/* $Id: DevDMA.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * DevDMA - DMA Controller Device. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only * -------------------------------------------------------------------- * * This code is loosely based on: * * QEMU DMA emulation * * Copyright (c) 2003 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_DMA #include #include #include #include #include #include #include "VBoxDD.h" /** @page pg_dev_dma DMA Overview and notes * * Modern PCs typically emulate AT-compatible DMA. The IBM PC/AT used dual * cascaded 8237A DMA controllers, augmented with a 74LS612 memory mapper. * The 8237As are 8-bit parts, only capable of addressing up to 64KB; the * 74LS612 extends addressing to 24 bits. That leads to well known and * inconvenient DMA limitations: * - DMA can only access physical memory under the 16MB line * - DMA transfers must occur within a 64KB/128KB 'page' * * The 16-bit DMA controller added in the PC/AT shifts all 8237A addresses * left by one, including the control registers addresses. The DMA register * offsets (except for the page registers) are therefore "double spaced". * * Due to the address shifting, the DMA controller decodes more addresses * than are usually documented, with aliasing. See the ICH8 datasheet. * * In the IBM PC and PC/XT, DMA channel 0 was used for memory refresh, thus * preventing the use of memory-to-memory DMA transfers (which use channels * 0 and 1). In the PC/AT, memory-to-memory DMA was theoretically possible. * However, it would transfer a single byte at a time, while the CPU can * transfer two (on a 286) or four (on a 386+) bytes at a time. On many * compatibles, memory-to-memory DMA is not even implemented at all, and * therefore has no practical use. * * Auto-init mode is handled implicitly; a device's transfer handler may * return an end count lower than the start count. * * Naming convention: 'channel' refers to a system-wide DMA channel (0-7) * while 'chidx' refers to a DMA channel index within a controller (0-3). * * References: * - IBM Personal Computer AT Technical Reference, 1984 * - Intel 8237A-5 Datasheet, 1993 * - Frank van Gilluwe, The Undocumented PC, 1994 * - OPTi 82C206 Data Book, 1996 (or Chips & Tech 82C206) * - Intel ICH8 Datasheet, 2007 */ /* Saved state versions. */ #define DMA_SAVESTATE_OLD 1 /* The original saved state. */ #define DMA_SAVESTATE_CURRENT 2 /* The new and improved saved state. */ /* State information for a single DMA channel. */ typedef struct { PPDMDEVINS pDevInsHandler; /**< The device instance the channel is associated with. */ RTR3PTR pvUser; /* User specific context. */ R3PTRTYPE(PFNDMATRANSFERHANDLER) pfnXferHandler; /* Transfer handler for channel. */ uint16_t u16BaseAddr; /* Base address for transfers. */ uint16_t u16BaseCount; /* Base count for transfers. */ uint16_t u16CurAddr; /* Current address. */ uint16_t u16CurCount; /* Current count. */ uint8_t u8Mode; /* Channel mode. */ uint8_t abPadding[7]; } DMAChannel, DMACHANNEL; typedef DMACHANNEL *PDMACHANNEL; /* State information for a DMA controller (DMA8 or DMA16). */ typedef struct { DMAChannel ChState[4]; /* Per-channel state. */ uint8_t au8Page[8]; /* Page registers (A16-A23). */ uint8_t au8PageHi[8]; /* High page registers (A24-A31). */ uint8_t u8Command; /* Command register. */ uint8_t u8Status; /* Status register. */ uint8_t u8Mask; /* Mask register. */ uint8_t u8Temp; /* Temporary (mem/mem) register. */ uint8_t u8ModeCtr; /* Mode register counter for reads. */ bool fHiByte; /* Byte pointer (T/F -> high/low). */ uint8_t abPadding0[2]; uint32_t is16bit; /* True for 16-bit DMA. */ uint8_t abPadding1[4]; /** The base abd current address I/O port registration. */ IOMIOPORTHANDLE hIoPortBase; /** The control register I/O port registration. */ IOMIOPORTHANDLE hIoPortCtl; /** The page registers I/O port registration. */ IOMIOPORTHANDLE hIoPortPage; /** The EISA style high page registers I/O port registration. */ IOMIOPORTHANDLE hIoPortHi; } DMAControl, DMACONTROLLER; /** Pointer to the shared DMA controller state. */ typedef DMACONTROLLER *PDMACONTROLLER; /* Complete DMA state information. */ typedef struct { DMAControl DMAC[2]; /* Two DMA controllers. */ PPDMDEVINSR3 pDevIns; /* Device instance. */ R3PTRTYPE(PCPDMDMACHLP) pHlp; /* PDM DMA helpers. */ STAMPROFILE StatRun; } DMAState, DMASTATE; /** Pointer to the shared DMA state information. */ typedef DMASTATE *PDMASTATE; /* DMA