/* $Id: DisasmFormatYasm.cpp 9675 2008-06-13 09:49:54Z vboxsync $ */ /** @file * VBox Disassembler - Yasm(/Nasm) Style Formatter. */ /* * Copyright (C) 2008 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include "DisasmInternal.h" #include #include #include /******************************************************************************* * Global Variables * *******************************************************************************/ static const char g_szSpaces[] = " "; static const char g_aszYasmRegGen8x86[8][4] = { "al\0", "cl\0", "dl\0", "bl\0", "ah\0", "ch\0", "dh\0", "bh\0" }; static const char g_aszYasmRegGen8Amd64[16][5] = { "al\0\0", "cl\0\0", "dl\0\0", "bl\0\0", "spb\0", "bpb\0", "sib\0", "dib\0", "r8b\0", "r9b\0", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" }; static const char g_aszYasmRegGen16[16][5] = { "ax\0\0", "cx\0\0", "dx\0\0", "bx\0\0", "sp\0\0", "bp\0\0", "si\0\0", "di\0\0", "r8w\0", "r9w\0", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" }; static const char g_aszYasmRegGen1616[8][6] = { "bx+si", "bx+di", "bp+si", "bp+di", "si\0\0\0", "di\0\0\0", "bp\0\0\0", "bx\0\0\0" }; static const char g_aszYasmRegGen32[16][5] = { "eax\0", "ecx\0", "edx\0", "ebx\0", "esp\0", "ebp\0", "esi\0", "edi\0", "r8d\0", "r9d\0", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" }; static const char g_aszYasmRegGen64[16][4] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8\0", "r9\0", "r10", "r11", "r12", "r13", "r14", "r15" }; static const char g_aszYasmRegSeg[6][3] = { "es", "cs", "ss", "ds", "fs", "gs" }; static const char g_aszYasmRegFP[8][4] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" }; static const char g_aszYasmRegMMX[8][4] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" }; static const char g_aszYasmRegXMM[16][6] = { "xmm0\0", "xmm1\0", "xmm2\0", "xmm3\0", "xmm4\0", "xmm5\0", "xmm6\0", "xmm7\0", "xmm8\0", "xmm9\0", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15" }; static const char g_aszYasmRegCRx[16][5] = { "cr0\0", "cr1\0", "cr2\0", "cr3\0", "cr4\0", "cr5\0", "cr6\0", "cr7\0", "cr8\0", "cr9\0", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15" }; static const char g_aszYasmRegDRx[16][5] = { "dr0\0", "dr1\0", "dr2\0", "dr3\0", "dr4\0", "dr5\0", "dr6\0", "dr7\0", "dr8\0", "dr9\0", "dr10", "dr11", "dr12", "dr13", "dr14", "dr15" }; static const char g_aszYasmRegTRx[16][5] = { "tr0\0", "tr1\0", "tr2\0", "tr3\0", "tr4\0", "tr5\0", "tr6\0", "tr7\0", "tr8\0", "tr9\0", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15" }; /** * Gets the base register name for the given parameter. * * @returns Pointer to the register name. * @param pCpu The disassembler cpu state. * @param pParam The parameter. * @param pcchReg Where to store the length of the name. */ static const char *disasmFormatYasmBaseReg(PCDISCPUSTATE pCpu, PCOP_PARAMETER pParam, size_t *pcchReg) { switch (pParam->flags & ( USE_REG_GEN8 | USE_REG_GEN16 | USE_REG_GEN32 | USE_REG_GEN64 | USE_REG_FP | USE_REG_MMX | USE_REG_XMM | USE_REG_CR | USE_REG_DBG | USE_REG_SEG | USE_REG_TEST)) { case USE_REG_GEN8: if (pCpu->opmode == CPUMODE_64BIT) { Assert(pParam->base.reg_gen < RT_ELEMENTS(g_aszYasmRegGen8Amd64)); const char *psz = g_aszYasmRegGen8Amd64[pParam->base.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } *pcchReg = 2; Assert(pParam->base.reg_gen < RT_ELEMENTS(g_aszYasmRegGen8x86)); return g_aszYasmRegGen8x86[pParam->base.reg_gen]; case USE_REG_GEN16: { Assert(pParam->base.reg_gen < RT_ELEMENTS(g_aszYasmRegGen16)); const char *psz = g_aszYasmRegGen16[pParam->base.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } case USE_REG_GEN32: { Assert(pParam->base.reg_gen < RT_ELEMENTS(g_aszYasmRegGen32)); const char *psz = g_aszYasmRegGen32[pParam->base.