VirtualBox

source: vbox/trunk/src/VBox/Devices/PC/DevDMA.cpp@ 62564

Last change on this file since 62564 was 62509, checked in by vboxsync, 8 years ago

(C) 2016

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 33.3 KB
Line 
1/* $Id: DevDMA.cpp 62509 2016-07-22 19:12:22Z vboxsync $ */
2/** @file
3 * DevDMA - DMA Controller Device.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 * --------------------------------------------------------------------
17 *
18 * This code is loosely based on:
19 *
20 * QEMU DMA emulation
21 *
22 * Copyright (c) 2003 Vassili Karpov (malc)
23 *
24 * Permission is hereby granted, free of charge, to any person obtaining a copy
25 * of this software and associated documentation files (the "Software"), to deal
26 * in the Software without restriction, including without limitation the rights
27 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
28 * copies of the Software, and to permit persons to whom the Software is
29 * furnished to do so, subject to the following conditions:
30 *
31 * The above copyright notice and this permission notice shall be included in
32 * all copies or substantial portions of the Software.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
35 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
36 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
37 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
38 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
39 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
40 * THE SOFTWARE.
41 */
42
43
44/*********************************************************************************************************************************
45* Header Files *
46*********************************************************************************************************************************/
47#define LOG_GROUP LOG_GROUP_DEV_DMA
48#include <VBox/vmm/pdmdev.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/assert.h>
53#include <iprt/string.h>
54
55#include <stdio.h>
56#include <stdlib.h>
57
58#include "VBoxDD.h"
59
60
61/** @page pg_dev_dma DMA Overview and notes
62 *
63 * Modern PCs typically emulate AT-compatible DMA. The IBM PC/AT used dual
64 * cascaded 8237A DMA controllers, augmented with a 74LS612 memory mapper.
65 * The 8237As are 8-bit parts, only capable of addressing up to 64KB; the
66 * 74LS612 extends addressing to 24 bits. That leads to well known and
67 * inconvenient DMA limitations:
68 * - DMA can only access physical memory under the 16MB line
69 * - DMA transfers must occur within a 64KB/128KB 'page'
70 *
71 * The 16-bit DMA controller added in the PC/AT shifts all 8237A addresses
72 * left by one, including the control registers addresses. The DMA register
73 * offsets (except for the page registers) are therefore "double spaced".
74 *
75 * Due to the address shifting, the DMA controller decodes more addresses
76 * than are usually documented, with aliasing. See the ICH8 datasheet.
77 *
78 * In the IBM PC and PC/XT, DMA channel 0 was used for memory refresh, thus
79 * preventing the use of memory-to-memory DMA transfers (which use channels
80 * 0 and 1). In the PC/AT, memory-to-memory DMA was theoretically possible.
81 * However, it would transfer a single byte at a time, while the CPU can
82 * transfer two (on a 286) or four (on a 386+) bytes at a time. On many
83 * compatibles, memory-to-memory DMA is not even implemented at all, and
84 * therefore has no practical use.
85 *
86 * Auto-init mode is handled implicitly; a device's transfer handler may
87 * return an end count lower than the start count.
88 *
89 * Naming convention: 'channel' refers to a system-wide DMA channel (0-7)
90 * while 'chidx' refers to a DMA channel index within a controller (0-3).
91 *
92 * References:
93 * - IBM Personal Computer AT Technical Reference, 1984
94 * - Intel 8237A-5 Datasheet, 1993
95 * - Frank van Gilluwe, The Undocumented PC, 1994
96 * - OPTi 82C206 Data Book, 1996 (or Chips & Tech 82C206)
97 * - Intel ICH8 Datasheet, 2007
98 */
99
100
101/* Saved state versions. */
102#define DMA_SAVESTATE_OLD 1 /* The original saved state. */
103#define DMA_SAVESTATE_CURRENT 2 /* The new and improved saved state. */
104
105/* State information for a single DMA channel. */
106typedef struct {
107 void *pvUser; /* User specific context. */
108 PFNDMATRANSFERHANDLER pfnXferHandler; /* Transfer handler for channel. */
109 uint16_t u16BaseAddr; /* Base address for transfers. */
110 uint16_t u16BaseCount; /* Base count for transfers. */
111 uint16_t u16CurAddr; /* Current address. */
112 uint16_t u16CurCount; /* Current count. */
113 uint8_t u8Mode; /* Channel mode. */
114} DMAChannel;
115
116/* State information for a DMA controller (DMA8 or DMA16). */
117typedef struct {
118 DMAChannel ChState[4]; /* Per-channel state. */
119 uint8_t au8Page[8]; /* Page registers (A16-A23). */
120 uint8_t au8PageHi[8]; /* High page registers (A24-A31). */
121 uint8_t u8Command; /* Command register. */
122 uint8_t u8Status; /* Status register. */
123 uint8_t u8Mask; /* Mask register. */
124 uint8_t u8Temp; /* Temporary (mem/mem) register. */
125 uint8_t u8ModeCtr; /* Mode register counter for reads. */
126 bool fHiByte; /* Byte pointer (T/F -> high/low). */
127 uint32_t is16bit; /* True for 16-bit DMA. */
128} DMAControl;
129
130/* Complete DMA state information. */
131typedef struct {
132 PPDMDEVINS pDevIns; /* Device instance. */
133 PCPDMDMACHLP pHlp; /* PDM DMA helpers. */
134 DMAControl DMAC[2]; /* Two DMA controllers. */
135} DMAState;
136
137/* DMA command register bits. */
138enum {
139 CMD_MEMTOMEM = 0x01, /* Enable mem-to-mem trasfers. */
140 CMD_ADRHOLD = 0x02, /* Address hold for mem-to-mem. */
141 CMD_DISABLE = 0x04, /* Disable controller. */
142 CMD_COMPRTIME = 0x08, /* Compressed timing. */
143 CMD_ROTPRIO = 0x10, /* Rotating priority. */
144 CMD_EXTWR = 0x20, /* Extended write. */
145 CMD_DREQHI = 0x40, /* DREQ is active high if set. */
146 CMD_DACKHI = 0x80, /* DACK is active high if set. */
147 CMD_UNSUPPORTED = CMD_MEMTOMEM | CMD_ADRHOLD | CMD_COMPRTIME
148 | CMD_EXTWR | CMD_DREQHI | CMD_DACKHI
149};
150
151/* DMA control register offsets for read accesses. */
152enum {
153 CTL_R_STAT, /* Read status registers. */
154 CTL_R_DMAREQ, /* Read DRQ register. */
155 CTL_R_CMD, /* Read command register. */
156 CTL_R_MODE, /* Read mode register. */
157 CTL_R_SETBPTR, /* Set byte pointer flip-flop. */
158 CTL_R_TEMP, /* Read temporary register. */
159 CTL_R_CLRMODE, /* Clear mode register counter. */
160 CTL_R_MASK /* Read all DRQ mask bits. */
161};
162
163/* DMA control register offsets for read accesses. */
164enum {
165 CTL_W_CMD, /* Write command register. */
166 CTL_W_DMAREQ, /* Write DRQ register. */
167 CTL_W_MASKONE, /* Write single DRQ mask bit. */
168 CTL_W_MODE, /* Write mode register. */
169 CTL_W_CLRBPTR, /* Clear byte pointer flip-flop. */
170 CTL_W_MASTRCLR, /* Master clear. */
171 CTL_W_CLRMASK, /* Clear all DRQ mask bits. */
172 CTL_W_MASK /* Write all DRQ mask bits. */
173};
174
175/* DMA transfer modes. */
176enum {
177 DMODE_DEMAND, /* Demand transfer mode. */
178 DMODE_SINGLE, /* Single transfer mode. */
179 DMODE_BLOCK, /* Block transfer mode. */
180 DMODE_CASCADE /* Cascade mode. */
181};
182
183/* DMA transfer types. */
184enum {
185 DTYPE_VERIFY, /* Verify transfer type. */
186 DTYPE_WRITE, /* Write transfer type. */
187 DTYPE_READ, /* Read transfer type. */
188 DTYPE_ILLEGAL /* Undefined. */
189};
190
191/* Convert DMA channel number (0-7) to controller number (0-1). */
192#define DMACH2C(c) (c < 4 ? 0 : 1)
193
194static int dmaChannelMap[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
195/* Map a DMA page register offset (0-7) to channel index (0-3). */
196#define DMAPG2CX(c) (dmaChannelMap[c])
197
198static int dmaMapChannel[4] = {7, 3, 1, 2};
199/* Map a channel index (0-3) to DMA page register offset (0-7). */
200#define DMACX2PG(c) (dmaMapChannel[c])
201/* Map a channel number (0-7) to DMA page register offset (0-7). */
202#define DMACH2PG(c) (dmaMapChannel[c & 3])
203
204/* Test the decrement bit of mode register. */
205#define IS_MODE_DEC(c) ((c) & 0x20)
206/* Test the auto-init bit of mode register. */
207#define IS_MODE_AI(c) ((c) & 0x10)
208/* Extract the transfer type bits of mode register. */
209#define GET_MODE_XTYP(c)(((c) & 0x0c) >> 2)
210
211/* Perform a master clear (reset) on a DMA controller. */
212static void dmaClear(DMAControl *dc)
213{
214 dc->u8Command = 0;
215 dc->u8Status = 0;
216 dc->u8Temp = 0;
217 dc->u8ModeCtr = 0;
218 dc->fHiByte = false;
219 dc->u8Mask = ~0;
220}
221
222/* Read the byte pointer and flip it. */
223static inline bool dmaReadBytePtr(DMAControl *dc)
224{
225 bool bHighByte;
226
227 bHighByte = !!dc->fHiByte;
228 dc->fHiByte ^= 1;
229 return bHighByte;
230}
231
232/* DMA address registers writes and reads. */
233
234static DECLCALLBACK(int) dmaWriteAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
235{
236 if (cb == 1)
237 {
238 DMAControl *dc = (DMAControl *)pvUser;
239 DMAChannel *ch;
240 int chidx, reg, is_count;
241
242 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
243 reg = (port >> dc->is16bit) & 0x0f;
244 chidx = reg >> 1;
245 is_count = reg & 1;
246 ch = &dc->ChState[chidx];
247 if (dmaReadBytePtr(dc))
248 {
249 /* Write the high byte. */
250 if (is_count)
251 ch->u16BaseCount = RT_MAKE_U16(ch->u16BaseCount, u32);
252 else
253 ch->u16BaseAddr = RT_MAKE_U16(ch->u16BaseAddr, u32);
254
255 ch->u16CurCount = 0;
256 ch->u16CurAddr = ch->u16BaseAddr;
257 }
258 else
259 {
260 /* Write the low byte. */
261 if (is_count)
262 ch->u16BaseCount = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseCount));
263 else
264 ch->u16BaseAddr = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseAddr));
265 }
266 Log2(("dmaWriteAddr: port %#06x, chidx %d, data %#02x\n",
267 port, chidx, u32));
268 }
269 else
270 {
271 /* Likely a guest bug. */
272 Log(("Bad size write to count register %#x (size %d, data %#x)\n",
273 port, cb, u32));
274 }
275 return VINF_SUCCESS;
276}
277
278static DECLCALLBACK(int) dmaReadAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
279{
280 if (cb == 1)
281 {
282 DMAControl *dc = (DMAControl *)pvUser;
283 DMAChannel *ch;
284 int chidx, reg, val, dir;
285 int bptr;
286
287 reg = (port >> dc->is16bit) & 0x0f;
288 chidx = reg >> 1;
289 ch = &dc->ChState[chidx];
290
291 dir = IS_MODE_DEC(ch->u8Mode) ? -1 : 1;
292 if (reg & 1)
293 val = ch->u16BaseCount - ch->u16CurCount;
294 else
295 val = ch->u16CurAddr + ch->u16CurCount * dir;
296
297 bptr = dmaReadBytePtr(dc);
298 *pu32 = RT_LOBYTE(val >> (bptr * 8));
299
300 Log(("Count read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
301 return VINF_SUCCESS;
302 }
303 else
304 return VERR_IOM_IOPORT_UNUSED;
305}
306
307/* DMA control registers writes and reads. */
308
309static DECLCALLBACK(int) dmaWriteCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
310 uint32_t u32, unsigned cb)
311{
312 if (cb == 1)
313 {
314 DMAControl *dc = (DMAControl *)pvUser;
315 int chidx = 0;
316 int reg;
317
318 reg = ((port >> dc->is16bit) & 0x0f) - 8;
319 Assert((reg >= CTL_W_CMD && reg <= CTL_W_MASK));
320 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
321
322 switch (reg) {
323 case CTL_W_CMD:
324 /* Unsupported commands are entirely ignored. */
325 if (u32 & CMD_UNSUPPORTED)
326 {
327 Log(("DMA command %#x is not supported, ignoring!\n", u32));
328 break;
329 }
330 dc->u8Command = u32;
331 break;
332 case CTL_W_DMAREQ:
333 chidx = u32 & 3;
334 if (u32 & 4)
335 dc->u8Status |= 1 << (chidx + 4);
336 else
337 dc->u8Status &= ~(1 << (chidx + 4));
338 dc->u8Status &= ~(1 << chidx); /* Clear TC for channel. */
339 break;
340 case CTL_W_MASKONE:
341 chidx = u32 & 3;
342 if (u32 & 4)
343 dc->u8Mask |= 1 << chidx;
344 else
345 dc->u8Mask &= ~(1 << chidx);
346 break;
347 case CTL_W_MODE:
348 {
349 int op, opmode;
350
351 chidx = u32 & 3;
352 op = (u32 >> 2) & 3;
353 opmode = (u32 >> 6) & 3;
354 Log2(("chidx %d, op %d, %sauto-init, %screment, opmode %d\n",
355 chidx, op, IS_MODE_AI(u32) ? "" : "no ",
356 IS_MODE_DEC(u32) ? "de" : "in", opmode));
357
358 dc->ChState[chidx].u8Mode = u32;
359 break;
360 }
361 case CTL_W_CLRBPTR:
362 dc->fHiByte = false;
363 break;
364 case CTL_W_MASTRCLR:
365 dmaClear(dc);
366 break;
367 case CTL_W_CLRMASK:
368 dc->u8Mask = 0;
369 break;
370 case CTL_W_MASK:
371 dc->u8Mask = u32;
372 break;
373 default:
374 Assert(0);
375 break;
376 }
377 Log(("dmaWriteCtl: port %#06x, chidx %d, data %#02x\n",
378 port, chidx, u32));
379 }
380 else
381 {
382 /* Likely a guest bug. */
383 Log(("Bad size write to controller register %#x (size %d, data %#x)\n",
384 port, cb, u32));
385 }
386 return VINF_SUCCESS;
387}
388
389static DECLCALLBACK(int) dmaReadCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
390{
391 if (cb == 1)
392 {
393 DMAControl *dc = (DMAControl *)pvUser;
394 uint8_t val = 0;
395 int reg;
396
397 reg = ((port >> dc->is16bit) & 0x0f) - 8;
398 Assert((reg >= CTL_R_STAT && reg <= CTL_R_MASK));
399
400 switch (reg)
401 {
402 case CTL_R_STAT:
403 val = dc->u8Status;
404 dc->u8Status &= 0xf0; /* A read clears all TCs. */
405 break;
406 case CTL_R_DMAREQ:
407 val = (dc->u8Status >> 4) | 0xf0;
408 break;
409 case CTL_R_CMD:
410 val = dc->u8Command;
411 break;
412 case CTL_R_MODE:
413 val = dc->ChState[dc->u8ModeCtr].u8Mode | 3;
414 dc->u8ModeCtr = (dc->u8ModeCtr + 1) & 3;
415 case CTL_R_SETBPTR:
416 dc->fHiByte = true;
417 break;
418 case CTL_R_TEMP:
419 val = dc->u8Temp;
420 break;
421 case CTL_R_CLRMODE:
422 dc->u8ModeCtr = 0;
423 break;
424 case CTL_R_MASK:
425 val = dc->u8Mask;
426 break;
427 default:
428 Assert(0);
429 break;
430 }
431
432 Log(("Ctrl read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
433 *pu32 = val;
434
435 return VINF_SUCCESS;
436 }
437 return VERR_IOM_IOPORT_UNUSED;
438}
439
440/** DMA page registers. There are 16 R/W page registers for compatibility with
441 * the IBM PC/AT; only some of those registers are used for DMA. The page register
442 * accessible via port 80h may be read to insert small delays or used as a scratch
443 * register by a BIOS.
444 */
445static DECLCALLBACK(int) dmaReadPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
446{
447 DMAControl *dc = (DMAControl *)pvUser;
448 int reg;
449
450 if (cb == 1)
451 {
452 reg = port & 7;
453 *pu32 = dc->au8Page[reg];
454 Log2(("Read %#x (byte) from page register %#x (channel %d)\n",
455 *pu32, port, DMAPG2CX(reg)));
456 return VINF_SUCCESS;
457 }
458
459 if (cb == 2)
460 {
461 reg = port & 7;
462 *pu32 = dc->au8Page[reg] | (dc->au8Page[(reg + 1) & 7] << 8);
463 Log2(("Read %#x (word) from page register %#x (channel %d)\n",
464 *pu32, port, DMAPG2CX(reg)));
465 return VINF_SUCCESS;
466 }
467
468 return VERR_IOM_IOPORT_UNUSED;
469}
470
471static DECLCALLBACK(int) dmaWritePage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
472{
473 DMAControl *dc = (DMAControl *)pvUser;
474 int reg;
475
476 if (cb == 1)
477 {
478 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
479 reg = port & 7;
480 dc->au8Page[reg] = u32;
481 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
482 Log2(("Wrote %#x to page register %#x (channel %d)\n",
483 u32, port, DMAPG2CX(reg)));
484 }
485 else if (cb == 2)
486 {
487 Assert(!(u32 & ~0xffff)); /* Check for garbage in high bits. */
488 reg = port & 7;
489 dc->au8Page[reg] = u32;
490 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
491 reg = (port + 1) & 7;
492 dc->au8Page[reg] = u32 >> 8;
493 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
494 }
495 else
496 {
497 /* Likely a guest bug. */
498 Log(("Bad size write to page register %#x (size %d, data %#x)\n",
499 port, cb, u32));
500 }
501 return VINF_SUCCESS;
502}
503
504/**
505 * EISA style high page registers, for extending the DMA addresses to cover
506 * the entire 32-bit address space.
507 */
508static DECLCALLBACK(int) dmaReadHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
509{
510 if (cb == 1)
511 {
512 DMAControl *dc = (DMAControl *)pvUser;
513 int reg;
514
515 reg = port & 7;
516 *pu32 = dc->au8PageHi[reg];
517 Log2(("Read %#x to from high page register %#x (channel %d)\n",
518 *pu32, port, DMAPG2CX(reg)));
519 return VINF_SUCCESS;
520 }
521 return VERR_IOM_IOPORT_UNUSED;
522}
523
524static DECLCALLBACK(int) dmaWriteHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
525{
526 if (cb == 1)
527 {
528 DMAControl *dc = (DMAControl *)pvUser;
529 int reg;
530
531 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
532 reg = port & 7;
533 dc->au8PageHi[reg] = u32;
534 Log2(("Wrote %#x to high page register %#x (channel %d)\n",
535 u32, port, DMAPG2CX(reg)));
536 }
537 else
538 {
539 /* Likely a guest bug. */
540 Log(("Bad size write to high page register %#x (size %d, data %#x)\n",
541 port, cb, u32));
542 }
543 return VINF_SUCCESS;
544}
545
546/** Perform any pending transfers on a single DMA channel. */
547static void dmaRunChannel(DMAState *pThis, int ctlidx, int chidx)
548{
549 DMAControl *dc = &pThis->DMAC[ctlidx];
550 DMAChannel *ch = &dc->ChState[chidx];
551 uint32_t start_cnt, end_cnt;
552 int opmode;
553
554 opmode = (ch->u8Mode >> 6) & 3;
555
556 Log3(("DMA address %screment, mode %d\n",
557 IS_MODE_DEC(ch->u8Mode) ? "de" : "in",
558 ch->u8Mode >> 6));
559
560 /* Addresses and counts are shifted for 16-bit channels. */
561 start_cnt = ch->u16CurCount << dc->is16bit;
562 /* NB: The device is responsible for examining the DMA mode and not
563 * transferring more than it should if auto-init is not in use.
564 */
565 end_cnt = ch->pfnXferHandler(pThis->pDevIns, ch->pvUser, (ctlidx * 4) + chidx,
566 start_cnt, (ch->u16BaseCount + 1) << dc->is16bit);
567 ch->u16CurCount = end_cnt >> dc->is16bit;
568 /* Set the TC (Terminal Count) bit if transfer was completed. */
569 if (ch->u16CurCount == ch->u16BaseCount + 1)
570 switch (opmode)
571 {
572 case DMODE_DEMAND:
573 case DMODE_SINGLE:
574 case DMODE_BLOCK:
575 dc->u8Status |= RT_BIT(chidx);
576 Log3(("TC set for DMA channel %d\n", (ctlidx * 4) + chidx));
577 break;
578 default:
579 break;
580 }
581 Log3(("DMA position %d, size %d\n", end_cnt, (ch->u16BaseCount + 1) << dc->is16bit));
582}
583
584/**
585 * @interface_method_impl{PDMDMAREG,pfnRun}
586 */
587static DECLCALLBACK(bool) dmaRun(PPDMDEVINS pDevIns)
588{
589 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
590 DMAControl *dc;
591 int ctlidx, chidx, mask;
592 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
593
594 /* Run all controllers and channels. */
595 for (ctlidx = 0; ctlidx < 2; ++ctlidx)
596 {
597 dc = &pThis->DMAC[ctlidx];
598
599 /* If controller is disabled, don't even bother. */
600 if (dc->u8Command & CMD_DISABLE)
601 continue;
602
603 for (chidx = 0; chidx < 4; ++chidx)
604 {
605 mask = 1 << chidx;
606 if (!(dc->u8Mask & mask) && (dc->u8Status & (mask << 4)))
607 dmaRunChannel(pThis, ctlidx, chidx);
608 }
609 }
610
611 PDMCritSectLeave(pDevIns->pCritSectRoR3);
612 return 0;
613}
614
615/**
616 * @interface_method_impl{PDMDMAREG,pfnRegister}
617 */
618static DECLCALLBACK(void) dmaRegister(PPDMDEVINS pDevIns, unsigned uChannel,
619 PFNDMATRANSFERHANDLER pfnTransferHandler, void *pvUser)
620{
621 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
622 DMAChannel *ch = &pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3];
623
624 LogFlow(("dmaRegister: pThis=%p uChannel=%u pfnTransferHandler=%p pvUser=%p\n", pThis, uChannel, pfnTransferHandler, pvUser));
625
626 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
627 ch->pfnXferHandler = pfnTransferHandler;
628 ch->pvUser = pvUser;
629 PDMCritSectLeave(pDevIns->pCritSectRoR3);
630}
631
632/** Reverse the order of bytes in a memory buffer. */
633static void dmaReverseBuf8(void *buf, unsigned len)
634{
635 uint8_t *pBeg, *pEnd;
636 uint8_t temp;
637
638 pBeg = (uint8_t *)buf;
639 pEnd = pBeg + len - 1;
640 for (len = len / 2; len; --len)
641 {
642 temp = *pBeg;
643 *pBeg++ = *pEnd;
644 *pEnd-- = temp;
645 }
646}
647
648/** Reverse the order of words in a memory buffer. */
649static void dmaReverseBuf16(void *buf, unsigned len)
650{
651 uint16_t *pBeg, *pEnd;
652 uint16_t temp;
653
654 Assert(!(len & 1));
655 len /= 2; /* Convert to word count. */
656 pBeg = (uint16_t *)buf;
657 pEnd = pBeg + len - 1;
658 for (len = len / 2; len; --len)
659 {
660 temp = *pBeg;
661 *pBeg++ = *pEnd;
662 *pEnd-- = temp;
663 }
664}
665
666/**
667 * @interface_method_impl{PDMDMAREG,pfnReadMemory}
668 */
669static DECLCALLBACK(uint32_t) dmaReadMemory(PPDMDEVINS pDevIns, unsigned uChannel,
670 void *pvBuffer, uint32_t off, uint32_t cbBlock)
671{
672 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
673 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
674 DMAChannel *ch = &dc->ChState[uChannel & 3];
675 uint32_t page, pagehi;
676 uint32_t addr;
677
678 LogFlow(("dmaReadMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock));
679
680 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
681
682 /* Build the address for this transfer. */
683 page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit;
684 pagehi = dc->au8PageHi[DMACH2PG(uChannel)];
685 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
686
687 if (IS_MODE_DEC(ch->u8Mode))
688 {
689 PDMDevHlpPhysRead(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock);
690 if (dc->is16bit)
691 dmaReverseBuf16(pvBuffer, cbBlock);
692 else
693 dmaReverseBuf8(pvBuffer, cbBlock);
694 }
695 else
696 PDMDevHlpPhysRead(pThis->pDevIns, addr + off, pvBuffer, cbBlock);
697
698 PDMCritSectLeave(pDevIns->pCritSectRoR3);
699 return cbBlock;
700}
701
702/**
703 * @interface_method_impl{PDMDMAREG,pfnWriteMemory}
704 */
705static DECLCALLBACK(uint32_t) dmaWriteMemory(PPDMDEVINS pDevIns, unsigned uChannel,
706 const void *pvBuffer, uint32_t off, uint32_t cbBlock)
707{
708 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
709 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
710 DMAChannel *ch = &dc->ChState[uChannel & 3];
711 uint32_t page, pagehi;
712 uint32_t addr;
713
714 LogFlow(("dmaWriteMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock));
715 if (GET_MODE_XTYP(ch->u8Mode) == DTYPE_VERIFY)
716 {
717 Log(("DMA verify transfer, ignoring write.\n"));
718 return cbBlock;
719 }
720
721 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
722
723 /* Build the address for this transfer. */
724 page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit;
725 pagehi = dc->au8PageHi[DMACH2PG(uChannel)];
726 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
727
728 if (IS_MODE_DEC(ch->u8Mode))
729 {
730 //@todo: This would need a temporary buffer.
731 Assert(0);
732#if 0
733 if (dc->is16bit)
734 dmaReverseBuf16(pvBuffer, cbBlock);
735 else
736 dmaReverseBuf8(pvBuffer, cbBlock);
737#endif
738 PDMDevHlpPhysWrite(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock);
739 }
740 else
741 PDMDevHlpPhysWrite(pThis->pDevIns, addr + off, pvBuffer, cbBlock);
742
743 PDMCritSectLeave(pDevIns->pCritSectRoR3);
744 return cbBlock;
745}
746
747/**
748 * @interface_method_impl{PDMDMAREG,pfnSetDREQ}
749 */
750static DECLCALLBACK(void) dmaSetDREQ(PPDMDEVINS pDevIns, unsigned uChannel, unsigned uLevel)
751{
752 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
753 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
754 int chidx;
755
756 LogFlow(("dmaSetDREQ: pThis=%p uChannel=%u uLevel=%u\n", pThis, uChannel, uLevel));
757
758 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
759 chidx = uChannel & 3;
760 if (uLevel)
761 dc->u8Status |= 1 << (chidx + 4);
762 else
763 dc->u8Status &= ~(1 << (chidx + 4));
764 PDMCritSectLeave(pDevIns->pCritSectRoR3);
765}
766
767/**
768 * @interface_method_impl{PDMDMAREG,pfnGetChannelMode}
769 */
770static DECLCALLBACK(uint8_t) dmaGetChannelMode(PPDMDEVINS pDevIns, unsigned uChannel)
771{
772 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
773
774 LogFlow(("dmaGetChannelMode: pThis=%p uChannel=%u\n", pThis, uChannel));
775
776 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
777 uint8_t u8Mode = pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3].u8Mode;
778 PDMCritSectLeave(pDevIns->pCritSectRoR3);
779 return u8Mode;
780}
781
782
783/**
784 * @interface_method_impl{PDMDEVREG,pfnReset}
785 */
786static DECLCALLBACK(void) dmaReset(PPDMDEVINS pDevIns)
787{
788 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
789
790 LogFlow(("dmaReset: pThis=%p\n", pThis));
791
792 /* NB: The page and address registers are unaffected by a reset
793 * and in an undefined state after power-up.
794 */
795 dmaClear(&pThis->DMAC[0]);
796 dmaClear(&pThis->DMAC[1]);
797}
798
799/** Register DMA I/O port handlers. */
800static void dmaIORegister(PPDMDEVINS pDevIns, bool fHighPage)
801{
802 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
803 DMAControl *dc8 = &pThis->DMAC[0];
804 DMAControl *dc16 = &pThis->DMAC[1];
805
806 dc8->is16bit = false;
807 dc16->is16bit = true;
808
809 /* Base and current address for each channel. */
810 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x00, 8, dc8, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA8 Address");
811 PDMDevHlpIOPortRegister(pThis->pDevIns, 0xC0, 16, dc16, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA16 Address");
812
813 /* Control registers for both DMA controllers. */
814 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x08, 8, dc8, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA8 Control");
815 PDMDevHlpIOPortRegister(pThis->pDevIns, 0xD0, 16, dc16, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA16 Control");
816
817 /* Page registers for each channel (plus a few unused ones). */
818 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x80, 8, dc8, dmaWritePage, dmaReadPage, NULL, NULL, "DMA8 Page");
819 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x88, 8, dc16, dmaWritePage, dmaReadPage, NULL, NULL, "DMA16 Page");
820
821 /* Optional EISA style high page registers (address bits 24-31). */
822 if (fHighPage)
823 {
824 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x480, 8, dc8, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA8 Page High");
825 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x488, 8, dc16, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA16 Page High");
826 }
827}
828
829static void dmaSaveController(PSSMHANDLE pSSM, DMAControl *dc)
830{
831 int chidx;
832
833 /* Save controller state... */
834 SSMR3PutU8(pSSM, dc->u8Command);
835 SSMR3PutU8(pSSM, dc->u8Mask);
836 SSMR3PutU8(pSSM, dc->fHiByte);
837 SSMR3PutU32(pSSM, dc->is16bit);
838 SSMR3PutU8(pSSM, dc->u8Status);
839 SSMR3PutU8(pSSM, dc->u8Temp);
840 SSMR3PutU8(pSSM, dc->u8ModeCtr);
841 SSMR3PutMem(pSSM, &dc->au8Page, sizeof(dc->au8Page));
842 SSMR3PutMem(pSSM, &dc->au8PageHi, sizeof(dc->au8PageHi));
843
844 /* ...and all four of its channels. */
845 for (chidx = 0; chidx < 4; ++chidx)
846 {
847 DMAChannel *ch = &dc->ChState[chidx];
848
849 SSMR3PutU16(pSSM, ch->u16CurAddr);
850 SSMR3PutU16(pSSM, ch->u16CurCount);
851 SSMR3PutU16(pSSM, ch->u16BaseAddr);
852 SSMR3PutU16(pSSM, ch->u16BaseCount);
853 SSMR3PutU8(pSSM, ch->u8Mode);
854 }
855}
856
857static int dmaLoadController(PSSMHANDLE pSSM, DMAControl *dc, int version)
858{
859 uint8_t u8val;
860 uint32_t u32val;
861 int chidx;
862
863 SSMR3GetU8(pSSM, &dc->u8Command);
864 SSMR3GetU8(pSSM, &dc->u8Mask);
865 SSMR3GetU8(pSSM, &u8val);
866 dc->fHiByte = !!u8val;
867 SSMR3GetU32(pSSM, &dc->is16bit);
868 if (version > DMA_SAVESTATE_OLD)
869 {
870 SSMR3GetU8(pSSM, &dc->u8Status);
871 SSMR3GetU8(pSSM, &dc->u8Temp);
872 SSMR3GetU8(pSSM, &dc->u8ModeCtr);
873 SSMR3GetMem(pSSM, &dc->au8Page, sizeof(dc->au8Page));
874 SSMR3GetMem(pSSM, &dc->au8PageHi, sizeof(dc->au8PageHi));
875 }
876
877 for (chidx = 0; chidx < 4; ++chidx)
878 {
879 DMAChannel *ch = &dc->ChState[chidx];
880
881 if (version == DMA_SAVESTATE_OLD)
882 {
883 /* Convert from 17-bit to 16-bit format. */
884 SSMR3GetU32(pSSM, &u32val);
885 ch->u16CurAddr = u32val >> dc->is16bit;
886 SSMR3GetU32(pSSM, &u32val);
887 ch->u16CurCount = u32val >> dc->is16bit;
888 }
889 else
890 {
891 SSMR3GetU16(pSSM, &ch->u16CurAddr);
892 SSMR3GetU16(pSSM, &ch->u16CurCount);
893 }
894 SSMR3GetU16(pSSM, &ch->u16BaseAddr);
895 SSMR3GetU16(pSSM, &ch->u16BaseCount);
896 SSMR3GetU8(pSSM, &ch->u8Mode);
897 /* Convert from old save state. */
898 if (version == DMA_SAVESTATE_OLD)
899 {
900 /* Remap page register contents. */
901 SSMR3GetU8(pSSM, &u8val);
902 dc->au8Page[DMACX2PG(chidx)] = u8val;
903 SSMR3GetU8(pSSM, &u8val);
904 dc->au8PageHi[DMACX2PG(chidx)] = u8val;
905 /* Throw away dack, eop. */
906 SSMR3GetU8(pSSM, &u8val);
907 SSMR3GetU8(pSSM, &u8val);
908 }
909 }
910 return 0;
911}
912
913/** @callback_method_impl{FNSSMDEVSAVEEXEC} */
914static DECLCALLBACK(int) dmaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
915{
916 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
917
918 dmaSaveController(pSSM, &pThis->DMAC[0]);
919 dmaSaveController(pSSM, &pThis->DMAC[1]);
920 return VINF_SUCCESS;
921}
922
923/** @callback_method_impl{FNSSMDEVLOADEXEC} */
924static DECLCALLBACK(int) dmaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
925{
926 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
927
928 AssertMsgReturn(uVersion <= DMA_SAVESTATE_CURRENT, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
929 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
930
931 dmaLoadController(pSSM, &pThis->DMAC[0], uVersion);
932 return dmaLoadController(pSSM, &pThis->DMAC[1], uVersion);
933}
934
935/**
936 * @interface_method_impl{PDMDEVREG,pfnConstruct}
937 */
938static DECLCALLBACK(int) dmaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
939{
940 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
941 bool bHighPage = false;
942 PDMDMACREG reg;
943 int rc;
944
945 pThis->pDevIns = pDevIns;
946
947 /*
948 * Validate configuration.
949 */
950 if (!CFGMR3AreValuesValid(pCfg, "\0")) /* "HighPageEnable\0")) */
951 return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES;
952
953#if 0
954 rc = CFGMR3QueryBool(pCfg, "HighPageEnable", &bHighPage);
955 if (RT_FAILURE (rc))
956 return rc;
957#endif
958
959 dmaIORegister(pDevIns, bHighPage);
960 dmaReset(pDevIns);
961
962 reg.u32Version = PDM_DMACREG_VERSION;
963 reg.pfnRun = dmaRun;
964 reg.pfnRegister = dmaRegister;
965 reg.pfnReadMemory = dmaReadMemory;
966 reg.pfnWriteMemory = dmaWriteMemory;
967 reg.pfnSetDREQ = dmaSetDREQ;
968 reg.pfnGetChannelMode = dmaGetChannelMode;
969
970 rc = PDMDevHlpDMACRegister(pDevIns, &reg, &pThis->pHlp);
971 if (RT_FAILURE (rc))
972 return rc;
973
974 rc = PDMDevHlpSSMRegister(pDevIns, DMA_SAVESTATE_CURRENT, sizeof(*pThis), dmaSaveExec, dmaLoadExec);
975 if (RT_FAILURE(rc))
976 return rc;
977
978 return VINF_SUCCESS;
979}
980
981/**
982 * The device registration structure.
983 */
984const PDMDEVREG g_DeviceDMA =
985{
986 /* u32Version */
987 PDM_DEVREG_VERSION,
988 /* szName */
989 "8237A",
990 /* szRCMod */
991 "",
992 /* szR0Mod */
993 "",
994 /* pszDescription */
995 "DMA Controller Device",
996 /* fFlags */
997 PDM_DEVREG_FLAGS_DEFAULT_BITS,
998 /* fClass */
999 PDM_DEVREG_CLASS_DMA,
1000 /* cMaxInstances */
1001 1,
1002 /* cbInstance */
1003 sizeof(DMAState),
1004 /* pfnConstruct */
1005 dmaConstruct,
1006 /* pfnDestruct */
1007 NULL,
1008 /* pfnRelocate */
1009 NULL,
1010 /* pfnMemSetup */
1011 NULL,
1012 /* pfnPowerOn */
1013 NULL,
1014 /* pfnReset */
1015 dmaReset,
1016 /* pfnSuspend */
1017 NULL,
1018 /* pfnResume */
1019 NULL,
1020 /* pfnAttach */
1021 NULL,
1022 /* pfnDetach */
1023 NULL,
1024 /* pfnQueryInterface. */
1025 NULL,
1026 /* pfnInitComplete */
1027 NULL,
1028 /* pfnPowerOff */
1029 NULL,
1030 /* pfnSoftReset */
1031 NULL,
1032 /* u32VersionEnd */
1033 PDM_DEVREG_VERSION
1034};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette