/* $Id: DevAPIC.cpp 61715 2016-06-15 13:18:40Z vboxsync $ */ /** @file * Advanced Programmable Interrupt Controller (APIC) Device. * * @remarks This code does not use pThis, it uses pDev and pApic due to the * non-standard arrangements of the APICs wrt PDM. */ /* * Copyright (C) 2006-2015 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * -------------------------------------------------------------------- * * This code is based on: * * apic.c revision 1.5 @@OSETODO * * APIC support * * Copyright (c) 2004-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_APIC #include #include #include #include #include #include #include #ifdef APIC_FUZZY_SSM_COMPAT_TEST # include #endif #include #include "VBoxDD2.h" #include "DevApic.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define MSR_IA32_APICBASE_ENABLE (1<<11) #define MSR_IA32_APICBASE_X2ENABLE (1<<10) #define MSR_IA32_APICBASE_BASE (0xfffff<<12) /** @todo r=bird: This is not correct according to current specs! */ #ifdef _MSC_VER # pragma warning(disable:4244) #endif /** The current saved state version.*/ #define APIC_SAVED_STATE_VERSION 3 /** The saved state version used by VirtualBox v3 and earlier. * This does not include the config. */ #define APIC_SAVED_STATE_VERSION_VBOX_30 2 /** Some ancient version... */ #define APIC_SAVED_STATE_VERSION_ANCIENT 1 /* version 0x14: Pentium 4, Xeon; LVT count depends on that */ #define APIC_HW_VERSION 0x14 /** @def APIC_LOCK * Acquires the PDM lock. */ #define APIC_LOCK(a_pDev, rcBusy) \ do { \ int rc2 = PDMCritSectEnter((a_pDev)->CTX_SUFF(pCritSect), (rcBusy)); \ if (rc2 != VINF_SUCCESS) \ return rc2; \ } while (0) /** @def APIC_LOCK_VOID * Acquires the PDM lock and does not expect failure (i.e. ring-3 only!). */ #define APIC_LOCK_VOID(a_pDev, rcBusy) \ do { \ int rc2 = PDMCritSectEnter((a_pDev)->CTX_SUFF(pCritSect), (rcBusy)); \ AssertLogRelRCReturnVoid(rc2); \ } while (0) /** @def APIC_UNLOCK * Releases the PDM lock. */ #define APIC_UNLOCK(a_pDev) \ PDMCritSectLeave((a_pDev)->CTX_SUFF(pCritSect)) /** @def APIC_AND_TM_LOCK * Acquires the virtual sync clock lock as well as the PDM lock. */ #define APIC_AND_TM_LOCK(a_pDev, a_pApic, rcBusy) \ do { \ int rc2 = TMTimerLock((a_pApic)->CTX_SUFF(pTimer), (rcBusy)); \ if (rc2 != VINF_SUCCESS) \ return rc2; \ rc2 = PDMCritSectEnter((a_pDev)->CTX_SUFF(pCritSect), (rcBusy)); \ if (rc2 != VINF_SUCCESS) \ { \ TMTimerUnlock((a_pApic)->CTX_SUFF(pTimer)); \ return rc2; \ } \ } while (0) /** @def APIC_AND_TM_UNLOCK * Releases the PDM lock as well as the TM virtual sync clock lock. */ #define APIC_AND_TM_UNLOCK(a_pDev, a_pApic) \ do { \ TMTimerUnlock((a_pApic)->CTX_SUFF(pTimer)); \ PDMCritSectLeave((a_pDev)->CTX_SUFF(pCritSect)); \ } while (0) /** * Begins an APIC enumeration block. * * Code placed between this and the APIC_FOREACH_END macro will be executed for * each APIC instance present in the system. * * @param a_pDev The APIC device. */ #define APIC_FOREACH_BEGIN(a_pDev) \ do { \ VMCPUID const cApics = (a_pDev)->cCpus; \ APICState *pCurApic = (a_pDev)->CTX_SUFF(paLapics); \ for (VMCPUID iCurApic = 0; iCurApic < cApics; iCurApic++, pCurApic++) \ { \ do { } while (0) /** * Begins an APIC enumeration block, given a destination set. * * Code placed between this and the APIC_FOREACH_END macro will be executed for * each APIC instance present in @a a_pDstSet. * * @param a_pDev The APIC device. * @param a_pDstSet The destination set. */ #define APIC_FOREACH_IN_SET_BEGIN(a_pDev, a_pDstSet) \ APIC_FOREACH_BEGIN(a_pDev); \ if (!VMCPUSET_IS_PRESENT((a_pDstSet), iCurApic)) \ continue; \ do { } while (0) /** Counterpart to APIC_FOREACH_IN_SET_BEGIN and APIC_FOREACH_BEGIN. */ #define APIC_FOREACH_END() \ } \ } while (0) #define DEBUG_APIC #define ESR_ILLEGAL_ADDRESS (1 << 7) #define APIC_SV_ENABLE (1 << 8) #define APIC_MAX_PATCH_ATTEMPTS 100 /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ typedef uint32_t PhysApicId; typedef uint32_t LogApicId; typedef struct APIC256BITREG { /** The bitmap data. */ uint32_t au32Bitmap[8 /*256/32*/]; } APIC256BITREG; typedef APIC256BITREG *PAPIC256BITREG; typedef APIC256BITREG const *PCAPIC256BITREG; /** * Tests if a bit in the 256-bit APIC register is set. * * @returns true if set, false if clear. * * @param pReg The register. * @param iBit The bit to test for. */ DECLINLINE(bool) Apic256BitReg_IsBitSet(PCAPIC256BITREG pReg, unsigned iBit) { Assert(iBit < 256); return ASMBitTest(&pReg->au32Bitmap[0], iBit); } /** * Sets a bit in the 256-bit APIC register is set. * * @param pReg The register. * @param iBit The bit to set. */ DECLINLINE(void) Apic256BitReg_SetBit(PAPIC256BITREG pReg, unsigned iBit) { Assert(iBit < 256); return ASMBitSet(&pReg->au32Bitmap[0], iBit); } /** * Clears a bit in the 256-bit APIC register is set. * * @param pReg The register. * @param iBit The bit to clear. */ DECLINLINE(void) Apic256BitReg_ClearBit(PAPIC256BITREG pReg, unsigned iBit) { Assert(iBit < 256); return ASMBitClear(&pReg->au32Bitmap[0], iBit); } /** * Clears all bits in the 256-bit APIC register set. * * @param pReg The register. */ DECLINLINE(void) Apic256BitReg_Empty(PAPIC256BITREG pReg) { memset(&pReg->au32Bitmap[0], 0, sizeof(pReg->au32Bitmap)); } /** * Finds the last bit set in the register, i.e. the highest priority interrupt. * * @returns The index of the found bit, @a iRetAllClear if none was found. * * @param pReg The register. * @param iRetAllClear What to return if all bits are clear. */ static int Apic256BitReg_FindLastSetBit(PCAPIC256BITREG pReg, int iRetAllClear) { uint32_t i = RT_ELEMENTS(pReg->au32Bitmap); while (i-- > 0) { uint32_t u = pReg->au32Bitmap[i]; if (u) { u = ASMBitLastSetU32(u); u--; u |= i << 5; return (int)u; } } return iRetAllClear; } /** * The state of one APIC. * * @remarks This is generally pointed to by a parameter or variable named pApic. */ typedef struct APICState { /** In service register (ISR). */ APIC256BITREG isr; /** Trigger mode register (TMR). */ APIC256BITREG tmr; /** Interrupt request register (IIR). */ APIC256BITREG irr; uint32_t lvt[APIC_LVT_NB]; uint32_t apicbase; /* Task priority register (interrupt level) */ uint32_t tpr; /* Logical APIC id - user programmable */ LogApicId id; /* Physical APIC id - not visible to user, constant */ PhysApicId phys_id; /** @todo is it logical or physical? Not really used anyway now. */ PhysApicId arb_id; uint32_t spurious_vec; uint8_t log_dest; uint8_t dest_mode; uint32_t esr; /* error register */ uint32_t icr[2]; uint32_t divide_conf; int count_shift; uint32_t initial_count; uint32_t Alignment0; /** The time stamp of the initial_count load, i.e. when it was started. */ uint64_t initial_count_load_time; /** The time stamp of the next timer callback. */ uint64_t next_time; /** The APIC timer - R3 Ptr. */ PTMTIMERR3 pTimerR3; /** The APIC timer - R0 Ptr. */ PTMTIMERR0 pTimerR0; /** The APIC timer - RC Ptr. */ PTMTIMERRC pTimerRC; /** Whether the timer is armed or not */ bool fTimerArmed; /** Alignment */ bool afAlignment[3]; /** The initial_count value used for the current frequency hint. */ uint32_t uHintedInitialCount; /** The count_shift value used for the current frequency hint. */ uint32_t uHintedCountShift; /** Timer description timer. */ R3PTRTYPE(char *) pszDesc; /** The IRQ tags and source IDs for each (tracing purposes). */ uint32_t auTags[256]; # ifdef VBOX_WITH_STATISTICS # if HC_ARCH_BITS == 32 uint32_t u32Alignment0; # endif STAMCOUNTER StatTimerSetInitialCount; STAMCOUNTER StatTimerSetInitialCountArm; STAMCOUNTER StatTimerSetInitialCountDisarm; STAMCOUNTER StatTimerSetLvt; STAMCOUNTER StatTimerSetLvtClearPeriodic; STAMCOUNTER StatTimerSetLvtPostponed; STAMCOUNTER StatTimerSetLvtArmed; STAMCOUNTER StatTimerSetLvtArm; STAMCOUNTER StatTimerSetLvtArmRetries; STAMCOUNTER StatTimerSetLvtNoRelevantChange; # endif } APICState; AssertCompileMemberAlignment(APICState, initial_count_load_time, 8); # ifdef VBOX_WITH_STATISTICS AssertCompileMemberAlignment(APICState, StatTimerSetInitialCount, 8); # endif /** * The wrapper device for the all the APICs. * * @remarks This is generally pointed to by a parameter or variable named pDev. */ typedef struct { /** The device instance - R3 Ptr. */ PPDMDEVINSR3 pDevInsR3; /** The APIC helpers - R3 Ptr. */ PCPDMAPICHLPR3 pApicHlpR3; /** LAPICs states - R3 Ptr */ R3PTRTYPE(APICState *) paLapicsR3; /** The critical section - R3 Ptr. */ R3PTRTYPE(PPDMCRITSECT) pCritSectR3; /** The device instance - R0 Ptr. */ PPDMDEVINSR0 pDevInsR0; /** The APIC helpers - R0 Ptr. */ PCPDMAPICHLPR0 pApicHlpR0; /** LAPICs states - R0 Ptr */ R0PTRTYPE(APICState *) paLapicsR0; /** The critical section - R3 Ptr. */ R0PTRTYPE(PPDMCRITSECT) pCritSectR0; /** The device instance - RC Ptr. */ PPDMDEVINSRC pDevInsRC; /** The APIC helpers - RC Ptr. */ PCPDMAPICHLPRC pApicHlpRC; /** LAPICs states - RC Ptr */ RCPTRTYPE(APICState *) paLapicsRC; /** The critical section - R3 Ptr. */ RCPTRTYPE(PPDMCRITSECT) pCritSectRC; /** APIC specification mode in this virtual hardware configuration. */ PDMAPICMODE enmMode; /** Number of attempts made to optimize TPR accesses. */ uint32_t cTPRPatchAttempts; /** Number of CPUs on the system (same as LAPIC count). */ uint32_t cCpus; /** Whether we've got an IO APIC or not. */ bool fIoApic; /** Alignment padding. */ bool afPadding[3]; # ifdef VBOX_WITH_STATISTICS STAMCOUNTER StatMMIOReadGC; STAMCOUNTER StatMMIOReadHC; STAMCOUNTER StatMMIOWriteGC; STAMCOUNTER StatMMIOWriteHC; STAMCOUNTER StatClearedActiveIrq; # endif } APICDeviceInfo; # ifdef VBOX_WITH_STATISTICS AssertCompileMemberAlignment(APICDeviceInfo, StatMMIOReadGC, 8); # endif #ifndef VBOX_DEVICE_STRUCT_TESTCASE /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static void apic_update_tpr(APICDeviceInfo *pDev, APICState *pApic, uint32_t val); static void apic_eoi(APICDeviceInfo *pDev, APICState *pApic); /* */ static PVMCPUSET apic_get_delivery_bitmask(APICDeviceInfo *pDev, uint8_t dest, uint8_t dest_mode, PVMCPUSET pDstSet); static int apic_deliver(APICDeviceInfo *pDev, APICState *pApic, uint8_t dest, uint8_t dest_mode, uint8_t delivery_mode, uint8_t vector_num, uint8_t polarity, uint8_t trigger_mode); static int apic_get_arb_pri(APICState const *pApic); static int apic_get_ppr(APICState const *pApic); static uint32_t apic_get_current_count(APICDeviceInfo const *pDev, APICState const *pApic); static void apicTimerSetInitialCount(APICDeviceInfo *pDev, APICState *pApic, uint32_t initial_count); static void apicTimerSetLvt(APICDeviceInfo *pDev, APICState *pApic, uint32_t fNew); static void apicSendInitIpi(APICDeviceInfo *pDev, APICState *pApic); static void apicR3InitIpi(APICDeviceInfo *pDev, APICState *pApic); static void apic_set_irq(APICDeviceInfo *pDev, APICState *pApic, int vector_num, int trigger_mode, uint32_t uTagSrc); static bool apic_update_irq(APICDeviceInfo *pDev, APICState *pApic); DECLINLINE(APICState *) apicGetStateById(APICDeviceInfo *pDev, VMCPUID id) { AssertFatalMsg(id < pDev->cCpus, ("CPU id %d out of range\n", id)); return &pDev->CTX_SUFF(paLapics)[id]; } /** * Get the APIC state for the calling EMT. */ DECLINLINE(APICState *) apicGetStateByCurEmt(APICDeviceInfo *pDev) { /* LAPIC's array is indexed by CPU id */ VMCPUID id = pDev->CTX_SUFF(pApicHlp)->pfnGetCpuId(pDev->CTX_SUFF(pDevIns)); return apicGetStateById(pDev, id); } DECLINLINE(VMCPUID) getCpuFromLapic(APICDeviceInfo *pDev, APICState *pApic) { /* for now we assume LAPIC physical id == CPU id */ return (VMCPUID)pApic->phys_id; } DECLINLINE(void) apicCpuSetInterrupt(APICDeviceInfo *pDev, APICState *pApic, PDMAPICIRQ enmType = PDMAPICIRQ_HARDWARE) { LogFlow(("apic: setting interrupt flag for cpu %d\n", getCpuFromLapic(pDev, pApic))); pDev->CTX_SUFF(pApicHlp)->pfnSetInterruptFF(pDev->CTX_SUFF(pDevIns), enmType, getCpuFromLapic(pDev, pApic)); } DECLINLINE(void) apicCpuClearInterrupt(APICDeviceInfo *pDev, APICState *pApic, PDMAPICIRQ enmType = PDMAPICIRQ_HARDWARE) { LogFlow(("apic: clear interrupt flag\n")); pDev->CTX_SUFF(pApicHlp)->pfnClearInterruptFF(pDev->CTX_SUFF(pDevIns), enmType, getCpuFromLapic(pDev, pApic)); } # ifdef IN_RING3 DECLINLINE(void) apicR3CpuSendSipi(APICDeviceInfo *pDev, APICState *pApic, int vector) { Log2(("apic: send SIPI vector=%d\n", vector)); pDev->pApicHlpR3->pfnSendStartupIpi(pDev->pDevInsR3, getCpuFromLapic(pDev, pApic), vector); } DECLINLINE(void) apicR3CpuSendInitIpi(APICDeviceInfo *pDev, APICState *pApic) { Log2(("apic: send init IPI\n")); pDev->pApicHlpR3->pfnSendInitIpi(pDev->pDevInsR3, getCpuFromLapic(pDev, pApic)); } # endif /* IN_RING3 */ DECLINLINE(uint32_t) getApicEnableBits(APICDeviceInfo *pDev) { switch (pDev->enmMode) { case PDMAPICMODE_NONE: return 0; case PDMAPICMODE_APIC: return MSR_IA32_APICBASE_ENABLE; case PDMAPICMODE_X2APIC: return MSR_IA32_APICBASE_ENABLE | MSR_IA32_APICBASE_X2ENABLE; default: AssertMsgFailed(("Unsupported APIC mode %d\n", pDev->enmMode)); return 0; } } DECLINLINE(PDMAPICMODE) getApicMode(APICState *apic) { switch (((apic->apicbase) >> 10) & 0x3) { case 0: return PDMAPICMODE_NONE; case 1: default: /* Invalid */ return PDMAPICMODE_NONE; case 2: return PDMAPICMODE_APIC; case 3: return PDMAPICMODE_X2APIC; } } static int apic_get_ppr_zero_tpr(APICState *pApic) { return Apic256BitReg_FindLastSetBit(&pApic->isr, 0); } /* Check if the APIC has a pending interrupt/if a TPR change would active one. */ static bool apicHasPendingIntr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t *pu8PendingIrq) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); if (!pDev) return false; /* We don't perform any locking here as that would cause a lot of contention for VT-x/AMD-V. */ APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); /* * All our callbacks now come from single IOAPIC, thus locking * seems to be excessive now */ /** @todo check excessive locking whatever... */ int irrv = Apic256BitReg_FindLastSetBit(&pApic->irr, -1); if (irrv < 0) return false; int isrv = apic_get_ppr_zero_tpr(pApic); if (isrv && (irrv & 0xf0) <= (isrv & 0xf0)) return false; if (pu8PendingIrq) { Assert(irrv >= 0 && irrv <= (int)UINT8_MAX); *pu8PendingIrq = (uint8_t)irrv; } return true; } static int apic_bus_deliver(APICDeviceInfo *pDev, PCVMCPUSET pDstSet, uint8_t delivery_mode, uint8_t vector_num, uint8_t polarity, uint8_t trigger_mode, uint32_t uTagSrc) { LogFlow(("apic_bus_deliver mask=%R[vmcpuset] mode=%x vector=%x polarity=%x trigger_mode=%x uTagSrc=%#x\n", pDstSet, delivery_mode, vector_num, polarity, trigger_mode, uTagSrc)); switch (delivery_mode) { case APIC_DM_LOWPRI: { VMCPUID idDstCpu = VMCPUSET_FIND_FIRST_PRESENT(pDstSet); if (idDstCpu != NIL_VMCPUID) { APICState *pApic = apicGetStateById(pDev, idDstCpu); apic_set_irq(pDev, pApic, vector_num, trigger_mode, uTagSrc); } return VINF_SUCCESS; } case APIC_DM_FIXED: /** @todo XXX: arbitration */ break; case APIC_DM_SMI: APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet); apicCpuSetInterrupt(pDev, pCurApic, PDMAPICIRQ_SMI); APIC_FOREACH_END(); return VINF_SUCCESS; case APIC_DM_NMI: APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet); apicCpuSetInterrupt(pDev, pCurApic, PDMAPICIRQ_NMI); APIC_FOREACH_END(); return VINF_SUCCESS; case APIC_DM_INIT: /* normal INIT IPI sent to processors */ #ifdef IN_RING3 APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet); apicSendInitIpi(pDev, pCurApic); APIC_FOREACH_END(); return VINF_SUCCESS; #else /* We shall send init IPI only in R3. */ return VINF_IOM_R3_MMIO_READ_WRITE; #endif /* IN_RING3 */ case APIC_DM_EXTINT: /* handled in I/O APIC code */ break; default: return VINF_SUCCESS; } APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet); apic_set_irq(pDev, pCurApic, vector_num, trigger_mode, uTagSrc); APIC_FOREACH_END(); return VINF_SUCCESS; } PDMBOTHCBDECL(VBOXSTRICTRC) apicSetBase(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint64_t val) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); Log(("apicSetBase: %016RX64\n", val)); /** @todo do we need to lock here ? */ /* APIC_LOCK_VOID(pDev, VERR_INTERNAL_ERROR); */ /** @todo If this change is valid immediately, then we should change the MMIO registration! */ /* We cannot change if this CPU is BSP or not by writing to MSR - it's hardwired */ PDMAPICMODE oldMode = getApicMode(pApic); pApic->apicbase = (val & 0xfffff000) /* base */ | (val & getApicEnableBits(pDev)) /* mode */ | (pApic->apicbase & MSR_IA32_APICBASE_BSP) /* keep BSP bit */; PDMAPICMODE newMode = getApicMode(pApic); if (oldMode != newMode) { switch (newMode) { case PDMAPICMODE_NONE: { pApic->spurious_vec &= ~APIC_SV_ENABLE; /* Clear any pending APIC interrupt action flag. */ apicCpuClearInterrupt(pDev, pApic); /* See @bugref{7097}. Intel IA-32/64 Spec 10.4.3: * "When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to * an IA-32 processor without an on-chip APIC. The CPUID feature flag for the * APIC (see Section 10.4.2, 'Presence of the Local APIC') is also set to 0." */ pDev->CTX_SUFF(pApicHlp)->pfnChangeFeature(pDevIns, PDMAPICMODE_NONE); break; } case PDMAPICMODE_APIC: /** @todo map MMIO ranges, if needed */ break; case PDMAPICMODE_X2APIC: /** @todo unmap MMIO ranges of this APIC, according to the spec. This is how * real hw works! (Remember the problem disabling NMI watchdog timers in * the world switchers when host used x2apic?)! */ break; default: break; } } /* APIC_UNLOCK(pDev); */ return VINF_SUCCESS; } PDMBOTHCBDECL(uint64_t) apicGetBase(PPDMDEVINS pDevIns, PVMCPU pVCpu) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); LogFlow(("apicGetBase: %016llx\n", (uint64_t)pApic->apicbase)); return pApic->apicbase; } PDMBOTHCBDECL(void) apicSetTPR(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t val) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); Log4(("apicSetTPR: val=%#x (trp %#x -> %#x)\n", val, pApic->tpr, val)); apic_update_tpr(pDev, pApic, val); } PDMBOTHCBDECL(uint8_t) apicGetTPR(PPDMDEVINS pDevIns, PVMCPU pVCpu, bool *pfPending, uint8_t *pu8PendingIntr) { /* We don't perform any locking here as that would cause a lot of contention for VT-x/AMD-V. */ APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); Log4(("apicGetTPR: returns %#x\n", pApic->tpr)); if (pfPending) *pfPending = apicHasPendingIntr(pDevIns, pVCpu, pu8PendingIntr); return pApic->tpr; } PDMBOTHCBDECL(uint64_t) apicGetTimerFreq(PPDMDEVINS pDevIns) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); APICState *pApic = apicGetStateById(pDev, 0); uint64_t uTimer = TMTimerGetFreq(pApic->CTX_SUFF(pTimer)); Log2(("apicGetTimerFreq: returns %#RX64\n", uTimer)); return uTimer; } /** * apicWriteRegister helper for dealing with invalid register access. * * @returns Strict VBox status code. * @param pDev The PDM device instance. * @param pApic The APIC being written to. * @param iReg The APIC register index. * @param u64Value The value being written. * @param rcBusy The busy return code to employ. See * PDMCritSectEnter for a description. * @param fMsr Set if called via MSR, clear if MMIO. */ static int apicWriteRegisterInvalid(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t u64Value, int rcBusy, bool fMsr) { Log(("apicWriteRegisterInvalid/%u: iReg=%#x fMsr=%RTbool u64Value=%#llx\n", pApic->phys_id, iReg, fMsr, u64Value)); int rc = PDMDevHlpDBGFStop(pDev->CTX_SUFF(pDevIns), RT_SRC_POS, "iReg=%#x fMsr=%RTbool u64Value=%#llx id=%u\n", iReg, fMsr, u64Value, pApic->phys_id); APIC_LOCK(pDev, rcBusy); pApic->esr |= ESR_ILLEGAL_ADDRESS; APIC_UNLOCK(pDev); return rc; } /** * Writes to an APIC register via MMIO or MSR. * * @returns Strict VBox status code. * @param pDev The PDM device instance. * @param pApic The APIC being written to. * @param iReg The APIC register index. * @param u64Value The value being written. * @param rcBusy The busy return code to employ. See * PDMCritSectEnter for a description. * @param fMsr Set if called via MSR, clear if MMIO. */ static int apicWriteRegister(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t u64Value, int rcBusy, bool fMsr) { Assert(!PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); int rc = VINF_SUCCESS; switch (iReg) { case 0x02: APIC_LOCK(pDev, rcBusy); pApic->id = (u64Value >> 24); /** @todo r=bird: Is the range supposed to be 40 bits??? */ APIC_UNLOCK(pDev); break; case 0x03: /* read only, ignore write. */ break; case 0x08: APIC_LOCK(pDev, rcBusy); apic_update_tpr(pDev, pApic, u64Value); APIC_UNLOCK(pDev); break; case 0x09: case 0x0a: Log(("apicWriteRegister: write to read-only register %d ignored\n", iReg)); break; case 0x0b: /* EOI */ APIC_LOCK(pDev, rcBusy); apic_eoi(pDev, pApic); APIC_UNLOCK(pDev); break; case 0x0d: APIC_LOCK(pDev, rcBusy); pApic->log_dest = (u64Value >> 24) & 0xff; APIC_UNLOCK(pDev); break; case 0x0e: APIC_LOCK(pDev, rcBusy); pApic->dest_mode = u64Value >> 28; /** @todo r=bird: range? This used to be 32-bit before morphed into an MSR handler. */ APIC_UNLOCK(pDev); break; case 0x0f: APIC_LOCK(pDev, rcBusy); pApic->spurious_vec = u64Value & 0x1ff; apic_update_irq(pDev, pApic); APIC_UNLOCK(pDev); break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: Log(("apicWriteRegister: write to read-only register %d ignored\n", iReg)); break; case 0x30: APIC_LOCK(pDev, rcBusy); pApic->icr[0] = (uint32_t)u64Value; if (fMsr) /* Here one of the differences with regular APIC: ICR is single 64-bit register */ pApic->icr[1] = (uint32_t)(u64Value >> 32); rc = apic_deliver(pDev, pApic, (pApic->icr[1] >> 24) & 0xff, (pApic->icr[0] >> 11) & 1, (pApic->icr[0] >> 8) & 7, (pApic->icr[0] & 0xff), (pApic->icr[0] >> 14) & 1, (pApic->icr[0] >> 15) & 1); APIC_UNLOCK(pDev); break; case 0x31: if (!fMsr) { APIC_LOCK(pDev, rcBusy); pApic->icr[1] = (uint64_t)u64Value; APIC_UNLOCK(pDev); } else rc = apicWriteRegisterInvalid(pDev, pApic, iReg, u64Value, rcBusy, fMsr); break; case 0x32 + APIC_LVT_TIMER: AssertCompile(APIC_LVT_TIMER == 0); APIC_AND_TM_LOCK(pDev, pApic, rcBusy); apicTimerSetLvt(pDev, pApic, u64Value); APIC_AND_TM_UNLOCK(pDev, pApic); break; case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: APIC_LOCK(pDev, rcBusy); pApic->lvt[iReg - 0x32] = u64Value; APIC_UNLOCK(pDev); break; case 0x38: APIC_AND_TM_LOCK(pDev, pApic, rcBusy); apicTimerSetInitialCount(pDev, pApic, u64Value); APIC_AND_TM_UNLOCK(pDev, pApic); break; case 0x39: Log(("apicWriteRegister: write to read-only register %d ignored\n", iReg)); break; case 0x3e: { APIC_LOCK(pDev, rcBusy); pApic->divide_conf = u64Value & 0xb; int v = (pApic->divide_conf & 3) | ((pApic->divide_conf >> 1) & 4); pApic->count_shift = (v + 1) & 7; APIC_UNLOCK(pDev); break; } case 0x3f: if (fMsr) { /* Self IPI, see x2APIC book 2.4.5 */ APIC_LOCK(pDev, rcBusy); int vector = u64Value & 0xff; VMCPUSET SelfSet; VMCPUSET_EMPTY(&SelfSet); VMCPUSET_ADD(&SelfSet, pApic->id); rc = apic_bus_deliver(pDev, &SelfSet, 