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } case USE_REG_GEN64: { Assert(pParam->base.reg_gen < RT_ELEMENTS(g_aszYasmRegGen64)); const char *psz = g_aszYasmRegGen64[pParam->base.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } case USE_REG_FP: { Assert(pParam->base.reg_fp < RT_ELEMENTS(g_aszYasmRegFP)); const char *psz = g_aszYasmRegFP[pParam->base.reg_fp]; *pcchReg = 3; return psz; } case USE_REG_MMX: { Assert(pParam->base.reg_mmx < RT_ELEMENTS(g_aszYasmRegMMX)); const char *psz = g_aszYasmRegMMX[pParam->base.reg_mmx]; *pcchReg = 3; return psz; } case USE_REG_XMM: { Assert(pParam->base.reg_xmm < RT_ELEMENTS(g_aszYasmRegXMM)); const char *psz = g_aszYasmRegXMM[pParam->base.reg_mmx]; *pcchReg = 4 + !!psz[4]; return psz; } case USE_REG_CR: { Assert(pParam->base.reg_ctrl < RT_ELEMENTS(g_aszYasmRegCRx)); const char *psz = g_aszYasmRegCRx[pParam->base.reg_ctrl]; *pcchReg = 3; return psz; } case USE_REG_DBG: { Assert(pParam->base.reg_dbg < RT_ELEMENTS(g_aszYasmRegDRx)); const char *psz = g_aszYasmRegDRx[pParam->base.reg_dbg]; *pcchReg = 3; return psz; } case USE_REG_SEG: { Assert(pParam->base.reg_seg < RT_ELEMENTS(g_aszYasmRegCRx)); const char *psz = g_aszYasmRegSeg[pParam->base.reg_seg]; *pcchReg = 2; return psz; } case USE_REG_TEST: { Assert(pParam->base.reg_test < RT_ELEMENTS(g_aszYasmRegTRx)); const char *psz = g_aszYasmRegTRx[pParam->base.reg_test]; *pcchReg = 3; return psz; } default: AssertMsgFailed(("%#x\n", pParam->flags)); *pcchReg = 3; return "r??"; } } /** * Gets the index register name for the given parameter. * * @returns The index register name. * @param pCpu The disassembler cpu state. * @param pParam The parameter. * @param pcchReg Where to store the length of the name. */ static const char *disasmFormatYasmIndexReg(PCDISCPUSTATE pCpu, PCOP_PARAMETER pParam, size_t *pcchReg) { switch (pCpu->addrmode) { case CPUMODE_16BIT: { Assert(pParam->index.reg_gen < RT_ELEMENTS(g_aszYasmRegGen16)); const char *psz = g_aszYasmRegGen16[pParam->index.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } case CPUMODE_32BIT: { Assert(pParam->index.reg_gen < RT_ELEMENTS(g_aszYasmRegGen32)); const char *psz = g_aszYasmRegGen32[pParam->index.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } case CPUMODE_64BIT: { Assert(pParam->index.reg_gen < RT_ELEMENTS(g_aszYasmRegGen64)); const char *psz = g_aszYasmRegGen64[pParam->index.reg_gen]; *pcchReg = 2 + !!psz[2] + !!psz[3]; return psz; } default: AssertMsgFailed(("%#x %#x\n", pParam->flags, pCpu->addrmode)); *pcchReg = 3; return "r??"; } } /** * Formats the current instruction in Yasm (/ Nasm) style. * * * @returns The number of output characters. If this is >= cchBuf, then the content * of pszBuf will be truncated. * @param pCpu Pointer to the disassembler CPU state. * @param pszBuf The output buffer. * @param cchBuf The size of the output buffer. * @param fFlags Format flags, see DIS_FORMAT_FLAGS_*. * @param pfnGetSymbol Get symbol name for a jmp or call target address. Optional. * @param pvUser User argument for pfnGetSymbol. */ DISDECL(size_t) DISFormatYasmEx(PCDISCPUSTATE pCpu, char *pszBuf, size_t cchBuf, uint32_t fFlags, PFNDISGETSYMBOL pfnGetSymbol, void *pvUser) { /* * Input validation and massaging. */ AssertPtr(pCpu); AssertPtrNull(pszBuf); Assert(pszBuf || !cchBuf); AssertPtrNull(pfnGetSymbol); AssertMsg(DIS_FMT_FLAGS_IS_VALID(fFlags), ("%#x\n", fFlags)); if (fFlags & DIS_FMT_FLAGS_ADDR_COMMENT) fFlags = (fFlags & ~DIS_FMT_FLAGS_ADDR_LEFT) | DIS_FMT_FLAGS_ADDR_RIGHT; if (fFlags & DIS_FMT_FLAGS_BYTES_COMMENT) fFlags = (fFlags & ~DIS_FMT_FLAGS_BYTES_LEFT) | DIS_FMT_FLAGS_BYTES_RIGHT; PCOPCODE const pOp = pCpu->pCurInstr; /* * Output macros */ char *pszDst = pszBuf; size_t cchDst = cchBuf; size_t cchOutput = 0; #define PUT_C(ch) \ do { \ cchOutput++; \ if (cchDst > 1) \ { \ cchDst--; \ *pszDst++ = (ch); \ } \ } while (0) #define PUT_STR(pszSrc, cchSrc) \ do { \ cchOutput += (cchSrc); \ if (cchDst > (cchSrc)) \ { \ memcpy(pszDst, (pszSrc), (cchSrc)); \ pszDst += (cchSrc); \ cchDst -= (cchSrc); \ } \ else if (cchDst > 1) \ { \ memcpy(pszDst, (pszSrc), cchDst - 1); \ pszDst += cchDst - 1; \ cchDst = 1; \ } \ } while (0) #define PUT_SZ(sz) \ PUT_STR((sz), sizeof(sz) - 1) #define PUT_SZ_STRICT(szStrict, szRelaxed) \ do { if (fFlags & DIS_FMT_FLAGS_STRICT) PUT_SZ(szStrict); else PUT_SZ(szRelaxed); } while (0) #define PUT_PSZ(psz) \ do { const size_t cchTmp = strlen(psz); PUT_STR((psz), cchTmp); } while (0) #define PUT_NUM(cch, fmt, num) \ do { \ cchOutput += (cch); \ if (cchDst > 1) \ { \ const size_t cchTmp = RTStrPrintf(pszDst, cchDst, fmt, (num)); \ pszDst += cchTmp; \ cchDst -= cchTmp; \ Assert(cchTmp == (cch) || cchDst == 1); \ } \ } while (0) /** @todo add two flags for choosing between %X / %x and h / 0x. */ #define PUT_NUM_8(num) PUT_NUM(4, "0%02xh", (uint8_t)(num)) #define PUT_NUM_16(num) PUT_NUM(6, "0%04xh", (uint16_t)(num)) #define PUT_NUM_32(num) PUT_NUM(10, "0%08xh", (uint32_t)(num)) #define PUT_NUM_64(num) PUT_NUM(18, "0%08xh", (uint64_t)(num)) #define PUT_NUM_SIGN(cch, fmt, num, stype, utype) \ do { \ if ((stype)(num) >= 0) \ { \ PUT_C('+'); \ PUT_NUM(cch, fmt, (utype)(num)); \ } \ else \ { \ PUT_C('-'); \ PUT_NUM(cch, fmt, (utype)-(stype)(num)); \ } \ } while (0) #define PUT_NUM_S8(num) PUT_NUM_SIGN(4, "0%02xh", num, int8_t, uint8_t) #define PUT_NUM_S16(num) PUT_NUM_SIGN(6, "0%04xh", num, int16_t, uint16_t) #define PUT_NUM_S32(num) PUT_NUM_SIGN(10, "0%08xh", num, int32_t, uint32_t) #define PUT_NUM_S64(num) PUT_NUM_SIGN(18, "0%08xh", num, int64_t, uint64_t) /* * The address? */ if (fFlags & DIS_FMT_FLAGS_ADDR_LEFT) { #if HC_ARCH_BITS == 64 || GC_ARCH_BITS == 64 if (pCpu->opaddr >= _4G) PUT_NUM(9, "%08x`", (uint32_t)(pCpu->opaddr >> 32)); #endif PUT_NUM(8, "%08x", (uint32_t)pCpu->opaddr); PUT_C(' '); } /* * The opcode bytes? */ if (fFlags & DIS_FMT_FLAGS_BYTES_LEFT) { size_t cchTmp = disFormatBytes(pCpu, pszDst, cchDst, fFlags); cchOutput += cchTmp; if (cchDst > 1) { if (cchTmp <= cchDst) { cchDst -= cchTmp; pszDst += cchTmp; } else { pszDst += cchDst - 1; cchDst = 1; } } /* Some padding to align the instruction. */ size_t cchPadding = (7 * (2 + !!(fFlags & DIS_FMT_FLAGS_BYTES_SPACED))) + !!(fFlags & DIS_FMT_FLAGS_BYTES_BRACKETS) * 2 + 2; cchPadding = cchTmp + 1 >= cchPadding ? 1 : cchPadding - cchTmp; PUT_STR(g_szSpaces, cchPadding); } /* * Filter out invalid opcodes first as they need special * treatment. UD2 is an exception and should be handled normally. */ size_t const offInstruction = cchOutput; if ( pOp->opcode == OP_INVALID || ( pOp->opcode == OP_ILLUD2 && (pCpu->prefix & PREFIX_LOCK))) { } else { /* * Prefixes */ if (pCpu->prefix & PREFIX_LOCK) PUT_SZ("lock "); if(pCpu->prefix & PREFIX_REP) PUT_SZ("rep "); else if(pCpu->prefix & PREFIX_REPNE) PUT_SZ("repne "); /* * Adjust the format string to the correct mnemonic * or to avoid things the assembler cannot handle correctly. */ char szTmpFmt[48]; const char *pszFmt = pOp->pszOpcode; switch (pOp->opcode) { case OP_JECXZ: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "jcxz %Jb" : pCpu->opmode == CPUMODE_32BIT ? "jecxz %Jb" : "jrcxz %Jb"; break; case OP_PUSHF: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "pushfw" : pCpu->opmode == CPUMODE_32BIT ? "pushfd" : "pushfq"; break; case OP_POPF: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "popfw" : pCpu->opmode == CPUMODE_32BIT ? "popfd" : "popfq"; break; case OP_PUSHA: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "pushaw" : "pushad"; break; case OP_POPA: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "popaw" : "popad"; break; case OP_INSB: pszFmt = "insb"; break; case OP_INSWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "insw" : pCpu->opmode == CPUMODE_32BIT ? "insd" : "insq"; break; case OP_OUTSB: pszFmt = "outsb"; break; case OP_OUTSWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "outsw" : pCpu->opmode == CPUMODE_32BIT ? "outsd" : "outsq"; break; case OP_MOVSB: pszFmt = "movsb"; break; case OP_MOVSWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "movsw" : pCpu->opmode == CPUMODE_32BIT ? "movsd" : "movsq"; break; case OP_CMPSB: pszFmt = "cmpsb"; break; case OP_CMPWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "cmpsw" : pCpu->opmode == CPUMODE_32BIT ? "cmpsd" : "cmpsq"; break; case OP_SCASB: pszFmt = "scasb"; break; case OP_SCASWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "scasw" : pCpu->opmode == CPUMODE_32BIT ? "scasd" : "scasq"; break; case OP_LODSB: pszFmt = "lodsb"; break; case OP_LODSWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "lodsw" : pCpu->opmode == CPUMODE_32BIT ? "lodsd" : "lodsq"; break; case OP_STOSB: pszFmt = "stosb"; break; case OP_STOSWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "stosw" : pCpu->opmode == CPUMODE_32BIT ? "stosd" : "stosq"; break; case OP_CBW: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "cbw" : pCpu->opmode == CPUMODE_32BIT ? "cwde" : "cdqe"; break; case OP_CWD: pszFmt = pCpu->opmode == CPUMODE_16BIT ? "cwd" : pCpu->opmode == CPUMODE_32BIT ? "cdq" : "cqo"; break; case OP_SHL: Assert(pszFmt[3] == '/'); pszFmt += 4; break; case OP_XLAT: pszFmt = "xlatb"; break; case OP_INT3: pszFmt = "int3"; break; /* * Don't know how to tell yasm to generate complicated nop stuff, so 'db' it. */ case OP_NOP: if (pCpu->opcode == 0x90) /* fine, fine */; else if (pszFmt[sizeof("nop %Ev") - 1] == '/' && pszFmt[sizeof("nop %Ev")] == 'p') pszFmt = "prefetch %Eb"; else if (pCpu->opcode == 0x1f) { Assert(pCpu->opsize >= 3); PUT_SZ("db 00fh, 01fh,"); PUT_NUM_8(pCpu->ModRM.u); for (unsigned i = 3; i < pCpu->opsize; i++) { PUT_C(','); PUT_NUM_8(0x90); ///@todo fixme. } pszFmt = ""; } break; default: /* ST(X) -> stX (floating point) */ if (*pszFmt == 'f' && strchr(pszFmt, '(')) { char *pszFmtDst = szTmpFmt; char ch; do { ch = *pszFmt++; if (ch == 'S' && pszFmt[0] == 'T' && pszFmt[1] == '(') { *pszFmtDst++ = 's'; *pszFmtDst++ = 't'; pszFmt += 2; ch = *pszFmt; Assert(pszFmt[1] == ')'); pszFmt += 2; *pszFmtDst++ = ch; } else *pszFmtDst++ = ch; } while (ch != '\0'); pszFmt = szTmpFmt; } break; /* * Horrible hacks. */ case OP_FLD: if (pCpu->opcode == 0xdb) /* m80fp workaround. */ *(int *)&pCpu->param1.param &= ~0x1f; /* make it pure OP_PARM_M */ break; case OP_LAR: /* hack w -> v, probably not correct. */ *(int *)&pCpu->param2.param &= ~0x1f; *(int *)&pCpu->param2.param |= OP_PARM_v; break; } /* * Formatting context and associated macros. */ PCOP_PARAMETER pParam = &pCpu->param1; int iParam = 1; #define PUT_FAR() \ do { \ if ( OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p \ && pOp->opcode != OP_LDS /* table bugs? */ \ && pOp->opcode != OP_LES \ && pOp->opcode != OP_LFS \ && pOp->opcode != OP_LGS \ && pOp->opcode != OP_LSS ) \ PUT_SZ("far "); \ } while (0) /** @todo mov ah,ch ends up with a byte 'override'... - check if this wasn't fixed. */ /** @todo drop the work/dword/qword override when the src/dst is a register (except for movsx/movzx). */ #define PUT_SIZE_OVERRIDE() \ do { \ switch (OP_PARM_VSUBTYPE(pParam->param)) \ { \ case OP_PARM_v: \ switch (pCpu->opmode) \ { \ case CPUMODE_16BIT: PUT_SZ("word "); break; \ case CPUMODE_32BIT: PUT_SZ("dword "); break; \ case CPUMODE_64BIT: PUT_SZ("qword "); break; \ default: break; \ } \ break; \ case OP_PARM_b: PUT_SZ("byte "); break; \ case OP_PARM_w: PUT_SZ("word "); break; \ case OP_PARM_d: PUT_SZ("dword "); break; \ case OP_PARM_q: PUT_SZ("qword "); break; \ case OP_PARM_dq: \ if (OP_PARM_VTYPE(pParam->param) != OP_PARM_W) /* these are 128 bit, pray they are all unambiguous.. */ \ PUT_SZ("qword "); \ break; \ case OP_PARM_p: break; /* see PUT_FAR */ \ case OP_PARM_s: if (pParam->flags & USE_REG_FP) PUT_SZ("tword "); break; /* ?? */ \ case OP_PARM_z: break; \ case OP_PARM_NONE: \ if ( OP_PARM_VTYPE(pParam->param) == OP_PARM_M \ && ((pParam->flags & USE_REG_FP) || pOp->opcode == OP_FLD)) \ PUT_SZ("tword "); \ break; \ default: break; /*no pointer type specified/necessary*/ \ } \ } while (0) static const char s_szSegPrefix[6][4] = { "es:", "cs:", "ss:", "ds:", "fs:", "gs:" }; #define PUT_SEGMENT_OVERRIDE() \ do { \ if (pCpu->prefix & PREFIX_SEG) \ PUT_STR(s_szSegPrefix[pCpu->enmPrefixSeg], 3); \ } while (0) /* * Segment prefixing for instructions that doesn't do memory access. */ if ( (pCpu->prefix & PREFIX_SEG) && !DIS_IS_EFFECTIVE_ADDR(pCpu->param1.flags) && !DIS_IS_EFFECTIVE_ADDR(pCpu->param2.flags) && !DIS_IS_EFFECTIVE_ADDR(pCpu->param3.flags)) { PUT_STR(s_szSegPrefix[pCpu->enmPrefixSeg], 2); PUT_C(' '); } /* * The formatting loop. */ RTINTPTR off; char szSymbol[128]; char ch; while ((ch = *pszFmt++) != '\0') { if (ch == '%') { ch = *pszFmt++; switch (ch) { /* * ModRM - Register only. */ case 'C': /* Control register (ParseModRM / UseModRM). */ case 'D': /* Debug register (ParseModRM / UseModRM). */ case 'G': /* ModRM selects general register (ParseModRM / UseModRM). */ case 'S': /* ModRM byte selects a segment register (ParseModRM / UseModRM). */ case 'T': /* ModRM byte selects a test register (ParseModRM / UseModRM). */ case 'V': /* ModRM byte selects an XMM/SSE register (ParseModRM / UseModRM). */ case 'P': /* ModRM byte selects MMX register (ParseModRM / UseModRM). */ { pszFmt += RT_C_IS_ALPHA(pszFmt[0]) ? RT_C_IS_ALPHA(pszFmt[1]) ? 2 : 1 : 0; Assert(!(pParam->flags & (USE_INDEX | USE_SCALE) /* No SIB here... */)); Assert(!(pParam->flags & (USE_DISPLACEMENT8 | USE_DISPLACEMENT16 | USE_DISPLACEMENT32 | USE_DISPLACEMENT64 | USE_RIPDISPLACEMENT32))); size_t cchReg; const char *pszReg = disasmFormatYasmBaseReg(pCpu, pParam, &cchReg); PUT_STR(pszReg, cchReg); break; } /* * ModRM - Register or memory. */ case 'E': /* ModRM specifies parameter (ParseModRM / UseModRM / UseSIB). */ case 'Q': /* ModRM byte selects MMX register or memory address (ParseModRM / UseModRM). */ case 'R': /* ModRM byte may only refer to a general register (ParseModRM / UseModRM). */ case 'W': /* ModRM byte selects an XMM/SSE register or a memory address (ParseModRM / UseModRM). */ case 'M': /* ModRM may only refer to memory (ParseModRM / UseModRM). */ { pszFmt += RT_C_IS_ALPHA(pszFmt[0]) ? RT_C_IS_ALPHA(pszFmt[1]) ? 2 : 1 : 0; PUT_FAR(); if (DIS_IS_EFFECTIVE_ADDR(pParam->flags)) { /* Work around mov seg,[mem16] and mov [mem16],seg as these always make a 16-bit mem while the register variants deals with 16, 32 & 64 in the normal fashion. */ if ( pParam->param != OP_PARM_Ev || pOp->opcode != OP_MOV || ( pOp->param1 != OP_PARM_Sw && pOp->param2 != OP_PARM_Sw)) PUT_SIZE_OVERRIDE(); PUT_C('['); } if ( (fFlags & DIS_FMT_FLAGS_STRICT) && (pParam->flags & (USE_DISPLACEMENT8 | USE_DISPLACEMENT16 | USE_DISPLACEMENT32 | USE_DISPLACEMENT64 | USE_RIPDISPLACEMENT32))) { if ( (pParam->flags & USE_DISPLACEMENT8) && !pParam->disp8) PUT_SZ("byte "); else if ( (pParam->flags & USE_DISPLACEMENT16) && (int8_t)pParam->disp16 == (int16_t)pParam->disp16) PUT_SZ("word "); else if ( (pParam->flags & USE_DISPLACEMENT32) && (int8_t)pParam->disp32 == (int32_t)pParam->disp32) PUT_SZ("dword "); } if (DIS_IS_EFFECTIVE_ADDR(pParam->flags)) PUT_SEGMENT_OVERRIDE(); bool fBase = (pParam->flags & USE_BASE) /* When exactly is USE_BASE supposed to be set? disasmModRMReg doesn't set it. */ || ( (pParam->flags & (USE_REG_GEN8 | USE_REG_GEN16 | USE_REG_GEN32 | USE_REG_GEN64)) && !DIS_IS_EFFECTIVE_ADDR(pParam->flags)); if (fBase) { size_t cchReg; const char *pszReg = disasmFormatYasmBaseReg(pCpu, pParam, &cchReg); PUT_STR(pszReg, cchReg); } if (pParam->flags & USE_INDEX) { if (fBase) PUT_C('+'); size_t cchReg; const char *pszReg = disasmFormatYasmIndexReg(pCpu, pParam, &cchReg); PUT_STR(pszReg, cchReg); if (pParam->flags & USE_SCALE) { PUT_C('*'); PUT_C('0' + pParam->scale); } } else Assert(!(pParam->flags & USE_SCALE)); if (pParam->flags & (USE_DISPLACEMENT8 | USE_DISPLACEMENT16 | USE_DISPLACEMENT32 | USE_DISPLACEMENT64 | USE_RIPDISPLACEMENT32)) { Assert(!(pParam->flags & USE_DISPLACEMENT64)); int32_t off; if (pParam->flags & USE_DISPLACEMENT8) off = pParam->disp8; else if (pParam->flags & USE_DISPLACEMENT16) off = pParam->disp16; else if (pParam->flags & (USE_DISPLACEMENT32 | USE_RIPDISPLACEMENT32)) off = pParam->disp32; if (fBase || (pParam->flags & USE_INDEX)) { PUT_C(off >= 0 ? '+' : '-'); if (off < 0) off = -off; } if (pParam->flags & USE_DISPLACEMENT8) PUT_NUM_8( off); else if (pParam->flags & USE_DISPLACEMENT16) PUT_NUM_16(off); else if (pParam->flags & USE_DISPLACEMENT32) PUT_NUM_32(off); else { PUT_NUM_32(off); PUT_SZ(" wrt rip"); //?? } } if (DIS_IS_EFFECTIVE_ADDR(pParam->flags)) PUT_C(']'); break; } case 'F': /* Eflags register (0 - popf/pushf only, avoided in adjustments above). */ AssertFailed(); break; case 'I': /* Immediate data (ParseImmByte, ParseImmByteSX, ParseImmV, ParseImmUshort, ParseImmZ). */ Assert(*pszFmt == 'b' || *pszFmt == 'v' || *pszFmt == 'w' || *pszFmt == 'z'); pszFmt++; switch (pParam->flags & ( USE_IMMEDIATE8 | USE_IMMEDIATE16 | USE_IMMEDIATE32 | USE_IMMEDIATE64 | USE_IMMEDIATE16_SX8 | USE_IMMEDIATE32_SX8)) { case USE_IMMEDIATE8: if ( (fFlags & DIS_FMT_FLAGS_STRICT) && ( (pOp->param1 >= OP_PARM_REG_GEN8_START && pOp->param1 <= OP_PARM_REG_GEN8_END) || (pOp->param2 >= OP_PARM_REG_GEN8_START && pOp->param2 <= OP_PARM_REG_GEN8_END)) ) PUT_SZ("strict byte "); PUT_NUM_8(pParam->parval); break; case USE_IMMEDIATE16: if ( pCpu->mode != pCpu->opmode || ( (fFlags & DIS_FMT_FLAGS_STRICT) && ( (int8_t)pParam->parval == (int16_t)pParam->parval || (pOp->param1 >= OP_PARM_REG_GEN16_START && pOp->param1 <= OP_PARM_REG_GEN16_END) || (pOp->param2 >= OP_PARM_REG_GEN16_START && pOp->param2 <= OP_PARM_REG_GEN16_END)) ) ) { if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_b) PUT_SZ_STRICT("strict byte ", "byte "); else if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_v) PUT_SZ_STRICT("strict word ", "word "); } PUT_NUM_16(pParam->parval); break; case USE_IMMEDIATE16_SX8: PUT_SZ_STRICT("strict byte ", "byte "); PUT_NUM_16(pParam->parval); break; case USE_IMMEDIATE32: if ( pCpu->opmode != (pCpu->mode == CPUMODE_16BIT ? CPUMODE_16BIT : CPUMODE_32BIT) /* not perfect */ || ( (fFlags & DIS_FMT_FLAGS_STRICT) && ( (int8_t)pParam->parval == (int32_t)pParam->parval || (pOp->param1 >= OP_PARM_REG_GEN32_START && pOp->param1 <= OP_PARM_REG_GEN32_END) || (pOp->param2 >= OP_PARM_REG_GEN32_START && pOp->param2 <= OP_PARM_REG_GEN32_END)) ) ) { if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_b) PUT_SZ_STRICT("strict byte ", "byte "); else if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_v) PUT_SZ_STRICT("strict dword ", "dword "); } PUT_NUM_32(pParam->parval); break; case USE_IMMEDIATE32_SX8: PUT_SZ_STRICT("strict byte ", "byte "); PUT_NUM_32(pParam->parval); break; case USE_IMMEDIATE64: PUT_NUM_64(pParam->parval); break; default: AssertFailed(); break; } break; case 'J': /* Relative jump offset (ParseImmBRel + ParseImmVRel). */ { int32_t offDisplacement; Assert(iParam == 1); bool fPrefix = (fFlags & DIS_FMT_FLAGS_STRICT) && pOp->opcode != OP_CALL && pOp->opcode != OP_LOOP && pOp->opcode != OP_LOOPE && pOp->opcode != OP_LOOPNE && pOp->opcode != OP_JECXZ; if (pOp->opcode == OP_CALL) fFlags &= ~DIS_FMT_FLAGS_RELATIVE_BRANCH; if (pParam->flags & USE_IMMEDIATE8_REL) { if (fPrefix) PUT_SZ("short "); offDisplacement = (int8_t)pParam->parval; Assert(*pszFmt == 'b'); pszFmt++; if (fFlags & DIS_FMT_FLAGS_RELATIVE_BRANCH) PUT_NUM_S8(offDisplacement); } else if (pParam->flags & USE_IMMEDIATE16_REL) { if (fPrefix) PUT_SZ("near "); offDisplacement = (int16_t)pParam->parval; Assert(*pszFmt == 'v'); pszFmt++; if (fFlags & DIS_FMT_FLAGS_RELATIVE_BRANCH) PUT_NUM_S16(offDisplacement); } else { if (fPrefix) PUT_SZ("near "); offDisplacement = (int32_t)pParam->parval; Assert(pParam->flags & USE_IMMEDIATE32_REL); Assert(*pszFmt == 'v'); pszFmt++; if (fFlags & DIS_FMT_FLAGS_RELATIVE_BRANCH) PUT_NUM_S32(offDisplacement); } if (fFlags & DIS_FMT_FLAGS_RELATIVE_BRANCH) PUT_SZ(" ("); RTUINTPTR uTrgAddr = pCpu->opaddr + pCpu->opsize + offDisplacement; if (pCpu->mode == CPUMODE_16BIT) PUT_NUM_16(uTrgAddr); else if (pCpu->mode == CPUMODE_32BIT) PUT_NUM_32(uTrgAddr); else PUT_NUM_64(uTrgAddr); if (pfnGetSymbol) { int rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), uTrgAddr, szSymbol, sizeof(szSymbol), &off, pvUser); if (RT_SUCCESS(rc)) { PUT_SZ(" ["); PUT_PSZ(szSymbol); if (off != 0) { if ((int8_t)off == off) PUT_NUM_S8(off); else if ((int16_t)off == off) PUT_NUM_S16(off); else if ((int32_t)off == off) PUT_NUM_S32(off); else PUT_NUM_S64(off); } PUT_C(']'); } } if (fFlags & DIS_FMT_FLAGS_RELATIVE_BRANCH) PUT_C(')'); break; } case 'A': /* Direct (jump/call) address (ParseImmAddr). */ { Assert(*pszFmt == 'p'); pszFmt++; PUT_FAR(); PUT_SIZE_OVERRIDE(); PUT_SEGMENT_OVERRIDE(); int rc; switch (pParam->flags & (USE_IMMEDIATE_ADDR_16_16 | USE_IMMEDIATE_ADDR_16_32 | USE_DISPLACEMENT64 | USE_DISPLACEMENT32 | USE_DISPLACEMENT16)) { case USE_IMMEDIATE_ADDR_16_16: PUT_NUM_16(pParam->parval >> 16); PUT_C(':'); PUT_NUM_16(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_VALUE(pParam->parval >> 16), (uint16_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_IMMEDIATE_ADDR_16_32: PUT_NUM_16(pParam->parval >> 32); PUT_C(':'); PUT_NUM_32(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_VALUE(pParam->parval >> 16), (uint32_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_DISPLACEMENT16: PUT_NUM_16(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), (uint16_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_DISPLACEMENT32: PUT_NUM_32(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), (uint32_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_DISPLACEMENT64: PUT_NUM_64(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), (uint64_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; default: AssertFailed(); break; } if (pfnGetSymbol && RT_SUCCESS(rc)) { PUT_SZ(" ["); PUT_PSZ(szSymbol); if (off != 0) { if ((int8_t)off == off) PUT_NUM_S8(off); else if ((int16_t)off == off) PUT_NUM_S16(off); else if ((int32_t)off == off) PUT_NUM_S32(off); else PUT_NUM_S64(off); } PUT_C(']'); } break; } case 'O': /* No ModRM byte (ParseImmAddr). */ { Assert(*pszFmt == 'b' || *pszFmt == 'v'); pszFmt++; PUT_FAR(); PUT_SIZE_OVERRIDE(); PUT_C('['); PUT_SEGMENT_OVERRIDE(); int rc; switch (pParam->flags & (USE_IMMEDIATE_ADDR_16_16 | USE_IMMEDIATE_ADDR_16_32 | USE_DISPLACEMENT64 | USE_DISPLACEMENT32 | USE_DISPLACEMENT16)) { case USE_IMMEDIATE_ADDR_16_16: PUT_NUM_16(pParam->parval >> 16); PUT_C(':'); PUT_NUM_16(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_VALUE(pParam->parval >> 16), (uint16_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_IMMEDIATE_ADDR_16_32: PUT_NUM_16(pParam->parval >> 32); PUT_C(':'); PUT_NUM_32(pParam->parval); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_VALUE(pParam->parval >> 16), (uint32_t)pParam->parval, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_DISPLACEMENT16: PUT_NUM_16(pParam->disp16); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), (uint16_t)pParam->disp16, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_DISPLACEMENT32: PUT_NUM_32(pParam->disp32); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), (uint32_t)pParam->disp32, szSymbol, sizeof(szSymbol), &off, pvUser); break; case USE_DISPLACEMENT64: PUT_NUM_64(pParam->disp64); if (pfnGetSymbol) rc = pfnGetSymbol(pCpu, DIS_FMT_SEL_FROM_REG(DIS_SELREG_CS), (uint64_t)pParam->disp64, szSymbol, sizeof(szSymbol), &off, pvUser); break; default: AssertFailed(); break; } PUT_C(']'); if (pfnGetSymbol && RT_SUCCESS(rc)) { PUT_SZ(" ("); PUT_PSZ(szSymbol); if (off != 0) { if ((int8_t)off == off) PUT_NUM_S8(off); else if ((int16_t)off == off) PUT_NUM_S16(off); else if ((int32_t)off == off) PUT_NUM_S32(off); else PUT_NUM_S64(off); } PUT_C(')'); } break; } case 'X': /* DS:SI (ParseXb, ParseXv). */ case 'Y': /* ES:DI (ParseYb, ParseYv). */ { Assert(*pszFmt == 'b' || *pszFmt == 'v'); pszFmt++; PUT_FAR(); PUT_SIZE_OVERRIDE(); PUT_C('['); if (pParam->flags & USE_POINTER_DS_BASED) PUT_SZ("ds:"); else PUT_SZ("es:"); size_t cchReg; const char *pszReg = disasmFormatYasmBaseReg(pCpu, pParam, &cchReg); PUT_STR(pszReg, cchReg); PUT_C(']'); break; } case 'e': /* Register based on operand size (e.g. %eAX) (ParseFixedReg). */ { Assert(RT_C_IS_ALPHA(pszFmt[0]) && RT_C_IS_ALPHA(pszFmt[1]) && !RT_C_IS_ALPHA(pszFmt[2])); pszFmt += 2; size_t cchReg; const char *pszReg = disasmFormatYasmBaseReg(pCpu, pParam, &cchReg); PUT_STR(pszReg, cchReg); break; } default: AssertMsgFailed(("%c%s!\n", ch, pszFmt)); break; } AssertMsg(*pszFmt == ',' || *pszFmt == '\0', ("%c%s\n", ch, pszFmt)); } else { PUT_C(ch); if (ch == ',') { Assert(*pszFmt != ' '); PUT_C(' '); switch (++iParam) { case 2: pParam = &pCpu->param2; break; case 3: pParam = &pCpu->param3; break; default: pParam = NULL; break; } } } } /* while more to format */ } /* * Any additional output to the right of the instruction? */ if (fFlags & (DIS_FMT_FLAGS_BYTES_RIGHT | DIS_FMT_FLAGS_ADDR_RIGHT)) { /* some up front padding. */ size_t cchPadding = cchOutput - offInstruction; cchPadding = cchPadding + 1 >= 42 ? 1 : 42 - cchPadding; PUT_STR(g_szSpaces, cchPadding); /* comment? */ if (fFlags & (DIS_FMT_FLAGS_BYTES_RIGHT | DIS_FMT_FLAGS_ADDR_RIGHT)) PUT_SZ(";"); /* * The address? */ if (fFlags & DIS_FMT_FLAGS_ADDR_RIGHT) { PUT_C(' '); #if HC_ARCH_BITS == 64 || GC_ARCH_BITS == 64 if (pCpu->opaddr >= _4G) PUT_NUM(9, "%08x`", (uint32_t)(pCpu->opaddr >> 32)); #endif PUT_NUM(8, "%08x", (uint32_t)pCpu->opaddr); } /* * Opcode bytes? */ if (fFlags & DIS_FMT_FLAGS_BYTES_RIGHT) { PUT_C(' '); size_t cchTmp = disFormatBytes(pCpu, pszDst, cchDst, fFlags); cchOutput += cchTmp; if (cchTmp >= cchDst) cchTmp = cchDst - (cchDst != 0); cchDst -= cchTmp; pszDst += cchTmp; } } /* * Terminate it - on overflow we'll have reserved one byte for this. */ if (cchDst > 0) *pszDst = '\0'; else Assert(!cchBuf); /* clean up macros */ #undef PUT_PSZ #undef PUT_SZ #undef PUT_STR #undef PUT_C return cchOutput; } /** * Formats the current instruction in Yasm (/ Nasm) style. * * This is a simplified version of DISFormatYasmEx() provided for your convenience. * * * @returns The number of output characters. If this is >= cchBuf, then the content * of pszBuf will be truncated. * @param pCpu Pointer to the disassembler CPU state. * @param pszBuf The output buffer. * @param cchBuf The size of the output buffer. */ DISDECL(size_t) DISFormatYasm(PCDISCPUSTATE pCpu, char *pszBuf, size_t cchBuf) { return DISFormatYasmEx(pCpu, pszBuf, cchBuf, 0 /* fFlags */, NULL /* pfnGetSymbol */, NULL /* pvUser */); }