command register bits. */ enum { CMD_MEMTOMEM = 0x01, /* Enable mem-to-mem trasfers. */ CMD_ADRHOLD = 0x02, /* Address hold for mem-to-mem. */ CMD_DISABLE = 0x04, /* Disable controller. */ CMD_COMPRTIME = 0x08, /* Compressed timing. */ CMD_ROTPRIO = 0x10, /* Rotating priority. */ CMD_EXTWR = 0x20, /* Extended write. */ CMD_DREQHI = 0x40, /* DREQ is active high if set. */ CMD_DACKHI = 0x80, /* DACK is active high if set. */ CMD_UNSUPPORTED = CMD_MEMTOMEM | CMD_ADRHOLD | CMD_COMPRTIME | CMD_EXTWR | CMD_DREQHI | CMD_DACKHI }; /* DMA control register offsets for read accesses. */ enum { CTL_R_STAT, /* Read status registers. */ CTL_R_DMAREQ, /* Read DRQ register. */ CTL_R_CMD, /* Read command register. */ CTL_R_MODE, /* Read mode register. */ CTL_R_SETBPTR, /* Set byte pointer flip-flop. */ CTL_R_TEMP, /* Read temporary register. */ CTL_R_CLRMODE, /* Clear mode register counter. */ CTL_R_MASK /* Read all DRQ mask bits. */ }; /* DMA control register offsets for read accesses. */ enum { CTL_W_CMD, /* Write command register. */ CTL_W_DMAREQ, /* Write DRQ register. */ CTL_W_MASKONE, /* Write single DRQ mask bit. */ CTL_W_MODE, /* Write mode register. */ CTL_W_CLRBPTR, /* Clear byte pointer flip-flop. */ CTL_W_MASTRCLR, /* Master clear. */ CTL_W_CLRMASK, /* Clear all DRQ mask bits. */ CTL_W_MASK /* Write all DRQ mask bits. */ }; /* DMA transfer modes. */ enum { DMODE_DEMAND, /* Demand transfer mode. */ DMODE_SINGLE, /* Single transfer mode. */ DMODE_BLOCK, /* Block transfer mode. */ DMODE_CASCADE /* Cascade mode. */ }; /* DMA transfer types. */ enum { DTYPE_VERIFY, /* Verify transfer type. */ DTYPE_WRITE, /* Write transfer type. */ DTYPE_READ, /* Read transfer type. */ DTYPE_ILLEGAL /* Undefined. */ }; #ifndef VBOX_DEVICE_STRUCT_TESTCASE /* Convert DMA channel number (0-7) to controller number (0-1). */ #define DMACH2C(c) (c < 4 ? 0 : 1) #ifdef LOG_ENABLED static int const g_aiDmaChannelMap[8] = {-1, 2, 3, 1, -1, -1, -1, 0}; /* Map a DMA page register offset (0-7) to channel index (0-3). */ # define DMAPG2CX(c) (g_aiDmaChannelMap[c]) #endif #ifdef IN_RING3 static int const g_aiDmaMapChannel[4] = {7, 3, 1, 2}; /* Map a channel index (0-3) to DMA page register offset (0-7). */ # define DMACX2PG(c) (g_aiDmaMapChannel[c]) /* Map a channel number (0-7) to DMA page register offset (0-7). */ # define DMACH2PG(c) (g_aiDmaMapChannel[c & 3]) #endif /* Test the decrement bit of mode register. */ #define IS_MODE_DEC(c) ((c) & 0x20) /* Test the auto-init bit of mode register. */ #define IS_MODE_AI(c) ((c) & 0x10) /* Extract the transfer type bits of mode register. */ #define GET_MODE_XTYP(c) (((c) & 0x0c) >> 2) /* Perform a master clear (reset) on a DMA controller. */ static void dmaClear(DMAControl *dc) { dc->u8Command = 0; dc->u8Status = 0; dc->u8Temp = 0; dc->u8ModeCtr = 0; dc->fHiByte = false; dc->u8Mask = UINT8_MAX; } /** Read the byte pointer and flip it. */ DECLINLINE(bool) dmaReadBytePtr(DMAControl *dc) { bool fHighByte = !!dc->fHiByte; dc->fHiByte ^= 1; return fHighByte; } /* DMA address registers writes and reads. */ /** * @callback_method_impl{FNIOMIOPORTOUT, Ports 0-7 & 0xc0-0xcf} */ static DECLCALLBACK(VBOXSTRICTRC) dmaWriteAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; RT_NOREF(pDevIns); if (cb == 1) { unsigned const reg = (offPort >> dc->is16bit) & 0x0f; unsigned const chidx = reg >> 1; unsigned const is_count = reg & 1; PDMACHANNEL ch = &RT_SAFE_SUBSCRIPT(dc->ChState, chidx); Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ if (dmaReadBytePtr(dc)) { /* Write the high byte. */ if (is_count) ch->u16BaseCount = RT_MAKE_U16(ch->u16BaseCount, u32); else ch->u16BaseAddr = RT_MAKE_U16(ch->u16BaseAddr, u32); ch->u16CurCount = 0; ch->u16CurAddr = ch->u16BaseAddr; } else { /* Write the low byte. */ if (is_count) ch->u16BaseCount = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseCount)); else ch->u16BaseAddr = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseAddr)); } Log2(("dmaWriteAddr/%u: offPort %#06x, chidx %d, data %#02x\n", dc->is16bit, offPort, chidx, u32)); } else { /* Likely a guest bug. */ Log(("dmaWriteAddr/%u: Bad size write to count register %#x (size %d, data %#x)\n", dc->is16bit, offPort, cb, u32)); } return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, Ports 0-7 & 0xc0-0xcf} */ static DECLCALLBACK(VBOXSTRICTRC) dmaReadAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pDevIns); if (cb == 1) { PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; unsigned const reg = (offPort >> dc->is16bit) & 0x0f; unsigned const chidx = reg >> 1; PDMACHANNEL ch = &RT_SAFE_SUBSCRIPT(dc->ChState, chidx); int const dir = IS_MODE_DEC(ch->u8Mode) ? -1 : 1; int val; int bptr; if (reg & 1) val = ch->u16BaseCount - ch->u16CurCount; else val = ch->u16CurAddr + ch->u16CurCount * dir; bptr = dmaReadBytePtr(dc); *pu32 = RT_LOBYTE(val >> (bptr * 8)); Log(("dmaReadAddr/%u: Count read: offPort %#06x, reg %#04x, data %#x\n", dc->is16bit, offPort, reg, val)); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /* DMA control registers writes and reads. */ /** * @callback_method_impl{FNIOMIOPORTOUT, Ports 0x8-0xf & 0xd0-0xdf} */ static DECLCALLBACK(VBOXSTRICTRC) dmaWriteCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; RT_NOREF(pDevIns); if (cb == 1) { unsigned chidx = 0; unsigned const reg = (offPort >> dc->is16bit) & 0x0f; Assert((int)reg >= CTL_W_CMD && reg <= CTL_W_MASK); Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ switch (reg) { case CTL_W_CMD: /* Unsupported commands are entirely ignored. */ if (u32 & CMD_UNSUPPORTED) { Log(("dmaWriteCtl/%u: DMA command %#x is not supported, ignoring!\n", dc->is16bit, u32)); break; } dc->u8Command = u32; break; case CTL_W_DMAREQ: chidx = u32 & 3; if (u32 & 4) dc->u8Status |= 1 << (chidx + 4); else dc->u8Status &= ~(1 << (chidx + 4)); dc->u8Status &= ~(1 << chidx); /* Clear TC for channel. */ break; case CTL_W_MASKONE: chidx = u32 & 3; if (u32 & 4) dc->u8Mask |= 1 << chidx; else dc->u8Mask &= ~(1 << chidx); break; case CTL_W_MODE: chidx = u32 & 3; dc->ChState[chidx].u8Mode = u32; Log2(("dmaWriteCtl/%u: chidx %d, op %d, %sauto-init, %screment, opmode %d\n", dc->is16bit, chidx, (u32 >> 2) & 3, IS_MODE_AI(u32) ? "" : "no ", IS_MODE_DEC(u32) ? "de" : "in", (u32 >> 6) & 3)); break; case CTL_W_CLRBPTR: dc->fHiByte = false; break; case CTL_W_MASTRCLR: dmaClear(dc); break; case CTL_W_CLRMASK: dc->u8Mask = 0; break; case CTL_W_MASK: dc->u8Mask = u32; break; default: ASSERT_GUEST_MSG_FAILED(("reg=%u\n", reg)); break; } Log(("dmaWriteCtl/%u: offPort %#06x, chidx %d, data %#02x\n", dc->is16bit, offPort, chidx, u32)); } else { /* Likely a guest bug. */ Log(("dmaWriteCtl/%u: Bad size write to controller register %#x (size %d, data %#x)\n", dc->is16bit, offPort, cb, u32)); } return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, Ports 0x8-0xf & 0xd0-0xdf} */ static DECLCALLBACK(VBOXSTRICTRC) dmaReadCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pDevIns); if (cb == 1) { PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; uint8_t val = 0; unsigned const reg = (offPort >> dc->is16bit) & 0x0f; Assert((int)reg >= CTL_R_STAT && reg <= CTL_R_MASK); switch (reg) { case CTL_R_STAT: val = dc->u8Status; dc->u8Status &= 0xf0; /* A read clears all TCs. */ break; case CTL_R_DMAREQ: val = (dc->u8Status >> 4) | 0xf0; break; case CTL_R_CMD: val = dc->u8Command; break; case CTL_R_MODE: val = RT_SAFE_SUBSCRIPT(dc->ChState, dc->u8ModeCtr).u8Mode | 3; dc->u8ModeCtr = (dc->u8ModeCtr + 1) & 3; break; case CTL_R_SETBPTR: dc->fHiByte = true; break; case CTL_R_TEMP: val = dc->u8Temp; break; case CTL_R_CLRMODE: dc->u8ModeCtr = 0; break; case CTL_R_MASK: val = dc->u8Mask; break; default: Assert(0); break; } Log(("dmaReadCtl/%u: Ctrl read: offPort %#06x, reg %#04x, data %#x\n", dc->is16bit, offPort, reg, val)); *pu32 = val; return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** * @callback_method_impl{FNIOMIOPORTIN, * DMA page registers - Ports 0x80-0x87 & 0x88-0x8f} * * There are 16 R/W page registers for compatibility with the IBM PC/AT; only * some of those registers are used for DMA. The page register accessible via * port 80h may be read to insert small delays or used as a scratch register by * a BIOS. */ static DECLCALLBACK(VBOXSTRICTRC) dmaReadPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pDevIns); PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; int reg; if (cb == 1) { reg = offPort & 7; *pu32 = dc->au8Page[reg]; Log2(("dmaReadPage/%u: Read %#x (byte) from page register %#x (channel %d)\n", dc->is16bit, *pu32, offPort, DMAPG2CX(reg))); return VINF_SUCCESS; } if (cb == 2) { reg = offPort & 7; *pu32 = dc->au8Page[reg] | (dc->au8Page[(reg + 1) & 7] << 8); Log2(("dmaReadPage/%u: Read %#x (word) from page register %#x (channel %d)\n", dc->is16bit, *pu32, offPort, DMAPG2CX(reg))); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** * @callback_method_impl{FNIOMIOPORTOUT, * DMA page registers - Ports 0x80-0x87 & 0x88-0x8f} */ static DECLCALLBACK(VBOXSTRICTRC) dmaWritePage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { RT_NOREF(pDevIns); PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; unsigned reg; if (cb == 1) { Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ reg = offPort & 7; dc->au8Page[reg] = u32; dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */ Log2(("dmaWritePage/%u: Wrote %#x to page register %#x (channel %d)\n", dc->is16bit, u32, offPort, DMAPG2CX(reg))); } else if (cb == 2) { Assert(!(u32 & ~0xffff)); /* Check for garbage in high bits. */ reg = offPort & 7; dc->au8Page[reg] = u32; dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */ reg = (offPort + 1) & 7; dc->au8Page[reg] = u32 >> 8; dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */ } else { /* Likely a guest bug. */ Log(("dmaWritePage/%u: Bad size write to page register %#x (size %d, data %#x)\n", dc->is16bit, offPort, cb, u32)); } return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, * EISA style high page registers for extending the DMA addresses to cover * the entire 32-bit address space. Ports 0x480-0x487 & 0x488-0x48f} */ static DECLCALLBACK(VBOXSTRICTRC) dmaReadHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pDevIns); if (cb == 1) { PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; unsigned const reg = offPort & 7; *pu32 = dc->au8PageHi[reg]; Log2(("dmaReadHiPage/%u: Read %#x to from high page register %#x (channel %d)\n", dc->is16bit, *pu32, offPort, DMAPG2CX(reg))); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** * @callback_method_impl{FNIOMIOPORTOUT, Ports 0x480-0x487 & 0x488-0x48f} */ static DECLCALLBACK(VBOXSTRICTRC) dmaWriteHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { RT_NOREF(pDevIns); PDMACONTROLLER dc = (PDMACONTROLLER)pvUser; if (cb == 1) { unsigned const reg = offPort & 7; Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ dc->au8PageHi[reg] = u32; Log2(("dmaWriteHiPage/%u: Wrote %#x to high page register %#x (channel %d)\n", dc->is16bit, u32, offPort, DMAPG2CX(reg))); } else { /* Likely a guest bug. */ Log(("dmaWriteHiPage/%u: Bad size write to high page register %#x (size %d, data %#x)\n", dc->is16bit, offPort, cb, u32)); } return VINF_SUCCESS; } #ifdef IN_RING3 /** Perform any pending transfers on a single DMA channel. */ static void dmaR3RunChannel(DMAState *pThis, int ctlidx, int chidx) { DMAControl *dc = &pThis->DMAC[ctlidx]; DMAChannel *ch = &dc->ChState[chidx]; uint32_t start_cnt, end_cnt; int opmode; opmode = (ch->u8Mode >> 6) & 3; Log3(("DMA address %screment, mode %d\n", IS_MODE_DEC(ch->u8Mode) ? "de" : "in", ch->u8Mode >> 6)); AssertReturnVoid(ch->pfnXferHandler); /* Addresses and counts are shifted for 16-bit channels. */ start_cnt = ch->u16CurCount << dc->is16bit; /* NB: The device is responsible for examining the DMA mode and not * transferring more than it should if auto-init is not in use. */ end_cnt = ch->pfnXferHandler(ch->pDevInsHandler, ch->pvUser, (ctlidx * 4) + chidx, start_cnt, (ch->u16BaseCount + 1) << dc->is16bit); ch->u16CurCount = end_cnt >> dc->is16bit; /* Set the TC (Terminal Count) bit if transfer was completed. */ if (ch->u16CurCount == ch->u16BaseCount + 1) switch (opmode) { case DMODE_DEMAND: case DMODE_SINGLE: case DMODE_BLOCK: dc->u8Status |= RT_BIT(chidx); Log3(("TC set for DMA channel %d\n", (ctlidx * 4) + chidx)); break; default: break; } Log3(("DMA position %d, size %d\n", end_cnt, (ch->u16BaseCount + 1) << dc->is16bit)); } /** * @interface_method_impl{PDMDMAREG,pfnRun} */ static DECLCALLBACK(bool) dmaR3Run(PPDMDEVINS pDevIns) { DMAState *pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); DMAControl *dc; int chidx, mask; STAM_PROFILE_START(&pThis->StatRun, a); /* We must first lock all the devices then the DMAC or we end up with a lock order validation when the callback helpers (PDMDMACREG) are being invoked from I/O port and MMIO callbacks in channel devices. While this may sound a little brutish, it's actually in line with the bus locking the original DMAC did back in the days. Besides, we've only got the FDC and SB16 as potential customers here at present, so hardly a problem. */ for (unsigned idxCtl = 0; idxCtl < RT_ELEMENTS(pThis->DMAC); idxCtl++) for (unsigned idxCh = 0; idxCh < RT_ELEMENTS(pThis->DMAC[idxCtl].ChState); idxCh++) if (pThis->DMAC[idxCtl].ChState[idxCh].pDevInsHandler) { int const rc = PDMDevHlpCritSectEnter(pDevIns, pThis->DMAC[idxCtl].ChState[idxCh].pDevInsHandler->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pThis->DMAC[idxCtl].ChState[idxCh].pDevInsHandler->pCritSectRoR3, rc); } int const rc = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rc); /* Run all controllers and channels. */ for (unsigned ctlidx = 0; ctlidx < RT_ELEMENTS(pThis->DMAC); ++ctlidx) { dc = &pThis->DMAC[ctlidx]; /* If controller is disabled, don't even bother. */ if (dc->u8Command & CMD_DISABLE) continue; for (chidx = 0; chidx < 4; ++chidx) { mask = 1 << chidx; if (!(dc->u8Mask & mask) && (dc->u8Status & (mask << 4))) dmaR3RunChannel(pThis, ctlidx, chidx); } } /* Unlock everything (order is mostly irrelevant). */ for (unsigned idxCtl = 0; idxCtl < RT_ELEMENTS(pThis->DMAC); idxCtl++) for (unsigned idxCh = 0; idxCh < RT_ELEMENTS(pThis->DMAC[idxCtl].ChState); idxCh++) if (pThis->DMAC[idxCtl].ChState[idxCh].pDevInsHandler) PDMDevHlpCritSectLeave(pDevIns, pThis->DMAC[idxCtl].ChState[idxCh].pDevInsHandler->pCritSectRoR3); PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); STAM_PROFILE_STOP(&pThis->StatRun, a); return 0; } /** * @interface_method_impl{PDMDMAREG,pfnRegister} */ static DECLCALLBACK(void) dmaR3Register(PPDMDEVINS pDevIns, unsigned uChannel, PPDMDEVINS pDevInsHandler, PFNDMATRANSFERHANDLER pfnTransferHandler, void *pvUser) { DMAState *pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); DMAChannel *ch = &pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3]; LogFlow(("dmaR3Register: pThis=%p uChannel=%u pfnTransferHandler=%p pvUser=%p\n", pThis, uChannel, pfnTransferHandler, pvUser)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); ch->pDevInsHandler = pDevInsHandler; ch->pfnXferHandler = pfnTransferHandler; ch->pvUser = pvUser; PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); } /** Reverse the order of bytes in a memory buffer. */ static void dmaReverseBuf8(void *buf, unsigned len) { uint8_t *pBeg, *pEnd; uint8_t temp; pBeg = (uint8_t *)buf; pEnd = pBeg + len - 1; for (len = len / 2; len; --len) { temp = *pBeg; *pBeg++ = *pEnd; *pEnd-- = temp; } } /** Reverse the order of words in a memory buffer. */ static void dmaReverseBuf16(void *buf, unsigned len) { uint16_t *pBeg, *pEnd; uint16_t temp; Assert(!(len & 1)); len /= 2; /* Convert to word count. */ pBeg = (uint16_t *)buf; pEnd = pBeg + len - 1; for (len = len / 2; len; --len) { temp = *pBeg; *pBeg++ = *pEnd; *pEnd-- = temp; } } /** * @interface_method_impl{PDMDMAREG,pfnReadMemory} */ static DECLCALLBACK(uint32_t) dmaR3ReadMemory(PPDMDEVINS pDevIns, unsigned uChannel, void *pvBuffer, uint32_t off, uint32_t cbBlock) { DMAState *pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)]; DMAChannel *ch = &dc->ChState[uChannel & 3]; uint32_t page, pagehi; uint32_t addr; LogFlow(("dmaR3ReadMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); /* Build the address for this transfer. */ page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit; pagehi = dc->au8PageHi[DMACH2PG(uChannel)]; addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit); if (IS_MODE_DEC(ch->u8Mode)) { PDMDevHlpPhysRead(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock); if (dc->is16bit) dmaReverseBuf16(pvBuffer, cbBlock); else dmaReverseBuf8(pvBuffer, cbBlock); } else PDMDevHlpPhysRead(pThis->pDevIns, addr + off, pvBuffer, cbBlock); PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); return cbBlock; } /** * @interface_method_impl{PDMDMAREG,pfnWriteMemory} */ static DECLCALLBACK(uint32_t) dmaR3WriteMemory(PPDMDEVINS pDevIns, unsigned uChannel, const void *pvBuffer, uint32_t off, uint32_t cbBlock) { DMAState *pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)]; DMAChannel *ch = &dc->ChState[uChannel & 3]; uint32_t page, pagehi; uint32_t addr; LogFlow(("dmaR3WriteMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock)); if (GET_MODE_XTYP(ch->u8Mode) == DTYPE_VERIFY) { Log(("DMA verify transfer, ignoring write.\n")); return cbBlock; } int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); /* Build the address for this transfer. */ page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit; pagehi = dc->au8PageHi[DMACH2PG(uChannel)]; addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit); if (IS_MODE_DEC(ch->u8Mode)) { /// @todo This would need a temporary buffer. Assert(0); #if 0 if (dc->is16bit) dmaReverseBuf16(pvBuffer, cbBlock); else dmaReverseBuf8(pvBuffer, cbBlock); #endif PDMDevHlpPhysWrite(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock); } else PDMDevHlpPhysWrite(pThis->pDevIns, addr + off, pvBuffer, cbBlock); PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); return cbBlock; } /** * @interface_method_impl{PDMDMAREG,pfnSetDREQ} */ static DECLCALLBACK(void) dmaR3SetDREQ(PPDMDEVINS pDevIns, unsigned uChannel, unsigned uLevel) { DMAState *pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)]; int chidx; LogFlow(("dmaR3SetDREQ: pThis=%p uChannel=%u uLevel=%u\n", pThis, uChannel, uLevel)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); chidx = uChannel & 3; if (uLevel) dc->u8Status |= 1 << (chidx + 4); else dc->u8Status &= ~(1 << (chidx + 4)); PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); } /** * @interface_method_impl{PDMDMAREG,pfnGetChannelMode} */ static DECLCALLBACK(uint8_t) dmaR3GetChannelMode(PPDMDEVINS pDevIns, unsigned uChannel) { PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); LogFlow(("dmaR3GetChannelMode: pThis=%p uChannel=%u\n", pThis, uChannel)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); uint8_t u8Mode = pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3].u8Mode; PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); return u8Mode; } static void dmaR3SaveController(PCPDMDEVHLPR3 pHlp, PSSMHANDLE pSSM, DMAControl *dc) { /* Save controller state... */ pHlp->pfnSSMPutU8(pSSM, dc->u8Command); pHlp->pfnSSMPutU8(pSSM, dc->u8Mask); pHlp->pfnSSMPutU8(pSSM, dc->fHiByte); pHlp->pfnSSMPutU32(pSSM, dc->is16bit); pHlp->pfnSSMPutU8(pSSM, dc->u8Status); pHlp->pfnSSMPutU8(pSSM, dc->u8Temp); pHlp->pfnSSMPutU8(pSSM, dc->u8ModeCtr); pHlp->pfnSSMPutMem(pSSM, &dc->au8Page, sizeof(dc->au8Page)); pHlp->pfnSSMPutMem(pSSM, &dc->au8PageHi, sizeof(dc->au8PageHi)); /* ...and all four of its channels. */ for (unsigned chidx = 0; chidx < RT_ELEMENTS(dc->ChState); ++chidx) { DMAChannel *ch = &dc->ChState[chidx]; pHlp->pfnSSMPutU16(pSSM, ch->u16CurAddr); pHlp->pfnSSMPutU16(pSSM, ch->u16CurCount); pHlp->pfnSSMPutU16(pSSM, ch->u16BaseAddr); pHlp->pfnSSMPutU16(pSSM, ch->u16BaseCount); pHlp->pfnSSMPutU8(pSSM, ch->u8Mode); } } static int dmaR3LoadController(PCPDMDEVHLPR3 pHlp, PSSMHANDLE pSSM, DMAControl *dc, int version) { uint8_t u8val; uint32_t u32val; pHlp->pfnSSMGetU8(pSSM, &dc->u8Command); pHlp->pfnSSMGetU8(pSSM, &dc->u8Mask); pHlp->pfnSSMGetU8(pSSM, &u8val); dc->fHiByte = !!u8val; pHlp->pfnSSMGetU32(pSSM, &dc->is16bit); if (version > DMA_SAVESTATE_OLD) { pHlp->pfnSSMGetU8(pSSM, &dc->u8Status); pHlp->pfnSSMGetU8(pSSM, &dc->u8Temp); pHlp->pfnSSMGetU8(pSSM, &dc->u8ModeCtr); pHlp->pfnSSMGetMem(pSSM, &dc->au8Page, sizeof(dc->au8Page)); pHlp->pfnSSMGetMem(pSSM, &dc->au8PageHi, sizeof(dc->au8PageHi)); } for (unsigned chidx = 0; chidx < RT_ELEMENTS(dc->ChState); ++chidx) { DMAChannel *ch = &dc->ChState[chidx]; if (version == DMA_SAVESTATE_OLD) { /* Convert from 17-bit to 16-bit format. */ pHlp->pfnSSMGetU32(pSSM, &u32val); ch->u16CurAddr = u32val >> dc->is16bit; pHlp->pfnSSMGetU32(pSSM, &u32val); ch->u16CurCount = u32val >> dc->is16bit; } else { pHlp->pfnSSMGetU16(pSSM, &ch->u16CurAddr); pHlp->pfnSSMGetU16(pSSM, &ch->u16CurCount); } pHlp->pfnSSMGetU16(pSSM, &ch->u16BaseAddr); pHlp->pfnSSMGetU16(pSSM, &ch->u16BaseCount); pHlp->pfnSSMGetU8(pSSM, &ch->u8Mode); /* Convert from old save state. */ if (version == DMA_SAVESTATE_OLD) { /* Remap page register contents. */ pHlp->pfnSSMGetU8(pSSM, &u8val); dc->au8Page[DMACX2PG(chidx)] = u8val; pHlp->pfnSSMGetU8(pSSM, &u8val); dc->au8PageHi[DMACX2PG(chidx)] = u8val; /* Throw away dack, eop. */ pHlp->pfnSSMGetU8(pSSM, &u8val); pHlp->pfnSSMGetU8(pSSM, &u8val); } } return 0; } /** @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) dmaR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; dmaR3SaveController(pHlp, pSSM, &pThis->DMAC[0]); dmaR3SaveController(pHlp, pSSM, &pThis->DMAC[1]); return VINF_SUCCESS; } /** @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) dmaR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; AssertMsgReturn(uVersion <= DMA_SAVESTATE_CURRENT, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); dmaR3LoadController(pHlp, pSSM, &pThis->DMAC[0], uVersion); return dmaR3LoadController(pHlp, pSSM, &pThis->DMAC[1], uVersion); } /** @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) dmaR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); NOREF(pszArgs); /* * Show info. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->DMAC); i++) { PDMACONTROLLER pDmac = &pThis->DMAC[i]; pHlp->pfnPrintf(pHlp, "\nDMAC%d:\n", i); pHlp->pfnPrintf(pHlp, " Status : %02X - DRQ 3210 TC 3210\n", pDmac->u8Status); pHlp->pfnPrintf(pHlp, " %u%u%u%u %u%u%u%u\n", !!(pDmac->u8Status & RT_BIT(7)), !!(pDmac->u8Status & RT_BIT(6)), !!(pDmac->u8Status & RT_BIT(5)), !!(pDmac->u8Status & RT_BIT(4)), !!(pDmac->u8Status & RT_BIT(3)), !!(pDmac->u8Status & RT_BIT(2)), !!(pDmac->u8Status & RT_BIT(1)), !!(pDmac->u8Status & RT_BIT(0))); pHlp->pfnPrintf(pHlp, " Mask : %02X - Chn 3210\n", pDmac->u8Mask); pHlp->pfnPrintf(pHlp, " %u%u%u%u\n", !!(pDmac->u8Mask & RT_BIT(3)), !!(pDmac->u8Mask & RT_BIT(2)), !!(pDmac->u8Mask & RT_BIT(1)), !!(pDmac->u8Mask & RT_BIT(0))); pHlp->pfnPrintf(pHlp, " Temp : %02x\n", pDmac->u8Temp); pHlp->pfnPrintf(pHlp, " Command: %02X\n", pDmac->u8Command); pHlp->pfnPrintf(pHlp, " DACK: active %s DREQ: active %s\n", pDmac->u8Command & RT_BIT(7) ? "high" : "low ", pDmac->u8Command & RT_BIT(6) ? "high" : "low "); pHlp->pfnPrintf(pHlp, " Extended write: %s Priority: %s\n", pDmac->u8Command & RT_BIT(5) ? "enabled " : "disabled", pDmac->u8Command & RT_BIT(4) ? "rotating" : "fixed "); pHlp->pfnPrintf(pHlp, " Timing: %s Controller: %s\n", pDmac->u8Command & RT_BIT(3) ? "normal " : "compressed", pDmac->u8Command & RT_BIT(2) ? "enabled " : "disabled"); pHlp->pfnPrintf(pHlp, " Adress Hold: %s Mem-to-Mem Ch 0/1: %s\n", pDmac->u8Command & RT_BIT(1) ? "enabled " : "disabled", pDmac->u8Command & RT_BIT(0) ? "enabled " : "disabled"); for (unsigned ch = 0; ch < RT_ELEMENTS(pDmac->ChState); ch++) { PDMACHANNEL pChan = &pDmac->ChState[ch]; const char *apszChanMode[] = { "demand ", "single ", "block ", "cascade" }; const char *apszChanType[] = { "verify ", "write ", "read ", "illegal" }; pHlp->pfnPrintf(pHlp, "\n DMA Channel %d: Page:%02X\n", ch, pDmac->au8Page[DMACX2PG(ch)]); pHlp->pfnPrintf(pHlp, " Mode : %02X Auto-init: %s %screment\n", pChan->u8Mode, pChan->u8Mode & RT_BIT(4) ? "yes" : "no", pChan->u8Mode & RT_BIT(5) ? "De" : "In" ); pHlp->pfnPrintf(pHlp, " Xfer Type: %s Mode: %s\n", apszChanType[((pChan->u8Mode >> 2) & 3)], apszChanMode[((pChan->u8Mode >> 6) & 3)]); pHlp->pfnPrintf(pHlp, " Base address:%04X count:%04X\n", pChan->u16BaseAddr, pChan->u16BaseCount); pHlp->pfnPrintf(pHlp, " Current address:%04X count:%04X\n", pChan->u16CurAddr, pChan->u16CurCount); } } } /** @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) dmaR3InfoPageReg(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); NOREF(pszArgs); /* * Show page register contents. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->DMAC); i++) { PDMACONTROLLER pDmac = &pThis->DMAC[i]; pHlp->pfnPrintf(pHlp, "DMA page registers at %02X:", i == 0 ? 0x80 : 0x88); for (unsigned pg = 0; pg < RT_ELEMENTS(pDmac->au8Page); pg++) pHlp->pfnPrintf(pHlp, " %02X", pDmac->au8Page[pg]); pHlp->pfnPrintf(pHlp, "\n"); } } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) dmaR3Reset(PPDMDEVINS pDevIns) { PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); LogFlow(("dmaR3Reset: pThis=%p\n", pThis)); /* NB: The page and address registers are unaffected by a reset * and in an undefined state after power-up. */ dmaClear(&pThis->DMAC[0]); dmaClear(&pThis->DMAC[1]); } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) dmaR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; RT_NOREF(iInstance); /* * Initialize data. */ pThis->pDevIns = pDevIns; DMAControl *pDC8 = &pThis->DMAC[0]; DMAControl *pDC16 = &pThis->DMAC[1]; pDC8->is16bit = false; pDC16->is16bit = true; /* * Validate and read the configuration. */ PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "HighPageEnable", ""); bool fHighPage = false; int rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "HighPageEnable", &fHighPage, false); AssertRCReturn(rc, rc); /* * Register I/O callbacks. */ /* Base and current address for each channel. */ rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0x00, 8, dmaWriteAddr, dmaReadAddr, pDC8, "DMA8 Address", NULL, &pDC8->hIoPortBase); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0xc0, 16, dmaWriteAddr, dmaReadAddr, pDC16, "DMA16 Address", NULL, &pDC16->hIoPortBase); AssertLogRelRCReturn(rc, rc); /* Control registers for both DMA controllers. */ rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0x08, 8, dmaWriteCtl, dmaReadCtl, pDC8, "DMA8 Control", NULL, &pDC8->hIoPortCtl); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0xd0, 16, dmaWriteCtl, dmaReadCtl, pDC16, "DMA16 Control", NULL, &pDC16->hIoPortCtl); AssertLogRelRCReturn(rc, rc); /* Page registers for each channel (plus a few unused ones). */ rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0x80, 8, dmaWritePage, dmaReadPage, pDC8, "DMA8 Page", NULL, &pDC8->hIoPortPage); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0x88, 8, dmaWritePage, dmaReadPage, pDC16, "DMA16 Page", NULL, &pDC16->hIoPortPage); AssertLogRelRCReturn(rc, rc); /* Optional EISA style high page registers (address bits 24-31). */ if (fHighPage) { rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0x480, 8, dmaWriteHiPage, dmaReadHiPage, pDC8, "DMA8 Page High", NULL, &pDC8->hIoPortHi); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpIoPortCreateUAndMap(pDevIns, 0x488, 8, dmaWriteHiPage, dmaReadHiPage, pDC16, "DMA16 Page High", NULL, &pDC16->hIoPortHi); AssertLogRelRCReturn(rc, rc); } else { pDC8->hIoPortHi = NIL_IOMIOPORTHANDLE; pDC16->hIoPortHi = NIL_IOMIOPORTHANDLE; } /* * Reset controller state. */ dmaR3Reset(pDevIns); /* * Register ourselves with PDM as the DMA controller. */ PDMDMACREG Reg; Reg.u32Version = PDM_DMACREG_VERSION; Reg.pfnRun = dmaR3Run; Reg.pfnRegister = dmaR3Register; Reg.pfnReadMemory = dmaR3ReadMemory; Reg.pfnWriteMemory = dmaR3WriteMemory; Reg.pfnSetDREQ = dmaR3SetDREQ; Reg.pfnGetChannelMode = dmaR3GetChannelMode; rc = PDMDevHlpDMACRegister(pDevIns, &Reg, &pThis->pHlp); AssertRCReturn(rc, rc); /* * Register the saved state. */ rc = PDMDevHlpSSMRegister(pDevIns, DMA_SAVESTATE_CURRENT, sizeof(*pThis), dmaR3SaveExec, dmaR3LoadExec); AssertRCReturn(rc, rc); /* * Statistics. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRun, STAMTYPE_PROFILE, "DmaRun", STAMUNIT_TICKS_PER_CALL, "Profiling dmaR3Run()."); /* * Register the info item. */ PDMDevHlpDBGFInfoRegister(pDevIns, "dmac", "DMA controller info.", dmaR3Info); PDMDevHlpDBGFInfoRegister(pDevIns, "dmapage", "DMA page register info.", dmaR3InfoPageReg); return VINF_SUCCESS; } #else /* !IN_RING3 */ /** * @callback_method_impl{PDMDEVREGR0,pfnConstruct} */ static DECLCALLBACK(int) dmaRZConstruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PDMASTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDMASTATE); int rc; for (unsigned i = 0; i < RT_ELEMENTS(pThis->DMAC); i++) { PDMACONTROLLER pCtl = &pThis->DMAC[i]; rc = PDMDevHlpIoPortSetUpContext(pDevIns, pCtl->hIoPortBase, dmaWriteAddr, dmaReadAddr, pCtl); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpIoPortSetUpContext(pDevIns, pCtl->hIoPortCtl, dmaWriteCtl, dmaReadCtl, pCtl); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpIoPortSetUpContext(pDevIns, pCtl->hIoPortPage, dmaWritePage, dmaReadPage, pCtl); AssertLogRelRCReturn(rc, rc); if (pCtl->hIoPortHi != NIL_IOMIOPORTHANDLE) { rc = PDMDevHlpIoPortSetUpContext(pDevIns, pCtl->hIoPortHi, dmaWriteHiPage, dmaReadHiPage, pCtl); AssertLogRelRCReturn(rc, rc); } } return VINF_SUCCESS; } #endif /* !IN_RING3 */ /** * The device registration structure. */ const PDMDEVREG g_DeviceDMA = { /* .u32Version = */ PDM_DEVREG_VERSION, /* .uReserved0 = */ 0, /* .szName = */ "8237A", /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE, /* .fClass = */ PDM_DEVREG_CLASS_DMA, /* .cMaxInstances = */ 1, /* .uSharedVersion = */ 42, /* .cbInstanceShared = */ sizeof(DMAState), /* .cbInstanceCC = */ 0, /* .cbInstanceRC = */ 0, /* .cMaxPciDevices = */ 0, /* .cMaxMsixVectors = */ 0, /* .pszDescription = */ "DMA Controller Device", #if defined(IN_RING3) /* .pszRCMod = */ "VBoxDDRC.rc", /* .pszR0Mod = */ "VBoxDDR0.r0", /* .pfnConstruct = */ dmaR3Construct, /* .pfnDestruct = */ NULL, /* .pfnRelocate = */ NULL, /* .pfnMemSetup = */ NULL, /* .pfnPowerOn = */ NULL, /* .pfnReset = */ dmaR3Reset, /* .pfnSuspend = */ NULL, /* .pfnResume = */ NULL, /* .pfnAttach = */ NULL, /* .pfnDetach = */ NULL, /* .pfnQueryInterface = */ NULL, /* .pfnInitComplete = */ NULL, /* .pfnPowerOff = */ NULL, /* .pfnSoftReset = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RING0) /* .pfnEarlyConstruct = */ NULL, /* .pfnConstruct = */ dmaRZConstruct, /* .pfnDestruct = */ NULL, /* .pfnFinalDestruct = */ NULL, /* .pfnRequest = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RC) /* .pfnConstruct = */ dmaRZConstruct, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #else # error "Not in IN_RING3, IN_RING0 or IN_RC!" #endif /* .u32VersionEnd = */ PDM_DEVREG_VERSION }; #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */