VirtualBox

source: vbox/trunk/src/VBox/Devices/PC/DevDMA.cpp@ 46845

Last change on this file since 46845 was 46499, checked in by vboxsync, 12 years ago

DevDMA: Set TC status bit on transfer completion.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 33.0 KB
Line 
1/* $Id: DevDMA.cpp 46499 2013-06-11 15:54:48Z vboxsync $ */
2/** @file
3 * DevDMA - DMA Controller Device.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 * --------------------------------------------------------------------
17 *
18 * This code is loosely based on:
19 *
20 * QEMU DMA emulation
21 *
22 * Copyright (c) 2003 Vassili Karpov (malc)
23 *
24 * Permission is hereby granted, free of charge, to any person obtaining a copy
25 * of this software and associated documentation files (the "Software"), to deal
26 * in the Software without restriction, including without limitation the rights
27 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
28 * copies of the Software, and to permit persons to whom the Software is
29 * furnished to do so, subject to the following conditions:
30 *
31 * The above copyright notice and this permission notice shall be included in
32 * all copies or substantial portions of the Software.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
35 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
36 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
37 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
38 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
39 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
40 * THE SOFTWARE.
41 */
42
43/*******************************************************************************
44* Header Files *
45*******************************************************************************/
46#define LOG_GROUP LOG_GROUP_DEV_DMA
47#include <VBox/vmm/pdmdev.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/assert.h>
52#include <iprt/string.h>
53
54#include <stdio.h>
55#include <stdlib.h>
56
57#include "VBoxDD.h"
58
59
60/** @page pg_dev_dma DMA Overview and notes
61 *
62 * Modern PCs typically emulate AT-compatible DMA. The IBM PC/AT used dual
63 * cascaded 8237A DMA controllers, augmented with a 74LS612 memory mapper.
64 * The 8237As are 8-bit parts, only capable of addressing up to 64KB; the
65 * 74LS612 extends addressing to 24 bits. That leads to well known and
66 * inconvenient DMA limitations:
67 * - DMA can only access physical memory under the 16MB line
68 * - DMA transfers must occur within a 64KB/128KB 'page'
69 *
70 * The 16-bit DMA controller added in the PC/AT shifts all 8237A addresses
71 * left by one, including the control registers addresses. The DMA register
72 * offsets (except for the page registers) are therefore "double spaced".
73 *
74 * Due to the address shifting, the DMA controller decodes more addresses
75 * than are usually documented, with aliasing. See the ICH8 datasheet.
76 *
77 * In the IBM PC and PC/XT, DMA channel 0 was used for memory refresh, thus
78 * preventing the use of memory-to-memory DMA transfers (which use channels
79 * 0 and 1). In the PC/AT, memory-to-memory DMA was theoretically possible.
80 * However, it would transfer a single byte at a time, while the CPU can
81 * transfer two (on a 286) or four (on a 386+) bytes at a time. On many
82 * compatibles, memory-to-memory DMA is not even implemented at all, and
83 * therefore has no practical use.
84 *
85 * Auto-init mode is handled implicitly; a device's transfer handler may
86 * return an end count lower than the start count.
87 *
88 * Naming convention: 'channel' refers to a system-wide DMA channel (0-7)
89 * while 'chidx' refers to a DMA channel index within a controller (0-3).
90 *
91 * References:
92 * - IBM Personal Computer AT Technical Reference, 1984
93 * - Intel 8237A-5 Datasheet, 1993
94 * - Frank van Gilluwe, The Undocumented PC, 1994
95 * - OPTi 82C206 Data Book, 1996 (or Chips & Tech 82C206)
96 * - Intel ICH8 Datasheet, 2007
97 */
98
99
100/* Saved state versions. */
101#define DMA_SAVESTATE_OLD 1 /* The original saved state. */
102#define DMA_SAVESTATE_CURRENT 2 /* The new and improved saved state. */
103
104/* State information for a single DMA channel. */
105typedef struct {
106 void *pvUser; /* User specific context. */
107 PFNDMATRANSFERHANDLER pfnXferHandler; /* Transfer handler for channel. */
108 uint16_t u16BaseAddr; /* Base address for transfers. */
109 uint16_t u16BaseCount; /* Base count for transfers. */
110 uint16_t u16CurAddr; /* Current address. */
111 uint16_t u16CurCount; /* Current count. */
112 uint8_t u8Mode; /* Channel mode. */
113} DMAChannel;
114
115/* State information for a DMA controller (DMA8 or DMA16). */
116typedef struct {
117 DMAChannel ChState[4]; /* Per-channel state. */
118 uint8_t au8Page[8]; /* Page registers (A16-A23). */
119 uint8_t au8PageHi[8]; /* High page registers (A24-A31). */
120 uint8_t u8Command; /* Command register. */
121 uint8_t u8Status; /* Status register. */
122 uint8_t u8Mask; /* Mask register. */
123 uint8_t u8Temp; /* Temporary (mem/mem) register. */
124 uint8_t u8ModeCtr; /* Mode register counter for reads. */
125 bool fHiByte; /* Byte pointer (T/F -> high/low). */
126 uint32_t is16bit; /* True for 16-bit DMA. */
127} DMAControl;
128
129/* Complete DMA state information. */
130typedef struct {
131 PPDMDEVINS pDevIns; /* Device instance. */
132 PCPDMDMACHLP pHlp; /* PDM DMA helpers. */
133 DMAControl DMAC[2]; /* Two DMA controllers. */
134} DMAState;
135
136/* DMA command register bits. */
137enum {
138 CMD_MEMTOMEM = 0x01, /* Enable mem-to-mem trasfers. */
139 CMD_ADRHOLD = 0x02, /* Address hold for mem-to-mem. */
140 CMD_DISABLE = 0x04, /* Disable controller. */
141 CMD_COMPRTIME = 0x08, /* Compressed timing. */
142 CMD_ROTPRIO = 0x10, /* Rotating priority. */
143 CMD_EXTWR = 0x20, /* Extended write. */
144 CMD_DREQHI = 0x40, /* DREQ is active high if set. */
145 CMD_DACKHI = 0x80, /* DACK is active high if set. */
146 CMD_UNSUPPORTED = CMD_MEMTOMEM | CMD_ADRHOLD | CMD_COMPRTIME
147 | CMD_EXTWR | CMD_DREQHI | CMD_DACKHI
148};
149
150/* DMA control register offsets for read accesses. */
151enum {
152 CTL_R_STAT, /* Read status registers. */
153 CTL_R_DMAREQ, /* Read DRQ register. */
154 CTL_R_CMD, /* Read command register. */
155 CTL_R_MODE, /* Read mode register. */
156 CTL_R_SETBPTR, /* Set byte pointer flip-flop. */
157 CTL_R_TEMP, /* Read temporary register. */
158 CTL_R_CLRMODE, /* Clear mode register counter. */
159 CTL_R_MASK /* Read all DRQ mask bits. */
160};
161
162/* DMA control register offsets for read accesses. */
163enum {
164 CTL_W_CMD, /* Write command register. */
165 CTL_W_DMAREQ, /* Write DRQ register. */
166 CTL_W_MASKONE, /* Write single DRQ mask bit. */
167 CTL_W_MODE, /* Write mode register. */
168 CTL_W_CLRBPTR, /* Clear byte pointer flip-flop. */
169 CTL_W_MASTRCLR, /* Master clear. */
170 CTL_W_CLRMASK, /* Clear all DRQ mask bits. */
171 CTL_W_MASK /* Write all DRQ mask bits. */
172};
173
174/* DMA transfer modes. */
175enum {
176 DMODE_DEMAND, /* Demand transfer mode. */
177 DMODE_SINGLE, /* Single transfer mode. */
178 DMODE_BLOCK, /* Block transfer mode. */
179 DMODE_CASCADE /* Cascade mode. */
180};
181
182/* Convert DMA channel number (0-7) to controller number (0-1). */
183#define DMACH2C(c) (c < 4 ? 0 : 1)
184
185static int dmaChannelMap[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
186/* Map a DMA page register offset (0-7) to channel index (0-3). */
187#define DMAPG2CX(c) (dmaChannelMap[c])
188
189static int dmaMapChannel[4] = {7, 3, 1, 2};
190/* Map a channel index (0-3) to DMA page register offset (0-7). */
191#define DMACX2PG(c) (dmaMapChannel[c])
192/* Map a channel number (0-7) to DMA page register offset (0-7). */
193#define DMACH2PG(c) (dmaMapChannel[c & 3])
194
195/* Test the decrement bit of mode register. */
196#define IS_MODE_DEC(c) ((c) & 0x20)
197/* Test the auto-init bit of mode register. */
198#define IS_MODE_AI(c) ((c) & 0x10)
199
200/* Perform a master clear (reset) on a DMA controller. */
201static void dmaClear(DMAControl *dc)
202{
203 dc->u8Command = 0;
204 dc->u8Status = 0;
205 dc->u8Temp = 0;
206 dc->u8ModeCtr = 0;
207 dc->fHiByte = false;
208 dc->u8Mask = ~0;
209}
210
211/* Read the byte pointer and flip it. */
212static inline bool dmaReadBytePtr(DMAControl *dc)
213{
214 bool bHighByte;
215
216 bHighByte = !!dc->fHiByte;
217 dc->fHiByte ^= 1;
218 return bHighByte;
219}
220
221/* DMA address registers writes and reads. */
222
223static DECLCALLBACK(int) dmaWriteAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
224{
225 if (cb == 1)
226 {
227 DMAControl *dc = (DMAControl *)pvUser;
228 DMAChannel *ch;
229 int chidx, reg, is_count;
230
231 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
232 reg = (port >> dc->is16bit) & 0x0f;
233 chidx = reg >> 1;
234 is_count = reg & 1;
235 ch = &dc->ChState[chidx];
236 if (dmaReadBytePtr(dc))
237 {
238 /* Write the high byte. */
239 if (is_count)
240 ch->u16BaseCount = RT_MAKE_U16(ch->u16BaseCount, u32);
241 else
242 ch->u16BaseAddr = RT_MAKE_U16(ch->u16BaseAddr, u32);
243
244 ch->u16CurCount = 0;
245 ch->u16CurAddr = ch->u16BaseAddr;
246 }
247 else
248 {
249 /* Write the low byte. */
250 if (is_count)
251 ch->u16BaseCount = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseCount));
252 else
253 ch->u16BaseAddr = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseAddr));
254 }
255 Log2(("dmaWriteAddr: port %#06x, chidx %d, data %#02x\n",
256 port, chidx, u32));
257 }
258 else
259 {
260 /* Likely a guest bug. */
261 Log(("Bad size write to count register %#x (size %d, data %#x)\n",
262 port, cb, u32));
263 }
264 return VINF_SUCCESS;
265}
266
267static DECLCALLBACK(int) dmaReadAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
268{
269 if (cb == 1)
270 {
271 DMAControl *dc = (DMAControl *)pvUser;
272 DMAChannel *ch;
273 int chidx, reg, val, dir;
274 int bptr;
275
276 reg = (port >> dc->is16bit) & 0x0f;
277 chidx = reg >> 1;
278 ch = &dc->ChState[chidx];
279
280 dir = IS_MODE_DEC(ch->u8Mode) ? -1 : 1;
281 if (reg & 1)
282 val = ch->u16BaseCount - ch->u16CurCount;
283 else
284 val = ch->u16CurAddr + ch->u16CurCount * dir;
285
286 bptr = dmaReadBytePtr(dc);
287 *pu32 = RT_LOBYTE(val >> (bptr * 8));
288
289 Log(("Count read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
290 return VINF_SUCCESS;
291 }
292 else
293 return VERR_IOM_IOPORT_UNUSED;
294}
295
296/* DMA control registers writes and reads. */
297
298static DECLCALLBACK(int) dmaWriteCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port,
299 uint32_t u32, unsigned cb)
300{
301 if (cb == 1)
302 {
303 DMAControl *dc = (DMAControl *)pvUser;
304 int chidx = 0;
305 int reg;
306
307 reg = ((port >> dc->is16bit) & 0x0f) - 8;
308 Assert((reg >= CTL_W_CMD && reg <= CTL_W_MASK));
309 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
310
311 switch (reg) {
312 case CTL_W_CMD:
313 /* Unsupported commands are entirely ignored. */
314 if (u32 & CMD_UNSUPPORTED)
315 {
316 Log(("DMA command %#x is not supported, ignoring!\n", u32));
317 break;
318 }
319 dc->u8Command = u32;
320 break;
321 case CTL_W_DMAREQ:
322 chidx = u32 & 3;
323 if (u32 & 4)
324 dc->u8Status |= 1 << (chidx + 4);
325 else
326 dc->u8Status &= ~(1 << (chidx + 4));
327 dc->u8Status &= ~(1 << chidx); /* Clear TC for channel. */
328 break;
329 case CTL_W_MASKONE:
330 chidx = u32 & 3;
331 if (u32 & 4)
332 dc->u8Mask |= 1 << chidx;
333 else
334 dc->u8Mask &= ~(1 << chidx);
335 break;
336 case CTL_W_MODE:
337 {
338 int op, opmode;
339
340 chidx = u32 & 3;
341 op = (u32 >> 2) & 3;
342 opmode = (u32 >> 6) & 3;
343 Log2(("chidx %d, op %d, %sauto-init, %screment, opmode %d\n",
344 chidx, op, IS_MODE_AI(u32) ? "" : "no ",
345 IS_MODE_DEC(u32) ? "de" : "in", opmode));
346
347 dc->ChState[chidx].u8Mode = u32;
348 break;
349 }
350 case CTL_W_CLRBPTR:
351 dc->fHiByte = false;
352 break;
353 case CTL_W_MASTRCLR:
354 dmaClear(dc);
355 break;
356 case CTL_W_CLRMASK:
357 dc->u8Mask = 0;
358 break;
359 case CTL_W_MASK:
360 dc->u8Mask = u32;
361 break;
362 default:
363 Assert(0);
364 break;
365 }
366 Log(("dmaWriteCtl: port %#06x, chidx %d, data %#02x\n",
367 port, chidx, u32));
368 }
369 else
370 {
371 /* Likely a guest bug. */
372 Log(("Bad size write to controller register %#x (size %d, data %#x)\n",
373 port, cb, u32));
374 }
375 return VINF_SUCCESS;
376}
377
378static DECLCALLBACK(int) dmaReadCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
379{
380 if (cb == 1)
381 {
382 DMAControl *dc = (DMAControl *)pvUser;
383 uint8_t val = 0;
384 int reg;
385
386 reg = ((port >> dc->is16bit) & 0x0f) - 8;
387 Assert((reg >= CTL_R_STAT && reg <= CTL_R_MASK));
388
389 switch (reg)
390 {
391 case CTL_R_STAT:
392 val = dc->u8Status;
393 dc->u8Status &= 0xf0; /* A read clears all TCs. */
394 break;
395 case CTL_R_DMAREQ:
396 val = (dc->u8Status >> 4) | 0xf0;
397 break;
398 case CTL_R_CMD:
399 val = dc->u8Command;
400 break;
401 case CTL_R_MODE:
402 val = dc->ChState[dc->u8ModeCtr].u8Mode | 3;
403 dc->u8ModeCtr = (dc->u8ModeCtr + 1) & 3;
404 case CTL_R_SETBPTR:
405 dc->fHiByte = true;
406 break;
407 case CTL_R_TEMP:
408 val = dc->u8Temp;
409 break;
410 case CTL_R_CLRMODE:
411 dc->u8ModeCtr = 0;
412 break;
413 case CTL_R_MASK:
414 val = dc->u8Mask;
415 break;
416 default:
417 Assert(0);
418 break;
419 }
420
421 Log(("Ctrl read: port %#06x, reg %#04x, data %#x\n", port, reg, val));
422 *pu32 = val;
423
424 return VINF_SUCCESS;
425 }
426 return VERR_IOM_IOPORT_UNUSED;
427}
428
429/** DMA page registers. There are 16 R/W page registers for compatibility with
430 * the IBM PC/AT; only some of those registers are used for DMA. The page register
431 * accessible via port 80h may be read to insert small delays or used as a scratch
432 * register by a BIOS.
433 */
434static DECLCALLBACK(int) dmaReadPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
435{
436 DMAControl *dc = (DMAControl *)pvUser;
437 int reg;
438
439 if (cb == 1)
440 {
441 reg = port & 7;
442 *pu32 = dc->au8Page[reg];
443 Log2(("Read %#x (byte) from page register %#x (channel %d)\n",
444 *pu32, port, DMAPG2CX(reg)));
445 return VINF_SUCCESS;
446 }
447
448 if (cb == 2)
449 {
450 reg = port & 7;
451 *pu32 = dc->au8Page[reg] | (dc->au8Page[(reg + 1) & 7] << 8);
452 Log2(("Read %#x (word) from page register %#x (channel %d)\n",
453 *pu32, port, DMAPG2CX(reg)));
454 return VINF_SUCCESS;
455 }
456
457 return VERR_IOM_IOPORT_UNUSED;
458}
459
460static DECLCALLBACK(int) dmaWritePage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
461{
462 DMAControl *dc = (DMAControl *)pvUser;
463 int reg;
464
465 if (cb == 1)
466 {
467 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
468 reg = port & 7;
469 dc->au8Page[reg] = u32;
470 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
471 Log2(("Wrote %#x to page register %#x (channel %d)\n",
472 u32, port, DMAPG2CX(reg)));
473 }
474 else if (cb == 2)
475 {
476 Assert(!(u32 & ~0xffff)); /* Check for garbage in high bits. */
477 reg = port & 7;
478 dc->au8Page[reg] = u32;
479 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
480 reg = (port + 1) & 7;
481 dc->au8Page[reg] = u32 >> 8;
482 dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */
483 }
484 else
485 {
486 /* Likely a guest bug. */
487 Log(("Bad size write to page register %#x (size %d, data %#x)\n",
488 port, cb, u32));
489 }
490 return VINF_SUCCESS;
491}
492
493/**
494 * EISA style high page registers, for extending the DMA addresses to cover
495 * the entire 32-bit address space.
496 */
497static DECLCALLBACK(int) dmaReadHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb)
498{
499 if (cb == 1)
500 {
501 DMAControl *dc = (DMAControl *)pvUser;
502 int reg;
503
504 reg = port & 7;
505 *pu32 = dc->au8PageHi[reg];
506 Log2(("Read %#x to from high page register %#x (channel %d)\n",
507 *pu32, port, DMAPG2CX(reg)));
508 return VINF_SUCCESS;
509 }
510 return VERR_IOM_IOPORT_UNUSED;
511}
512
513static DECLCALLBACK(int) dmaWriteHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb)
514{
515 if (cb == 1)
516 {
517 DMAControl *dc = (DMAControl *)pvUser;
518 int reg;
519
520 Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */
521 reg = port & 7;
522 dc->au8PageHi[reg] = u32;
523 Log2(("Wrote %#x to high page register %#x (channel %d)\n",
524 u32, port, DMAPG2CX(reg)));
525 }
526 else
527 {
528 /* Likely a guest bug. */
529 Log(("Bad size write to high page register %#x (size %d, data %#x)\n",
530 port, cb, u32));
531 }
532 return VINF_SUCCESS;
533}
534
535/** Perform any pending transfers on a single DMA channel. */
536static void dmaRunChannel(DMAState *pThis, int ctlidx, int chidx)
537{
538 DMAControl *dc = &pThis->DMAC[ctlidx];
539 DMAChannel *ch = &dc->ChState[chidx];
540 uint32_t start_cnt, end_cnt;
541 int opmode;
542
543 opmode = (ch->u8Mode >> 6) & 3;
544
545 Log3(("DMA address %screment, mode %d\n",
546 IS_MODE_DEC(ch->u8Mode) ? "de" : "in",
547 ch->u8Mode >> 6));
548
549 /* Addresses and counts are shifted for 16-bit channels. */
550 start_cnt = ch->u16CurCount << dc->is16bit;
551 /* NB: The device is responsible for examining the DMA mode and not
552 * transferring more than it should if auto-init is not in use.
553 */
554 end_cnt = ch->pfnXferHandler(pThis->pDevIns, ch->pvUser, (ctlidx * 4) + chidx,
555 start_cnt, (ch->u16BaseCount + 1) << dc->is16bit);
556 ch->u16CurCount = end_cnt >> dc->is16bit;
557 /* Set the TC (Terminal Count) bit if transfer was completed. */
558 if (ch->u16CurCount == ch->u16BaseCount + 1)
559 switch (opmode)
560 {
561 case DMODE_DEMAND:
562 case DMODE_SINGLE:
563 case DMODE_BLOCK:
564 dc->u8Status |= RT_BIT(chidx);
565 Log3(("TC set for DMA channel %d\n", (ctlidx * 4) + chidx));
566 break;
567 default:
568 break;
569 }
570 Log3(("DMA position %d, size %d\n", end_cnt, (ch->u16BaseCount + 1) << dc->is16bit));
571}
572
573/**
574 * @interface_method_impl{PDMDMAREG,pfnRun}
575 */
576static DECLCALLBACK(bool) dmaRun(PPDMDEVINS pDevIns)
577{
578 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
579 DMAControl *dc;
580 int ctlidx, chidx, mask;
581 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
582
583 /* Run all controllers and channels. */
584 for (ctlidx = 0; ctlidx < 2; ++ctlidx)
585 {
586 dc = &pThis->DMAC[ctlidx];
587
588 /* If controller is disabled, don't even bother. */
589 if (dc->u8Command & CMD_DISABLE)
590 continue;
591
592 for (chidx = 0; chidx < 4; ++chidx)
593 {
594 mask = 1 << chidx;
595 if (!(dc->u8Mask & mask) && (dc->u8Status & (mask << 4)))
596 dmaRunChannel(pThis, ctlidx, chidx);
597 }
598 }
599
600 PDMCritSectLeave(pDevIns->pCritSectRoR3);
601 return 0;
602}
603
604/**
605 * @interface_method_impl{PDMDMAREG,pfnRegister}
606 */
607static DECLCALLBACK(void) dmaRegister(PPDMDEVINS pDevIns, unsigned uChannel,
608 PFNDMATRANSFERHANDLER pfnTransferHandler, void *pvUser)
609{
610 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
611 DMAChannel *ch = &pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3];
612
613 LogFlow(("dmaRegister: pThis=%p uChannel=%u pfnTransferHandler=%p pvUser=%p\n", pThis, uChannel, pfnTransferHandler, pvUser));
614
615 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
616 ch->pfnXferHandler = pfnTransferHandler;
617 ch->pvUser = pvUser;
618 PDMCritSectLeave(pDevIns->pCritSectRoR3);
619}
620
621/** Reverse the order of bytes in a memory buffer. */
622static void dmaReverseBuf8(void *buf, unsigned len)
623{
624 uint8_t *pBeg, *pEnd;
625 uint8_t temp;
626
627 pBeg = (uint8_t *)buf;
628 pEnd = pBeg + len - 1;
629 for (len = len / 2; len; --len)
630 {
631 temp = *pBeg;
632 *pBeg++ = *pEnd;
633 *pEnd-- = temp;
634 }
635}
636
637/** Reverse the order of words in a memory buffer. */
638static void dmaReverseBuf16(void *buf, unsigned len)
639{
640 uint16_t *pBeg, *pEnd;
641 uint16_t temp;
642
643 Assert(!(len & 1));
644 len /= 2; /* Convert to word count. */
645 pBeg = (uint16_t *)buf;
646 pEnd = pBeg + len - 1;
647 for (len = len / 2; len; --len)
648 {
649 temp = *pBeg;
650 *pBeg++ = *pEnd;
651 *pEnd-- = temp;
652 }
653}
654
655/**
656 * @interface_method_impl{PDMDMAREG,pfnReadMemory}
657 */
658static DECLCALLBACK(uint32_t) dmaReadMemory(PPDMDEVINS pDevIns, unsigned uChannel,
659 void *pvBuffer, uint32_t off, uint32_t cbBlock)
660{
661 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
662 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
663 DMAChannel *ch = &dc->ChState[uChannel & 3];
664 uint32_t page, pagehi;
665 uint32_t addr;
666
667 LogFlow(("dmaReadMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock));
668
669 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
670
671 /* Build the address for this transfer. */
672 page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit;
673 pagehi = dc->au8PageHi[DMACH2PG(uChannel)];
674 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
675
676 if (IS_MODE_DEC(ch->u8Mode))
677 {
678 PDMDevHlpPhysRead(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock);
679 if (dc->is16bit)
680 dmaReverseBuf16(pvBuffer, cbBlock);
681 else
682 dmaReverseBuf8(pvBuffer, cbBlock);
683 }
684 else
685 PDMDevHlpPhysRead(pThis->pDevIns, addr + off, pvBuffer, cbBlock);
686
687 PDMCritSectLeave(pDevIns->pCritSectRoR3);
688 return cbBlock;
689}
690
691/**
692 * @interface_method_impl{PDMDMAREG,pfnWriteMemory}
693 */
694static DECLCALLBACK(uint32_t) dmaWriteMemory(PPDMDEVINS pDevIns, unsigned uChannel,
695 const void *pvBuffer, uint32_t off, uint32_t cbBlock)
696{
697 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
698 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
699 DMAChannel *ch = &dc->ChState[uChannel & 3];
700 uint32_t page, pagehi;
701 uint32_t addr;
702
703 LogFlow(("dmaWriteMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock));
704 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
705
706 /* Build the address for this transfer. */
707 page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit;
708 pagehi = dc->au8PageHi[DMACH2PG(uChannel)];
709 addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit);
710
711 if (IS_MODE_DEC(ch->u8Mode))
712 {
713 //@todo: This would need a temporary buffer.
714 Assert(0);
715#if 0
716 if (dc->is16bit)
717 dmaReverseBuf16(pvBuffer, cbBlock);
718 else
719 dmaReverseBuf8(pvBuffer, cbBlock);
720#endif
721 PDMDevHlpPhysWrite(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock);
722 }
723 else
724 PDMDevHlpPhysWrite(pThis->pDevIns, addr + off, pvBuffer, cbBlock);
725
726 PDMCritSectLeave(pDevIns->pCritSectRoR3);
727 return cbBlock;
728}
729
730/**
731 * @interface_method_impl{PDMDMAREG,pfnSetDREQ}
732 */
733static DECLCALLBACK(void) dmaSetDREQ(PPDMDEVINS pDevIns, unsigned uChannel, unsigned uLevel)
734{
735 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
736 DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)];
737 int chidx;
738
739 LogFlow(("dmaSetDREQ: pThis=%p uChannel=%u uLevel=%u\n", pThis, uChannel, uLevel));
740
741 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
742 chidx = uChannel & 3;
743 if (uLevel)
744 dc->u8Status |= 1 << (chidx + 4);
745 else
746 dc->u8Status &= ~(1 << (chidx + 4));
747 PDMCritSectLeave(pDevIns->pCritSectRoR3);
748}
749
750/**
751 * @interface_method_impl{PDMDMAREG,pfnGetChannelMode}
752 */
753static DECLCALLBACK(uint8_t) dmaGetChannelMode(PPDMDEVINS pDevIns, unsigned uChannel)
754{
755 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
756
757 LogFlow(("dmaGetChannelMode: pThis=%p uChannel=%u\n", pThis, uChannel));
758
759 PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED);
760 uint8_t u8Mode = pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3].u8Mode;
761 PDMCritSectLeave(pDevIns->pCritSectRoR3);
762 return u8Mode;
763}
764
765
766/**
767 * @interface_method_impl{PDMDEVREG,pfnReset}
768 */
769static void dmaReset(PPDMDEVINS pDevIns)
770{
771 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
772
773 LogFlow(("dmaReset: pThis=%p\n", pThis));
774
775 /* NB: The page and address registers are unaffected by a reset
776 * and in an undefined state after power-up.
777 */
778 dmaClear(&pThis->DMAC[0]);
779 dmaClear(&pThis->DMAC[1]);
780}
781
782/** Register DMA I/O port handlers. */
783static void dmaIORegister(PPDMDEVINS pDevIns, bool fHighPage)
784{
785 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
786 DMAControl *dc8 = &pThis->DMAC[0];
787 DMAControl *dc16 = &pThis->DMAC[1];
788
789 dc8->is16bit = false;
790 dc16->is16bit = true;
791
792 /* Base and current address for each channel. */
793 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x00, 8, dc8, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA8 Address");
794 PDMDevHlpIOPortRegister(pThis->pDevIns, 0xC0, 16, dc16, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA16 Address");
795
796 /* Control registers for both DMA controllers. */
797 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x08, 8, dc8, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA8 Control");
798 PDMDevHlpIOPortRegister(pThis->pDevIns, 0xD0, 16, dc16, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA16 Control");
799
800 /* Page registers for each channel (plus a few unused ones). */
801 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x80, 8, dc8, dmaWritePage, dmaReadPage, NULL, NULL, "DMA8 Page");
802 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x88, 8, dc16, dmaWritePage, dmaReadPage, NULL, NULL, "DMA16 Page");
803
804 /* Optional EISA style high page registers (address bits 24-31). */
805 if (fHighPage)
806 {
807 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x480, 8, dc8, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA8 Page High");
808 PDMDevHlpIOPortRegister(pThis->pDevIns, 0x488, 8, dc16, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA16 Page High");
809 }
810}
811
812static void dmaSaveController(PSSMHANDLE pSSMHandle, DMAControl *dc)
813{
814 int chidx;
815
816 /* Save controller state... */
817 SSMR3PutU8(pSSMHandle, dc->u8Command);
818 SSMR3PutU8(pSSMHandle, dc->u8Mask);
819 SSMR3PutU8(pSSMHandle, dc->fHiByte);
820 SSMR3PutU32(pSSMHandle, dc->is16bit);
821 SSMR3PutU8(pSSMHandle, dc->u8Status);
822 SSMR3PutU8(pSSMHandle, dc->u8Temp);
823 SSMR3PutU8(pSSMHandle, dc->u8ModeCtr);
824 SSMR3PutMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page));
825 SSMR3PutMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi));
826
827 /* ...and all four of its channels. */
828 for (chidx = 0; chidx < 4; ++chidx)
829 {
830 DMAChannel *ch = &dc->ChState[chidx];
831
832 SSMR3PutU16(pSSMHandle, ch->u16CurAddr);
833 SSMR3PutU16(pSSMHandle, ch->u16CurCount);
834 SSMR3PutU16(pSSMHandle, ch->u16BaseAddr);
835 SSMR3PutU16(pSSMHandle, ch->u16BaseCount);
836 SSMR3PutU8(pSSMHandle, ch->u8Mode);
837 }
838}
839
840static int dmaLoadController(PSSMHANDLE pSSMHandle, DMAControl *dc, int version)
841{
842 uint8_t u8val;
843 uint32_t u32val;
844 int chidx;
845
846 SSMR3GetU8(pSSMHandle, &dc->u8Command);
847 SSMR3GetU8(pSSMHandle, &dc->u8Mask);
848 SSMR3GetU8(pSSMHandle, &u8val);
849 dc->fHiByte = !!u8val;
850 SSMR3GetU32(pSSMHandle, &dc->is16bit);
851 if (version > DMA_SAVESTATE_OLD)
852 {
853 SSMR3GetU8(pSSMHandle, &dc->u8Status);
854 SSMR3GetU8(pSSMHandle, &dc->u8Temp);
855 SSMR3GetU8(pSSMHandle, &dc->u8ModeCtr);
856 SSMR3GetMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page));
857 SSMR3GetMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi));
858 }
859
860 for (chidx = 0; chidx < 4; ++chidx)
861 {
862 DMAChannel *ch = &dc->ChState[chidx];
863
864 if (version == DMA_SAVESTATE_OLD)
865 {
866 /* Convert from 17-bit to 16-bit format. */
867 SSMR3GetU32(pSSMHandle, &u32val);
868 ch->u16CurAddr = u32val >> dc->is16bit;
869 SSMR3GetU32(pSSMHandle, &u32val);
870 ch->u16CurCount = u32val >> dc->is16bit;
871 }
872 else
873 {
874 SSMR3GetU16(pSSMHandle, &ch->u16CurAddr);
875 SSMR3GetU16(pSSMHandle, &ch->u16CurCount);
876 }
877 SSMR3GetU16(pSSMHandle, &ch->u16BaseAddr);
878 SSMR3GetU16(pSSMHandle, &ch->u16BaseCount);
879 SSMR3GetU8(pSSMHandle, &ch->u8Mode);
880 /* Convert from old save state. */
881 if (version == DMA_SAVESTATE_OLD)
882 {
883 /* Remap page register contents. */
884 SSMR3GetU8(pSSMHandle, &u8val);
885 dc->au8Page[DMACX2PG(chidx)] = u8val;
886 SSMR3GetU8(pSSMHandle, &u8val);
887 dc->au8PageHi[DMACX2PG(chidx)] = u8val;
888 /* Throw away dack, eop. */
889 SSMR3GetU8(pSSMHandle, &u8val);
890 SSMR3GetU8(pSSMHandle, &u8val);
891 }
892 }
893 return 0;
894}
895
896/** @callback_method_impl{FNSSMDEVSAVEEXEC} */
897static DECLCALLBACK(int) dmaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
898{
899 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
900
901 dmaSaveController(pSSMHandle, &pThis->DMAC[0]);
902 dmaSaveController(pSSMHandle, &pThis->DMAC[1]);
903 return VINF_SUCCESS;
904}
905
906/** @callback_method_impl{FNSSMDEVLOADEXEC} */
907static DECLCALLBACK(int) dmaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t uVersion, uint32_t uPass)
908{
909 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
910
911 AssertMsgReturn(uVersion <= DMA_SAVESTATE_CURRENT, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
912 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
913
914 dmaLoadController(pSSMHandle, &pThis->DMAC[0], uVersion);
915 return dmaLoadController(pSSMHandle, &pThis->DMAC[1], uVersion);
916}
917
918/**
919 * @interface_method_impl{PDMDEVREG,pfnConstruct}
920 */
921static DECLCALLBACK(int) dmaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
922{
923 DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *);
924 bool bHighPage = false;
925 PDMDMACREG reg;
926 int rc;
927
928 pThis->pDevIns = pDevIns;
929
930 /*
931 * Validate configuration.
932 */
933 if (!CFGMR3AreValuesValid(pCfg, "\0")) /* "HighPageEnable\0")) */
934 return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES;
935
936#if 0
937 rc = CFGMR3QueryBool(pCfg, "HighPageEnable", &bHighPage);
938 if (RT_FAILURE (rc))
939 return rc;
940#endif
941
942 dmaIORegister(pDevIns, bHighPage);
943 dmaReset(pDevIns);
944
945 reg.u32Version = PDM_DMACREG_VERSION;
946 reg.pfnRun = dmaRun;
947 reg.pfnRegister = dmaRegister;
948 reg.pfnReadMemory = dmaReadMemory;
949 reg.pfnWriteMemory = dmaWriteMemory;
950 reg.pfnSetDREQ = dmaSetDREQ;
951 reg.pfnGetChannelMode = dmaGetChannelMode;
952
953 rc = PDMDevHlpDMACRegister(pDevIns, &reg, &pThis->pHlp);
954 if (RT_FAILURE (rc))
955 return rc;
956
957 rc = PDMDevHlpSSMRegister(pDevIns, DMA_SAVESTATE_CURRENT, sizeof(*pThis), dmaSaveExec, dmaLoadExec);
958 if (RT_FAILURE(rc))
959 return rc;
960
961 return VINF_SUCCESS;
962}
963
964/**
965 * The device registration structure.
966 */
967const PDMDEVREG g_DeviceDMA =
968{
969 /* u32Version */
970 PDM_DEVREG_VERSION,
971 /* szName */
972 "8237A",
973 /* szRCMod */
974 "",
975 /* szR0Mod */
976 "",
977 /* pszDescription */
978 "DMA Controller Device",
979 /* fFlags */
980 PDM_DEVREG_FLAGS_DEFAULT_BITS,
981 /* fClass */
982 PDM_DEVREG_CLASS_DMA,
983 /* cMaxInstances */
984 1,
985 /* cbInstance */
986 sizeof(DMAState),
987 /* pfnConstruct */
988 dmaConstruct,
989 /* pfnDestruct */
990 NULL,
991 /* pfnRelocate */
992 NULL,
993 /* pfnMemSetup */
994 NULL,
995 /* pfnPowerOn */
996 NULL,
997 /* pfnReset */
998 dmaReset,
999 /* pfnSuspend */
1000 NULL,
1001 /* pfnResume */
1002 NULL,
1003 /* pfnAttach */
1004 NULL,
1005 /* pfnDetach */
1006 NULL,
1007 /* pfnQueryInterface. */
1008 NULL,
1009 /* pfnInitComplete */
1010 NULL,
1011 /* pfnPowerOff */
1012 NULL,
1013 /* pfnSoftReset */
1014 NULL,
1015 /* u32VersionEnd */
1016 PDM_DEVREG_VERSION
1017};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette