/* $Id: DevBusLogic.cpp 60026 2016-03-15 10:12:36Z vboxsync $ */ /** @file * VBox storage devices - BusLogic SCSI host adapter BT-958. * * Based on the Multi-Master Ultra SCSI Systems Technical Reference Manual. */ /* * Copyright (C) 2006-2015 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_BUSLOGIC #include #include #include #include #include #include #include #include #ifdef IN_RING3 # include # include # include # include #endif #include "VBoxSCSI.h" #include "VBoxDD.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** Maximum number of attached devices the adapter can handle. */ #define BUSLOGIC_MAX_DEVICES 16 /** Maximum number of scatter gather elements this device can handle. */ #define BUSLOGIC_MAX_SCATTER_GATHER_LIST_SIZE 128 /** Size of the command buffer. */ #define BUSLOGIC_COMMAND_SIZE_MAX 53 /** Size of the reply buffer. */ #define BUSLOGIC_REPLY_SIZE_MAX 64 /** Custom fixed I/O ports for BIOS controller access. * Note that these should not be in the ISA range (below 400h) to avoid * conflicts with ISA device probing. Addresses in the 300h-340h range should be * especially avoided. */ #define BUSLOGIC_BIOS_IO_PORT 0x430 /** State saved version. */ #define BUSLOGIC_SAVED_STATE_MINOR_VERSION 4 /** Saved state version before the suspend on error feature was implemented. */ #define BUSLOGIC_SAVED_STATE_MINOR_PRE_ERROR_HANDLING 1 /** Saved state version before 24-bit mailbox support was implemented. */ #define BUSLOGIC_SAVED_STATE_MINOR_PRE_24BIT_MBOX 2 /** Saved state version before command buffer size was raised. */ #define BUSLOGIC_SAVED_STATE_MINOR_PRE_CMDBUF_RESIZE 3 /** Command buffer size in old saved states. */ #define BUSLOGIC_COMMAND_SIZE_OLD 5 /** The duration of software-initiated reset (in nano seconds). * Not documented, set to 50 ms. */ #define BUSLOGIC_RESET_DURATION_NS UINT64_C(50000000) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * State of a device attached to the buslogic host adapter. * * @implements PDMIBASE * @implements PDMISCSIPORT * @implements PDMILEDPORTS */ typedef struct BUSLOGICDEVICE { /** Pointer to the owning buslogic device instance. - R3 pointer */ R3PTRTYPE(struct BUSLOGIC *) pBusLogicR3; /** Pointer to the owning buslogic device instance. - R0 pointer */ R0PTRTYPE(struct BUSLOGIC *) pBusLogicR0; /** Pointer to the owning buslogic device instance. - RC pointer */ RCPTRTYPE(struct BUSLOGIC *) pBusLogicRC; /** Flag whether device is present. */ bool fPresent; /** LUN of the device. */ RTUINT iLUN; #if HC_ARCH_BITS == 64 uint32_t Alignment0; #endif /** Our base interface. */ PDMIBASE IBase; /** SCSI port interface. */ PDMISCSIPORT ISCSIPort; /** Led interface. */ PDMILEDPORTS ILed; /** Pointer to the attached driver's base interface. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** Pointer to the underlying SCSI connector interface. */ R3PTRTYPE(PPDMISCSICONNECTOR) pDrvSCSIConnector; /** The status LED state for this device. */ PDMLED Led; #if HC_ARCH_BITS == 64 uint32_t Alignment1; #endif /** Number of outstanding tasks on the port. */ volatile uint32_t cOutstandingRequests; } BUSLOGICDEVICE, *PBUSLOGICDEVICE; /** * Commands the BusLogic adapter supports. */ enum BUSLOGICCOMMAND { BUSLOGICCOMMAND_TEST_CMDC_INTERRUPT = 0x00, BUSLOGICCOMMAND_INITIALIZE_MAILBOX = 0x01, BUSLOGICCOMMAND_EXECUTE_MAILBOX_COMMAND = 0x02, BUSLOGICCOMMAND_EXECUTE_BIOS_COMMAND = 0x03, BUSLOGICCOMMAND_INQUIRE_BOARD_ID = 0x04, BUSLOGICCOMMAND_ENABLE_OUTGOING_MAILBOX_AVAILABLE_INTERRUPT = 0x05, BUSLOGICCOMMAND_SET_SCSI_SELECTION_TIMEOUT = 0x06, BUSLOGICCOMMAND_SET_PREEMPT_TIME_ON_BUS = 0x07, BUSLOGICCOMMAND_SET_TIME_OFF_BUS = 0x08, BUSLOGICCOMMAND_SET_BUS_TRANSFER_RATE = 0x09, BUSLOGICCOMMAND_INQUIRE_INSTALLED_DEVICES_ID_0_TO_7 = 0x0a, BUSLOGICCOMMAND_INQUIRE_CONFIGURATION = 0x0b, BUSLOGICCOMMAND_ENABLE_TARGET_MODE = 0x0c, BUSLOGICCOMMAND_INQUIRE_SETUP_INFORMATION = 0x0d, BUSLOGICCOMMAND_WRITE_ADAPTER_LOCAL_RAM = 0x1a, BUSLOGICCOMMAND_READ_ADAPTER_LOCAL_RAM = 0x1b, BUSLOGICCOMMAND_WRITE_BUSMASTER_CHIP_FIFO = 0x1c, BUSLOGICCOMMAND_READ_BUSMASTER_CHIP_FIFO = 0x1d, BUSLOGICCOMMAND_ECHO_COMMAND_DATA = 0x1f, BUSLOGICCOMMAND_HOST_ADAPTER_DIAGNOSTIC = 0x20, BUSLOGICCOMMAND_SET_ADAPTER_OPTIONS = 0x21, BUSLOGICCOMMAND_INQUIRE_INSTALLED_DEVICES_ID_8_TO_15 = 0x23, BUSLOGICCOMMAND_INQUIRE_TARGET_DEVICES = 0x24, BUSLOGICCOMMAND_DISABLE_HOST_ADAPTER_INTERRUPT = 0x25, BUSLOGICCOMMAND_EXT_BIOS_INFO = 0x28, BUSLOGICCOMMAND_UNLOCK_MAILBOX = 0x29, BUSLOGICCOMMAND_INITIALIZE_EXTENDED_MAILBOX = 0x81, BUSLOGICCOMMAND_EXECUTE_SCSI_COMMAND = 0x83, BUSLOGICCOMMAND_INQUIRE_FIRMWARE_VERSION_3RD_LETTER = 0x84, BUSLOGICCOMMAND_INQUIRE_FIRMWARE_VERSION_LETTER = 0x85, BUSLOGICCOMMAND_INQUIRE_PCI_HOST_ADAPTER_INFORMATION = 0x86, BUSLOGICCOMMAND_INQUIRE_HOST_ADAPTER_MODEL_NUMBER = 0x8b, BUSLOGICCOMMAND_INQUIRE_SYNCHRONOUS_PERIOD = 0x8c, BUSLOGICCOMMAND_INQUIRE_EXTENDED_SETUP_INFORMATION = 0x8d, BUSLOGICCOMMAND_ENABLE_STRICT_ROUND_ROBIN_MODE = 0x8f, BUSLOGICCOMMAND_STORE_HOST_ADAPTER_LOCAL_RAM = 0x90, BUSLOGICCOMMAND_FETCH_HOST_ADAPTER_LOCAL_RAM = 0x91, BUSLOGICCOMMAND_STORE_LOCAL_DATA_IN_EEPROM = 0x92, BUSLOGICCOMMAND_UPLOAD_AUTO_SCSI_CODE = 0x94, BUSLOGICCOMMAND_MODIFY_IO_ADDRESS = 0x95, BUSLOGICCOMMAND_SET_CCB_FORMAT = 0x96, BUSLOGICCOMMAND_WRITE_INQUIRY_BUFFER = 0x9a, BUSLOGICCOMMAND_READ_INQUIRY_BUFFER = 0x9b, BUSLOGICCOMMAND_FLASH_ROM_UPLOAD_DOWNLOAD = 0xa7, BUSLOGICCOMMAND_READ_SCAM_DATA = 0xa8, BUSLOGICCOMMAND_WRITE_SCAM_DATA = 0xa9 } BUSLOGICCOMMAND; #pragma pack(1) /** * Auto SCSI structure which is located * in host adapter RAM and contains several * configuration parameters. */ typedef struct AutoSCSIRam { uint8_t aInternalSignature[2]; uint8_t cbInformation; uint8_t aHostAdaptertype[6]; uint8_t uReserved1; bool fFloppyEnabled : 1; bool fFloppySecondary : 1; bool fLevelSensitiveInterrupt : 1; unsigned char uReserved2 : 2; unsigned char uSystemRAMAreForBIOS : 3; unsigned char uDMAChannel : 7; bool fDMAAutoConfiguration : 1; unsigned char uIrqChannel : 7; bool fIrqAutoConfiguration : 1; uint8_t uDMATransferRate; uint8_t uSCSIId; bool fLowByteTerminated : 1; bool fParityCheckingEnabled : 1; bool fHighByteTerminated : 1; bool fNoisyCablingEnvironment : 1; bool fFastSynchronousNeogtiation : 1; bool fBusResetEnabled : 1; bool fReserved3 : 1; bool fActiveNegotiationEnabled : 1; uint8_t uBusOnDelay; uint8_t uBusOffDelay; bool fHostAdapterBIOSEnabled : 1; bool fBIOSRedirectionOfInt19 : 1; bool fExtendedTranslation : 1; bool fMapRemovableAsFixed : 1; bool fReserved4 : 1; bool fBIOSSupportsMoreThan2Drives : 1; bool fBIOSInterruptMode : 1; bool fFlopticalSupport : 1; uint16_t u16DeviceEnabledMask; uint16_t u16WidePermittedMask; uint16_t u16FastPermittedMask; uint16_t u16SynchronousPermittedMask; uint16_t u16DisconnectPermittedMask; uint16_t u16SendStartUnitCommandMask; uint16_t u16IgnoreInBIOSScanMask; unsigned char uPCIInterruptPin : 2; unsigned char uHostAdapterIoPortAddress : 2; bool fStrictRoundRobinMode : 1; bool fVesaBusSpeedGreaterThan33MHz : 1; bool fVesaBurstWrite : 1; bool fVesaBurstRead : 1; uint16_t u16UltraPermittedMask; uint32_t uReserved5; uint8_t uReserved6; uint8_t uAutoSCSIMaximumLUN; bool fReserved7 : 1; bool fSCAMDominant : 1; bool fSCAMenabled : 1; bool fSCAMLevel2 : 1; unsigned char uReserved8 : 4; bool fInt13Extension : 1; bool fReserved9 : 1; bool fCDROMBoot : 1; unsigned char uReserved10 : 5; unsigned char uBootTargetId : 4; unsigned char uBootChannel : 4; bool fForceBusDeviceScanningOrder : 1; unsigned char uReserved11 : 7; uint16_t u16NonTaggedToAlternateLunPermittedMask; uint16_t u16RenegotiateSyncAfterCheckConditionMask; uint8_t aReserved12[10]; uint8_t aManufacturingDiagnostic[2]; uint16_t u16Checksum; } AutoSCSIRam, *PAutoSCSIRam; AssertCompileSize(AutoSCSIRam, 64); #pragma pack() /** * The local Ram. */ typedef union HostAdapterLocalRam { /** Byte view. */ uint8_t u8View[256]; /** Structured view. */ struct { /** Offset 0 - 63 is for BIOS. */ uint8_t u8Bios[64]; /** Auto SCSI structure. */ AutoSCSIRam autoSCSIData; } structured; } HostAdapterLocalRam, *PHostAdapterLocalRam; AssertCompileSize(HostAdapterLocalRam, 256); /** Ugly 24-bit big-endian addressing. */ typedef struct { uint8_t hi; uint8_t mid; uint8_t lo; } Addr24, Len24; AssertCompileSize(Addr24, 3); #define ADDR_TO_U32(x) (((x).hi << 16) | ((x).mid << 8) | (x).lo) #define LEN_TO_U32 ADDR_TO_U32 #define U32_TO_ADDR(a, x) do {(a).hi = (x) >> 16; (a).mid = (x) >> 8; (a).lo = (x);} while(0) #define U32_TO_LEN U32_TO_ADDR /** @name Compatible ISA base I/O port addresses. Disabled if zero. * @{ */ #define NUM_ISA_BASES 8 #define MAX_ISA_BASE (NUM_ISA_BASES - 1) #define ISA_BASE_DISABLED 6 static uint16_t const g_aISABases[NUM_ISA_BASES] = { 0x330, 0x334, 0x230, 0x234, 0x130, 0x134, 0, 0 }; /** @} */ /** Pointer to a task state structure. */ typedef struct BUSLOGICTASKSTATE *PBUSLOGICTASKSTATE; /** * Main BusLogic device state. * * @extends PCIDEVICE * @implements PDMILEDPORTS */ typedef struct BUSLOGIC { /** The PCI device structure. */ PCIDEVICE dev; /** Pointer to the device instance - HC ptr */ PPDMDEVINSR3 pDevInsR3; /** Pointer to the device instance - R0 ptr */ PPDMDEVINSR0 pDevInsR0; /** Pointer to the device instance - RC ptr. */ PPDMDEVINSRC pDevInsRC; /** Whether R0 is enabled. */ bool fR0Enabled; /** Whether RC is enabled. */ bool fGCEnabled; /** Base address of the I/O ports. */ RTIOPORT IOPortBase; /** Base address of the memory mapping. */ RTGCPHYS MMIOBase; /** Status register - Readonly. */ volatile uint8_t regStatus; /** Interrupt register - Readonly. */ volatile uint8_t regInterrupt; /** Geometry register - Readonly. */ volatile uint8_t regGeometry; /** Pending (delayed) interrupt. */ uint8_t uPendingIntr; /** Local RAM for the fetch hostadapter local RAM request. * I don't know how big the buffer really is but the maximum * seems to be 256 bytes because the offset and count field in the command request * are only one byte big. */ HostAdapterLocalRam LocalRam; /** Command code the guest issued. */ uint8_t uOperationCode; /** Buffer for the command parameters the adapter is currently receiving from the guest. * Size of the largest command which is possible. */ uint8_t aCommandBuffer[BUSLOGIC_COMMAND_SIZE_MAX]; /* Size of the biggest request. */ /** Current position in the command buffer. */ uint8_t iParameter; /** Parameters left until the command is complete. */ uint8_t cbCommandParametersLeft; /** Whether we are using the RAM or reply buffer. */ bool fUseLocalRam; /** Buffer to store reply data from the controller to the guest. */ uint8_t aReplyBuffer[BUSLOGIC_REPLY_SIZE_MAX]; /* Size of the biggest reply. */ /** Position in the buffer we are reading next. */ uint8_t iReply; /** Bytes left until the reply buffer is empty. */ uint8_t cbReplyParametersLeft; /** Flag whether IRQs are enabled. */ bool fIRQEnabled; /** Flag whether the ISA I/O port range is disabled * to prevent the BIOS to access the device. */ bool fISAEnabled; /**< @todo unused, to be removed */ /** Flag whether 24-bit mailboxes are in use (default is 32-bit). */ bool fMbxIs24Bit; /** ISA I/O port base (encoded in FW-compatible format). */ uint8_t uISABaseCode; /** ISA I/O port base (disabled if zero). */ RTIOPORT IOISABase; /** Default ISA I/O port base in FW-compatible format. */ uint8_t uDefaultISABaseCode; /** Number of mailboxes the guest set up. */ uint32_t cMailbox; #if HC_ARCH_BITS == 64 uint32_t Alignment0; #endif /** Time when HBA reset was last initiated. */ /**< @todo does this need to be saved? */ uint64_t u64ResetTime; /** Physical base address of the outgoing mailboxes. */ RTGCPHYS GCPhysAddrMailboxOutgoingBase; /** Current outgoing mailbox position. */ uint32_t uMailboxOutgoingPositionCurrent; /** Number of mailboxes ready. */ volatile uint32_t cMailboxesReady; /** Whether a notification to R3 was sent. */ volatile bool fNotificationSent; #if HC_ARCH_BITS == 64 uint32_t Alignment1; #endif /** Physical base address of the incoming mailboxes. */ RTGCPHYS GCPhysAddrMailboxIncomingBase; /** Current incoming mailbox position. */ uint32_t uMailboxIncomingPositionCurrent; /** Whether strict round robin is enabled. */ bool fStrictRoundRobinMode; /** Whether the extended LUN CCB format is enabled for 32 possible logical units. */ bool fExtendedLunCCBFormat; /** Queue to send tasks to R3. - HC ptr */ R3PTRTYPE(PPDMQUEUE) pNotifierQueueR3; /** Queue to send tasks to R3. - HC ptr */ R0PTRTYPE(PPDMQUEUE) pNotifierQueueR0; /** Queue to send tasks to R3. - RC ptr */ RCPTRTYPE(PPDMQUEUE) pNotifierQueueRC; uint32_t Alignment2; /** Critical section protecting access to the interrupt status register. */ PDMCRITSECT CritSectIntr; /** Cache for task states. */ R3PTRTYPE(RTMEMCACHE) hTaskCache; /** Device state for BIOS access. */ VBOXSCSI VBoxSCSI; /** BusLogic device states. */ BUSLOGICDEVICE aDeviceStates[BUSLOGIC_MAX_DEVICES]; /** The base interface. * @todo use PDMDEVINS::IBase */ PDMIBASE IBase; /** Status Port - Leds interface. */ PDMILEDPORTS ILeds; /** Partner of ILeds. */ R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector; #if HC_ARCH_BITS == 64 uint32_t Alignment3; #endif /** Indicates that PDMDevHlpAsyncNotificationCompleted should be called when * a port is entering the idle state. */ bool volatile fSignalIdle; /** Flag whether we have tasks which need to be processed again. */ bool volatile fRedo; /** Flag whether the worker thread is sleeping. */ volatile bool fWrkThreadSleeping; /** Flag whether a request from the BIOS is pending which the * worker thread needs to process. */ volatile bool fBiosReqPending; /** List of tasks which can be redone. */ R3PTRTYPE(volatile PBUSLOGICTASKSTATE) pTasksRedoHead; /** The support driver session handle. */ R3R0PTRTYPE(PSUPDRVSESSION) pSupDrvSession; /** Worker thread. */ R3PTRTYPE(PPDMTHREAD) pThreadWrk; /** The event semaphore the processing thread waits on. */ SUPSEMEVENT hEvtProcess; #ifdef LOG_ENABLED # if HC_ARCH_BITS == 64 uint32_t Alignment4; # endif volatile uint32_t cInMailboxesReady; #endif } BUSLOGIC, *PBUSLOGIC; /** Register offsets in the I/O port space. */ #define BUSLOGIC_REGISTER_CONTROL 0 /**< Writeonly */ /** Fields for the control register. */ # define BL_CTRL_RSBUS RT_BIT(4) /* Reset SCSI Bus. */ # define BL_CTRL_RINT RT_BIT(5) /* Reset Interrupt. */ # define BL_CTRL_RSOFT RT_BIT(6) /* Soft Reset. */ # define BL_CTRL_RHARD RT_BIT(7) /* Hard Reset. */ #define BUSLOGIC_REGISTER_STATUS 0 /**< Readonly */ /** Fields for the status register. */ # define BL_STAT_CMDINV RT_BIT(0) /* Command Invalid. */ # define BL_STAT_DIRRDY RT_BIT(2) /* Data In Register Ready. */ # define BL_STAT_CPRBSY RT_BIT(3) /* Command/Parameter Out Register Busy. */ # define BL_STAT_HARDY RT_BIT(4) /* Host Adapter Ready. */ # define BL_STAT_INREQ RT_BIT(5) /* Initialization Required. */ # define BL_STAT_DFAIL RT_BIT(6) /* Diagnostic Failure. */ # define BL_STAT_DACT RT_BIT(7) /* Diagnistic Active. */ #define BUSLOGIC_REGISTER_COMMAND 1 /**< Writeonly */ #define BUSLOGIC_REGISTER_DATAIN 1 /**< Readonly */ #define BUSLOGIC_REGISTER_INTERRUPT 2 /**< Readonly */ /** Fields for the interrupt register. */ # define BL_INTR_IMBL RT_BIT(0) /* Incoming Mailbox Loaded. */ # define BL_INTR_OMBR RT_BIT(1) /* Outgoing Mailbox Available. */ # define BL_INTR_CMDC RT_BIT(2) /* Command Complete. */ # define BL_INTR_RSTS RT_BIT(3) /* SCSO Bus Reset State. */ # define BL_INTR_INTV RT_BIT(7) /* Interrupt Valid. */ #define BUSLOGIC_REGISTER_GEOMETRY 3 /* Readonly */ # define BL_GEOM_XLATEN RT_BIT(7) /* Extended geometry translation enabled. */ /** Structure for the INQUIRE_PCI_HOST_ADAPTER_INFORMATION reply. */ typedef struct ReplyInquirePCIHostAdapterInformation { uint8_t IsaIOPort; uint8_t IRQ; unsigned char LowByteTerminated : 1; unsigned char HighByteTerminated : 1; unsigned char uReserved : 2; /* Reserved. */ unsigned char JP1 : 1; /* Whatever that means. */ unsigned char JP2 : 1; /* Whatever that means. */ unsigned char JP3 : 1; /* Whatever that means. */ /** Whether the provided info is valid. */ unsigned char InformationIsValid: 1; uint8_t uReserved2; /* Reserved. */ } ReplyInquirePCIHostAdapterInformation, *PReplyInquirePCIHostAdapterInformation; AssertCompileSize(ReplyInquirePCIHostAdapterInformation, 4); /** Structure for the INQUIRE_CONFIGURATION reply. */ typedef struct ReplyInquireConfiguration { unsigned char uReserved1 : 5; bool fDmaChannel5 : 1; bool fDmaChannel6 : 1; bool fDmaChannel7 : 1; bool fIrqChannel9 : 1; bool fIrqChannel10 : 1; bool fIrqChannel11 : 1; bool fIrqChannel12 : 1; unsigned char uReserved2 : 1; bool fIrqChannel14 : 1; bool fIrqChannel15 : 1; unsigned char uReserved3 : 1; unsigned char uHostAdapterId : 4; unsigned char uReserved4 : 4; } ReplyInquireConfiguration, *PReplyInquireConfiguration; AssertCompileSize(ReplyInquireConfiguration, 3); /** Structure for the INQUIRE_SETUP_INFORMATION reply. */ typedef struct ReplyInquireSetupInformationSynchronousValue { unsigned char uOffset : 4; unsigned char uTransferPeriod : 3; bool fSynchronous : 1; }ReplyInquireSetupInformationSynchronousValue, *PReplyInquireSetupInformationSynchronousValue; AssertCompileSize(ReplyInquireSetupInformationSynchronousValue, 1); typedef struct ReplyInquireSetupInformation { bool fSynchronousInitiationEnabled : 1; bool fParityCheckingEnabled : 1; unsigned char uReserved1 : 6; uint8_t uBusTransferRate; uint8_t uPreemptTimeOnBus; uint8_t uTimeOffBus; uint8_t cMailbox; Addr24 MailboxAddress; ReplyInquireSetupInformationSynchronousValue SynchronousValuesId0To7[8]; uint8_t uDisconnectPermittedId0To7; uint8_t uSignature; uint8_t uCharacterD; uint8_t uHostBusType; uint8_t uWideTransferPermittedId0To7; uint8_t uWideTransfersActiveId0To7; ReplyInquireSetupInformationSynchronousValue SynchronousValuesId8To15[8]; uint8_t uDisconnectPermittedId8To15; uint8_t uReserved2; uint8_t uWideTransferPermittedId8To15; uint8_t uWideTransfersActiveId8To15; } ReplyInquireSetupInformation, *PReplyInquireSetupInformation; AssertCompileSize(ReplyInquireSetupInformation, 34); /** Structure for the INQUIRE_EXTENDED_SETUP_INFORMATION. */ #pragma pack(1) typedef struct ReplyInquireExtendedSetupInformation { uint8_t uBusType; uint8_t uBiosAddress; uint16_t u16ScatterGatherLimit; uint8_t cMailbox; uint32_t uMailboxAddressBase; unsigned char uReserved1 : 2; bool fFastEISA : 1; unsigned char uReserved2 : 3; bool fLevelSensitiveInterrupt : 1; unsigned char uReserved3 : 1; unsigned char aFirmwareRevision[3]; bool fHostWideSCSI : 1; bool fHostDifferentialSCSI : 1; bool fHostSupportsSCAM : 1; bool fHostUltraSCSI : 1; bool fHostSmartTermination : 1; unsigned char uReserved4 : 3; } ReplyInquireExtendedSetupInformation, *PReplyInquireExtendedSetupInformation; AssertCompileSize(ReplyInquireExtendedSetupInformation, 14); #pragma pack() /** Structure for the INITIALIZE EXTENDED MAILBOX request. */ #pragma pack(1) typedef struct RequestInitializeExtendedMailbox { /** Number of mailboxes in guest memory. */ uint8_t cMailbox; /** Physical address of the first mailbox. */ uint32_t uMailboxBaseAddress; } RequestInitializeExtendedMailbox, *PRequestInitializeExtendedMailbox; AssertCompileSize(RequestInitializeExtendedMailbox, 5); #pragma pack() /** Structure for the INITIALIZE MAILBOX request. */ typedef struct { /** Number of mailboxes to set up. */ uint8_t cMailbox; /** Physical address of the first mailbox. */ Addr24 aMailboxBaseAddr; } RequestInitMbx, *PRequestInitMbx; AssertCompileSize(RequestInitMbx, 4); /** * Structure of a mailbox in guest memory. * The incoming and outgoing mailbox have the same size * but the incoming one has some more fields defined which * are marked as reserved in the outgoing one. * The last field is also different from the type. * For outgoing mailboxes it is the action and * for incoming ones the completion status code for the task. * We use one structure for both types. */ typedef struct Mailbox32 { /** Physical address of the CCB structure in the guest memory. */ uint32_t u32PhysAddrCCB; /** Type specific data. */ union { /** For outgoing mailboxes. */ struct { /** Reserved */ uint8_t uReserved[3]; /** Action code. */ uint8_t uActionCode; } out; /** For incoming mailboxes. */ struct { /** The host adapter status after finishing the request. */ uint8_t uHostAdapterStatus; /** The status of the device which executed the request after executing it. */ uint8_t uTargetDeviceStatus; /** Reserved. */ uint8_t uReserved; /** The completion status code of the request. */ uint8_t uCompletionCode; } in; } u; } Mailbox32, *PMailbox32; AssertCompileSize(Mailbox32, 8); /** Old style 24-bit mailbox entry. */ typedef struct Mailbox24 { /** Mailbox command (incoming) or state (outgoing). */ uint8_t uCmdState; /** Physical address of the CCB structure in the guest memory. */ Addr24 aPhysAddrCCB; } Mailbox24, *PMailbox24; AssertCompileSize(Mailbox24, 4); /** * Action codes for outgoing mailboxes. */ enum BUSLOGIC_MAILBOX_OUTGOING_ACTION { BUSLOGIC_MAILBOX_OUTGOING_ACTION_FREE = 0x00, BUSLOGIC_MAILBOX_OUTGOING_ACTION_START_COMMAND = 0x01, BUSLOGIC_MAILBOX_OUTGOING_ACTION_ABORT_COMMAND = 0x02 }; /** * Completion codes for incoming mailboxes. */ enum BUSLOGIC_MAILBOX_INCOMING_COMPLETION { BUSLOGIC_MAILBOX_INCOMING_COMPLETION_FREE = 0x00, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITHOUT_ERROR = 0x01, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_ABORTED = 0x02, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_ABORTED_NOT_FOUND = 0x03, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITH_ERROR = 0x04, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_INVALID_CCB = 0x05 }; /** * Host adapter status for incoming mailboxes. */ enum BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS { BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_CMD_COMPLETED = 0x00, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_LINKED_CMD_COMPLETED = 0x0a, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_LINKED_CMD_COMPLETED_WITH_FLAG = 0x0b, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_DATA_UNDERUN = 0x0c, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_SCSI_SELECTION_TIMEOUT = 0x11, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_DATA_OVERRUN = 0x12, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_UNEXPECTED_BUS_FREE = 0x13, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_INVALID_BUS_PHASE_REQUESTED = 0x14, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_INVALID_OUTGOING_MAILBOX_ACTION_CODE = 0x15, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_INVALID_COMMAND_OPERATION_CODE = 0x16, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_LINKED_CCB_HAS_INVALID_LUN = 0x17, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_INVALID_COMMAND_PARAMETER = 0x1a, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_AUTO_REQUEST_SENSE_FAILED = 0x1b, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_TAGGED_QUEUING_MESSAGE_REJECTED = 0x1c, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_UNSUPPORTED_MESSAGE_RECEIVED = 0x1d, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_HOST_ADAPTER_HARDWARE_FAILED = 0x20, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_TARGET_FAILED_RESPONSE_TO_ATN = 0x21, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_HOST_ADAPTER_ASSERTED_RST = 0x22, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_OTHER_DEVICE_ASSERTED_RST = 0x23, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_TARGET_DEVICE_RECONNECTED_IMPROPERLY = 0x24, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_HOST_ADAPTER_ASSERTED_BUS_DEVICE_RESET = 0x25, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_ABORT_QUEUE_GENERATED = 0x26, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_HOST_ADAPTER_SOFTWARE_ERROR = 0x27, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_HOST_ADAPTER_HARDWARE_TIMEOUT_ERROR = 0x30, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_SCSI_PARITY_ERROR_DETECTED = 0x34 }; /** * Device status codes for incoming mailboxes. */ enum BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS { BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_OPERATION_GOOD = 0x00, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_CHECK_CONDITION = 0x02, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_DEVICE_BUSY = 0x08 }; /** * Opcode types for CCB. */ enum BUSLOGIC_CCB_OPCODE { BUSLOGIC_CCB_OPCODE_INITIATOR_CCB = 0x00, BUSLOGIC_CCB_OPCODE_TARGET_CCB = 0x01, BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_SCATTER_GATHER = 0x02, BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_DATA_LENGTH = 0x03, BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_SCATTER_GATHER = 0x04, BUSLOGIC_CCB_OPCODE_BUS_DEVICE_RESET = 0x81 }; /** * Data transfer direction. */ enum BUSLOGIC_CCB_DIRECTION { BUSLOGIC_CCB_DIRECTION_UNKNOWN = 0x00, BUSLOGIC_CCB_DIRECTION_IN = 0x01, BUSLOGIC_CCB_DIRECTION_OUT = 0x02, BUSLOGIC_CCB_DIRECTION_NO_DATA = 0x03 }; /** * The command control block for a SCSI request. */ typedef struct CCB32 { /** Opcode. */ uint8_t uOpcode; /** Reserved */ unsigned char uReserved1 : 3; /** Data direction for the request. */ unsigned char uDataDirection : 2; /** Whether the request is tag queued. */ bool fTagQueued : 1; /** Queue tag mode. */ unsigned char uQueueTag : 2; /** Length of the SCSI CDB. */ uint8_t cbCDB; /** Sense data length. */ uint8_t cbSenseData; /** Data length. */ uint32_t cbData; /** Data pointer. * This points to the data region or a scatter gather list based on the opcode. */ uint32_t u32PhysAddrData; /** Reserved. */ uint8_t uReserved2[2]; /** Host adapter status. */ uint8_t uHostAdapterStatus; /** Device adapter status. */ uint8_t uDeviceStatus; /** The device the request is sent to. */ uint8_t uTargetId; /**The LUN in the device. */ unsigned char uLogicalUnit : 5; /** Legacy tag. */ bool fLegacyTagEnable : 1; /** Legacy queue tag. */ unsigned char uLegacyQueueTag : 2; /** The SCSI CDB. (A CDB can be 12 bytes long.) */ uint8_t abCDB[12]; /** Reserved. */ uint8_t uReserved3[6]; /** Sense data pointer. */ uint32_t u32PhysAddrSenseData; } CCB32, *PCCB32; AssertCompileSize(CCB32, 40); /** * The 24-bit command control block. */ typedef struct CCB24 { /** Opcode. */ uint8_t uOpcode; /** The LUN in the device. */ unsigned char uLogicalUnit : 3; /** Data direction for the request. */ unsigned char uDataDirection : 2; /** The target device ID. */ unsigned char uTargetId : 3; /** Length of the SCSI CDB. */ uint8_t cbCDB; /** Sense data length. */ uint8_t cbSenseData; /** Data length. */ Len24 acbData; /** Data pointer. * This points to the data region or a scatter gather list based on the opc */ Addr24 aPhysAddrData; /** Pointer to next CCB for linked commands. */ Addr24 aPhysAddrLink; /** Command linking identifier. */ uint8_t uLinkId; /** Host adapter status. */ uint8_t uHostAdapterStatus; /** Device adapter status. */ uint8_t uDeviceStatus; /** Two unused bytes. */ uint8_t aReserved[2]; /** The SCSI CDB. (A CDB can be 12 bytes long.) */ uint8_t abCDB[12]; } CCB24, *PCCB24; AssertCompileSize(CCB24, 30); /** * The common 24-bit/32-bit command control block. The 32-bit CCB is laid out * such that many fields are in the same location as in the older 24-bit CCB. */ typedef struct CCBC { /** Opcode. */ uint8_t uOpcode; /** The LUN in the device. */ unsigned char uPad1 : 3; /** Data direction for the request. */ unsigned char uDataDirection : 2; /** The target device ID. */ unsigned char uPad2 : 3; /** Length of the SCSI CDB. */ uint8_t cbCDB; /** Sense data length. */ uint8_t cbSenseData; uint8_t aPad1[10]; /** Host adapter status. */ uint8_t uHostAdapterStatus; /** Device adapter status. */ uint8_t uDeviceStatus; uint8_t aPad2[2]; /** The SCSI CDB (up to 12 bytes). */ uint8_t abCDB[12]; } CCBC, *PCCBC; AssertCompileSize(CCBC, 30); /* Make sure that the 24-bit/32-bit/common CCB offsets match. */ AssertCompileMemberOffset(CCBC, cbCDB, 2); AssertCompileMemberOffset(CCB24, cbCDB, 2); AssertCompileMemberOffset(CCB32, cbCDB, 2); AssertCompileMemberOffset(CCBC, uHostAdapterStatus, 14); AssertCompileMemberOffset(CCB24, uHostAdapterStatus, 14); AssertCompileMemberOffset(CCB32, uHostAdapterStatus, 14); AssertCompileMemberOffset(CCBC, abCDB, 18); AssertCompileMemberOffset(CCB24, abCDB, 18); AssertCompileMemberOffset(CCB32, abCDB, 18); /** A union of all CCB types (24-bit/32-bit/common). */ typedef union CCBU { CCB32 n; /**< New 32-bit CCB. */ CCB24 o; /**< Old 24-bit CCB. */ CCBC c; /**< Common CCB subset. */ } CCBU, *PCCBU; /** 32-bit scatter-gather list entry. */ typedef struct SGE32 { uint32_t cbSegment; uint32_t u32PhysAddrSegmentBase; } SGE32, *PSGE32; AssertCompileSize(SGE32, 8); /** 24-bit scatter-gather list entry. */ typedef struct SGE24 { Len24 acbSegment; Addr24 aPhysAddrSegmentBase; } SGE24, *PSGE24; AssertCompileSize(SGE24, 6); /** * The structure for the "Execute SCSI Command" command. */ typedef struct ESCMD { /** Data length. */ uint32_t cbData; /** Data pointer. */ uint32_t u32PhysAddrData; /** The device the request is sent to. */ uint8_t uTargetId; /** The LUN in the device. */ uint8_t uLogicalUnit; /** Reserved */ unsigned char uReserved1 : 3; /** Data direction for the request. */ unsigned char uDataDirection : 2; /** Reserved */ unsigned char uReserved2 : 3; /** Length of the SCSI CDB. */ uint8_t cbCDB; /** The SCSI CDB. (A CDB can be 12 bytes long.) */ uint8_t abCDB[12]; } ESCMD, *PESCMD; AssertCompileSize(ESCMD, 24); /** * Task state for a CCB request. */ typedef struct BUSLOGICTASKSTATE { /** Next in the redo list. */ PBUSLOGICTASKSTATE pRedoNext; /** Device this task is assigned to. */ R3PTRTYPE(PBUSLOGICDEVICE) pTargetDeviceR3; /** The command control block from the guest. */ CCBU CommandControlBlockGuest; /** Mailbox read from guest memory. */ Mailbox32 MailboxGuest; /** The SCSI request we pass to the underlying SCSI engine. */ PDMSCSIREQUEST PDMScsiRequest; /** Data buffer segment */ RTSGSEG DataSeg; /** Pointer to the R3 sense buffer. */ uint8_t *pbSenseBuffer; /** Flag whether this is a request from the BIOS. */ bool fBIOS; /** 24-bit request flag (default is 32-bit). */ bool fIs24Bit; /** S/G entry size (depends on the above flag). */ uint8_t cbSGEntry; } BUSLOGICTASKSTATE; #ifndef VBOX_DEVICE_STRUCT_TESTCASE #define PDMIBASE_2_PBUSLOGICDEVICE(pInterface) ( (PBUSLOGICDEVICE)((uintptr_t)(pInterface) - RT_OFFSETOF(BUSLOGICDEVICE, IBase)) ) #define PDMISCSIPORT_2_PBUSLOGICDEVICE(pInterface) ( (PBUSLOGICDEVICE)((uintptr_t)(pInterface) - RT_OFFSETOF(BUSLOGICDEVICE, ISCSIPort)) ) #define PDMILEDPORTS_2_PBUSLOGICDEVICE(pInterface) ( (PBUSLOGICDEVICE)((uintptr_t)(pInterface) - RT_OFFSETOF(BUSLOGICDEVICE, ILed)) ) #define PDMIBASE_2_PBUSLOGIC(pInterface) ( (PBUSLOGIC)((uintptr_t)(pInterface) - RT_OFFSETOF(BUSLOGIC, IBase)) ) #define PDMILEDPORTS_2_PBUSLOGIC(pInterface) ( (PBUSLOGIC)((uintptr_t)(pInterface) - RT_OFFSETOF(BUSLOGIC, ILeds)) ) /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static int buslogicR3RegisterISARange(PBUSLOGIC pBusLogic, uint8_t uBaseCode); /** * Assert IRQ line of the BusLogic adapter. * * @returns nothing. * @param pBusLogic Pointer to the BusLogic device instance. * @param fSuppressIrq Flag to suppress IRQ generation regardless of fIRQEnabled * @param uFlag Type of interrupt being generated. */ static void buslogicSetInterrupt(PBUSLOGIC pBusLogic, bool fSuppressIrq, uint8_t uIrqType) { LogFlowFunc(("pBusLogic=%#p\n", pBusLogic)); /* The CMDC interrupt has priority over IMBL and OMBR. */ if (uIrqType & (BL_INTR_IMBL | BL_INTR_OMBR)) { if (!(pBusLogic->regInterrupt & BL_INTR_CMDC)) pBusLogic->regInterrupt |= uIrqType; /* Report now. */ else pBusLogic->uPendingIntr |= uIrqType; /* Report later. */ } else if (uIrqType & BL_INTR_CMDC) { AssertMsg(pBusLogic->regInterrupt == 0 || pBusLogic->regInterrupt == (BL_INTR_INTV | BL_INTR_CMDC), ("regInterrupt=%02X\n", pBusLogic->regInterrupt)); pBusLogic->regInterrupt |= uIrqType; } else AssertMsgFailed(("Invalid interrupt state!\n")); pBusLogic->regInterrupt |= BL_INTR_INTV; if (pBusLogic->fIRQEnabled && !fSuppressIrq) PDMDevHlpPCISetIrq(pBusLogic->CTX_SUFF(pDevIns), 0, 1); } /** * Deasserts the interrupt line of the BusLogic adapter. * * @returns nothing * @param pBuslogic Pointer to the BusLogic device instance. */ static void buslogicClearInterrupt(PBUSLOGIC pBusLogic) { LogFlowFunc(("pBusLogic=%#p, clearing %#02x (pending %#02x)\n", pBusLogic, pBusLogic->regInterrupt, pBusLogic->uPendingIntr)); pBusLogic->regInterrupt = 0; PDMDevHlpPCISetIrq(pBusLogic->CTX_SUFF(pDevIns), 0, 0); /* If there's another pending interrupt, report it now. */ if (pBusLogic->uPendingIntr) { buslogicSetInterrupt(pBusLogic, false, pBusLogic->uPendingIntr); pBusLogic->uPendingIntr = 0; } } #if defined(IN_RING3) /** * Advances the mailbox pointer to the next slot. */ DECLINLINE(void) buslogicR3OutgoingMailboxAdvance(PBUSLOGIC pBusLogic) { pBusLogic->uMailboxOutgoingPositionCurrent = (pBusLogic->uMailboxOutgoingPositionCurrent + 1) % pBusLogic->cMailbox; } /** * Initialize local RAM of host adapter with default values. * * @returns nothing. * @param pBusLogic. */ static void buslogicR3InitializeLocalRam(PBUSLOGIC pBusLogic) { /* * These values are mostly from what I think is right * looking at the dmesg output from a Linux guest inside * a VMware server VM. * * So they don't have to be right :) */ memset(pBusLogic->LocalRam.u8View, 0, sizeof(HostAdapterLocalRam)); pBusLogic->LocalRam.structured.autoSCSIData.fLevelSensitiveInterrupt = true; pBusLogic->LocalRam.structured.autoSCSIData.fParityCheckingEnabled = true; pBusLogic->LocalRam.structured.autoSCSIData.fExtendedTranslation = true; /* Same as in geometry register. */ pBusLogic->LocalRam.structured.autoSCSIData.u16DeviceEnabledMask = ~0; /* All enabled. Maybe mask out non present devices? */ pBusLogic->LocalRam.structured.autoSCSIData.u16WidePermittedMask = ~0; pBusLogic->LocalRam.structured.autoSCSIData.u16FastPermittedMask = ~0; pBusLogic->LocalRam.structured.autoSCSIData.u16SynchronousPermittedMask = ~0; pBusLogic->LocalRam.structured.autoSCSIData.u16DisconnectPermittedMask = ~0; pBusLogic->LocalRam.structured.autoSCSIData.fStrictRoundRobinMode = pBusLogic->fStrictRoundRobinMode; pBusLogic->LocalRam.structured.autoSCSIData.u16UltraPermittedMask = ~0; /** @todo calculate checksum? */ } /** * Do a hardware reset of the buslogic adapter. * * @returns VBox status code. * @param pBusLogic Pointer to the BusLogic device instance. * @param fResetIO Flag determining whether ISA I/O should be reset. */ static int buslogicR3HwReset(PBUSLOGIC pBusLogic, bool fResetIO) { LogFlowFunc(("pBusLogic=%#p\n", pBusLogic)); /* Reset registers to default values. */ pBusLogic->regStatus = BL_STAT_HARDY | BL_STAT_INREQ; pBusLogic->regGeometry = BL_GEOM_XLATEN; pBusLogic->uOperationCode = 0xff; /* No command executing. */ pBusLogic->iParameter = 0; pBusLogic->cbCommandParametersLeft = 0; pBusLogic->fIRQEnabled = true; pBusLogic->fStrictRoundRobinMode = false; pBusLogic->fExtendedLunCCBFormat = false; pBusLogic->uMailboxOutgoingPositionCurrent = 0; pBusLogic->uMailboxIncomingPositionCurrent = 0; /* Clear any active/pending interrupts. */ pBusLogic->uPendingIntr = 0; buslogicClearInterrupt(pBusLogic); /* Guest-initiated HBA reset does not affect ISA port I/O. */ if (fResetIO) { buslogicR3RegisterISARange(pBusLogic, pBusLogic->uDefaultISABaseCode); } buslogicR3InitializeLocalRam(pBusLogic); vboxscsiInitialize(&pBusLogic->VBoxSCSI); return VINF_SUCCESS; } #endif /* IN_RING3 */ /** * Resets the command state machine for the next command and notifies the guest. * * @returns nothing. * @param pBusLogic Pointer to the BusLogic device instance * @param fSuppressIrq Flag to suppress IRQ generation regardless of current state */ static void buslogicCommandComplete(PBUSLOGIC pBusLogic, bool fSuppressIrq) { LogFlowFunc(("pBusLogic=%#p\n", pBusLogic)); pBusLogic->fUseLocalRam = false; pBusLogic->regStatus |= BL_STAT_HARDY; pBusLogic->iReply = 0; /* Modify I/O address does not generate an interrupt. */ if (pBusLogic->uOperationCode != BUSLOGICCOMMAND_EXECUTE_MAILBOX_COMMAND) { /* Notify that the command is complete. */ pBusLogic->regStatus &= ~BL_STAT_DIRRDY; buslogicSetInterrupt(pBusLogic, fSuppressIrq, BL_INTR_CMDC); } pBusLogic->uOperationCode = 0xff; pBusLogic->iParameter = 0; } #if defined(IN_RING3) /** * Initiates a hard reset which was issued from the guest. * * @returns nothing * @param pBusLogic Pointer to the BusLogic device instance. * @param fHardReset Flag initiating a hard (vs. soft) reset. */ static void buslogicR3InitiateReset(PBUSLOGIC pBusLogic, bool fHardReset) { LogFlowFunc(("pBusLogic=%#p fHardReset=%d\n", pBusLogic, fHardReset)); buslogicR3HwReset(pBusLogic, false); if (fHardReset) { /* Set the diagnostic active bit in the status register and clear the ready state. */ pBusLogic->regStatus |= BL_STAT_DACT; pBusLogic->regStatus &= ~BL_STAT_HARDY; /* Remember when the guest initiated a reset (after we're done resetting). */ pBusLogic->u64ResetTime = PDMDevHlpTMTimeVirtGetNano(pBusLogic->CTX_SUFF(pDevIns)); } } /** * Send a mailbox with set status codes to the guest. * * @returns nothing. * @param pBusLogic Pointer to the BusLogic device instance. * @param pTaskState Pointer to the task state with the mailbox to send. * @param uHostAdapterStatus The host adapter status code to set. * @param uDeviceStatus The target device status to set. * @param uMailboxCompletionCode Completion status code to set in the mailbox. */ static void buslogicR3SendIncomingMailbox(PBUSLOGIC pBusLogic, PBUSLOGICTASKSTATE pTaskState, uint8_t uHostAdapterStatus, uint8_t uDeviceStatus, uint8_t uMailboxCompletionCode) { pTaskState->MailboxGuest.u.in.uHostAdapterStatus = uHostAdapterStatus; pTaskState->MailboxGuest.u.in.uTargetDeviceStatus = uDeviceStatus; pTaskState->MailboxGuest.u.in.uCompletionCode = uMailboxCompletionCode; int rc = PDMCritSectEnter(&pBusLogic->CritSectIntr, VINF_SUCCESS); AssertRC(rc); RTGCPHYS GCPhysAddrMailboxIncoming = pBusLogic->GCPhysAddrMailboxIncomingBase + ( pBusLogic->uMailboxIncomingPositionCurrent * (pTaskState->fIs24Bit ? sizeof(Mailbox24) : sizeof(Mailbox32)) ); if (uMailboxCompletionCode != BUSLOGIC_MAILBOX_INCOMING_COMPLETION_ABORTED_NOT_FOUND) { RTGCPHYS GCPhysAddrCCB = pTaskState->MailboxGuest.u32PhysAddrCCB; LogFlowFunc(("Completing CCB %RGp hstat=%u, dstat=%u, outgoing mailbox at %RGp\n", GCPhysAddrCCB, uHostAdapterStatus, uDeviceStatus, GCPhysAddrMailboxIncoming)); /* Update CCB. */ pTaskState->CommandControlBlockGuest.c.uHostAdapterStatus = uHostAdapterStatus; pTaskState->CommandControlBlockGuest.c.uDeviceStatus = uDeviceStatus; /* Rewrite CCB up to the CDB; perhaps more than necessary. */ PDMDevHlpPCIPhysWrite(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrCCB, &pTaskState->CommandControlBlockGuest, RT_OFFSETOF(CCBC, abCDB)); } # ifdef RT_STRICT uint8_t uCode; unsigned uCodeOffs = pTaskState->fIs24Bit ? RT_OFFSETOF(Mailbox24, uCmdState) : RT_OFFSETOF(Mailbox32, u.out.uActionCode); PDMDevHlpPhysRead(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrMailboxIncoming + uCodeOffs, &uCode, sizeof(uCode)); Assert(uCode == BUSLOGIC_MAILBOX_INCOMING_COMPLETION_FREE); # endif /* Update mailbox. */ if (pTaskState->fIs24Bit) { Mailbox24 Mbx24; Mbx24.uCmdState = pTaskState->MailboxGuest.u.in.uCompletionCode; U32_TO_ADDR(Mbx24.aPhysAddrCCB, pTaskState->MailboxGuest.u32PhysAddrCCB); Log(("24-bit mailbox: completion code=%u, CCB at %RGp\n", Mbx24.uCmdState, (RTGCPHYS)ADDR_TO_U32(Mbx24.aPhysAddrCCB))); PDMDevHlpPCIPhysWrite(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrMailboxIncoming, &Mbx24, sizeof(Mailbox24)); } else { Log(("32-bit mailbox: completion code=%u, CCB at %RGp\n", pTaskState->MailboxGuest.u.in.uCompletionCode, (RTGCPHYS)pTaskState->MailboxGuest.u32PhysAddrCCB)); PDMDevHlpPCIPhysWrite(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrMailboxIncoming, &pTaskState->MailboxGuest, sizeof(Mailbox32)); } /* Advance to next mailbox position. */ pBusLogic->uMailboxIncomingPositionCurrent++; if (pBusLogic->uMailboxIncomingPositionCurrent >= pBusLogic->cMailbox) pBusLogic->uMailboxIncomingPositionCurrent = 0; # ifdef LOG_ENABLED ASMAtomicIncU32(&pBusLogic->cInMailboxesReady); # endif buslogicSetInterrupt(pBusLogic, false, BL_INTR_IMBL); PDMCritSectLeave(&pBusLogic->CritSectIntr); } # ifdef LOG_ENABLED /** * Dumps the content of a mailbox for debugging purposes. * * @return nothing * @param pMailbox The mailbox to dump. * @param fOutgoing true if dumping the outgoing state. * false if dumping the incoming state. */ static void buslogicR3DumpMailboxInfo(PMailbox32 pMailbox, bool fOutgoing) { Log(("%s: Dump for %s mailbox:\n", __FUNCTION__, fOutgoing ? "outgoing" : "incoming")); Log(("%s: u32PhysAddrCCB=%#x\n", __FUNCTION__, pMailbox->u32PhysAddrCCB)); if (fOutgoing) { Log(("%s: uActionCode=%u\n", __FUNCTION__, pMailbox->u.out.uActionCode)); } else { Log(("%s: uHostAdapterStatus=%u\n", __FUNCTION__, pMailbox->u.in.uHostAdapterStatus)); Log(("%s: uTargetDeviceStatus=%u\n", __FUNCTION__, pMailbox->u.in.uTargetDeviceStatus)); Log(("%s: uCompletionCode=%u\n", __FUNCTION__, pMailbox->u.in.uCompletionCode)); } } /** * Dumps the content of a command control block for debugging purposes. * * @returns nothing. * @param pCCB Pointer to the command control block to dump. * @param fIs24BitCCB Flag to determine CCB format. */ static void buslogicR3DumpCCBInfo(PCCBU pCCB, bool fIs24BitCCB) { Log(("%s: Dump for %s Command Control Block:\n", __FUNCTION__, fIs24BitCCB ? "24-bit" : "32-bit")); Log(("%s: uOpCode=%#x\n", __FUNCTION__, pCCB->c.uOpcode)); Log(("%s: uDataDirection=%u\n", __FUNCTION__, pCCB->c.uDataDirection)); Log(("%s: cbCDB=%u\n", __FUNCTION__, pCCB->c.cbCDB)); Log(("%s: cbSenseData=%u\n", __FUNCTION__, pCCB->c.cbSenseData)); Log(("%s: uHostAdapterStatus=%u\n", __FUNCTION__, pCCB->c.uHostAdapterStatus)); Log(("%s: uDeviceStatus=%u\n", __FUNCTION__, pCCB->c.uDeviceStatus)); if (fIs24BitCCB) { Log(("%s: cbData=%u\n", __FUNCTION__, LEN_TO_U32(pCCB->o.acbData))); Log(("%s: PhysAddrData=%#x\n", __FUNCTION__, ADDR_TO_U32(pCCB->o.aPhysAddrData))); Log(("%s: uTargetId=%u\n", __FUNCTION__, pCCB->o.uTargetId)); Log(("%s: uLogicalUnit=%u\n", __FUNCTION__, pCCB->o.uLogicalUnit)); } else { Log(("%s: cbData=%u\n", __FUNCTION__, pCCB->n.cbData)); Log(("%s: PhysAddrData=%#x\n", __FUNCTION__, pCCB->n.u32PhysAddrData)); Log(("%s: uTargetId=%u\n", __FUNCTION__, pCCB->n.uTargetId)); Log(("%s: uLogicalUnit=%u\n", __FUNCTION__, pCCB->n.uLogicalUnit)); Log(("%s: fTagQueued=%d\n", __FUNCTION__, pCCB->n.fTagQueued)); Log(("%s: uQueueTag=%u\n", __FUNCTION__, pCCB->n.uQueueTag)); Log(("%s: fLegacyTagEnable=%u\n", __FUNCTION__, pCCB->n.fLegacyTagEnable)); Log(("%s: uLegacyQueueTag=%u\n", __FUNCTION__, pCCB->n.uLegacyQueueTag)); Log(("%s: PhysAddrSenseData=%#x\n", __FUNCTION__, pCCB->n.u32PhysAddrSenseData)); } Log(("%s: uCDB[0]=%#x\n", __FUNCTION__, pCCB->c.abCDB[0])); for (int i = 1; i < pCCB->c.cbCDB; i++) Log(("%s: uCDB[%d]=%u\n", __FUNCTION__, i, pCCB->c.abCDB[i])); } # endif /* LOG_ENABLED */ /** * Allocate data buffer. * * @param pTaskState Pointer to the task state. * @param GCSGList Guest physical address of S/G list. * @param cEntries Number of list entries to read. * @param pSGEList Pointer to 32-bit S/G list storage. */ static void buslogicR3ReadSGEntries(PBUSLOGICTASKSTATE pTaskState, RTGCPHYS GCSGList, uint32_t cEntries, SGE32 *pSGEList) { PPDMDEVINS pDevIns = pTaskState->CTX_SUFF(pTargetDevice)->CTX_SUFF(pBusLogic)->CTX_SUFF(pDevIns); SGE24 aSGE24[32]; Assert(cEntries <= RT_ELEMENTS(aSGE24)); /* Read the S/G entries. Convert 24-bit entries to 32-bit format. */ if (pTaskState->fIs24Bit) { Log2(("Converting %u 24-bit S/G entries to 32-bit\n", cEntries)); PDMDevHlpPhysRead(pDevIns, GCSGList, &aSGE24, cEntries * sizeof(SGE24)); for (uint32_t i = 0; i < cEntries; ++i) { pSGEList[i].cbSegment = LEN_TO_U32(aSGE24[i].acbSegment); pSGEList[i].u32PhysAddrSegmentBase = ADDR_TO_U32(aSGE24[i].aPhysAddrSegmentBase); } } else PDMDevHlpPhysRead(pDevIns, GCSGList, pSGEList, cEntries * sizeof(SGE32)); } /** * Allocate data buffer. * * @returns VBox status code. * @param pTaskState Pointer to the task state. */ static int buslogicR3DataBufferAlloc(PBUSLOGICTASKSTATE pTaskState) { PPDMDEVINS pDevIns = pTaskState->CTX_SUFF(pTargetDevice)->CTX_SUFF(pBusLogic)->CTX_SUFF(pDevIns); uint32_t cbDataCCB; uint32_t u32PhysAddrCCB; /* Extract the data length and physical address from the CCB. */ if (pTaskState->fIs24Bit) { u32PhysAddrCCB = ADDR_TO_U32(pTaskState->CommandControlBlockGuest.o.aPhysAddrData); cbDataCCB = LEN_TO_U32(pTaskState->CommandControlBlockGuest.o.acbData); } else { u32PhysAddrCCB = pTaskState->CommandControlBlockGuest.n.u32PhysAddrData; cbDataCCB = pTaskState->CommandControlBlockGuest.n.cbData; } if ( (pTaskState->CommandControlBlockGuest.c.uDataDirection != BUSLOGIC_CCB_DIRECTION_NO_DATA) && cbDataCCB) { /** @todo Check following assumption and what residual means. */ /* * The BusLogic adapter can handle two different data buffer formats. * The first one is that the data pointer entry in the CCB points to * the buffer directly. In second mode the data pointer points to a * scatter gather list which describes the buffer. */ if ( (pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_SCATTER_GATHER) || (pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_SCATTER_GATHER)) { uint32_t cScatterGatherGCRead; uint32_t iScatterGatherEntry; SGE32 aScatterGatherReadGC[32]; /* A buffer for scatter gather list entries read from guest memory. */ uint32_t cScatterGatherGCLeft = cbDataCCB / pTaskState->cbSGEntry; RTGCPHYS GCPhysAddrScatterGatherCurrent = u32PhysAddrCCB; size_t cbDataToTransfer = 0; /* Count number of bytes to transfer. */ do { cScatterGatherGCRead = (cScatterGatherGCLeft < RT_ELEMENTS(aScatterGatherReadGC)) ? cScatterGatherGCLeft : RT_ELEMENTS(aScatterGatherReadGC); cScatterGatherGCLeft -= cScatterGatherGCRead; buslogicR3ReadSGEntries(pTaskState, GCPhysAddrScatterGatherCurrent, cScatterGatherGCRead, aScatterGatherReadGC); for (iScatterGatherEntry = 0; iScatterGatherEntry < cScatterGatherGCRead; iScatterGatherEntry++) { RTGCPHYS GCPhysAddrDataBase; Log(("%s: iScatterGatherEntry=%u\n", __FUNCTION__, iScatterGatherEntry)); GCPhysAddrDataBase = (RTGCPHYS)aScatterGatherReadGC[iScatterGatherEntry].u32PhysAddrSegmentBase; cbDataToTransfer += aScatterGatherReadGC[iScatterGatherEntry].cbSegment; Log(("%s: GCPhysAddrDataBase=%RGp cbDataToTransfer=%u\n", __FUNCTION__, GCPhysAddrDataBase, aScatterGatherReadGC[iScatterGatherEntry].cbSegment)); } /* Set address to the next entries to read. */ GCPhysAddrScatterGatherCurrent += cScatterGatherGCRead * pTaskState->cbSGEntry; } while (cScatterGatherGCLeft > 0); Log(("%s: cbDataToTransfer=%d\n", __FUNCTION__, cbDataToTransfer)); /* Allocate buffer */ pTaskState->DataSeg.cbSeg = cbDataToTransfer; pTaskState->DataSeg.pvSeg = RTMemAlloc(pTaskState->DataSeg.cbSeg); if (!pTaskState->DataSeg.pvSeg) return VERR_NO_MEMORY; /* Copy the data if needed */ if ( (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_OUT) || (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_UNKNOWN)) { cScatterGatherGCLeft = cbDataCCB / pTaskState->cbSGEntry; GCPhysAddrScatterGatherCurrent = u32PhysAddrCCB; uint8_t *pbData = (uint8_t *)pTaskState->DataSeg.pvSeg; do { cScatterGatherGCRead = (cScatterGatherGCLeft < RT_ELEMENTS(aScatterGatherReadGC)) ? cScatterGatherGCLeft : RT_ELEMENTS(aScatterGatherReadGC); cScatterGatherGCLeft -= cScatterGatherGCRead; buslogicR3ReadSGEntries(pTaskState, GCPhysAddrScatterGatherCurrent, cScatterGatherGCRead, aScatterGatherReadGC); for (iScatterGatherEntry = 0; iScatterGatherEntry < cScatterGatherGCRead; iScatterGatherEntry++) { RTGCPHYS GCPhysAddrDataBase; Log(("%s: iScatterGatherEntry=%u\n", __FUNCTION__, iScatterGatherEntry)); GCPhysAddrDataBase = (RTGCPHYS)aScatterGatherReadGC[iScatterGatherEntry].u32PhysAddrSegmentBase; cbDataToTransfer = aScatterGatherReadGC[iScatterGatherEntry].cbSegment; Log(("%s: GCPhysAddrDataBase=%RGp cbDataToTransfer=%u\n", __FUNCTION__, GCPhysAddrDataBase, cbDataToTransfer)); PDMDevHlpPhysRead(pDevIns, GCPhysAddrDataBase, pbData, cbDataToTransfer); pbData += cbDataToTransfer; } /* Set address to the next entries to read. */ GCPhysAddrScatterGatherCurrent += cScatterGatherGCRead * pTaskState->cbSGEntry; } while (cScatterGatherGCLeft > 0); } } else if ( pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB || pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_DATA_LENGTH) { /* The buffer is not scattered. */ RTGCPHYS GCPhysAddrDataBase = u32PhysAddrCCB; AssertMsg(GCPhysAddrDataBase != 0, ("Physical address is 0\n")); pTaskState->DataSeg.cbSeg = cbDataCCB; pTaskState->DataSeg.pvSeg = RTMemAlloc(pTaskState->DataSeg.cbSeg); if (!pTaskState->DataSeg.pvSeg) return VERR_NO_MEMORY; Log(("Non scattered buffer:\n")); Log(("u32PhysAddrData=%#x\n", u32PhysAddrCCB)); Log(("cbData=%u\n", cbDataCCB)); Log(("GCPhysAddrDataBase=0x%RGp\n", GCPhysAddrDataBase)); /* Copy the data into the buffer. */ PDMDevHlpPhysRead(pDevIns, GCPhysAddrDataBase, pTaskState->DataSeg.pvSeg, pTaskState->DataSeg.cbSeg); } } return VINF_SUCCESS; } /** * Free allocated resources used for the scatter gather list. * * @returns nothing. * @param pTaskState Pointer to the task state. */ static void buslogicR3DataBufferFree(PBUSLOGICTASKSTATE pTaskState) { PPDMDEVINS pDevIns = pTaskState->CTX_SUFF(pTargetDevice)->CTX_SUFF(pBusLogic)->CTX_SUFF(pDevIns); uint32_t cbDataCCB; uint32_t u32PhysAddrCCB; /* Extract the data length and physical address from the CCB. */ if (pTaskState->fIs24Bit) { u32PhysAddrCCB = ADDR_TO_U32(pTaskState->CommandControlBlockGuest.o.aPhysAddrData); cbDataCCB = LEN_TO_U32(pTaskState->CommandControlBlockGuest.o.acbData); } else { u32PhysAddrCCB = pTaskState->CommandControlBlockGuest.n.u32PhysAddrData; cbDataCCB = pTaskState->CommandControlBlockGuest.n.cbData; } #if 1 /* Hack for NT 10/91: A CCB describes a 2K buffer, but TEST UNIT READY is executed. This command * returns no data, hence the buffer must be left alone! */ if (pTaskState->CommandControlBlockGuest.c.abCDB[0] == 0) cbDataCCB = 0; #endif LogFlowFunc(("pTaskState=%#p cbDataCCB=%u direction=%u cbSeg=%u\n", pTaskState, cbDataCCB, pTaskState->CommandControlBlockGuest.c.uDataDirection, pTaskState->DataSeg.cbSeg)); if ( (cbDataCCB > 0) && ( (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_IN) || (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_UNKNOWN))) { if ( (pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_SCATTER_GATHER) || (pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_SCATTER_GATHER)) { uint32_t cScatterGatherGCRead; uint32_t iScatterGatherEntry; SGE32 aScatterGatherReadGC[32]; /* Number of scatter gather list entries read from guest memory. */ uint32_t cScatterGatherGCLeft = cbDataCCB / pTaskState->cbSGEntry; RTGCPHYS GCPhysAddrScatterGatherCurrent = u32PhysAddrCCB; uint8_t *pbData = (uint8_t *)pTaskState->DataSeg.pvSeg; do { cScatterGatherGCRead = (cScatterGatherGCLeft < RT_ELEMENTS(aScatterGatherReadGC)) ? cScatterGatherGCLeft : RT_ELEMENTS(aScatterGatherReadGC); cScatterGatherGCLeft -= cScatterGatherGCRead; buslogicR3ReadSGEntries(pTaskState, GCPhysAddrScatterGatherCurrent, cScatterGatherGCRead, aScatterGatherReadGC); for (iScatterGatherEntry = 0; iScatterGatherEntry < cScatterGatherGCRead; iScatterGatherEntry++) { RTGCPHYS GCPhysAddrDataBase; size_t cbDataToTransfer; Log(("%s: iScatterGatherEntry=%u\n", __FUNCTION__, iScatterGatherEntry)); GCPhysAddrDataBase = (RTGCPHYS)aScatterGatherReadGC[iScatterGatherEntry].u32PhysAddrSegmentBase; cbDataToTransfer = aScatterGatherReadGC[iScatterGatherEntry].cbSegment; Log(("%s: GCPhysAddrDataBase=%RGp cbDataToTransfer=%u\n", __FUNCTION__, GCPhysAddrDataBase, cbDataToTransfer)); PDMDevHlpPCIPhysWrite(pDevIns, GCPhysAddrDataBase, pbData, cbDataToTransfer); pbData += cbDataToTransfer; } /* Set address to the next entries to read. */ GCPhysAddrScatterGatherCurrent += cScatterGatherGCRead * pTaskState->cbSGEntry; } while (cScatterGatherGCLeft > 0); } else if ( pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB || pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_DATA_LENGTH) { /* The buffer is not scattered. */ RTGCPHYS GCPhysAddrDataBase = u32PhysAddrCCB; AssertMsg(GCPhysAddrDataBase != 0, ("Physical address is 0\n")); Log(("Non-scattered buffer:\n")); Log(("u32PhysAddrData=%#x\n", u32PhysAddrCCB)); Log(("cbData=%u\n", cbDataCCB)); Log(("GCPhysAddrDataBase=0x%RGp\n", GCPhysAddrDataBase)); /* Copy the data into the guest memory. */ PDMDevHlpPCIPhysWrite(pDevIns, GCPhysAddrDataBase, pTaskState->DataSeg.pvSeg, pTaskState->DataSeg.cbSeg); } } /* Update residual data length. */ if ( (pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_DATA_LENGTH) || (pTaskState->CommandControlBlockGuest.c.uOpcode == BUSLOGIC_CCB_OPCODE_INITIATOR_CCB_RESIDUAL_SCATTER_GATHER)) { uint32_t cbResidual; /** @todo we need to get the actual transfer length from the VSCSI layer?! */ cbResidual = 0; //LEN_TO_U32(pTaskState->CCBGuest.acbData) - ???; if (pTaskState->fIs24Bit) U32_TO_LEN(pTaskState->CommandControlBlockGuest.o.acbData, cbResidual); else pTaskState->CommandControlBlockGuest.n.cbData = cbResidual; } RTMemFree(pTaskState->DataSeg.pvSeg); pTaskState->DataSeg.pvSeg = NULL; pTaskState->DataSeg.cbSeg = 0; } /** Convert sense buffer length taking into account shortcut values. */ static uint32_t buslogicR3ConvertSenseBufferLength(uint32_t cbSense) { /* Convert special sense buffer length values. */ if (cbSense == 0) cbSense = 14; /* 0 means standard 14-byte buffer. */ else if (cbSense == 1) cbSense = 0; /* 1 means no sense data. */ else if (cbSense < 8) AssertMsgFailed(("Reserved cbSense value of %d used!\n", cbSense)); return cbSense; } /** * Free the sense buffer. * * @returns nothing. * @param pTaskState Pointer to the task state. * @param fCopy If sense data should be copied to guest memory. */ static void buslogicR3SenseBufferFree(PBUSLOGICTASKSTATE pTaskState, bool fCopy) { uint32_t cbSenseBuffer; cbSenseBuffer = buslogicR3ConvertSenseBufferLength(pTaskState->CommandControlBlockGuest.c.cbSenseData); /* Copy the sense buffer into guest memory if requested. */ if (fCopy && cbSenseBuffer) { PPDMDEVINS pDevIns = pTaskState->CTX_SUFF(pTargetDevice)->CTX_SUFF(pBusLogic)->CTX_SUFF(pDevIns); RTGCPHYS GCPhysAddrSenseBuffer; /* With 32-bit CCBs, the (optional) sense buffer physical address is provided separately. * On the other hand, with 24-bit CCBs, the sense buffer is simply located at the end of * the CCB, right after the variable-length CDB. */ if (pTaskState->fIs24Bit) { GCPhysAddrSenseBuffer = pTaskState->MailboxGuest.u32PhysAddrCCB; GCPhysAddrSenseBuffer += pTaskState->CommandControlBlockGuest.c.cbCDB + RT_OFFSETOF(CCB24, abCDB); } else GCPhysAddrSenseBuffer = pTaskState->CommandControlBlockGuest.n.u32PhysAddrSenseData; Log3(("%s: sense buffer: %.*Rhxs\n", __FUNCTION__, cbSenseBuffer, pTaskState->pbSenseBuffer)); PDMDevHlpPCIPhysWrite(pDevIns, GCPhysAddrSenseBuffer, pTaskState->pbSenseBuffer, cbSenseBuffer); } RTMemFree(pTaskState->pbSenseBuffer); pTaskState->pbSenseBuffer = NULL; } /** * Alloc the sense buffer. * * @returns VBox status code. * @param pTaskState Pointer to the task state. * @note Current assumption is that the sense buffer is not scattered and does not cross a page boundary. */ static int buslogicR3SenseBufferAlloc(PBUSLOGICTASKSTATE pTaskState) { PPDMDEVINS pDevIns = pTaskState->CTX_SUFF(pTargetDevice)->CTX_SUFF(pBusLogic)->CTX_SUFF(pDevIns); uint32_t cbSenseBuffer; pTaskState->pbSenseBuffer = NULL; cbSenseBuffer = buslogicR3ConvertSenseBufferLength(pTaskState->CommandControlBlockGuest.c.cbSenseData); if (cbSenseBuffer) { pTaskState->pbSenseBuffer = (uint8_t *)RTMemAllocZ(cbSenseBuffer); if (!pTaskState->pbSenseBuffer) return VERR_NO_MEMORY; } return VINF_SUCCESS; } #endif /* IN_RING3 */ /** * Parses the command buffer and executes it. * * @returns VBox status code. * @param pBusLogic Pointer to the BusLogic device instance. */ static int buslogicProcessCommand(PBUSLOGIC pBusLogic) { int rc = VINF_SUCCESS; bool fSuppressIrq = false; LogFlowFunc(("pBusLogic=%#p\n", pBusLogic)); AssertMsg(pBusLogic->uOperationCode != 0xff, ("There is no command to execute\n")); switch (pBusLogic->uOperationCode) { case BUSLOGICCOMMAND_TEST_CMDC_INTERRUPT: /* Valid command, no reply. */ pBusLogic->cbReplyParametersLeft = 0; break; case BUSLOGICCOMMAND_INQUIRE_PCI_HOST_ADAPTER_INFORMATION: { PReplyInquirePCIHostAdapterInformation pReply = (PReplyInquirePCIHostAdapterInformation)pBusLogic->aReplyBuffer; memset(pReply, 0, sizeof(ReplyInquirePCIHostAdapterInformation)); /* It seems VMware does not provide valid information here too, lets do the same :) */ pReply->InformationIsValid = 0; pReply->IsaIOPort = pBusLogic->uISABaseCode; pReply->IRQ = PCIDevGetInterruptLine(&pBusLogic->dev); pBusLogic->cbReplyParametersLeft = sizeof(ReplyInquirePCIHostAdapterInformation); break; } case BUSLOGICCOMMAND_MODIFY_IO_ADDRESS: { /* Modify the ISA-compatible I/O port base. Note that this technically * violates the PCI spec, as this address is not reported through PCI. * However, it is required for compatibility with old drivers. */ #ifdef IN_RING3 Log(("ISA I/O for PCI (code %x)\n", pBusLogic->aCommandBuffer[0])); buslogicR3RegisterISARange(pBusLogic, pBusLogic->aCommandBuffer[0]); pBusLogic->cbReplyParametersLeft = 0; fSuppressIrq = true; break; #else AssertMsgFailed(("Must never get here!\n")); #endif } case BUSLOGICCOMMAND_INQUIRE_BOARD_ID: { /* The special option byte is important: If it is '0' or 'B', Windows NT drivers * for Adaptec AHA-154x may claim the adapter. The BusLogic drivers will claim * the adapter only when the byte is *not* '0' or 'B'. */ pBusLogic->aReplyBuffer[0] = 'A'; /* Firmware option bytes */ pBusLogic->aReplyBuffer[1] = 'A'; /* Special option byte */ /* We report version 5.07B. This reply will provide the first two digits. */ pBusLogic->aReplyBuffer[2] = '5'; /* Major version 5 */ pBusLogic->aReplyBuffer[3] = '0'; /* Minor version 0 */ pBusLogic->cbReplyParametersLeft = 4; /* Reply is 4 bytes long */ break; } case BUSLOGICCOMMAND_INQUIRE_FIRMWARE_VERSION_3RD_LETTER: { pBusLogic->aReplyBuffer[0] = '7'; pBusLogic->cbReplyParametersLeft = 1; break; } case BUSLOGICCOMMAND_INQUIRE_FIRMWARE_VERSION_LETTER: { pBusLogic->aReplyBuffer[0] = 'B'; pBusLogic->cbReplyParametersLeft = 1; break; } case BUSLOGICCOMMAND_SET_ADAPTER_OPTIONS: /* The parameter list length is determined by the first byte of the command buffer. */ if (pBusLogic->iParameter == 1) { /* First pass - set the number of following parameter bytes. */ pBusLogic->cbCommandParametersLeft = pBusLogic->aCommandBuffer[0]; Log(("Set HA options: %u bytes follow\n", pBusLogic->cbCommandParametersLeft)); } else { /* Second pass - process received data. */ Log(("Set HA options: received %u bytes\n", pBusLogic->aCommandBuffer[0])); /* We ignore the data - it only concerns the SCSI hardware protocol. */ } pBusLogic->cbReplyParametersLeft = 0; break; case BUSLOGICCOMMAND_EXECUTE_SCSI_COMMAND: /* The parameter list length is at least 12 bytes; the 12th byte determines * the number of additional CDB bytes that will follow. */ if (pBusLogic->iParameter == 12) { /* First pass - set the number of following CDB bytes. */ pBusLogic->cbCommandParametersLeft = pBusLogic->aCommandBuffer[11]; Log(("Execute SCSI cmd: %u more bytes follow\n", pBusLogic->cbCommandParametersLeft)); } else { PESCMD pCmd; /* Second pass - process received data. */ Log(("Execute SCSI cmd: received %u bytes\n", pBusLogic->aCommandBuffer[0])); pCmd = (PESCMD)pBusLogic->aCommandBuffer; Log(("Addr %08X, cbData %08X, cbCDB=%u\n", pCmd->u32PhysAddrData, pCmd->cbData, pCmd->cbCDB)); } // This is currently a dummy - just fails every command. pBusLogic->cbReplyParametersLeft = 4; pBusLogic->aReplyBuffer[0] = pBusLogic->aReplyBuffer[1] = 0; pBusLogic->aReplyBuffer[2] = 0x11; /* HBA status (timeout). */ pBusLogic->aReplyBuffer[3] = 0; /* Device status. */ break; case BUSLOGICCOMMAND_INQUIRE_HOST_ADAPTER_MODEL_NUMBER: { /* The reply length is set by the guest and is found in the first byte of the command buffer. */ pBusLogic->cbReplyParametersLeft = pBusLogic->aCommandBuffer[0]; memset(pBusLogic->aReplyBuffer, ' ', pBusLogic->cbReplyParametersLeft); const char aModelName[] = "958"; int cCharsToTransfer = (pBusLogic->cbReplyParametersLeft <= (sizeof(aModelName) - 1)) ? pBusLogic->cbReplyParametersLeft : sizeof(aModelName) - 1; for (int i = 0; i < cCharsToTransfer; i++) pBusLogic->aReplyBuffer[i] = aModelName[i]; break; } case BUSLOGICCOMMAND_INQUIRE_CONFIGURATION: { uint8_t uPciIrq = PCIDevGetInterruptLine(&pBusLogic->dev); pBusLogic->cbReplyParametersLeft = sizeof(ReplyInquireConfiguration); PReplyInquireConfiguration pReply = (PReplyInquireConfiguration)pBusLogic->aReplyBuffer; memset(pReply, 0, sizeof(ReplyInquireConfiguration)); pReply->uHostAdapterId = 7; /* The controller has always 7 as ID. */ pReply->fDmaChannel6 = 1; /* DMA channel 6 is a good default. */ /* The PCI IRQ is not necessarily representable in this structure. * If that is the case, the guest likely won't function correctly, * therefore we log a warning. */ switch (uPciIrq) { case 9: pReply->fIrqChannel9 = 1; break; case 10: pReply->fIrqChannel10 = 1; break; case 11: pReply->fIrqChannel11 = 1; break; case 12: pReply->fIrqChannel12 = 1; break; case 14: pReply->fIrqChannel14 = 1; break; case 15: pReply->fIrqChannel15 = 1; break; default: LogRel(("Warning: PCI IRQ %d cannot be represented as ISA!\n", uPciIrq)); break; } break; } case BUSLOGICCOMMAND_INQUIRE_EXTENDED_SETUP_INFORMATION: { /* Some Adaptec AHA-154x drivers (e.g. OS/2) execute this command and expect * it to fail. If it succeeds, the drivers refuse to load. However, some newer * Adaptec 154x models supposedly support it too?? */ /* The reply length is set by the guest and is found in the first byte of the command buffer. */ pBusLogic->cbReplyParametersLeft = pBusLogic->aCommandBuffer[0]; PReplyInquireExtendedSetupInformation pReply = (PReplyInquireExtendedSetupInformation)pBusLogic->aReplyBuffer; memset(pReply, 0, sizeof(ReplyInquireExtendedSetupInformation)); /** @todo should this reflect the RAM contents (AutoSCSIRam)? */ pReply->uBusType = 'E'; /* EISA style */ pReply->u16ScatterGatherLimit = 8192; pReply->cMailbox = pBusLogic->cMailbox; pReply->uMailboxAddressBase = (uint32_t)pBusLogic->GCPhysAddrMailboxOutgoingBase; pReply->fLevelSensitiveInterrupt = true; pReply->fHostWideSCSI = true; pReply->fHostUltraSCSI = true; memcpy(pReply->aFirmwareRevision, "07B", sizeof(pReply->aFirmwareRevision)); break; } case BUSLOGICCOMMAND_INQUIRE_SETUP_INFORMATION: { /* The reply length is set by the guest and is found in the first byte of the command buffer. */ pBusLogic->cbReplyParametersLeft = pBusLogic->aCommandBuffer[0]; PReplyInquireSetupInformation pReply = (PReplyInquireSetupInformation)pBusLogic->aReplyBuffer; memset(pReply, 0, sizeof(ReplyInquireSetupInformation)); pReply->fSynchronousInitiationEnabled = true; pReply->fParityCheckingEnabled = true; pReply->cMailbox = pBusLogic->cMailbox; U32_TO_ADDR(pReply->MailboxAddress, pBusLogic->GCPhysAddrMailboxOutgoingBase); pReply->uSignature = 'B'; /* The 'D' signature prevents Adaptec's OS/2 drivers from getting too * friendly with BusLogic hardware and upsetting the HBA state. */ pReply->uCharacterD = 'D'; /* BusLogic model. */ pReply->uHostBusType = 'F'; /* PCI bus. */ break; } case BUSLOGICCOMMAND_FETCH_HOST_ADAPTER_LOCAL_RAM: { /* * First element in the command buffer contains start offset to read from * and second one the number of bytes to read. */ uint8_t uOffset = pBusLogic->aCommandBuffer[0]; pBusLogic->cbReplyParametersLeft = pBusLogic->aCommandBuffer[1]; pBusLogic->fUseLocalRam = true; pBusLogic->iReply = uOffset; break; } case BUSLOGICCOMMAND_INITIALIZE_MAILBOX: { PRequestInitMbx pRequest = (PRequestInitMbx)pBusLogic->aCommandBuffer; pBusLogic->fMbxIs24Bit = true; pBusLogic->cMailbox = pRequest->cMailbox; pBusLogic->GCPhysAddrMailboxOutgoingBase = (RTGCPHYS)ADDR_TO_U32(pRequest->aMailboxBaseAddr); /* The area for incoming mailboxes is right after the last entry of outgoing mailboxes. */ pBusLogic->GCPhysAddrMailboxIncomingBase = pBusLogic->GCPhysAddrMailboxOutgoingBase + (pBusLogic->cMailbox * sizeof(Mailbox24)); Log(("GCPhysAddrMailboxOutgoingBase=%RGp\n", pBusLogic->GCPhysAddrMailboxOutgoingBase)); Log(("GCPhysAddrMailboxIncomingBase=%RGp\n", pBusLogic->GCPhysAddrMailboxIncomingBase)); Log(("cMailboxes=%u (24-bit mode)\n", pBusLogic->cMailbox)); LogRel(("Initialized 24-bit mailbox, %d entries at %08x\n", pRequest->cMailbox, ADDR_TO_U32(pRequest->aMailboxBaseAddr))); pBusLogic->regStatus &= ~BL_STAT_INREQ; pBusLogic->cbReplyParametersLeft = 0; break; } case BUSLOGICCOMMAND_INITIALIZE_EXTENDED_MAILBOX: { PRequestInitializeExtendedMailbox pRequest = (PRequestInitializeExtendedMailbox)pBusLogic->aCommandBuffer; pBusLogic->fMbxIs24Bit = false; pBusLogic->cMailbox = pRequest->cMailbox; pBusLogic->GCPhysAddrMailboxOutgoingBase = (RTGCPHYS)pRequest->uMailboxBaseAddress; /* The area for incoming mailboxes is right after the last entry of outgoing mailboxes. */ pBusLogic->GCPhysAddrMailboxIncomingBase = (RTGCPHYS)pRequest->uMailboxBaseAddress + (pBusLogic->cMailbox * sizeof(Mailbox32)); Log(("GCPhysAddrMailboxOutgoingBase=%RGp\n", pBusLogic->GCPhysAddrMailboxOutgoingBase)); Log(("GCPhysAddrMailboxIncomingBase=%RGp\n", pBusLogic->GCPhysAddrMailboxIncomingBase)); Log(("cMailboxes=%u (32-bit mode)\n", pBusLogic->cMailbox)); LogRel(("Initialized 32-bit mailbox, %d entries at %08x\n", pRequest->cMailbox, pRequest->uMailboxBaseAddress)); pBusLogic->regStatus &= ~BL_STAT_INREQ; pBusLogic->cbReplyParametersLeft = 0; break; } case BUSLOGICCOMMAND_ENABLE_STRICT_ROUND_ROBIN_MODE: { if (pBusLogic->aCommandBuffer[0] == 0) pBusLogic->fStrictRoundRobinMode = false; else if (pBusLogic->aCommandBuffer[0] == 1) pBusLogic->fStrictRoundRobinMode = true; else AssertMsgFailed(("Invalid round robin mode %d\n", pBusLogic->aCommandBuffer[0])); pBusLogic->cbReplyParametersLeft = 0; break; } case BUSLOGICCOMMAND_SET_CCB_FORMAT: { if (pBusLogic->aCommandBuffer[0] == 0) pBusLogic->fExtendedLunCCBFormat = false; else if (pBusLogic->aCommandBuffer[0] == 1) pBusLogic->fExtendedLunCCBFormat = true; else AssertMsgFailed(("Invalid CCB format %d\n", pBusLogic->aCommandBuffer[0])); pBusLogic->cbReplyParametersLeft = 0; break; } case BUSLOGICCOMMAND_INQUIRE_INSTALLED_DEVICES_ID_0_TO_7: /* This is supposed to send TEST UNIT READY to each target/LUN. * We cheat and skip that, since we already know what's attached */ memset(pBusLogic->aReplyBuffer, 0, 8); for (int i = 0; i < 8; ++i) { if (pBusLogic->aDeviceStates[i].fPresent) pBusLogic->aReplyBuffer[i] = 1; } pBusLogic->aReplyBuffer[7] = 0; /* HA hardcoded at ID 7. */ pBusLogic->cbReplyParametersLeft = 8; break; case BUSLOGICCOMMAND_INQUIRE_INSTALLED_DEVICES_ID_8_TO_15: /* See note about cheating above. */ memset(pBusLogic->aReplyBuffer, 0, 8); for (int i = 0; i < 8; ++i) { if (pBusLogic->aDeviceStates[i + 8].fPresent) pBusLogic->aReplyBuffer[i] = 1; } pBusLogic->cbReplyParametersLeft = 8; break; case BUSLOGICCOMMAND_INQUIRE_TARGET_DEVICES: { /* Each bit which is set in the 16bit wide variable means a present device. */ uint16_t u16TargetsPresentMask = 0; for (uint8_t i = 0; i < RT_ELEMENTS(pBusLogic->aDeviceStates); i++) { if (pBusLogic->aDeviceStates[i].fPresent) u16TargetsPresentMask |= (1 << i); } pBusLogic->aReplyBuffer[0] = (uint8_t)u16TargetsPresentMask; pBusLogic->aReplyBuffer[1] = (uint8_t)(u16TargetsPresentMask >> 8); pBusLogic->cbReplyParametersLeft = 2; break; } case BUSLOGICCOMMAND_INQUIRE_SYNCHRONOUS_PERIOD: { pBusLogic->cbReplyParametersLeft = pBusLogic->aCommandBuffer[0]; for (uint8_t i = 0; i < pBusLogic->cbReplyParametersLeft; i++) pBusLogic->aReplyBuffer[i] = 0; /** @todo Figure if we need something other here. It's not needed for the linux driver */ break; } case BUSLOGICCOMMAND_DISABLE_HOST_ADAPTER_INTERRUPT: { if (pBusLogic->aCommandBuffer[0] == 0) pBusLogic->fIRQEnabled = false; else pBusLogic->fIRQEnabled = true; /* No interrupt signaled regardless of enable/disable. */ fSuppressIrq = true; break; } case BUSLOGICCOMMAND_ECHO_COMMAND_DATA: { pBusLogic->aReplyBuffer[0] = pBusLogic->aCommandBuffer[0]; pBusLogic->cbReplyParametersLeft = 1; break; } case BUSLOGICCOMMAND_SET_PREEMPT_TIME_ON_BUS: { pBusLogic->cbReplyParametersLeft = 0; pBusLogic->LocalRam.structured.autoSCSIData.uBusOnDelay = pBusLogic->aCommandBuffer[0]; Log(("Bus-on time: %d\n", pBusLogic->aCommandBuffer[0])); break; } case BUSLOGICCOMMAND_SET_TIME_OFF_BUS: { pBusLogic->cbReplyParametersLeft = 0; pBusLogic->LocalRam.structured.autoSCSIData.uBusOffDelay = pBusLogic->aCommandBuffer[0]; Log(("Bus-off time: %d\n", pBusLogic->aCommandBuffer[0])); break; } case BUSLOGICCOMMAND_SET_BUS_TRANSFER_RATE: { pBusLogic->cbReplyParametersLeft = 0; pBusLogic->LocalRam.structured.autoSCSIData.uDMATransferRate = pBusLogic->aCommandBuffer[0]; Log(("Bus transfer rate: %02X\n", pBusLogic->aCommandBuffer[0])); break; } case BUSLOGICCOMMAND_WRITE_BUSMASTER_CHIP_FIFO: { RTGCPHYS GCPhysFifoBuf; Addr24 addr; pBusLogic->cbReplyParametersLeft = 0; addr.hi = pBusLogic->aCommandBuffer[0]; addr.mid = pBusLogic->aCommandBuffer[1]; addr.lo = pBusLogic->aCommandBuffer[2]; GCPhysFifoBuf = (RTGCPHYS)ADDR_TO_U32(addr); Log(("Write busmaster FIFO at: %04X\n", ADDR_TO_U32(addr))); PDMDevHlpPhysRead(pBusLogic->CTX_SUFF(pDevIns), GCPhysFifoBuf, &pBusLogic->LocalRam.u8View[64], 64); break; } case BUSLOGICCOMMAND_READ_BUSMASTER_CHIP_FIFO: { RTGCPHYS GCPhysFifoBuf; Addr24 addr; pBusLogic->cbReplyParametersLeft = 0; addr.hi = pBusLogic->aCommandBuffer[0]; addr.mid = pBusLogic->aCommandBuffer[1]; addr.lo = pBusLogic->aCommandBuffer[2]; GCPhysFifoBuf = (RTGCPHYS)ADDR_TO_U32(addr); Log(("Read busmaster FIFO at: %04X\n", ADDR_TO_U32(addr))); PDMDevHlpPCIPhysWrite(pBusLogic->CTX_SUFF(pDevIns), GCPhysFifoBuf, &pBusLogic->LocalRam.u8View[64], 64); break; } default: AssertMsgFailed(("Invalid command %#x\n", pBusLogic->uOperationCode)); case BUSLOGICCOMMAND_EXT_BIOS_INFO: case BUSLOGICCOMMAND_UNLOCK_MAILBOX: /* Commands valid for Adaptec 154xC which we don't handle since * we pretend being 154xB compatible. Just mark the command as invalid. */ Log(("Command %#x not valid for this adapter\n", pBusLogic->uOperationCode)); pBusLogic->cbReplyParametersLeft = 0; pBusLogic->regStatus |= BL_STAT_CMDINV; break; case BUSLOGICCOMMAND_EXECUTE_MAILBOX_COMMAND: /* Should be handled already. */ AssertMsgFailed(("Invalid mailbox execute state!\n")); } Log(("uOperationCode=%#x, cbReplyParametersLeft=%d\n", pBusLogic->uOperationCode, pBusLogic->cbReplyParametersLeft)); /* Set the data in ready bit in the status register in case the command has a reply. */ if (pBusLogic->cbReplyParametersLeft) pBusLogic->regStatus |= BL_STAT_DIRRDY; else if (!pBusLogic->cbCommandParametersLeft) buslogicCommandComplete(pBusLogic, fSuppressIrq); return rc; } /** * Read a register from the BusLogic adapter. * * @returns VBox status code. * @param pBusLogic Pointer to the BusLogic instance data. * @param iRegister The index of the register to read. * @param pu32 Where to store the register content. */ static int buslogicRegisterRead(PBUSLOGIC pBusLogic, unsigned iRegister, uint32_t *pu32) { int rc = VINF_SUCCESS; switch (iRegister) { case BUSLOGIC_REGISTER_STATUS: { *pu32 = pBusLogic->regStatus; /* If the diagnostic active bit is set, we are in a guest-initiated * hard reset. If the guest reads the status register and waits for * the host adapter ready bit to be set, we terminate the reset right * away. However, guests may also expect the reset condition to clear * automatically after a period of time, in which case we can't show * the DIAG bit at all. */ if (pBusLogic->regStatus & BL_STAT_DACT) { uint64_t u64AccessTime = PDMDevHlpTMTimeVirtGetNano(pBusLogic->CTX_SUFF(pDevIns)); pBusLogic->regStatus &= ~BL_STAT_DACT; pBusLogic->regStatus |= BL_STAT_HARDY; if (u64AccessTime - pBusLogic->u64ResetTime > BUSLOGIC_RESET_DURATION_NS) { /* If reset already expired, let the guest see that right away. */ *pu32 = pBusLogic->regStatus; pBusLogic->u64ResetTime = 0; } } break; } case BUSLOGIC_REGISTER_DATAIN: { if (pBusLogic->fUseLocalRam) *pu32 = pBusLogic->LocalRam.u8View[pBusLogic->iReply]; else *pu32 = pBusLogic->aReplyBuffer[pBusLogic->iReply]; /* Careful about underflow - guest can read data register even if * no data is available. */ if (pBusLogic->cbReplyParametersLeft) { pBusLogic->iReply++; pBusLogic->cbReplyParametersLeft--; if (!pBusLogic->cbReplyParametersLeft) { /* * Reply finished, set command complete bit, unset data-in ready bit and * interrupt the guest if enabled. */ buslogicCommandComplete(pBusLogic, false); } } LogFlowFunc(("data=%02x, iReply=%d, cbReplyParametersLeft=%u\n", *pu32, pBusLogic->iReply, pBusLogic->cbReplyParametersLeft)); break; } case BUSLOGIC_REGISTER_INTERRUPT: { *pu32 = pBusLogic->regInterrupt; break; } case BUSLOGIC_REGISTER_GEOMETRY: { *pu32 = pBusLogic->regGeometry; break; } default: *pu32 = UINT32_C(0xffffffff); } Log2(("%s: pu32=%p:{%.*Rhxs} iRegister=%d rc=%Rrc\n", __FUNCTION__, pu32, 1, pu32, iRegister, rc)); return rc; } /** * Write a value to a register. * * @returns VBox status code. * @param pBusLogic Pointer to the BusLogic instance data. * @param iRegister The index of the register to read. * @param uVal The value to write. */ static int buslogicRegisterWrite(PBUSLOGIC pBusLogic, unsigned iRegister, uint8_t uVal) { int rc = VINF_SUCCESS; switch (iRegister) { case BUSLOGIC_REGISTER_CONTROL: { if ((uVal & BL_CTRL_RHARD) || (uVal & BL_CTRL_RSOFT)) { #ifdef IN_RING3 bool fHardReset = !!(uVal & BL_CTRL_RHARD); LogRel(("BusLogic: %s reset\n", fHardReset ? "hard" : "soft")); buslogicR3InitiateReset(pBusLogic, fHardReset); #else rc = VINF_IOM_R3_IOPORT_WRITE; #endif break; } rc = PDMCritSectEnter(&pBusLogic->CritSectIntr, VINF_IOM_R3_IOPORT_WRITE); if (rc != VINF_SUCCESS) return rc; #ifdef LOG_ENABLED uint32_t cMailboxesReady = ASMAtomicXchgU32(&pBusLogic->cInMailboxesReady, 0); Log(("%u incoming mailboxes were ready when this interrupt was cleared\n", cMailboxesReady)); #endif if (uVal & BL_CTRL_RINT) buslogicClearInterrupt(pBusLogic); PDMCritSectLeave(&pBusLogic->CritSectIntr); break; } case BUSLOGIC_REGISTER_COMMAND: { /* Fast path for mailbox execution command. */ if ((uVal == BUSLOGICCOMMAND_EXECUTE_MAILBOX_COMMAND) && (pBusLogic->uOperationCode == 0xff)) { /* If there are no mailboxes configured, don't even try to do anything. */ if (pBusLogic->cMailbox) { ASMAtomicIncU32(&pBusLogic->cMailboxesReady); if (!ASMAtomicXchgBool(&pBusLogic->fNotificationSent, true)) { /* Send new notification to the queue. */ PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pBusLogic->CTX_SUFF(pNotifierQueue)); AssertMsg(pItem, ("Allocating item for queue failed\n")); PDMQueueInsert(pBusLogic->CTX_SUFF(pNotifierQueue), (PPDMQUEUEITEMCORE)pItem); } } return rc; } /* * Check if we are already fetch command parameters from the guest. * If not we initialize executing a new command. */ if (pBusLogic->uOperationCode == 0xff) { pBusLogic->uOperationCode = uVal; pBusLogic->iParameter = 0; /* Mark host adapter as busy and clear the invalid status bit. */ pBusLogic->regStatus &= ~(BL_STAT_HARDY | BL_STAT_CMDINV); /* Get the number of bytes for parameters from the command code. */ switch (pBusLogic->uOperationCode) { case BUSLOGICCOMMAND_TEST_CMDC_INTERRUPT: case BUSLOGICCOMMAND_INQUIRE_FIRMWARE_VERSION_LETTER: case BUSLOGICCOMMAND_INQUIRE_BOARD_ID: case BUSLOGICCOMMAND_INQUIRE_FIRMWARE_VERSION_3RD_LETTER: case BUSLOGICCOMMAND_INQUIRE_PCI_HOST_ADAPTER_INFORMATION: case BUSLOGICCOMMAND_INQUIRE_CONFIGURATION: case BUSLOGICCOMMAND_INQUIRE_INSTALLED_DEVICES_ID_0_TO_7: case BUSLOGICCOMMAND_INQUIRE_INSTALLED_DEVICES_ID_8_TO_15: case BUSLOGICCOMMAND_INQUIRE_TARGET_DEVICES: pBusLogic->cbCommandParametersLeft = 0; break; case BUSLOGICCOMMAND_MODIFY_IO_ADDRESS: case BUSLOGICCOMMAND_INQUIRE_EXTENDED_SETUP_INFORMATION: case BUSLOGICCOMMAND_INQUIRE_SETUP_INFORMATION: case BUSLOGICCOMMAND_INQUIRE_HOST_ADAPTER_MODEL_NUMBER: case BUSLOGICCOMMAND_ENABLE_STRICT_ROUND_ROBIN_MODE: case BUSLOGICCOMMAND_SET_CCB_FORMAT: case BUSLOGICCOMMAND_INQUIRE_SYNCHRONOUS_PERIOD: case BUSLOGICCOMMAND_DISABLE_HOST_ADAPTER_INTERRUPT: case BUSLOGICCOMMAND_ECHO_COMMAND_DATA: case BUSLOGICCOMMAND_SET_PREEMPT_TIME_ON_BUS: case BUSLOGICCOMMAND_SET_TIME_OFF_BUS: case BUSLOGICCOMMAND_SET_BUS_TRANSFER_RATE: pBusLogic->cbCommandParametersLeft = 1; break; case BUSLOGICCOMMAND_FETCH_HOST_ADAPTER_LOCAL_RAM: pBusLogic->cbCommandParametersLeft = 2; break; case BUSLOGICCOMMAND_READ_BUSMASTER_CHIP_FIFO: case BUSLOGICCOMMAND_WRITE_BUSMASTER_CHIP_FIFO: pBusLogic->cbCommandParametersLeft = 3; break; case BUSLOGICCOMMAND_INITIALIZE_MAILBOX: pBusLogic->cbCommandParametersLeft = sizeof(RequestInitMbx); break; case BUSLOGICCOMMAND_INITIALIZE_EXTENDED_MAILBOX: pBusLogic->cbCommandParametersLeft = sizeof(RequestInitializeExtendedMailbox); break; case BUSLOGICCOMMAND_SET_ADAPTER_OPTIONS: /* There must be at least one byte following this command. */ pBusLogic->cbCommandParametersLeft = 1; break; case BUSLOGICCOMMAND_EXECUTE_SCSI_COMMAND: /* 12 bytes + variable-length CDB. */ pBusLogic->cbCommandParametersLeft = 12; break; case BUSLOGICCOMMAND_EXT_BIOS_INFO: case BUSLOGICCOMMAND_UNLOCK_MAILBOX: /* Invalid commands. */ pBusLogic->cbCommandParametersLeft = 0; break; case BUSLOGICCOMMAND_EXECUTE_MAILBOX_COMMAND: /* Should not come here anymore. */ default: AssertMsgFailed(("Invalid operation code %#x\n", uVal)); } } else { #ifndef IN_RING3 /* This command must be executed in R3 as it rehooks the ISA I/O port. */ if (pBusLogic->uOperationCode == BUSLOGICCOMMAND_MODIFY_IO_ADDRESS) { rc = VINF_IOM_R3_IOPORT_WRITE; break; } #endif /* * The real adapter would set the Command register busy bit in the status register. * The guest has to wait until it is unset. * We don't need to do it because the guest does not continue execution while we are in this * function. */ pBusLogic->aCommandBuffer[pBusLogic->iParameter] = uVal; pBusLogic->iParameter++; pBusLogic->cbCommandParametersLeft--; } /* Start execution of command if there are no parameters left. */ if (!pBusLogic->cbCommandParametersLeft) { rc = buslogicProcessCommand(pBusLogic); AssertMsgRC(rc, ("Processing command failed rc=%Rrc\n", rc)); } break; } /* On BusLogic adapters, the interrupt and geometry registers are R/W. * That is different from Adaptec 154x where those are read only. */ case BUSLOGIC_REGISTER_INTERRUPT: pBusLogic->regInterrupt = uVal; break; case BUSLOGIC_REGISTER_GEOMETRY: pBusLogic->regGeometry = uVal; break; default: AssertMsgFailed(("Register not available\n")); rc = VERR_IOM_IOPORT_UNUSED; } return rc; } /** * Memory mapped I/O Handler for read operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param GCPhysAddr Physical address (in GC) where the read starts. * @param pv Where to store the result. * @param cb Number of bytes read. */ PDMBOTHCBDECL(int) buslogicMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { /* the linux driver does not make use of the MMIO area. */ AssertMsgFailed(("MMIO Read\n")); return VINF_SUCCESS; } /** * Memory mapped I/O Handler for write operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param GCPhysAddr Physical address (in GC) where the read starts. * @param pv Where to fetch the result. * @param cb Number of bytes to write. */ PDMBOTHCBDECL(int) buslogicMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { /* the linux driver does not make use of the MMIO area. */ AssertMsgFailed(("MMIO Write\n")); return VINF_SUCCESS; } /** * Port I/O Handler for IN operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param uPort Port number used for the IN operation. * @param pu32 Where to store the result. * @param cb Number of bytes read. */ PDMBOTHCBDECL(int) buslogicIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PBUSLOGIC pBusLogic = PDMINS_2_DATA(pDevIns, PBUSLOGIC); unsigned iRegister = Port % 4; Assert(cb == 1); return buslogicRegisterRead(pBusLogic, iRegister, pu32); } /** * Port I/O Handler for OUT operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param uPort Port number used for the IN operation. * @param u32 The value to output. * @param cb The value size in bytes. */ PDMBOTHCBDECL(int) buslogicIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PBUSLOGIC pBusLogic = PDMINS_2_DATA(pDevIns, PBUSLOGIC); int rc = VINF_SUCCESS; unsigned iRegister = Port % 4; uint8_t uVal = (uint8_t)u32; Assert(cb == 1); rc = buslogicRegisterWrite(pBusLogic, iRegister, (uint8_t)uVal); Log2(("#%d %s: pvUser=%#p cb=%d u32=%#x Port=%#x rc=%Rrc\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, u32, Port, rc)); return rc; } #ifdef IN_RING3 static int buslogicR3PrepareBIOSSCSIRequest(PBUSLOGIC pBusLogic) { int rc; PBUSLOGICTASKSTATE pTaskState; uint32_t uTargetDevice; rc = RTMemCacheAllocEx(pBusLogic->hTaskCache, (void **)&pTaskState); AssertMsgRCReturn(rc, ("Getting task from cache failed rc=%Rrc\n", rc), rc); pTaskState->fBIOS = true; rc = vboxscsiSetupRequest(&pBusLogic->VBoxSCSI, &pTaskState->PDMScsiRequest, &uTargetDevice); AssertMsgRCReturn(rc, ("Setting up SCSI request failed rc=%Rrc\n", rc), rc); pTaskState->PDMScsiRequest.pvUser = pTaskState; pTaskState->CTX_SUFF(pTargetDevice) = &pBusLogic->aDeviceStates[uTargetDevice]; if (!pTaskState->CTX_SUFF(pTargetDevice)->fPresent) { /* Device is not present. */ AssertMsg(pTaskState->PDMScsiRequest.pbCDB[0] == SCSI_INQUIRY, ("Device is not present but command is not inquiry\n")); SCSIINQUIRYDATA ScsiInquiryData; memset(&ScsiInquiryData, 0, sizeof(SCSIINQUIRYDATA)); ScsiInquiryData.u5PeripheralDeviceType = SCSI_INQUIRY_DATA_PERIPHERAL_DEVICE_TYPE_UNKNOWN; ScsiInquiryData.u3PeripheralQualifier = SCSI_INQUIRY_DATA_PERIPHERAL_QUALIFIER_NOT_CONNECTED_NOT_SUPPORTED; memcpy(pBusLogic->VBoxSCSI.pbBuf, &ScsiInquiryData, 5); rc = vboxscsiRequestFinished(&pBusLogic->VBoxSCSI, &pTaskState->PDMScsiRequest, SCSI_STATUS_OK); AssertMsgRCReturn(rc, ("Finishing BIOS SCSI request failed rc=%Rrc\n", rc), rc); RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); } else { LogFlowFunc(("before increment %u\n", pTaskState->CTX_SUFF(pTargetDevice)->cOutstandingRequests)); ASMAtomicIncU32(&pTaskState->CTX_SUFF(pTargetDevice)->cOutstandingRequests); LogFlowFunc(("after increment %u\n", pTaskState->CTX_SUFF(pTargetDevice)->cOutstandingRequests)); rc = pTaskState->CTX_SUFF(pTargetDevice)->pDrvSCSIConnector->pfnSCSIRequestSend(pTaskState->CTX_SUFF(pTargetDevice)->pDrvSCSIConnector, &pTaskState->PDMScsiRequest); AssertMsgRC(rc, ("Sending request to SCSI layer failed rc=%Rrc\n", rc)); } return rc; } /** * Port I/O Handler for IN operations - BIOS port. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param uPort Port number used for the IN operation. * @param pu32 Where to store the result. * @param cb Number of bytes read. */ static DECLCALLBACK(int) buslogicR3BiosIoPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { int rc; PBUSLOGIC pBusLogic = PDMINS_2_DATA(pDevIns, PBUSLOGIC); Assert(cb == 1); rc = vboxscsiReadRegister(&pBusLogic->VBoxSCSI, (Port - BUSLOGIC_BIOS_IO_PORT), pu32); //Log2(("%s: pu32=%p:{%.*Rhxs} iRegister=%d rc=%Rrc\n", // __FUNCTION__, pu32, 1, pu32, (Port - BUSLOGIC_BIOS_IO_PORT), rc)); return rc; } /** * Port I/O Handler for OUT operations - BIOS port. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param uPort Port number used for the IN operation. * @param u32 The value to output. * @param cb The value size in bytes. */ static DECLCALLBACK(int) buslogicR3BiosIoPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { int rc; PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); Log2(("#%d %s: pvUser=%#p cb=%d u32=%#x Port=%#x\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, u32, Port)); /* * If there is already a request form the BIOS pending ignore this write * because it should not happen. */ if (ASMAtomicReadBool(&pThis->fBiosReqPending)) return VINF_SUCCESS; Assert(cb == 1); rc = vboxscsiWriteRegister(&pThis->VBoxSCSI, (Port - BUSLOGIC_BIOS_IO_PORT), (uint8_t)u32); if (rc == VERR_MORE_DATA) { ASMAtomicXchgBool(&pThis->fBiosReqPending, true); /* Send a notifier to the PDM queue that there are pending requests. */ PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pThis->CTX_SUFF(pNotifierQueue)); AssertMsg(pItem, ("Allocating item for queue failed\n")); PDMQueueInsert(pThis->CTX_SUFF(pNotifierQueue), (PPDMQUEUEITEMCORE)pItem); rc = VINF_SUCCESS; } else if (RT_FAILURE(rc)) AssertMsgFailed(("Writing BIOS register failed %Rrc\n", rc)); return VINF_SUCCESS; } /** * Port I/O Handler for primary port range OUT string operations. * @see FNIOMIOPORTOUTSTRING for details. */ static DECLCALLBACK(int) buslogicR3BiosIoPortWriteStr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint8_t const *pbSrc, uint32_t *pcTransfers, unsigned cb) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); Log2(("#%d %s: pvUser=%#p cb=%d Port=%#x\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, Port)); /* * If there is already a request form the BIOS pending ignore this write * because it should not happen. */ if (ASMAtomicReadBool(&pThis->fBiosReqPending)) return VINF_SUCCESS; int rc = vboxscsiWriteString(pDevIns, &pThis->VBoxSCSI, (Port - BUSLOGIC_BIOS_IO_PORT), pbSrc, pcTransfers, cb); if (rc == VERR_MORE_DATA) { ASMAtomicXchgBool(&pThis->fBiosReqPending, true); /* Send a notifier to the PDM queue that there are pending requests. */ PPDMQUEUEITEMCORE pItem = PDMQueueAlloc(pThis->CTX_SUFF(pNotifierQueue)); AssertMsg(pItem, ("Allocating item for queue failed\n")); PDMQueueInsert(pThis->CTX_SUFF(pNotifierQueue), (PPDMQUEUEITEMCORE)pItem); } else if (RT_FAILURE(rc)) AssertMsgFailed(("Writing BIOS register failed %Rrc\n", rc)); return VINF_SUCCESS; } /** * Port I/O Handler for primary port range IN string operations. * @see FNIOMIOPORTINSTRING for details. */ static DECLCALLBACK(int) buslogicR3BiosIoPortReadStr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint8_t *pbDst, uint32_t *pcTransfers, unsigned cb) { PBUSLOGIC pBusLogic = PDMINS_2_DATA(pDevIns, PBUSLOGIC); LogFlowFunc(("#%d %s: pvUser=%#p cb=%d Port=%#x\n", pDevIns->iInstance, __FUNCTION__, pvUser, cb, Port)); return vboxscsiReadString(pDevIns, &pBusLogic->VBoxSCSI, (Port - BUSLOGIC_BIOS_IO_PORT), pbDst, pcTransfers, cb); } /** * Update the ISA I/O range. * * @returns nothing. * @param pBusLogic Pointer to the BusLogic device instance. * @param uBaseCode Encoded ISA I/O base; only low 3 bits are used. */ static int buslogicR3RegisterISARange(PBUSLOGIC pBusLogic, uint8_t uBaseCode) { uint8_t uCode = uBaseCode & MAX_ISA_BASE; uint16_t uNewBase = g_aISABases[uCode]; int rc = VINF_SUCCESS; LogFlowFunc(("ISA I/O code %02X, new base %X\n", uBaseCode, uNewBase)); /* Check if the same port range is already registered. */ if (uNewBase != pBusLogic->IOISABase) { /* Unregister the old range, if any. */ if (pBusLogic->IOISABase) rc = PDMDevHlpIOPortDeregister(pBusLogic->CTX_SUFF(pDevIns), pBusLogic->IOISABase, 4); if (RT_SUCCESS(rc)) { pBusLogic->IOISABase = 0; /* First mark as unregistered. */ pBusLogic->uISABaseCode = ISA_BASE_DISABLED; if (uNewBase) { /* Register the new range if requested. */ rc = PDMDevHlpIOPortRegister(pBusLogic->CTX_SUFF(pDevIns), uNewBase, 4, NULL, buslogicIOPortWrite, buslogicIOPortRead, NULL, NULL, "BusLogic ISA"); if (RT_SUCCESS(rc)) { pBusLogic->IOISABase = uNewBase; pBusLogic->uISABaseCode = uCode; } } } if (RT_SUCCESS(rc)) { if (uNewBase) { Log(("ISA I/O base: %x\n", uNewBase)); LogRel(("BusLogic: ISA I/O base: %x\n", uNewBase)); } else { Log(("Disabling ISA I/O ports.\n")); LogRel(("BusLogic: ISA I/O disabled\n")); } } } return rc; } static void buslogicR3WarningDiskFull(PPDMDEVINS pDevIns) { int rc; LogRel(("BusLogic#%d: Host disk full\n", pDevIns->iInstance)); rc = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevBusLogic_DISKFULL", N_("Host system reported disk full. VM execution is suspended. You can resume after freeing some space")); AssertRC(rc); } static void buslogicR3WarningFileTooBig(PPDMDEVINS pDevIns) { int rc; LogRel(("BusLogic#%d: File too big\n", pDevIns->iInstance)); rc = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevBusLogic_FILETOOBIG", N_("Host system reported that the file size limit of the host file system has been exceeded. VM execution is suspended. You need to move your virtual hard disk to a filesystem which allows bigger files")); AssertRC(rc); } static void buslogicR3WarningISCSI(PPDMDEVINS pDevIns) { int rc; LogRel(("BusLogic#%d: iSCSI target unavailable\n", pDevIns->iInstance)); rc = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevBusLogic_ISCSIDOWN", N_("The iSCSI target has stopped responding. VM execution is suspended. You can resume when it is available again")); AssertRC(rc); } static void buslogicR3WarningUnknown(PPDMDEVINS pDevIns, int rc) { int rc2; LogRel(("BusLogic#%d: Unknown but recoverable error has occurred (rc=%Rrc)\n", pDevIns->iInstance, rc)); rc2 = PDMDevHlpVMSetRuntimeError(pDevIns, VMSETRTERR_FLAGS_SUSPEND | VMSETRTERR_FLAGS_NO_WAIT, "DevBusLogic_UNKNOWN", N_("An unknown but recoverable I/O error has occurred (rc=%Rrc). VM execution is suspended. You can resume when the error is fixed"), rc); AssertRC(rc2); } static void buslogicR3RedoSetWarning(PBUSLOGIC pThis, int rc) { if (rc == VERR_DISK_FULL) buslogicR3WarningDiskFull(pThis->CTX_SUFF(pDevIns)); else if (rc == VERR_FILE_TOO_BIG) buslogicR3WarningFileTooBig(pThis->CTX_SUFF(pDevIns)); else if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED) { /* iSCSI connection abort (first error) or failure to reestablish * connection (second error). Pause VM. On resume we'll retry. */ buslogicR3WarningISCSI(pThis->CTX_SUFF(pDevIns)); } else if (rc != VERR_VD_DEK_MISSING) buslogicR3WarningUnknown(pThis->CTX_SUFF(pDevIns), rc); } static DECLCALLBACK(int) buslogicR3MmioMap(PPCIDEVICE pPciDev, /*unsigned*/ int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType) { PPDMDEVINS pDevIns = pPciDev->pDevIns; PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); int rc = VINF_SUCCESS; Log2(("%s: registering MMIO area at GCPhysAddr=%RGp cb=%u\n", __FUNCTION__, GCPhysAddress, cb)); Assert(cb >= 32); if (enmType == PCI_ADDRESS_SPACE_MEM) { /* We use the assigned size here, because we currently only support page aligned MMIO ranges. */ rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/, IOMMMIO_FLAGS_READ_PASSTHRU | IOMMMIO_FLAGS_WRITE_PASSTHRU, buslogicMMIOWrite, buslogicMMIORead, "BusLogic MMIO"); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/, "buslogicMMIOWrite", "buslogicMMIORead"); if (RT_FAILURE(rc)) return rc; } if (pThis->fGCEnabled) { rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/, "buslogicMMIOWrite", "buslogicMMIORead"); if (RT_FAILURE(rc)) return rc; } pThis->MMIOBase = GCPhysAddress; } else if (enmType == PCI_ADDRESS_SPACE_IO) { rc = PDMDevHlpIOPortRegister(pDevIns, (RTIOPORT)GCPhysAddress, 32, NULL, buslogicIOPortWrite, buslogicIOPortRead, NULL, NULL, "BusLogic PCI"); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpIOPortRegisterR0(pDevIns, (RTIOPORT)GCPhysAddress, 32, 0, "buslogicIOPortWrite", "buslogicIOPortRead", NULL, NULL, "BusLogic PCI"); if (RT_FAILURE(rc)) return rc; } if (pThis->fGCEnabled) { rc = PDMDevHlpIOPortRegisterRC(pDevIns, (RTIOPORT)GCPhysAddress, 32, 0, "buslogicIOPortWrite", "buslogicIOPortRead", NULL, NULL, "BusLogic PCI"); if (RT_FAILURE(rc)) return rc; } pThis->IOPortBase = (RTIOPORT)GCPhysAddress; } else AssertMsgFailed(("Invalid enmType=%d\n", enmType)); return rc; } static DECLCALLBACK(int) buslogicR3DeviceSCSIRequestCompleted(PPDMISCSIPORT pInterface, PPDMSCSIREQUEST pSCSIRequest, int rcCompletion, bool fRedo, int rcReq) { int rc; PBUSLOGICTASKSTATE pTaskState = (PBUSLOGICTASKSTATE)pSCSIRequest->pvUser; PBUSLOGICDEVICE pBusLogicDevice = pTaskState->CTX_SUFF(pTargetDevice); PBUSLOGIC pBusLogic = pBusLogicDevice->CTX_SUFF(pBusLogic); LogFlowFunc(("before decrement %u\n", pBusLogicDevice->cOutstandingRequests)); ASMAtomicDecU32(&pBusLogicDevice->cOutstandingRequests); LogFlowFunc(("after decrement %u\n", pBusLogicDevice->cOutstandingRequests)); if (fRedo) { if (!pTaskState->fBIOS) { buslogicR3DataBufferFree(pTaskState); if (pTaskState->pbSenseBuffer) buslogicR3SenseBufferFree(pTaskState, false /* fCopy */); } /* Add to the list. */ do { pTaskState->pRedoNext = ASMAtomicReadPtrT(&pBusLogic->pTasksRedoHead, PBUSLOGICTASKSTATE); } while (!ASMAtomicCmpXchgPtr(&pBusLogic->pTasksRedoHead, pTaskState, pTaskState->pRedoNext)); /* Suspend the VM if not done already. */ if (!ASMAtomicXchgBool(&pBusLogic->fRedo, true)) buslogicR3RedoSetWarning(pBusLogic, rcReq); } else { if (pTaskState->fBIOS) { rc = vboxscsiRequestFinished(&pBusLogic->VBoxSCSI, pSCSIRequest, rcCompletion); AssertMsgRC(rc, ("Finishing BIOS SCSI request failed rc=%Rrc\n", rc)); } else { buslogicR3DataBufferFree(pTaskState); if (pTaskState->pbSenseBuffer) buslogicR3SenseBufferFree(pTaskState, (rcCompletion != SCSI_STATUS_OK)); if (rcCompletion == SCSI_STATUS_OK) buslogicR3SendIncomingMailbox(pBusLogic, pTaskState, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_CMD_COMPLETED, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_OPERATION_GOOD, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITHOUT_ERROR); else if (rcCompletion == SCSI_STATUS_CHECK_CONDITION) buslogicR3SendIncomingMailbox(pBusLogic, pTaskState, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_CMD_COMPLETED, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_CHECK_CONDITION, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITH_ERROR); else AssertMsgFailed(("invalid completion status %d\n", rcCompletion)); } #ifdef LOG_ENABLED buslogicR3DumpCCBInfo(&pTaskState->CommandControlBlockGuest, pTaskState->fIs24Bit); #endif /* Remove task from the cache. */ RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); } if (pBusLogicDevice->cOutstandingRequests == 0 && pBusLogic->fSignalIdle) PDMDevHlpAsyncNotificationCompleted(pBusLogic->pDevInsR3); return VINF_SUCCESS; } static DECLCALLBACK(int) buslogicR3QueryDeviceLocation(PPDMISCSIPORT pInterface, const char **ppcszController, uint32_t *piInstance, uint32_t *piLUN) { PBUSLOGICDEVICE pBusLogicDevice = PDMISCSIPORT_2_PBUSLOGICDEVICE(pInterface); PPDMDEVINS pDevIns = pBusLogicDevice->CTX_SUFF(pBusLogic)->CTX_SUFF(pDevIns); AssertPtrReturn(ppcszController, VERR_INVALID_POINTER); AssertPtrReturn(piInstance, VERR_INVALID_POINTER); AssertPtrReturn(piLUN, VERR_INVALID_POINTER); *ppcszController = pDevIns->pReg->szName; *piInstance = pDevIns->iInstance; *piLUN = pBusLogicDevice->iLUN; return VINF_SUCCESS; } static int buslogicR3DeviceSCSIRequestSetup(PBUSLOGIC pBusLogic, PBUSLOGICTASKSTATE pTaskState) { int rc = VINF_SUCCESS; uint8_t uTargetIdCCB; PBUSLOGICDEVICE pTargetDevice; /* Fetch the CCB from guest memory. */ /** @todo How much do we really have to read? */ RTGCPHYS GCPhysAddrCCB = (RTGCPHYS)pTaskState->MailboxGuest.u32PhysAddrCCB; PDMDevHlpPhysRead(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrCCB, &pTaskState->CommandControlBlockGuest, sizeof(CCB32)); uTargetIdCCB = pTaskState->fIs24Bit ? pTaskState->CommandControlBlockGuest.o.uTargetId : pTaskState->CommandControlBlockGuest.n.uTargetId; if (RT_LIKELY(uTargetIdCCB < RT_ELEMENTS(pBusLogic->aDeviceStates))) { pTargetDevice = &pBusLogic->aDeviceStates[uTargetIdCCB]; pTaskState->CTX_SUFF(pTargetDevice) = pTargetDevice; #ifdef LOG_ENABLED buslogicR3DumpCCBInfo(&pTaskState->CommandControlBlockGuest, pTaskState->fIs24Bit); #endif /* Alloc required buffers. */ rc = buslogicR3DataBufferAlloc(pTaskState); AssertMsgRC(rc, ("Alloc failed rc=%Rrc\n", rc)); rc = buslogicR3SenseBufferAlloc(pTaskState); AssertMsgRC(rc, ("Mapping sense buffer failed rc=%Rrc\n", rc)); /* Check if device is present on bus. If not return error immediately and don't process this further. */ if (!pBusLogic->aDeviceStates[uTargetIdCCB].fPresent) { buslogicR3DataBufferFree(pTaskState); if (pTaskState->pbSenseBuffer) buslogicR3SenseBufferFree(pTaskState, true); buslogicR3SendIncomingMailbox(pBusLogic, pTaskState, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_SCSI_SELECTION_TIMEOUT, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_OPERATION_GOOD, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITH_ERROR); RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); } else { /* Setup SCSI request. */ pTaskState->PDMScsiRequest.uLogicalUnit = pTaskState->fIs24Bit ? pTaskState->CommandControlBlockGuest.o.uLogicalUnit : pTaskState->CommandControlBlockGuest.n.uLogicalUnit; if (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_UNKNOWN) pTaskState->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_UNKNOWN; else if (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_IN) pTaskState->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_FROM_DEVICE; else if (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_OUT) pTaskState->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_TO_DEVICE; else if (pTaskState->CommandControlBlockGuest.c.uDataDirection == BUSLOGIC_CCB_DIRECTION_NO_DATA) pTaskState->PDMScsiRequest.uDataDirection = PDMSCSIREQUESTTXDIR_NONE; else AssertMsgFailed(("Invalid data direction type %d\n", pTaskState->CommandControlBlockGuest.c.uDataDirection)); pTaskState->PDMScsiRequest.cbCDB = pTaskState->CommandControlBlockGuest.c.cbCDB; pTaskState->PDMScsiRequest.pbCDB = pTaskState->CommandControlBlockGuest.c.abCDB; if (pTaskState->DataSeg.cbSeg) { pTaskState->PDMScsiRequest.cbScatterGather = pTaskState->DataSeg.cbSeg; pTaskState->PDMScsiRequest.cScatterGatherEntries = 1; pTaskState->PDMScsiRequest.paScatterGatherHead = &pTaskState->DataSeg; } else { pTaskState->PDMScsiRequest.cbScatterGather = 0; pTaskState->PDMScsiRequest.cScatterGatherEntries = 0; pTaskState->PDMScsiRequest.paScatterGatherHead = NULL; } pTaskState->PDMScsiRequest.cbSenseBuffer = buslogicR3ConvertSenseBufferLength(pTaskState->CommandControlBlockGuest.c.cbSenseData); pTaskState->PDMScsiRequest.pbSenseBuffer = pTaskState->pbSenseBuffer; pTaskState->PDMScsiRequest.pvUser = pTaskState; ASMAtomicIncU32(&pTargetDevice->cOutstandingRequests); rc = pTargetDevice->pDrvSCSIConnector->pfnSCSIRequestSend(pTargetDevice->pDrvSCSIConnector, &pTaskState->PDMScsiRequest); AssertMsgRC(rc, ("Sending request to SCSI layer failed rc=%Rrc\n", rc)); } } else { RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); buslogicR3SendIncomingMailbox(pBusLogic, pTaskState, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_INVALID_COMMAND_PARAMETER, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_OPERATION_GOOD, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITH_ERROR); } return rc; } static int buslogicR3DeviceSCSIRequestAbort(PBUSLOGIC pBusLogic, PBUSLOGICTASKSTATE pTaskState) { int rc = VINF_SUCCESS; uint8_t uTargetIdCCB; PBUSLOGICDEVICE pTargetDevice; RTGCPHYS GCPhysAddrCCB = (RTGCPHYS)pTaskState->MailboxGuest.u32PhysAddrCCB; PDMDevHlpPhysRead(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrCCB, &pTaskState->CommandControlBlockGuest, sizeof(CCB32)); uTargetIdCCB = pTaskState->fIs24Bit ? pTaskState->CommandControlBlockGuest.o.uTargetId : pTaskState->CommandControlBlockGuest.n.uTargetId; if (RT_LIKELY(uTargetIdCCB < RT_ELEMENTS(pBusLogic->aDeviceStates))) { pTargetDevice = &pBusLogic->aDeviceStates[uTargetIdCCB]; pTaskState->CTX_SUFF(pTargetDevice) = pTargetDevice; buslogicR3SendIncomingMailbox(pBusLogic, pTaskState, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_ABORT_QUEUE_GENERATED, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_OPERATION_GOOD, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_ABORTED_NOT_FOUND); RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); } else { RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); buslogicR3SendIncomingMailbox(pBusLogic, pTaskState, BUSLOGIC_MAILBOX_INCOMING_ADAPTER_STATUS_INVALID_COMMAND_PARAMETER, BUSLOGIC_MAILBOX_INCOMING_DEVICE_STATUS_OPERATION_GOOD, BUSLOGIC_MAILBOX_INCOMING_COMPLETION_WITH_ERROR); } return rc; } /** * Read a mailbox from guest memory. Convert 24-bit mailboxes to * 32-bit format. * * @returns Mailbox guest physical address. * @param pBusLogic Pointer to the BusLogic instance data. * @param pTaskStat Pointer to the task state being set up. */ static RTGCPHYS buslogicR3ReadOutgoingMailbox(PBUSLOGIC pBusLogic, PBUSLOGICTASKSTATE pTaskState) { RTGCPHYS GCMailbox; if (pBusLogic->fMbxIs24Bit) { Mailbox24 Mbx24; GCMailbox = pBusLogic->GCPhysAddrMailboxOutgoingBase + (pBusLogic->uMailboxOutgoingPositionCurrent * sizeof(Mailbox24)); PDMDevHlpPhysRead(pBusLogic->CTX_SUFF(pDevIns), GCMailbox, &Mbx24, sizeof(Mailbox24)); pTaskState->MailboxGuest.u32PhysAddrCCB = ADDR_TO_U32(Mbx24.aPhysAddrCCB); pTaskState->MailboxGuest.u.out.uActionCode = Mbx24.uCmdState; } else { GCMailbox = pBusLogic->GCPhysAddrMailboxOutgoingBase + (pBusLogic->uMailboxOutgoingPositionCurrent * sizeof(Mailbox32)); PDMDevHlpPhysRead(pBusLogic->CTX_SUFF(pDevIns), GCMailbox, &pTaskState->MailboxGuest, sizeof(Mailbox32)); } return GCMailbox; } /** * Read mailbox from the guest and execute command. * * @returns VBox status code. * @param pBusLogic Pointer to the BusLogic instance data. */ static int buslogicR3ProcessMailboxNext(PBUSLOGIC pBusLogic) { PBUSLOGICTASKSTATE pTaskState = NULL; RTGCPHYS GCPhysAddrMailboxCurrent; int rc; rc = RTMemCacheAllocEx(pBusLogic->hTaskCache, (void **)&pTaskState); AssertMsgReturn(RT_SUCCESS(rc) && (pTaskState != NULL), ("Failed to get task state from cache\n"), rc); pTaskState->fBIOS = false; pTaskState->fIs24Bit = pBusLogic->fMbxIs24Bit; pTaskState->cbSGEntry = pBusLogic->fMbxIs24Bit ? sizeof(SGE24) : sizeof(SGE32); if (!pBusLogic->fStrictRoundRobinMode) { /* Search for a filled mailbox - stop if we have scanned all mailboxes. */ uint8_t uMailboxPosCur = pBusLogic->uMailboxOutgoingPositionCurrent; do { /* Fetch mailbox from guest memory. */ GCPhysAddrMailboxCurrent = buslogicR3ReadOutgoingMailbox(pBusLogic,pTaskState); /* Check the next mailbox. */ buslogicR3OutgoingMailboxAdvance(pBusLogic); } while ( pTaskState->MailboxGuest.u.out.uActionCode == BUSLOGIC_MAILBOX_OUTGOING_ACTION_FREE && uMailboxPosCur != pBusLogic->uMailboxOutgoingPositionCurrent); } else { /* Fetch mailbox from guest memory. */ GCPhysAddrMailboxCurrent = buslogicR3ReadOutgoingMailbox(pBusLogic,pTaskState); } /* * Check if the mailbox is actually loaded. * It might be possible that the guest notified us without * a loaded mailbox. Do nothing in that case but leave a * log entry. */ if (pTaskState->MailboxGuest.u.out.uActionCode == BUSLOGIC_MAILBOX_OUTGOING_ACTION_FREE) { Log(("No loaded mailbox left\n")); RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); return VERR_NO_DATA; } LogFlow(("Got loaded mailbox at slot %u, CCB phys %RGp\n", pBusLogic->uMailboxOutgoingPositionCurrent, (RTGCPHYS)pTaskState->MailboxGuest.u32PhysAddrCCB)); #ifdef LOG_ENABLED buslogicR3DumpMailboxInfo(&pTaskState->MailboxGuest, true); #endif /* We got the mailbox, mark it as free in the guest. */ uint8_t uActionCode = BUSLOGIC_MAILBOX_OUTGOING_ACTION_FREE; unsigned uCodeOffs = pTaskState->fIs24Bit ? RT_OFFSETOF(Mailbox24, uCmdState) : RT_OFFSETOF(Mailbox32, u.out.uActionCode); PDMDevHlpPCIPhysWrite(pBusLogic->CTX_SUFF(pDevIns), GCPhysAddrMailboxCurrent + uCodeOffs, &uActionCode, sizeof(uActionCode)); if (pTaskState->MailboxGuest.u.out.uActionCode == BUSLOGIC_MAILBOX_OUTGOING_ACTION_START_COMMAND) rc = buslogicR3DeviceSCSIRequestSetup(pBusLogic, pTaskState); else if (pTaskState->MailboxGuest.u.out.uActionCode == BUSLOGIC_MAILBOX_OUTGOING_ACTION_ABORT_COMMAND) { LogFlow(("Aborting mailbox\n")); rc = buslogicR3DeviceSCSIRequestAbort(pBusLogic, pTaskState); } else AssertMsgFailed(("Invalid outgoing mailbox action code %u\n", pTaskState->MailboxGuest.u.out.uActionCode)); AssertRC(rc); /* Advance to the next mailbox. */ if (pBusLogic->fStrictRoundRobinMode) buslogicR3OutgoingMailboxAdvance(pBusLogic); return rc; } /** * Transmit queue consumer * Queue a new async task. * * @returns Success indicator. * If false the item will not be removed and the flushing will stop. * @param pDevIns The device instance. * @param pItem The item to consume. Upon return this item will be freed. */ static DECLCALLBACK(bool) buslogicR3NotifyQueueConsumer(PPDMDEVINS pDevIns, PPDMQUEUEITEMCORE pItem) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); int rc = SUPSemEventSignal(pThis->pSupDrvSession, pThis->hEvtProcess); AssertRC(rc); return true; } /** * Kicks the controller to process pending tasks after the VM was resumed * or loaded from a saved state. * * @returns nothing. * @param pThis The BusLogic device instance. */ static void buslogicR3Kick(PBUSLOGIC pThis) { if (pThis->fRedo) { pThis->fRedo = false; if (pThis->VBoxSCSI.fBusy) { /* The BIOS had a request active when we got suspended. Resume it. */ int rc = buslogicR3PrepareBIOSSCSIRequest(pThis); AssertRC(rc); } else { /* Queue all pending tasks again. */ PBUSLOGICTASKSTATE pTaskState = pThis->pTasksRedoHead; pThis->pTasksRedoHead = NULL; while (pTaskState) { PBUSLOGICTASKSTATE pCur = pTaskState; int rc = buslogicR3DeviceSCSIRequestSetup(pThis, pCur); AssertRC(rc); pTaskState = pTaskState->pRedoNext; } } } } /** @callback_method_impl{FNSSMDEVLIVEEXEC} */ static DECLCALLBACK(int) buslogicR3LiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); /* Save the device config. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->aDeviceStates); i++) SSMR3PutBool(pSSM, pThis->aDeviceStates[i].fPresent); return VINF_SSM_DONT_CALL_AGAIN; } /** @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) buslogicR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PBUSLOGIC pBusLogic = PDMINS_2_DATA(pDevIns, PBUSLOGIC); /* Every device first. */ for (unsigned i = 0; i < RT_ELEMENTS(pBusLogic->aDeviceStates); i++) { PBUSLOGICDEVICE pDevice = &pBusLogic->aDeviceStates[i]; AssertMsg(!pDevice->cOutstandingRequests, ("There are still outstanding requests on this device\n")); SSMR3PutBool(pSSM, pDevice->fPresent); SSMR3PutU32(pSSM, pDevice->cOutstandingRequests); } /* Now the main device state. */ SSMR3PutU8 (pSSM, pBusLogic->regStatus); SSMR3PutU8 (pSSM, pBusLogic->regInterrupt); SSMR3PutU8 (pSSM, pBusLogic->regGeometry); SSMR3PutMem (pSSM, &pBusLogic->LocalRam, sizeof(pBusLogic->LocalRam)); SSMR3PutU8 (pSSM, pBusLogic->uOperationCode); SSMR3PutMem (pSSM, &pBusLogic->aCommandBuffer, sizeof(pBusLogic->aCommandBuffer)); SSMR3PutU8 (pSSM, pBusLogic->iParameter); SSMR3PutU8 (pSSM, pBusLogic->cbCommandParametersLeft); SSMR3PutBool (pSSM, pBusLogic->fUseLocalRam); SSMR3PutMem (pSSM, pBusLogic->aReplyBuffer, sizeof(pBusLogic->aReplyBuffer)); SSMR3PutU8 (pSSM, pBusLogic->iReply); SSMR3PutU8 (pSSM, pBusLogic->cbReplyParametersLeft); SSMR3PutBool (pSSM, pBusLogic->fIRQEnabled); SSMR3PutU8 (pSSM, pBusLogic->uISABaseCode); SSMR3PutU32 (pSSM, pBusLogic->cMailbox); SSMR3PutBool (pSSM, pBusLogic->fMbxIs24Bit); SSMR3PutGCPhys(pSSM, pBusLogic->GCPhysAddrMailboxOutgoingBase); SSMR3PutU32 (pSSM, pBusLogic->uMailboxOutgoingPositionCurrent); SSMR3PutU32 (pSSM, pBusLogic->cMailboxesReady); SSMR3PutBool (pSSM, pBusLogic->fNotificationSent); SSMR3PutGCPhys(pSSM, pBusLogic->GCPhysAddrMailboxIncomingBase); SSMR3PutU32 (pSSM, pBusLogic->uMailboxIncomingPositionCurrent); SSMR3PutBool (pSSM, pBusLogic->fStrictRoundRobinMode); SSMR3PutBool (pSSM, pBusLogic->fExtendedLunCCBFormat); vboxscsiR3SaveExec(&pBusLogic->VBoxSCSI, pSSM); /* * Save the physical addresses of the command control blocks of still pending tasks. * They are processed again on resume. * * The number of pending tasks needs to be determined first. */ uint32_t cTasks = 0; PBUSLOGICTASKSTATE pTaskState = pBusLogic->pTasksRedoHead; if (pBusLogic->fRedo) { while (pTaskState) { cTasks++; pTaskState = pTaskState->pRedoNext; } } SSMR3PutU32(pSSM, cTasks); /* Write the address of every task now. */ pTaskState = pBusLogic->pTasksRedoHead; while (pTaskState) { SSMR3PutU32(pSSM, pTaskState->MailboxGuest.u32PhysAddrCCB); pTaskState = pTaskState->pRedoNext; } return SSMR3PutU32(pSSM, ~0); } /** @callback_method_impl{FNSSMDEVLOADDONE} */ static DECLCALLBACK(int) buslogicR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); buslogicR3RegisterISARange(pThis, pThis->uISABaseCode); buslogicR3Kick(pThis); return VINF_SUCCESS; } /** @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) buslogicR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PBUSLOGIC pBusLogic = PDMINS_2_DATA(pDevIns, PBUSLOGIC); int rc = VINF_SUCCESS; /* We support saved states only from this and older versions. */ if (uVersion > BUSLOGIC_SAVED_STATE_MINOR_VERSION) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; /* Every device first. */ for (unsigned i = 0; i < RT_ELEMENTS(pBusLogic->aDeviceStates); i++) { PBUSLOGICDEVICE pDevice = &pBusLogic->aDeviceStates[i]; AssertMsg(!pDevice->cOutstandingRequests, ("There are still outstanding requests on this device\n")); bool fPresent; rc = SSMR3GetBool(pSSM, &fPresent); AssertRCReturn(rc, rc); if (pDevice->fPresent != fPresent) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Target %u config mismatch: config=%RTbool state=%RTbool"), i, pDevice->fPresent, fPresent); if (uPass == SSM_PASS_FINAL) SSMR3GetU32(pSSM, (uint32_t *)&pDevice->cOutstandingRequests); } if (uPass != SSM_PASS_FINAL) return VINF_SUCCESS; /* Now the main device state. */ SSMR3GetU8 (pSSM, (uint8_t *)&pBusLogic->regStatus); SSMR3GetU8 (pSSM, (uint8_t *)&pBusLogic->regInterrupt); SSMR3GetU8 (pSSM, (uint8_t *)&pBusLogic->regGeometry); SSMR3GetMem (pSSM, &pBusLogic->LocalRam, sizeof(pBusLogic->LocalRam)); SSMR3GetU8 (pSSM, &pBusLogic->uOperationCode); if (uVersion > BUSLOGIC_SAVED_STATE_MINOR_PRE_CMDBUF_RESIZE) SSMR3GetMem (pSSM, &pBusLogic->aCommandBuffer, sizeof(pBusLogic->aCommandBuffer)); else SSMR3GetMem (pSSM, &pBusLogic->aCommandBuffer, BUSLOGIC_COMMAND_SIZE_OLD); SSMR3GetU8 (pSSM, &pBusLogic->iParameter); SSMR3GetU8 (pSSM, &pBusLogic->cbCommandParametersLeft); SSMR3GetBool (pSSM, &pBusLogic->fUseLocalRam); SSMR3GetMem (pSSM, pBusLogic->aReplyBuffer, sizeof(pBusLogic->aReplyBuffer)); SSMR3GetU8 (pSSM, &pBusLogic->iReply); SSMR3GetU8 (pSSM, &pBusLogic->cbReplyParametersLeft); SSMR3GetBool (pSSM, &pBusLogic->fIRQEnabled); SSMR3GetU8 (pSSM, &pBusLogic->uISABaseCode); SSMR3GetU32 (pSSM, &pBusLogic->cMailbox); if (uVersion > BUSLOGIC_SAVED_STATE_MINOR_PRE_24BIT_MBOX) SSMR3GetBool (pSSM, &pBusLogic->fMbxIs24Bit); SSMR3GetGCPhys(pSSM, &pBusLogic->GCPhysAddrMailboxOutgoingBase); SSMR3GetU32 (pSSM, &pBusLogic->uMailboxOutgoingPositionCurrent); SSMR3GetU32 (pSSM, (uint32_t *)&pBusLogic->cMailboxesReady); SSMR3GetBool (pSSM, (bool *)&pBusLogic->fNotificationSent); SSMR3GetGCPhys(pSSM, &pBusLogic->GCPhysAddrMailboxIncomingBase); SSMR3GetU32 (pSSM, &pBusLogic->uMailboxIncomingPositionCurrent); SSMR3GetBool (pSSM, &pBusLogic->fStrictRoundRobinMode); SSMR3GetBool (pSSM, &pBusLogic->fExtendedLunCCBFormat); rc = vboxscsiR3LoadExec(&pBusLogic->VBoxSCSI, pSSM); if (RT_FAILURE(rc)) { LogRel(("BusLogic: Failed to restore BIOS state: %Rrc.\n", rc)); return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic: Failed to restore BIOS state\n")); } if (pBusLogic->VBoxSCSI.fBusy) pBusLogic->fRedo = true; if (uVersion > BUSLOGIC_SAVED_STATE_MINOR_PRE_ERROR_HANDLING) { /* Check if there are pending tasks saved. */ uint32_t cTasks = 0; SSMR3GetU32(pSSM, &cTasks); if (cTasks) pBusLogic->fRedo = true; for (uint32_t i = 0; i < cTasks; i++) { PBUSLOGICTASKSTATE pTaskState = (PBUSLOGICTASKSTATE)RTMemCacheAlloc(pBusLogic->hTaskCache); if (!pTaskState) { rc = VERR_NO_MEMORY; break; } rc = SSMR3GetU32(pSSM, &pTaskState->MailboxGuest.u32PhysAddrCCB); if (RT_FAILURE(rc)) { RTMemCacheFree(pBusLogic->hTaskCache, pTaskState); break; } /* Link into the list. */ pTaskState->pRedoNext = pBusLogic->pTasksRedoHead; pBusLogic->pTasksRedoHead = pTaskState; } } if (RT_SUCCESS(rc)) { uint32_t u32; rc = SSMR3GetU32(pSSM, &u32); if (RT_SUCCESS(rc)) AssertMsgReturn(u32 == ~0U, ("%#x\n", u32), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); } return rc; } /** * Gets the pointer to the status LED of a device - called from the SCSI driver. * * @returns VBox status code. * @param pInterface Pointer to the interface structure containing the called function pointer. * @param iLUN The unit which status LED we desire. Always 0 here as the driver * doesn't know about other LUN's. * @param ppLed Where to store the LED pointer. */ static DECLCALLBACK(int) buslogicR3DeviceQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { PBUSLOGICDEVICE pDevice = PDMILEDPORTS_2_PBUSLOGICDEVICE(pInterface); if (iLUN == 0) { *ppLed = &pDevice->Led; Assert((*ppLed)->u32Magic == PDMLED_MAGIC); return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) buslogicR3DeviceQueryInterface(PPDMIBASE pInterface, const char *pszIID) { PBUSLOGICDEVICE pDevice = PDMIBASE_2_PBUSLOGICDEVICE(pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pDevice->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMISCSIPORT, &pDevice->ISCSIPort); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pDevice->ILed); return NULL; } /** * Gets the pointer to the status LED of a unit. * * @returns VBox status code. * @param pInterface Pointer to the interface structure containing the called function pointer. * @param iLUN The unit which status LED we desire. * @param ppLed Where to store the LED pointer. */ static DECLCALLBACK(int) buslogicR3StatusQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { PBUSLOGIC pBusLogic = PDMILEDPORTS_2_PBUSLOGIC(pInterface); if (iLUN < BUSLOGIC_MAX_DEVICES) { *ppLed = &pBusLogic->aDeviceStates[iLUN].Led; Assert((*ppLed)->u32Magic == PDMLED_MAGIC); return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) buslogicR3StatusQueryInterface(PPDMIBASE pInterface, const char *pszIID) { PBUSLOGIC pThis = PDMIBASE_2_PBUSLOGIC(pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds); return NULL; } /** * The worker thread processing requests from the guest. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThread The thread structure. */ static DECLCALLBACK(int) buslogicR3Worker(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { PBUSLOGIC pThis = (PBUSLOGIC)pThread->pvUser; int rc = VINF_SUCCESS; if (pThread->enmState == PDMTHREADSTATE_INITIALIZING) return VINF_SUCCESS; while (pThread->enmState == PDMTHREADSTATE_RUNNING) { ASMAtomicWriteBool(&pThis->fWrkThreadSleeping, true); bool fNotificationSent = ASMAtomicXchgBool(&pThis->fNotificationSent, false); if (!fNotificationSent) { Assert(ASMAtomicReadBool(&pThis->fWrkThreadSleeping)); rc = SUPSemEventWaitNoResume(pThis->pSupDrvSession, pThis->hEvtProcess, RT_INDEFINITE_WAIT); AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc); if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING)) break; LogFlowFunc(("Woken up with rc=%Rrc\n", rc)); ASMAtomicWriteBool(&pThis->fNotificationSent, false); } ASMAtomicWriteBool(&pThis->fWrkThreadSleeping, false); /* Check whether there is a BIOS request pending and process it first. */ if (ASMAtomicReadBool(&pThis->fBiosReqPending)) { rc = buslogicR3PrepareBIOSSCSIRequest(pThis); AssertRC(rc); ASMAtomicXchgBool(&pThis->fBiosReqPending, false); } else { ASMAtomicXchgU32(&pThis->cMailboxesReady, 0); /** @todo Actually not required anymore but to stay compatible with older saved states. */ /* Process mailboxes. */ do { rc = buslogicR3ProcessMailboxNext(pThis); AssertMsg(RT_SUCCESS(rc) || rc == VERR_NO_DATA, ("Processing mailbox failed rc=%Rrc\n", rc)); } while (RT_SUCCESS(rc)); } } /* While running */ return VINF_SUCCESS; } /** * Unblock the worker thread so it can respond to a state change. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThread The send thread. */ static DECLCALLBACK(int) buslogicR3WorkerWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); return SUPSemEventSignal(pThis->pSupDrvSession, pThis->hEvtProcess); } /** * BusLogic debugger info callback. * * @param pDevIns The device instance. * @param pHlp The output helpers. * @param pszArgs The arguments. */ static DECLCALLBACK(void) buslogicR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); unsigned i; bool fVerbose = false; /* Parse arguments. */ if (pszArgs) fVerbose = strstr(pszArgs, "verbose") != NULL; /* Show basic information. */ pHlp->pfnPrintf(pHlp, "%s#%d: PCI I/O=%RTiop ISA I/O=%RTiop MMIO=%RGp IRQ=%u GC=%RTbool R0=%RTbool\n", pDevIns->pReg->szName, pDevIns->iInstance, pThis->IOPortBase, pThis->IOISABase, pThis->MMIOBase, PCIDevGetInterruptLine(&pThis->dev), !!pThis->fGCEnabled, !!pThis->fR0Enabled); /* Print mailbox state. */ if (pThis->regStatus & BL_STAT_INREQ) pHlp->pfnPrintf(pHlp, "Mailbox not initialized\n"); else pHlp->pfnPrintf(pHlp, "%u-bit mailbox with %u entries at %RGp (%d LUN CCBs)\n", pThis->fMbxIs24Bit ? 24 : 32, pThis->cMailbox, pThis->GCPhysAddrMailboxOutgoingBase, pThis->fMbxIs24Bit ? 8 : pThis->fExtendedLunCCBFormat ? 64 : 8); /* Print register contents. */ pHlp->pfnPrintf(pHlp, "Registers: STAT=%02x INTR=%02x GEOM=%02x\n", pThis->regStatus, pThis->regInterrupt, pThis->regGeometry); /* Print miscellaneous state. */ pHlp->pfnPrintf(pHlp, "HAC interrupts: %s\n", pThis->fIRQEnabled ? "on" : "off"); /* Print the current command, if any. */ if (pThis->uOperationCode != 0xff ) pHlp->pfnPrintf(pHlp, "Current command: %02X\n", pThis->uOperationCode); if (fVerbose && (pThis->regStatus & BL_STAT_INREQ) == 0) { RTGCPHYS GCMailbox; /* Dump the mailbox contents. */ if (pThis->fMbxIs24Bit) { Mailbox24 Mbx24; /* Outgoing mailbox, 24-bit format. */ GCMailbox = pThis->GCPhysAddrMailboxOutgoingBase; pHlp->pfnPrintf(pHlp, " Outgoing mailbox entries (24-bit) at %06X:\n", GCMailbox); for (i = 0; i < pThis->cMailbox; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), GCMailbox, &Mbx24, sizeof(Mailbox24)); pHlp->pfnPrintf(pHlp, " slot %03d: CCB at %06X action code %02X", i, ADDR_TO_U32(Mbx24.aPhysAddrCCB), Mbx24.uCmdState); pHlp->pfnPrintf(pHlp, "%s\n", pThis->uMailboxOutgoingPositionCurrent == i ? " *" : ""); GCMailbox += sizeof(Mailbox24); } /* Incoming mailbox, 24-bit format. */ GCMailbox = pThis->GCPhysAddrMailboxOutgoingBase + (pThis->cMailbox * sizeof(Mailbox24)); pHlp->pfnPrintf(pHlp, " Incoming mailbox entries (24-bit) at %06X:\n", GCMailbox); for (i = 0; i < pThis->cMailbox; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), GCMailbox, &Mbx24, sizeof(Mailbox24)); pHlp->pfnPrintf(pHlp, " slot %03d: CCB at %06X completion code %02X", i, ADDR_TO_U32(Mbx24.aPhysAddrCCB), Mbx24.uCmdState); pHlp->pfnPrintf(pHlp, "%s\n", pThis->uMailboxIncomingPositionCurrent == i ? " *" : ""); GCMailbox += sizeof(Mailbox24); } } else { Mailbox32 Mbx32; /* Outgoing mailbox, 32-bit format. */ GCMailbox = pThis->GCPhysAddrMailboxOutgoingBase; pHlp->pfnPrintf(pHlp, " Outgoing mailbox entries (32-bit) at %08X:\n", (uint32_t)GCMailbox); for (i = 0; i < pThis->cMailbox; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), GCMailbox, &Mbx32, sizeof(Mailbox32)); pHlp->pfnPrintf(pHlp, " slot %03d: CCB at %08X action code %02X", i, Mbx32.u32PhysAddrCCB, Mbx32.u.out.uActionCode); pHlp->pfnPrintf(pHlp, "%s\n", pThis->uMailboxOutgoingPositionCurrent == i ? " *" : ""); GCMailbox += sizeof(Mailbox32); } /* Incoming mailbox, 32-bit format. */ GCMailbox = pThis->GCPhysAddrMailboxOutgoingBase + (pThis->cMailbox * sizeof(Mailbox32)); pHlp->pfnPrintf(pHlp, " Outgoing mailbox entries (32-bit) at %08X:\n", (uint32_t)GCMailbox); for (i = 0; i < pThis->cMailbox; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), GCMailbox, &Mbx32, sizeof(Mailbox32)); pHlp->pfnPrintf(pHlp, " slot %03d: CCB at %08X completion code %02X BTSTAT %02X SDSTAT %02X", i, Mbx32.u32PhysAddrCCB, Mbx32.u.in.uCompletionCode, Mbx32.u.in.uHostAdapterStatus, Mbx32.u.in.uTargetDeviceStatus); pHlp->pfnPrintf(pHlp, "%s\n", pThis->uMailboxOutgoingPositionCurrent == i ? " *" : ""); GCMailbox += sizeof(Mailbox32); } } } } /* -=-=-=-=- Helper -=-=-=-=- */ /** * Checks if all asynchronous I/O is finished. * * Used by buslogicR3Reset, buslogicR3Suspend and buslogicR3PowerOff. * * @returns true if quiesced, false if busy. * @param pDevIns The device instance. */ static bool buslogicR3AllAsyncIOIsFinished(PPDMDEVINS pDevIns) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aDeviceStates); i++) { PBUSLOGICDEVICE pThisDevice = &pThis->aDeviceStates[i]; if (pThisDevice->pDrvBase) { if (pThisDevice->cOutstandingRequests != 0) return false; } } return true; } /** * Callback employed by buslogicR3Suspend and buslogicR3PowerOff.. * * @returns true if we've quiesced, false if we're still working. * @param pDevIns The device instance. */ static DECLCALLBACK(bool) buslogicR3IsAsyncSuspendOrPowerOffDone(PPDMDEVINS pDevIns) { if (!buslogicR3AllAsyncIOIsFinished(pDevIns)) return false; PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); ASMAtomicWriteBool(&pThis->fSignalIdle, false); return true; } /** * Common worker for ahciR3Suspend and ahciR3PowerOff. */ static void buslogicR3SuspendOrPowerOff(PPDMDEVINS pDevIns, bool fPowerOff) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); ASMAtomicWriteBool(&pThis->fSignalIdle, true); if (!buslogicR3AllAsyncIOIsFinished(pDevIns)) PDMDevHlpSetAsyncNotification(pDevIns, buslogicR3IsAsyncSuspendOrPowerOffDone); else { ASMAtomicWriteBool(&pThis->fSignalIdle, false); AssertMsg(!pThis->fNotificationSent, ("The PDM Queue should be empty at this point\n")); if (pThis->fRedo) { if (fPowerOff) { /* Free tasks which would have been queued again on resume. */ PBUSLOGICTASKSTATE pTaskState = pThis->pTasksRedoHead; pThis->pTasksRedoHead = NULL; while (pTaskState) { PBUSLOGICTASKSTATE pFree; pFree = pTaskState; pTaskState = pTaskState->pRedoNext; RTMemCacheFree(pThis->hTaskCache, pFree); } pThis->fRedo = false; } else if (pThis->VBoxSCSI.fBusy) { /* Destroy the task because the BIOS interface has all necessary information. */ Assert(pThis->pTasksRedoHead->fBIOS); Assert(!pThis->pTasksRedoHead->pRedoNext); RTMemCacheFree(pThis->hTaskCache, pThis->pTasksRedoHead); pThis->pTasksRedoHead = NULL; } } } } /** * Suspend notification. * * @param pDevIns The device instance data. */ static DECLCALLBACK(void) buslogicR3Suspend(PPDMDEVINS pDevIns) { Log(("buslogicR3Suspend\n")); buslogicR3SuspendOrPowerOff(pDevIns, false /* fPoweroff */); } /** * Resume notification. * * @param pDevIns The device instance data. */ static DECLCALLBACK(void) buslogicR3Resume(PPDMDEVINS pDevIns) { Log(("buslogicR3Resume\n")); PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); buslogicR3Kick(pThis); } /** * Detach notification. * * One harddisk at one port has been unplugged. * The VM is suspended at this point. * * @param pDevIns The device instance. * @param iLUN The logical unit which is being detached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. */ static DECLCALLBACK(void) buslogicR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); PBUSLOGICDEVICE pDevice = &pThis->aDeviceStates[iLUN]; Log(("%s:\n", __FUNCTION__)); AssertMsg(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG, ("BusLogic: Device does not support hotplugging\n")); /* * Zero some important members. */ pDevice->pDrvBase = NULL; pDevice->fPresent = false; pDevice->pDrvSCSIConnector = NULL; } /** * Attach command. * * This is called when we change block driver. * * @returns VBox status code. * @param pDevIns The device instance. * @param iLUN The logical unit which is being detached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. */ static DECLCALLBACK(int) buslogicR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); PBUSLOGICDEVICE pDevice = &pThis->aDeviceStates[iLUN]; int rc; AssertMsgReturn(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG, ("BusLogic: Device does not support hotplugging\n"), VERR_INVALID_PARAMETER); /* the usual paranoia */ AssertRelease(!pDevice->pDrvBase); AssertRelease(!pDevice->pDrvSCSIConnector); Assert(pDevice->iLUN == iLUN); /* * Try attach the block device and get the interfaces, * required as well as optional. */ rc = PDMDevHlpDriverAttach(pDevIns, pDevice->iLUN, &pDevice->IBase, &pDevice->pDrvBase, NULL); if (RT_SUCCESS(rc)) { /* Get SCSI connector interface. */ pDevice->pDrvSCSIConnector = PDMIBASE_QUERY_INTERFACE(pDevice->pDrvBase, PDMISCSICONNECTOR); AssertMsgReturn(pDevice->pDrvSCSIConnector, ("Missing SCSI interface below\n"), VERR_PDM_MISSING_INTERFACE); pDevice->fPresent = true; } else AssertMsgFailed(("Failed to attach LUN#%d. rc=%Rrc\n", pDevice->iLUN, rc)); if (RT_FAILURE(rc)) { pDevice->pDrvBase = NULL; pDevice->pDrvSCSIConnector = NULL; } return rc; } /** * Callback employed by buslogicR3Reset. * * @returns true if we've quiesced, false if we're still working. * @param pDevIns The device instance. */ static DECLCALLBACK(bool) buslogicR3IsAsyncResetDone(PPDMDEVINS pDevIns) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); if (!buslogicR3AllAsyncIOIsFinished(pDevIns)) return false; ASMAtomicWriteBool(&pThis->fSignalIdle, false); buslogicR3HwReset(pThis, true); return true; } /** * @copydoc FNPDMDEVRESET */ static DECLCALLBACK(void) buslogicR3Reset(PPDMDEVINS pDevIns) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); ASMAtomicWriteBool(&pThis->fSignalIdle, true); if (!buslogicR3AllAsyncIOIsFinished(pDevIns)) PDMDevHlpSetAsyncNotification(pDevIns, buslogicR3IsAsyncResetDone); else { ASMAtomicWriteBool(&pThis->fSignalIdle, false); buslogicR3HwReset(pThis, true); } } static DECLCALLBACK(void) buslogicR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pThis->pNotifierQueueRC = PDMQueueRCPtr(pThis->pNotifierQueueR3); for (uint32_t i = 0; i < BUSLOGIC_MAX_DEVICES; i++) { PBUSLOGICDEVICE pDevice = &pThis->aDeviceStates[i]; pDevice->pBusLogicRC = PDMINS_2_DATA_RCPTR(pDevIns); } } /** * Poweroff notification. * * @param pDevIns Pointer to the device instance */ static DECLCALLBACK(void) buslogicR3PowerOff(PPDMDEVINS pDevIns) { Log(("buslogicR3PowerOff\n")); buslogicR3SuspendOrPowerOff(pDevIns, true /* fPoweroff */); } /** * Destroy a driver instance. * * Most VM resources are freed by the VM. This callback is provided so that any non-VM * resources can be freed correctly. * * @param pDevIns The device instance data. */ static DECLCALLBACK(int) buslogicR3Destruct(PPDMDEVINS pDevIns) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); PDMR3CritSectDelete(&pThis->CritSectIntr); /* * Free all tasks which are still hanging around * (Power off after the VM was suspended). */ if (pThis->fRedo) { /* Free tasks which would have been queued again on resume. */ PBUSLOGICTASKSTATE pTaskState = pThis->pTasksRedoHead; pThis->pTasksRedoHead = NULL; while (pTaskState) { PBUSLOGICTASKSTATE pFree; pFree = pTaskState; pTaskState = pTaskState->pRedoNext; RTMemCacheFree(pThis->hTaskCache, pFree); } pThis->fRedo = false; } if (pThis->hEvtProcess != NIL_SUPSEMEVENT) { SUPSemEventClose(pThis->pSupDrvSession, pThis->hEvtProcess); pThis->hEvtProcess = NIL_SUPSEMEVENT; } int rc = RTMemCacheDestroy(pThis->hTaskCache); AssertMsgRC(rc, ("Destroying task cache failed rc=%Rrc\n", rc)); return rc; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) buslogicR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PBUSLOGIC pThis = PDMINS_2_DATA(pDevIns, PBUSLOGIC); int rc = VINF_SUCCESS; bool fBootable = true; char achISACompat[16]; PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* * Init instance data (do early because of constructor). */ pThis->hTaskCache = NIL_RTMEMCACHE; pThis->pDevInsR3 = pDevIns; pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pThis->IBase.pfnQueryInterface = buslogicR3StatusQueryInterface; pThis->ILeds.pfnQueryStatusLed = buslogicR3StatusQueryStatusLed; PCIDevSetVendorId (&pThis->dev, 0x104b); /* BusLogic */ PCIDevSetDeviceId (&pThis->dev, 0x1040); /* BT-958 */ PCIDevSetCommand (&pThis->dev, 0x0003); PCIDevSetRevisionId (&pThis->dev, 0x01); PCIDevSetClassProg (&pThis->dev, 0x00); /* SCSI */ PCIDevSetClassSub (&pThis->dev, 0x00); /* SCSI */ PCIDevSetClassBase (&pThis->dev, 0x01); /* Mass storage */ PCIDevSetBaseAddress (&pThis->dev, 0, true /*IO*/, false /*Pref*/, false /*64-bit*/, 0x00000000); PCIDevSetBaseAddress (&pThis->dev, 1, false /*IO*/, false /*Pref*/, false /*64-bit*/, 0x00000000); PCIDevSetSubSystemVendorId(&pThis->dev, 0x104b); PCIDevSetSubSystemId (&pThis->dev, 0x1040); PCIDevSetInterruptLine (&pThis->dev, 0x00); PCIDevSetInterruptPin (&pThis->dev, 0x01); /* * Validate and read configuration. */ if (!CFGMR3AreValuesValid(pCfg, "GCEnabled\0" "R0Enabled\0" "Bootable\0" "ISACompat\0")) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_("BusLogic configuration error: unknown option specified")); rc = CFGMR3QueryBoolDef(pCfg, "GCEnabled", &pThis->fGCEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic configuration error: failed to read GCEnabled as boolean")); Log(("%s: fGCEnabled=%d\n", __FUNCTION__, pThis->fGCEnabled)); rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &pThis->fR0Enabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic configuration error: failed to read R0Enabled as boolean")); Log(("%s: fR0Enabled=%d\n", __FUNCTION__, pThis->fR0Enabled)); rc = CFGMR3QueryBoolDef(pCfg, "Bootable", &fBootable, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic configuration error: failed to read Bootable as boolean")); Log(("%s: fBootable=%RTbool\n", __FUNCTION__, fBootable)); /* Only the first instance defaults to having the ISA compatibility ports enabled. */ if (iInstance == 0) rc = CFGMR3QueryStringDef(pCfg, "ISACompat", achISACompat, sizeof(achISACompat), "Alternate"); else rc = CFGMR3QueryStringDef(pCfg, "ISACompat", achISACompat, sizeof(achISACompat), "Disabled"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic configuration error: failed to read ISACompat as string")); Log(("%s: ISACompat=%s\n", __FUNCTION__, achISACompat)); /* Grok the ISACompat setting. */ if (!strcmp(achISACompat, "Disabled")) pThis->uDefaultISABaseCode = ISA_BASE_DISABLED; else if (!strcmp(achISACompat, "Primary")) pThis->uDefaultISABaseCode = 0; /* I/O base at 330h. */ else if (!strcmp(achISACompat, "Alternate")) pThis->uDefaultISABaseCode = 1; /* I/O base at 334h. */ else return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_("BusLogic configuration error: invalid ISACompat setting")); /* * Register the PCI device and its I/O regions. */ rc = PDMDevHlpPCIRegister(pDevIns, &pThis->dev); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 32, PCI_ADDRESS_SPACE_IO, buslogicR3MmioMap); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 1, 32, PCI_ADDRESS_SPACE_MEM, buslogicR3MmioMap); if (RT_FAILURE(rc)) return rc; if (fBootable) { /* Register I/O port space for BIOS access. */ rc = PDMDevHlpIOPortRegister(pDevIns, BUSLOGIC_BIOS_IO_PORT, 4, NULL, buslogicR3BiosIoPortWrite, buslogicR3BiosIoPortRead, buslogicR3BiosIoPortWriteStr, buslogicR3BiosIoPortReadStr, "BusLogic BIOS"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic cannot register BIOS I/O handlers")); } /* Set up the compatibility I/O range. */ rc = buslogicR3RegisterISARange(pThis, pThis->uDefaultISABaseCode); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic cannot register ISA I/O handlers")); /* Initialize task cache. */ rc = RTMemCacheCreate(&pThis->hTaskCache, sizeof(BUSLOGICTASKSTATE), 0, UINT32_MAX, NULL, NULL, NULL, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic: Failed to initialize task cache\n")); /* Initialize task queue. */ rc = PDMDevHlpQueueCreate(pDevIns, sizeof(PDMQUEUEITEMCORE), 5, 0, buslogicR3NotifyQueueConsumer, true, "BusLogicTask", &pThis->pNotifierQueueR3); if (RT_FAILURE(rc)) return rc; pThis->pNotifierQueueR0 = PDMQueueR0Ptr(pThis->pNotifierQueueR3); pThis->pNotifierQueueRC = PDMQueueRCPtr(pThis->pNotifierQueueR3); rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSectIntr, RT_SRC_POS, "BusLogic-Intr#%u", pDevIns->iInstance); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic: cannot create critical section")); /* * Create event semaphore and worker thread. */ rc = SUPSemEventCreate(pThis->pSupDrvSession, &pThis->hEvtProcess); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("BusLogic: Failed to create SUP event semaphore")); char szDevTag[20]; RTStrPrintf(szDevTag, sizeof(szDevTag), "BUSLOGIC-%u", iInstance); rc = PDMDevHlpThreadCreate(pDevIns, &pThis->pThreadWrk, pThis, buslogicR3Worker, buslogicR3WorkerWakeUp, 0, RTTHREADTYPE_IO, szDevTag); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("BusLogic: Failed to create worker thread %s"), szDevTag); /* Initialize per device state. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->aDeviceStates); i++) { char szName[24]; PBUSLOGICDEVICE pDevice = &pThis->aDeviceStates[i]; RTStrPrintf(szName, sizeof(szName), "Device%u", i); /* Initialize static parts of the device. */ pDevice->iLUN = i; pDevice->pBusLogicR3 = pThis; pDevice->pBusLogicR0 = PDMINS_2_DATA_R0PTR(pDevIns); pDevice->pBusLogicRC = PDMINS_2_DATA_RCPTR(pDevIns); pDevice->Led.u32Magic = PDMLED_MAGIC; pDevice->IBase.pfnQueryInterface = buslogicR3DeviceQueryInterface; pDevice->ISCSIPort.pfnSCSIRequestCompleted = buslogicR3DeviceSCSIRequestCompleted; pDevice->ISCSIPort.pfnQueryDeviceLocation = buslogicR3QueryDeviceLocation; pDevice->ILed.pfnQueryStatusLed = buslogicR3DeviceQueryStatusLed; /* Attach SCSI driver. */ rc = PDMDevHlpDriverAttach(pDevIns, pDevice->iLUN, &pDevice->IBase, &pDevice->pDrvBase, szName); if (RT_SUCCESS(rc)) { /* Get SCSI connector interface. */ pDevice->pDrvSCSIConnector = PDMIBASE_QUERY_INTERFACE(pDevice->pDrvBase, PDMISCSICONNECTOR); AssertMsgReturn(pDevice->pDrvSCSIConnector, ("Missing SCSI interface below\n"), VERR_PDM_MISSING_INTERFACE); pDevice->fPresent = true; } else if (rc == VERR_PDM_NO_ATTACHED_DRIVER) { pDevice->pDrvBase = NULL; pDevice->fPresent = false; rc = VINF_SUCCESS; Log(("BusLogic: no driver attached to device %s\n", szName)); } else { AssertLogRelMsgFailed(("BusLogic: Failed to attach %s\n", szName)); return rc; } } /* * Attach status driver (optional). */ PPDMIBASE pBase; rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->IBase, &pBase, "Status Port"); if (RT_SUCCESS(rc)) pThis->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); else if (rc != VERR_PDM_NO_ATTACHED_DRIVER) { AssertMsgFailed(("Failed to attach to status driver. rc=%Rrc\n", rc)); return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic cannot attach to status driver")); } rc = PDMDevHlpSSMRegisterEx(pDevIns, BUSLOGIC_SAVED_STATE_MINOR_VERSION, sizeof(*pThis), NULL, NULL, buslogicR3LiveExec, NULL, NULL, buslogicR3SaveExec, NULL, NULL, buslogicR3LoadExec, buslogicR3LoadDone); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("BusLogic cannot register save state handlers")); /* * Register the debugger info callback. */ char szTmp[128]; RTStrPrintf(szTmp, sizeof(szTmp), "%s%d", pDevIns->pReg->szName, pDevIns->iInstance); PDMDevHlpDBGFInfoRegister(pDevIns, szTmp, "BusLogic HBA info", buslogicR3Info); rc = buslogicR3HwReset(pThis, true); AssertMsgRC(rc, ("hardware reset of BusLogic host adapter failed rc=%Rrc\n", rc)); return rc; } /** * The device registration structure. */ const PDMDEVREG g_DeviceBusLogic = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "buslogic", /* szRCMod */ "VBoxDDRC.rc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "BusLogic BT-958 SCSI host adapter.\n", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0 | PDM_DEVREG_FLAGS_FIRST_SUSPEND_NOTIFICATION | PDM_DEVREG_FLAGS_FIRST_POWEROFF_NOTIFICATION | PDM_DEVREG_FLAGS_FIRST_RESET_NOTIFICATION, /* fClass */ PDM_DEVREG_CLASS_STORAGE, /* cMaxInstances */ ~0U, /* cbInstance */ sizeof(BUSLOGIC), /* pfnConstruct */ buslogicR3Construct, /* pfnDestruct */ buslogicR3Destruct, /* pfnRelocate */ buslogicR3Relocate, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ buslogicR3Reset, /* pfnSuspend */ buslogicR3Suspend, /* pfnResume */ buslogicR3Resume, /* pfnAttach */ buslogicR3Attach, /* pfnDetach */ buslogicR3Detach, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ buslogicR3PowerOff, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */