hTscDeltaThread != NIL_RTTHREAD)
|
---|
4272 | {
|
---|
4273 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4274 | if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
|
---|
4275 | || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
|
---|
4276 | {
|
---|
4277 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
|
---|
4278 | if (fForceAll)
|
---|
4279 | pDevExt->fTscThreadRecomputeAllDeltas = true;
|
---|
4280 | }
|
---|
4281 | else if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_WaitAndMeasure
|
---|
4282 | && fForceAll)
|
---|
4283 | pDevExt->fTscThreadRecomputeAllDeltas = true;
|
---|
4284 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4285 | RTThreadUserSignal(pDevExt->hTscDeltaThread);
|
---|
4286 | }
|
---|
4287 | }
|
---|
4288 |
|
---|
4289 |
|
---|
4290 | /**
|
---|
4291 | * Terminates the actual thread running supdrvTscDeltaThread().
|
---|
4292 | *
|
---|
4293 | * This is an internal worker function for supdrvTscDeltaThreadInit() and
|
---|
4294 | * supdrvTscDeltaTerm().
|
---|
4295 | *
|
---|
4296 | * @param pDevExt Pointer to the device instance data.
|
---|
4297 | */
|
---|
4298 | static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt)
|
---|
4299 | {
|
---|
4300 | int rc;
|
---|
4301 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4302 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating;
|
---|
4303 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4304 | RTThreadUserSignal(pDevExt->hTscDeltaThread);
|
---|
4305 | rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */);
|
---|
4306 | if (RT_FAILURE(rc))
|
---|
4307 | {
|
---|
4308 | /* Signal a few more times before giving up. */
|
---|
4309 | int cTriesLeft = 5;
|
---|
4310 | while (--cTriesLeft > 0)
|
---|
4311 | {
|
---|
4312 | RTThreadUserSignal(pDevExt->hTscDeltaThread);
|
---|
4313 | rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */);
|
---|
4314 | if (rc != VERR_TIMEOUT)
|
---|
4315 | break;
|
---|
4316 | }
|
---|
4317 | }
|
---|
4318 | }
|
---|
4319 |
|
---|
4320 |
|
---|
4321 | /**
|
---|
4322 | * Initializes and spawns the TSC-delta measurement thread.
|
---|
4323 | *
|
---|
4324 | * A thread is required for servicing re-measurement requests from events like
|
---|
4325 | * CPUs coming online, suspend/resume etc. as it cannot be done synchronously
|
---|
4326 | * under all contexts on all OSs.
|
---|
4327 | *
|
---|
4328 | * @returns VBox status code.
|
---|
4329 | * @param pDevExt Pointer to the device instance data.
|
---|
4330 | *
|
---|
4331 | * @remarks Must only be called -after- initializing GIP and setting up MP
|
---|
4332 | * notifications!
|
---|
4333 | */
|
---|
4334 | static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt)
|
---|
4335 | {
|
---|
4336 | int rc;
|
---|
4337 | Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
|
---|
4338 | rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck");
|
---|
4339 | if (RT_SUCCESS(rc))
|
---|
4340 | {
|
---|
4341 | rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent);
|
---|
4342 | if (RT_SUCCESS(rc))
|
---|
4343 | {
|
---|
4344 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating;
|
---|
4345 | pDevExt->cMsTscDeltaTimeout = 1;
|
---|
4346 | rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */,
|
---|
4347 | RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread");
|
---|
4348 | if (RT_SUCCESS(rc))
|
---|
4349 | {
|
---|
4350 | rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening);
|
---|
4351 | if (RT_SUCCESS(rc))
|
---|
4352 | {
|
---|
4353 | ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
|
---|
4354 | return rc;
|
---|
4355 | }
|
---|
4356 |
|
---|
4357 | OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc));
|
---|
4358 | supdrvTscDeltaThreadTerminate(pDevExt);
|
---|
4359 | }
|
---|
4360 | else
|
---|
4361 | OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc));
|
---|
4362 | RTSemEventDestroy(pDevExt->hTscDeltaEvent);
|
---|
4363 | pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
|
---|
4364 | }
|
---|
4365 | else
|
---|
4366 | OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc));
|
---|
4367 | RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
|
---|
4368 | pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
|
---|
4369 | }
|
---|
4370 | else
|
---|
4371 | OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc));
|
---|
4372 |
|
---|
4373 | return rc;
|
---|
4374 | }
|
---|
4375 |
|
---|
4376 |
|
---|
4377 | /**
|
---|
4378 | * Terminates the TSC-delta measurement thread and cleanup.
|
---|
4379 | *
|
---|
4380 | * @param pDevExt Pointer to the device instance data.
|
---|
4381 | */
|
---|
4382 | static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt)
|
---|
4383 | {
|
---|
4384 | if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK
|
---|
4385 | && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
|
---|
4386 | {
|
---|
4387 | supdrvTscDeltaThreadTerminate(pDevExt);
|
---|
4388 | }
|
---|
4389 |
|
---|
4390 | if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK)
|
---|
4391 | {
|
---|
4392 | RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
|
---|
4393 | pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
|
---|
4394 | }
|
---|
4395 |
|
---|
4396 | if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
|
---|
4397 | {
|
---|
4398 | RTSemEventDestroy(pDevExt->hTscDeltaEvent);
|
---|
4399 | pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
|
---|
4400 | }
|
---|
4401 |
|
---|
4402 | ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
|
---|
4403 | }
|
---|
4404 |
|
---|
4405 | #endif /* SUPDRV_USE_TSC_DELTA_THREAD */
|
---|
4406 |
|
---|
4407 | /**
|
---|
4408 | * Measure the TSC delta for the CPU given by its CPU set index.
|
---|
4409 | *
|
---|
4410 | * @returns VBox status code.
|
---|
4411 | * @retval VERR_INTERRUPTED if interrupted while waiting.
|
---|
4412 | * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a
|
---|
4413 | * measurment.
|
---|
4414 | * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
|
---|
4415 | *
|
---|
4416 | * @param pSession The caller's session. GIP must've been mapped.
|
---|
4417 | * @param iCpuSet The CPU set index of the CPU to measure.
|
---|
4418 | * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX.
|
---|
4419 | * @param cMsWaitRetry Number of milliseconds to wait between each retry.
|
---|
4420 | * @param cMsWaitThread Number of milliseconds to wait for the thread to get
|
---|
4421 | * ready.
|
---|
4422 | * @param cTries Number of times to try, pass 0 for the default.
|
---|
4423 | */
|
---|
4424 | SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags,
|
---|
4425 | RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries)
|
---|
4426 | {
|
---|
4427 | PSUPDRVDEVEXT pDevExt;
|
---|
4428 | PSUPGLOBALINFOPAGE pGip;
|
---|
4429 | uint16_t iGipCpu;
|
---|
4430 | int rc;
|
---|
4431 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
4432 | uint64_t msTsStartWait;
|
---|
4433 | uint32_t iWaitLoop;
|
---|
4434 | #endif
|
---|
4435 |
|
---|
4436 | /*
|
---|
4437 | * Validate and adjust the input.
|
---|
4438 | */
|
---|
4439 | AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
|
---|
4440 | if (!pSession->fGipReferenced)
|
---|
4441 | return VERR_WRONG_ORDER;
|
---|
4442 |
|
---|
4443 | pDevExt = pSession->pDevExt;
|
---|
4444 | AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER);
|
---|
4445 |
|
---|
4446 | pGip = pDevExt->pGip;
|
---|
4447 | AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2);
|
---|
4448 |
|
---|
4449 | AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX);
|
---|
4450 | AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX);
|
---|
4451 | iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
|
---|
4452 | AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX);
|
---|
4453 |
|
---|
4454 | if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK)
|
---|
4455 | return VERR_INVALID_FLAGS;
|
---|
4456 |
|
---|
4457 | /*
|
---|
4458 | * The request is a noop if the TSC delta isn't being used.
|
---|
4459 | */
|
---|
4460 | if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
4461 | return VINF_SUCCESS;
|
---|
4462 |
|
---|
4463 | if (cTries == 0)
|
---|
4464 | cTries = 12;
|
---|
4465 | else if (cTries > 256)
|
---|
4466 | cTries = 256;
|
---|
4467 |
|
---|
4468 | if (cMsWaitRetry == 0)
|
---|
4469 | cMsWaitRetry = 2;
|
---|
4470 | else if (cMsWaitRetry > 1000)
|
---|
4471 | cMsWaitRetry = 1000;
|
---|
4472 |
|
---|
4473 | #ifdef SUPDRV_USE_TSC_DELTA_THREAD
|
---|
4474 | /*
|
---|
4475 | * Has the TSC already been measured and we're not forced to redo it?
|
---|
4476 | */
|
---|
4477 | if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX
|
---|
4478 | && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE))
|
---|
4479 | return VINF_SUCCESS;
|
---|
4480 |
|
---|
4481 | /*
|
---|
4482 | * Asynchronous request? Forward it to the thread, no waiting.
|
---|
4483 | */
|
---|
4484 | if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC)
|
---|
4485 | {
|
---|
4486 | /** @todo Async. doesn't implement options like retries, waiting. We'll need
|
---|
4487 | * to pass those options to the thread somehow and implement it in the
|
---|
4488 | * thread. Check if anyone uses/needs fAsync before implementing this. */
|
---|
4489 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4490 | RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
|
---|
4491 | if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
|
---|
4492 | || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
|
---|
4493 | {
|
---|
4494 | pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
|
---|
4495 | rc = VINF_SUCCESS;
|
---|
4496 | }
|
---|
4497 | else if (pDevExt->enmTscDeltaThreadState != kTscDeltaThreadState_WaitAndMeasure)
|
---|
4498 | rc = VERR_THREAD_IS_DEAD;
|
---|
4499 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4500 | RTThreadUserSignal(pDevExt->hTscDeltaThread);
|
---|
4501 | return VINF_SUCCESS;
|
---|
4502 | }
|
---|
4503 |
|
---|
4504 | /*
|
---|
4505 | * If a TSC-delta measurement request is already being serviced by the thread,
|
---|
4506 | * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy.
|
---|
4507 | */
|
---|
4508 | msTsStartWait = RTTimeSystemMilliTS();
|
---|
4509 | for (iWaitLoop = 0;; iWaitLoop++)
|
---|
4510 | {
|
---|
4511 | uint64_t cMsElapsed;
|
---|
4512 | SUPDRVTSCDELTATHREADSTATE enmState;
|
---|
4513 | RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
|
---|
4514 | enmState = pDevExt->enmTscDeltaThreadState;
|
---|
4515 | RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
|
---|
4516 |
|
---|
4517 | if (enmState == kTscDeltaThreadState_Measuring)
|
---|
4518 | { /* Must wait, the thread is busy. */ }
|
---|
4519 | else if (enmState == kTscDeltaThreadState_WaitAndMeasure)
|
---|
4520 | { /* Must wait, this state only says what will happen next. */ }
|
---|
4521 | else if (enmState == kTscDeltaThreadState_Terminating)
|
---|
4522 | { /* Must wait, this state only says what should happen next. */ }
|
---|
4523 | else
|
---|
4524 | break; /* All other states, the thread is either idly listening or dead. */
|
---|
4525 |
|
---|
4526 | /* Wait or fail. */
|
---|
4527 | if (cMsWaitThread == 0)
|
---|
4528 | return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
|
---|
4529 | cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait;
|
---|
4530 | if (cMsElapsed >= cMsWaitThread)
|
---|
4531 | return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
|
---|
4532 |
|
---|
4533 | rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10)));
|
---|
4534 | if (rc == VERR_INTERRUPTED)
|
---|
4535 | return rc;
|
---|
4536 | }
|
---|
4537 | #endif /* SUPDRV_USE_TSC_DELTA_THREAD */
|
---|
4538 |
|
---|
4539 | /*
|
---|
4540 | * Try measure the TSC delta the given number of times.
|
---|
4541 | */
|
---|
4542 | for (;;)
|
---|
4543 | {
|
---|
4544 | /* Unless we're forced to measure the delta, check whether it's done already. */
|
---|
4545 | if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)
|
---|
4546 | && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX)
|
---|
4547 | {
|
---|
4548 | rc = VINF_SUCCESS;
|
---|
4549 | break;
|
---|
4550 | }
|
---|
4551 |
|
---|
4552 | /* Measure it. */
|
---|
4553 | rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
|
---|
4554 | if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED)
|
---|
4555 | {
|
---|
4556 | Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
|
---|
4557 | break;
|
---|
4558 | }
|
---|
4559 |
|
---|
4560 | /* Retry? */
|
---|
4561 | if (cTries <= 1)
|
---|
4562 | break;
|
---|
4563 | cTries--;
|
---|
4564 |
|
---|
4565 | /* Always delay between retries (be nice to the rest of the system
|
---|
4566 | and avoid the BSOD hounds). */
|
---|
4567 | rc = RTThreadSleep(cMsWaitRetry);
|
---|
4568 | if (rc == VERR_INTERRUPTED)
|
---|
4569 | break;
|
---|
4570 | }
|
---|
4571 |
|
---|
4572 | return rc;
|
---|
4573 | }
|
---|
4574 |
|
---|
4575 |
|
---|
4576 | /**
|
---|
4577 | * Service a TSC-delta measurement request.
|
---|
4578 | *
|
---|
4579 | * @returns VBox status code.
|
---|
4580 | * @param pDevExt Pointer to the device instance data.
|
---|
4581 | * @param pSession The support driver session.
|
---|
4582 | * @param pReq Pointer to the TSC-delta measurement request.
|
---|
4583 | */
|
---|
4584 | int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq)
|
---|
4585 | {
|
---|
4586 | uint32_t cTries;
|
---|
4587 | uint32_t iCpuSet;
|
---|
4588 | uint32_t fFlags;
|
---|
4589 | RTMSINTERVAL cMsWaitRetry;
|
---|
4590 |
|
---|
4591 | /*
|
---|
4592 | * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex.
|
---|
4593 | */
|
---|
4594 | AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */
|
---|
4595 |
|
---|
4596 | if (pReq->u.In.idCpu == NIL_RTCPUID)
|
---|
4597 | return VERR_INVALID_CPU_ID;
|
---|
4598 | iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu);
|
---|
4599 | if (iCpuSet >= RTCPUSET_MAX_CPUS)
|
---|
4600 | return VERR_INVALID_CPU_ID;
|
---|
4601 |
|
---|
4602 | cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1;
|
---|
4603 |
|
---|
4604 | cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5);
|
---|
4605 |
|
---|
4606 | fFlags = 0;
|
---|
4607 | if (pReq->u.In.fAsync)
|
---|
4608 | fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC;
|
---|
4609 | if (pReq->u.In.fForce)
|
---|
4610 | fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE;
|
---|
4611 |
|
---|
4612 | return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry,
|
---|
4613 | cTries == 0 ? 5 * RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/,
|
---|
4614 | cTries);
|
---|
4615 | }
|
---|
4616 |
|
---|
4617 |
|
---|
4618 | /**
|
---|
4619 | * Reads TSC with delta applied.
|
---|
4620 | *
|
---|
4621 | * Will try to resolve delta value INT64_MAX before applying it. This is the
|
---|
4622 | * main purpose of this function, to handle the case where the delta needs to be
|
---|
4623 | * determined.
|
---|
4624 | *
|
---|
4625 | * @returns VBox status code.
|
---|
4626 | * @param pDevExt Pointer to the device instance data.
|
---|
4627 | * @param pSession The support driver session.
|
---|
4628 | * @param pReq Pointer to the TSC-read request.
|
---|
4629 | */
|
---|
4630 | int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq)
|
---|
4631 | {
|
---|
4632 | PSUPGLOBALINFOPAGE pGip;
|
---|
4633 | int rc;
|
---|
4634 |
|
---|
4635 | /*
|
---|
4636 | * Validate. We require the client to have mapped GIP (no asserting on
|
---|
4637 | * ring-3 preconditions).
|
---|
4638 | */
|
---|
4639 | AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */
|
---|
4640 | if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
|
---|
4641 | return VERR_WRONG_ORDER;
|
---|
4642 | pGip = pDevExt->pGip;
|
---|
4643 | AssertReturn(pGip, VERR_INTERNAL_ERROR_2);
|
---|
4644 |
|
---|
4645 | /*
|
---|
4646 | * We're usually here because we need to apply delta, but we shouldn't be
|
---|
4647 | * upset if the GIP is some different mode.
|
---|
4648 | */
|
---|
4649 | if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
|
---|
4650 | {
|
---|
4651 | uint32_t cTries = 0;
|
---|
4652 | for (;;)
|
---|
4653 | {
|
---|
4654 | /*
|
---|
4655 | * Start by gathering the data, using CLI for disabling preemption
|
---|
4656 | * while we do that.
|
---|
4657 | */
|
---|
4658 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
4659 | int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
|
---|
4660 | int iGipCpu;
|
---|
4661 | if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
|
---|
4662 | && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
|
---|
4663 | {
|
---|
4664 | int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta;
|
---|
4665 | pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
|
---|
4666 | pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
|
---|
4667 | ASMSetFlags(fEFlags);
|
---|
4668 |
|
---|
4669 | /*
|
---|
4670 | * If we're lucky we've got a delta, but no predicitions here
|
---|
4671 | * as this I/O control is normally only used when the TSC delta
|
---|
4672 | * is set to INT64_MAX.
|
---|
4673 | */
|
---|
4674 | if (i64Delta != INT64_MAX)
|
---|
4675 | {
|
---|
4676 | pReq->u.Out.u64AdjustedTsc -= i64Delta;
|
---|
4677 | rc = VINF_SUCCESS;
|
---|
4678 | break;
|
---|
4679 | }
|
---|
4680 |
|
---|
4681 | /* Give up after a few times. */
|
---|
4682 | if (cTries >= 4)
|
---|
4683 | {
|
---|
4684 | rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
|
---|
4685 | break;
|
---|
4686 | }
|
---|
4687 |
|
---|
4688 | /* Need to measure the delta an try again. */
|
---|
4689 | rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
|
---|
4690 | Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
|
---|
4691 | /** @todo should probably delay on failure... dpc watchdogs */
|
---|
4692 | }
|
---|
4693 | else
|
---|
4694 | {
|
---|
4695 | /* This really shouldn't happen. */
|
---|
4696 | AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet));
|
---|
4697 | pReq->u.Out.idApic = ASMGetApicId();
|
---|
4698 | pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
|
---|
4699 | ASMSetFlags(fEFlags);
|
---|
4700 | rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */
|
---|
4701 | break;
|
---|
4702 | }
|
---|
4703 | }
|
---|
4704 | }
|
---|
4705 | else
|
---|
4706 | {
|
---|
4707 | /*
|
---|
4708 | * No delta to apply. Easy. Deal with preemption the lazy way.
|
---|
4709 | */
|
---|
4710 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
4711 | int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
|
---|
4712 | int iGipCpu;
|
---|
4713 | if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
|
---|
4714 | && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
|
---|
4715 | pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
|
---|
4716 | else
|
---|
4717 | pReq->u.Out.idApic = ASMGetApicId();
|
---|
4718 | pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
|
---|
4719 | ASMSetFlags(fEFlags);
|
---|
4720 | rc = VINF_SUCCESS;
|
---|
4721 | }
|
---|
4722 |
|
---|
4723 | return rc;
|
---|
4724 | }
|
---|
4725 |
|
---|