0 /* Delivery mode - fixed */, vector, 0 /* Polarity - conform to the bus */, 0 /* Trigger mode - edge */, pDev->CTX_SUFF(pApicHlp)->pfnCalcIrqTag(pDev->CTX_SUFF(pDevIns), PDM_IRQ_LEVEL_HIGH)); APIC_UNLOCK(pDev); break; } /* else: fall thru */ default: rc = apicWriteRegisterInvalid(pDev, pApic, iReg, u64Value, rcBusy, fMsr); break; } return rc; } /** * apicReadRegister helper for dealing with invalid register access. * * @returns Strict VBox status code. * @param pDev The PDM device instance. * @param pApic The APIC being read to. * @param iReg The APIC register index. * @param pu64Value Where to store the value we've read. * @param rcBusy The busy return code to employ. See * PDMCritSectEnter for a description. * @param fMsr Set if called via MSR, clear if MMIO. */ static int apicReadRegisterInvalid(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t *pu64Value, int rcBusy, bool fMsr) { Log(("apicReadRegisterInvalid/%u: iReg=%#x fMsr=%RTbool\n", pApic->phys_id, iReg, fMsr)); int rc = PDMDevHlpDBGFStop(pDev->CTX_SUFF(pDevIns), RT_SRC_POS, "iReg=%#x fMsr=%RTbool id=%u\n", iReg, fMsr, pApic->phys_id); APIC_LOCK(pDev, rcBusy); pApic->esr |= ESR_ILLEGAL_ADDRESS; APIC_UNLOCK(pDev); *pu64Value = 0; return rc; } /** * Read from an APIC register via MMIO or MSR. * * @returns Strict VBox status code. * @param pDev The PDM device instance. * @param pApic The APIC being read to. * @param iReg The APIC register index. * @param pu64Value Where to store the value we've read. * @param rcBusy The busy return code to employ. See * PDMCritSectEnter for a description. * @param fMsr Set if called via MSR, clear if MMIO. */ static int apicReadRegister(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t *pu64Value, int rcBusy, bool fMsr) { Assert(!PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); int rc = VINF_SUCCESS; switch (iReg) { case 0x02: /* id */ APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->id << 24; APIC_UNLOCK(pDev); break; case 0x03: /* version */ APIC_LOCK(pDev, rcBusy); *pu64Value = APIC_HW_VERSION | ((APIC_LVT_NB - 1) << 16) /* Max LVT index */ #if 0 | (0 << 24) /* Support for EOI broadcast suppression */ #endif ; APIC_UNLOCK(pDev); break; case 0x08: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->tpr; APIC_UNLOCK(pDev); break; case 0x09: *pu64Value = apic_get_arb_pri(pApic); break; case 0x0a: /* ppr */ APIC_LOCK(pDev, rcBusy); *pu64Value = apic_get_ppr(pApic); APIC_UNLOCK(pDev); break; case 0x0b: Log(("apicReadRegister: %x -> write only returning 0\n", iReg)); *pu64Value = 0; break; case 0x0d: APIC_LOCK(pDev, rcBusy); *pu64Value = (uint64_t)pApic->log_dest << 24; APIC_UNLOCK(pDev); break; case 0x0e: /* Bottom 28 bits are always 1 */ APIC_LOCK(pDev, rcBusy); *pu64Value = ((uint64_t)pApic->dest_mode << 28) | UINT32_C(0xfffffff); APIC_UNLOCK(pDev); break; case 0x0f: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->spurious_vec; APIC_UNLOCK(pDev); break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->isr.au32Bitmap[iReg & 7]; APIC_UNLOCK(pDev); break; case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->tmr.au32Bitmap[iReg & 7]; APIC_UNLOCK(pDev); break; case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->irr.au32Bitmap[iReg & 7]; APIC_UNLOCK(pDev); break; case 0x28: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->esr; APIC_UNLOCK(pDev); break; case 0x30: /* Here one of the differences with regular APIC: ICR is single 64-bit register */ APIC_LOCK(pDev, rcBusy); if (fMsr) *pu64Value = RT_MAKE_U64(pApic->icr[0], pApic->icr[1]); else *pu64Value = pApic->icr[0]; APIC_UNLOCK(pDev); break; case 0x31: if (fMsr) rc = apicReadRegisterInvalid(pDev, pApic, iReg, pu64Value, rcBusy, fMsr); else { APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->icr[1]; APIC_UNLOCK(pDev); } break; case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->lvt[iReg - 0x32]; APIC_UNLOCK(pDev); break; case 0x38: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->initial_count; APIC_UNLOCK(pDev); break; case 0x39: APIC_AND_TM_LOCK(pDev, pApic, rcBusy); *pu64Value = apic_get_current_count(pDev, pApic); APIC_AND_TM_UNLOCK(pDev, pApic); break; case 0x3e: APIC_LOCK(pDev, rcBusy); *pu64Value = pApic->divide_conf; APIC_UNLOCK(pDev); break; case 0x3f: if (fMsr) { /* Self IPI register is write only */ Log(("apicReadMSR: read from write-only register %d ignored\n", iReg)); *pu64Value = 0; } else rc = apicReadRegisterInvalid(pDev, pApic, iReg, pu64Value, rcBusy, fMsr); break; case 0x2f: /** @todo Correctable machine check exception vector, implement me! */ default: /** * @todo: according to spec when APIC writes to ESR it msut raise error interrupt, * i.e. LVT[5] */ rc = apicReadRegisterInvalid(pDev, pApic, iReg, pu64Value, rcBusy, fMsr); break; } return rc; } /** * @interface_method_impl{PDMAPICREG,pfnWriteMSRR3} */ PDMBOTHCBDECL(VBOXSTRICTRC) apicWriteMSR(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint32_t u32Reg, uint64_t u64Value) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); if (pDev->enmMode < PDMAPICMODE_X2APIC) return VERR_EM_INTERPRETER; /** @todo tell the caller to raise hell (\#GP(0)). */ APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); uint32_t iReg = (u32Reg - MSR_IA32_X2APIC_START) & 0xff; return apicWriteRegister(pDev, pApic, iReg, u64Value, VINF_SUCCESS /*rcBusy*/, true /*fMsr*/); } /** * @interface_method_impl{PDMAPICREG,pfnReadMSRR3} */ PDMBOTHCBDECL(VBOXSTRICTRC) apicReadMSR(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint32_t u32Reg, uint64_t *pu64Value) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); if (pDev->enmMode < PDMAPICMODE_X2APIC) return VERR_EM_INTERPRETER; APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); uint32_t iReg = (u32Reg - MSR_IA32_X2APIC_START) & 0xff; return apicReadRegister(pDev, pApic, iReg, pu64Value, VINF_SUCCESS /*rcBusy*/, true /*fMsr*/); } /** * More or less private interface between IOAPIC, only PDM is responsible * for connecting the two devices. */ PDMBOTHCBDECL(int) apicBusDeliverCallback(PPDMDEVINS pDevIns, uint8_t u8Dest, uint8_t u8DestMode, uint8_t u8DeliveryMode, uint8_t iVector, uint8_t u8Polarity, uint8_t u8TriggerMode, uint32_t uTagSrc) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); LogFlow(("apicBusDeliverCallback: pDevIns=%p u8Dest=%#x u8DestMode=%#x u8DeliveryMode=%#x iVector=%#x u8Polarity=%#x u8TriggerMode=%#x uTagSrc=%#x\n", pDevIns, u8Dest, u8DestMode, u8DeliveryMode, iVector, u8Polarity, u8TriggerMode, uTagSrc)); VMCPUSET DstSet; return apic_bus_deliver(pDev, apic_get_delivery_bitmask(pDev, u8Dest, u8DestMode, &DstSet), u8DeliveryMode, iVector, u8Polarity, u8TriggerMode, uTagSrc); } /** * Local interrupt delivery, for devices attached to the CPU's LINT0/LINT1 pin. * Normally used for 8259A PIC and NMI. */ PDMBOTHCBDECL(VBOXSTRICTRC) apicLocalInterrupt(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t u8Pin, uint8_t u8Level, int rcRZ) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); NOREF(rcRZ); /* NB: We currently only deliver local interrupts to the first CPU. In theory they * should be delivered to all CPUs and it is the guest's responsibility to ensure * no more than one CPU has the interrupt unmasked. */ APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); LogFlow(("apicLocalInterrupt: pDevIns=%p u8Pin=%x u8Level=%x\n", pDevIns, u8Pin, u8Level)); /* If LAPIC is disabled, go straight to the CPU. */ if (!(pApic->spurious_vec & APIC_SV_ENABLE)) { LogFlow(("apicLocalInterrupt: LAPIC disabled, delivering directly to CPU core.\n")); if (u8Level) apicCpuSetInterrupt(pDev, pApic, PDMAPICIRQ_EXTINT); else apicCpuClearInterrupt(pDev, pApic, PDMAPICIRQ_EXTINT); return VINF_SUCCESS; } /* If LAPIC is enabled, interrupts are subject to LVT programming. */ /* There are only two local interrupt pins. */ AssertMsgReturn(u8Pin <= 1, ("Invalid LAPIC pin %d\n", u8Pin), VERR_INVALID_PARAMETER); uint32_t u32Lvec; u32Lvec = pApic->lvt[APIC_LVT_LINT0 + u8Pin]; /* Fetch corresponding LVT entry. */ /* Drop int if entry is masked. May not be correct for level-triggered interrupts. */ if (!(u32Lvec & APIC_LVT_MASKED)) { uint8_t u8Delivery; PDMAPICIRQ enmType; u8Delivery = (u32Lvec >> 8) & 7; switch (u8Delivery) { case APIC_DM_EXTINT: Assert(u8Pin == 0); /* PIC should be wired to LINT0. */ enmType = PDMAPICIRQ_EXTINT; /* ExtINT can be both set and cleared, NMI/SMI/INIT can only be set. */ LogFlow(("apicLocalInterrupt: %s ExtINT interrupt\n", u8Level ? "setting" : "clearing")); if (u8Level) apicCpuSetInterrupt(pDev, pApic, enmType); else apicCpuClearInterrupt(pDev, pApic, enmType); return VINF_SUCCESS; case APIC_DM_NMI: /* External NMI should be wired to LINT1, but Linux sometimes programs * LVT0 to NMI delivery mode as well. */ enmType = PDMAPICIRQ_NMI; /* Currently delivering NMIs through here causes problems with NMI watchdogs * on certain Linux kernels, e.g. 64-bit CentOS 5.3. Disable NMIs for now. */ return VINF_SUCCESS; case APIC_DM_SMI: enmType = PDMAPICIRQ_SMI; break; case APIC_DM_FIXED: { /** @todo implement APIC_DM_FIXED! */ LogRelMax(5, ("APIC: Delivery type APIC_DM_FIXED not implemented. u8Pin=%d u8Level=%d\n", u8Pin, u8Level)); return VINF_SUCCESS; } case APIC_DM_INIT: /** @todo implement APIC_DM_INIT? */ default: { static unsigned s_c = 0; if (s_c++ < 100) AssertLogRelMsgFailed(("delivery type %d not implemented. u8Pin=%d u8Level=%d\n", u8Delivery, u8Pin, u8Level)); return VERR_INTERNAL_ERROR_4; } } LogFlow(("apicLocalInterrupt: setting local interrupt type %d\n", enmType)); apicCpuSetInterrupt(pDev, pApic, enmType); } return VINF_SUCCESS; } static int apic_get_ppr(APICState const *pApic) { int ppr; int tpr = (pApic->tpr >> 4); int isrv = Apic256BitReg_FindLastSetBit(&pApic->isr, 0); isrv >>= 4; if (tpr >= isrv) ppr = pApic->tpr; else ppr = isrv << 4; return ppr; } static int apic_get_arb_pri(APICState const *pApic) { /** @todo XXX: arbitration */ return 0; } /* signal the CPU if an irq is pending */ static bool apic_update_irq(APICDeviceInfo *pDev, APICState *pApic) { if (!(pApic->spurious_vec & APIC_SV_ENABLE)) { /* Clear any pending APIC interrupt action flag. */ apicCpuClearInterrupt(pDev, pApic); return false; } int irrv = Apic256BitReg_FindLastSetBit(&pApic->irr, -1); if (irrv < 0) return false; int ppr = apic_get_ppr(pApic); if (ppr && (irrv & 0xf0) <= (ppr & 0xf0)) return false; apicCpuSetInterrupt(pDev, pApic); return true; } static void apic_update_tpr(APICDeviceInfo *pDev, APICState *pApic, uint32_t val) { bool fIrqIsActive = false; bool fIrqWasActive = false; fIrqWasActive = apic_update_irq(pDev, pApic); pApic->tpr = val; fIrqIsActive = apic_update_irq(pDev, pApic); /* If an interrupt is pending and now masked, then clear the FF flag. */ if (fIrqWasActive && !fIrqIsActive) { Log(("apic_update_tpr: deactivate interrupt that was masked by the TPR update (%x)\n", val)); STAM_COUNTER_INC(&pDev->StatClearedActiveIrq); apicCpuClearInterrupt(pDev, pApic); } } static void apic_set_irq(APICDeviceInfo *pDev, APICState *pApic, int vector_num, int trigger_mode, uint32_t uTagSrc) { LogFlow(("CPU%d: apic_set_irq vector=%x trigger_mode=%x uTagSrc=%#x\n", pApic->phys_id, vector_num, trigger_mode, uTagSrc)); Apic256BitReg_SetBit(&pApic->irr, vector_num); if (trigger_mode) Apic256BitReg_SetBit(&pApic->tmr, vector_num); else Apic256BitReg_ClearBit(&pApic->tmr, vector_num); if (!pApic->auTags[vector_num]) pApic->auTags[vector_num] = uTagSrc; else pApic->auTags[vector_num] |= RT_BIT_32(31); apic_update_irq(pDev, pApic); } static void apic_eoi(APICDeviceInfo *pDev, APICState *pApic) { int isrv = Apic256BitReg_FindLastSetBit(&pApic->isr, -1); if (isrv < 0) return; Apic256BitReg_ClearBit(&pApic->isr, isrv); LogFlow(("CPU%d: apic_eoi isrv=%x\n", pApic->phys_id, isrv)); /** @todo XXX: send the EOI packet to the APIC bus to allow the I/O APIC to * set the remote IRR bit for level triggered interrupts. */ apic_update_irq(pDev, pApic); } static PVMCPUSET apic_get_delivery_bitmask(APICDeviceInfo *pDev, uint8_t dest, uint8_t dest_mode, PVMCPUSET pDstSet) { VMCPUSET_EMPTY(pDstSet); if (dest_mode == 0) { if (dest == 0xff) /* The broadcast ID. */ VMCPUSET_FILL(pDstSet); else VMCPUSET_ADD(pDstSet, dest); } else { /** @todo XXX: cluster mode */ APIC_FOREACH_BEGIN(pDev); if (pCurApic->dest_mode == APIC_DESTMODE_FLAT) { if (dest & pCurApic->log_dest) VMCPUSET_ADD(pDstSet, iCurApic); } else if (pCurApic->dest_mode == APIC_DESTMODE_CLUSTER) { if ( (dest & 0xf0) == (pCurApic->log_dest & 0xf0) && (dest & pCurApic->log_dest & 0x0f)) VMCPUSET_ADD(pDstSet, iCurApic); } APIC_FOREACH_END(); } return pDstSet; } #ifdef IN_RING3 static void apicR3InitIpi(APICDeviceInfo *pDev, APICState *pApic) { int i; for(i = 0; i < APIC_LVT_NB; i++) pApic->lvt[i] = 1 << 16; /* mask LVT */ pApic->tpr = 0; pApic->spurious_vec = 0xff; pApic->log_dest = 0; pApic->dest_mode = 0xff; /** @todo 0xff???? */ Apic256BitReg_Empty(&pApic->isr); Apic256BitReg_Empty(&pApic->tmr); Apic256BitReg_Empty(&pApic->irr); pApic->esr = 0; memset(pApic->icr, 0, sizeof(pApic->icr)); pApic->divide_conf = 0; pApic->count_shift = 1; pApic->initial_count = 0; pApic->initial_count_load_time = 0; pApic->next_time = 0; } static void apicSendInitIpi(APICDeviceInfo *pDev, APICState *pApic) { apicR3InitIpi(pDev, pApic); apicR3CpuSendInitIpi(pDev, pApic); } /* send a SIPI message to the CPU to start it */ static void apicR3Startup(APICDeviceInfo *pDev, APICState *pApic, int vector_num) { Log(("[SMP] apicR3Startup: %d on CPUs %d\n", vector_num, pApic->phys_id)); apicR3CpuSendSipi(pDev, pApic, vector_num); } #endif /* IN_RING3 */ static int apic_deliver(APICDeviceInfo *pDev, APICState *pApic, uint8_t dest, uint8_t dest_mode, uint8_t delivery_mode, uint8_t vector_num, uint8_t polarity, uint8_t trigger_mode) { int dest_shorthand = (pApic->icr[0] >> 18) & 3; LogFlow(("apic_deliver dest=%x dest_mode=%x dest_shorthand=%x delivery_mode=%x vector_num=%x polarity=%x trigger_mode=%x\n", dest, dest_mode, dest_shorthand, delivery_mode, vector_num, polarity, trigger_mode)); VMCPUSET DstSet; switch (dest_shorthand) { case 0: apic_get_delivery_bitmask(pDev, dest, dest_mode, &DstSet); break; case 1: VMCPUSET_EMPTY(&DstSet); VMCPUSET_ADD(&DstSet, pApic->id); break; case 2: VMCPUSET_FILL(&DstSet); break; case 3: VMCPUSET_FILL(&DstSet); VMCPUSET_DEL(&DstSet, pApic->id); break; } switch (delivery_mode) { case APIC_DM_INIT: { uint32_t const trig_mode = (pApic->icr[0] >> 15) & 1; uint32_t const level = (pApic->icr[0] >> 14) & 1; if (level == 0 && trig_mode == 1) { APIC_FOREACH_IN_SET_BEGIN(pDev, &DstSet); pCurApic->arb_id = pCurApic->id; APIC_FOREACH_END(); Log(("CPU%d: APIC_DM_INIT arbitration id(s) set\n", pApic->phys_id)); return VINF_SUCCESS; } break; } case APIC_DM_SIPI: # ifdef IN_RING3 APIC_FOREACH_IN_SET_BEGIN(pDev, &DstSet); apicR3Startup(pDev, pCurApic, vector_num); APIC_FOREACH_END(); return VINF_SUCCESS; # else /* We shall send SIPI only in R3, R0 calls should be rescheduled to R3 */ return VINF_IOM_R3_MMIO_WRITE; # endif } return apic_bus_deliver(pDev, &DstSet, delivery_mode, vector_num, polarity, trigger_mode, pDev->CTX_SUFF(pApicHlp)->pfnCalcIrqTag(pDev->CTX_SUFF(pDevIns), PDM_IRQ_LEVEL_HIGH)); } PDMBOTHCBDECL(int) apicGetInterrupt(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t *pu8Vector, uint32_t *pu32TagSrc) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); /* if the APIC is not installed or enabled, we let the 8259 handle the IRQs */ if (!pDev) { Log(("apic_get_interrupt: returns -1 (!pDev)\n")); return VERR_APIC_INTR_NOT_PENDING; } Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect))); APICState *pApic = apicGetStateById(pDev, pVCpu->idCpu); if (!(pApic->spurious_vec & APIC_SV_ENABLE)) { Log(("CPU%d: apic_get_interrupt: returns -1 (APIC_SV_ENABLE)\n", pApic->phys_id)); return VERR_APIC_INTR_NOT_PENDING; } /** @todo XXX: spurious IRQ handling */ int intno = Apic256BitReg_FindLastSetBit(&pApic->irr, -1); if (intno < 0) { Log(("CPU%d: apic_get_interrupt: returns -1 (irr)\n", pApic->phys_id)); return VERR_APIC_INTR_NOT_PENDING; } if (pApic->tpr && (uint32_t)intno <= pApic->tpr) { *pu32TagSrc = 0; *pu8Vector = pApic->spurious_vec & 0xff; Log(("apic_get_interrupt: returns %d (sp)\n", *pu8Vector)); return VINF_SUCCESS; } Apic256BitReg_ClearBit(&pApic->irr, intno); Apic256BitReg_SetBit(&pApic->isr, intno); *pu32TagSrc = pApic->auTags[intno]; pApic->auTags[intno] = 0; apic_update_irq(pDev, pApic); LogFlow(("CPU%d: apic_get_interrupt: returns %d / %#x\n", pApic->phys_id, intno, *pu32TagSrc)); *pu8Vector = (uint8_t)intno; return VINF_SUCCESS; } /** * @remarks Caller (apicReadRegister) takes both the TM and APIC locks before * calling this function. */ static uint32_t apic_get_current_count(APICDeviceInfo const *pDev, APICState const *pApic) { int64_t d = (TMTimerGet(pApic->CTX_SUFF(pTimer)) - pApic->initial_count_load_time) >> pApic->count_shift; uint32_t val; if (pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) /* periodic */ val = pApic->initial_count - (d % ((uint64_t)pApic->initial_count + 1)); else if (d >= pApic->initial_count) val = 0; else val = pApic->initial_count - d; return val; } /** * Does the frequency hinting and logging. * * @param pApic The device state. */ DECLINLINE(void) apicDoFrequencyHinting(APICState *pApic) { if ( pApic->uHintedInitialCount != pApic->initial_count || pApic->uHintedCountShift != (uint32_t)pApic->count_shift) { pApic->uHintedInitialCount = pApic->initial_count; pApic->uHintedCountShift = pApic->count_shift; uint32_t uHz; if (pApic->initial_count > 0) { Assert((unsigned)pApic->count_shift < 30); uint64_t cTickPerPeriod = ((uint64_t)pApic->initial_count + 1) << pApic->count_shift; uHz = TMTimerGetFreq(pApic->CTX_SUFF(pTimer)) / cTickPerPeriod; } else uHz = 0; TMTimerSetFrequencyHint(pApic->CTX_SUFF(pTimer), uHz); Log(("apic: %u Hz\n", uHz)); } } /** * Implementation of the 0380h access: Timer reset + new initial count. * * @param pDev The device state. * @param pApic The APIC sub-device state. * @param u32NewInitialCount The new initial count for the timer. */ static void apicTimerSetInitialCount(APICDeviceInfo *pDev, APICState *pApic, uint32_t u32NewInitialCount) { STAM_COUNTER_INC(&pApic->StatTimerSetInitialCount); pApic->initial_count = u32NewInitialCount; /* * Don't (re-)arm the timer if the it's masked or if it's * a zero length one-shot timer. */ if ( !(pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED) && u32NewInitialCount > 0) { /* * Calculate the relative next time and perform a combined timer get/set * operation. This avoids racing the clock between get and set. */ uint64_t cTicksNext = u32NewInitialCount; cTicksNext += 1; cTicksNext <<= pApic->count_shift; TMTimerSetRelative(pApic->CTX_SUFF(pTimer), cTicksNext, &pApic->initial_count_load_time); pApic->next_time = pApic->initial_count_load_time + cTicksNext; pApic->fTimerArmed = true; apicDoFrequencyHinting(pApic); STAM_COUNTER_INC(&pApic->StatTimerSetInitialCountArm); Log(("apicTimerSetInitialCount: cTicksNext=%'llu (%#llx) ic=%#x sh=%#x nxt=%#llx\n", cTicksNext, cTicksNext, u32NewInitialCount, pApic->count_shift, pApic->next_time)); } else { /* Stop it if necessary and record the load time for unmasking. */ if (pApic->fTimerArmed) { STAM_COUNTER_INC(&pApic->StatTimerSetInitialCountDisarm); TMTimerStop(pApic->CTX_SUFF(pTimer)); pApic->fTimerArmed = false; pApic->uHintedCountShift = pApic->uHintedInitialCount = 0; } pApic->initial_count_load_time = TMTimerGet(pApic->CTX_SUFF(pTimer)); Log(("apicTimerSetInitialCount: ic=%#x sh=%#x iclt=%#llx\n", u32NewInitialCount, pApic->count_shift, pApic->initial_count_load_time)); } } /** * Implementation of the 0320h access: change the LVT flags. * * @param pDev The device state. * @param pApic The APIC sub-device state to operate on. * @param fNew The new flags. */ static void apicTimerSetLvt(APICDeviceInfo *pDev, APICState *pApic, uint32_t fNew) { STAM_COUNTER_INC(&pApic->StatTimerSetLvt); /* * Make the flag change, saving the old ones so we can avoid * unnecessary work. */ uint32_t const fOld = pApic->lvt[APIC_LVT_TIMER]; pApic->lvt[APIC_LVT_TIMER] = fNew; /* Only the masked and peridic bits are relevant (see apic_timer_update). */ if ( (fOld & (APIC_LVT_MASKED | APIC_LVT_TIMER_PERIODIC)) != (fNew & (APIC_LVT_MASKED | APIC_LVT_TIMER_PERIODIC))) { /* * If changed to one-shot from periodic, stop the timer if we're not * in the first period. */ /** @todo check how clearing the periodic flag really should behave when not * in period 1. The current code just mirrors the behavior of the * original implementation. */ if ( (fOld & APIC_LVT_TIMER_PERIODIC) && !(fNew & APIC_LVT_TIMER_PERIODIC)) { STAM_COUNTER_INC(&pApic->StatTimerSetLvtClearPeriodic); uint64_t cTicks = (pApic->next_time - pApic->initial_count_load_time) >> pApic->count_shift; if (cTicks >= pApic->initial_count) { /* not first period, stop it. */ TMTimerStop(pApic->CTX_SUFF(pTimer)); pApic->fTimerArmed = false; pApic->uHintedCountShift = pApic->uHintedInitialCount = 0; } /* else: first period, let it fire normally. */ } /* * We postpone stopping the timer when it's masked, this way we can * avoid some timer work when the guest temporarily masks the timer. * (apicR3TimerCallback will stop it if still masked.) */ if (fNew & APIC_LVT_MASKED) STAM_COUNTER_INC(&pApic->StatTimerSetLvtPostponed); else if (pApic->fTimerArmed) STAM_COUNTER_INC(&pApic->StatTimerSetLvtArmed); /* * If unmasked, not armed and with a valid initial count value (according * to our interpretation of the spec), we will have to rearm the timer so * it will fire at the end of the current period. * * N.B. This is code is currently RACING the virtual sync clock! */ else if ( (fOld & APIC_LVT_MASKED) && pApic->initial_count > 0) { STAM_COUNTER_INC(&pApic->StatTimerSetLvtArm); for (unsigned cTries = 0; ; cTries++) { uint64_t NextTS; uint64_t cTicks = (TMTimerGet(pApic->CTX_SUFF(pTimer)) - pApic->initial_count_load_time) >> pApic->count_shift; if (fNew & APIC_LVT_TIMER_PERIODIC) NextTS = ((cTicks / ((uint64_t)pApic->initial_count + 1)) + 1) * ((uint64_t)pApic->initial_count + 1); else { if (cTicks >= pApic->initial_count) break; NextTS = (uint64_t)pApic->initial_count + 1; } NextTS <<= pApic->count_shift; NextTS += pApic->initial_count_load_time; /* Try avoid the assertion in TM.cpp... this isn't perfect! */ if ( NextTS > TMTimerGet(pApic->CTX_SUFF(pTimer)) || cTries > 10) { TMTimerSet(pApic->CTX_SUFF(pTimer), NextTS); pApic->next_time = NextTS; pApic->fTimerArmed = true; apicDoFrequencyHinting(pApic); Log(("apicTimerSetLvt: ic=%#x sh=%#x nxt=%#llx\n", pApic->initial_count, pApic->count_shift, pApic->next_time)); break; } STAM_COUNTER_INC(&pApic->StatTimerSetLvtArmRetries); } } } else STAM_COUNTER_INC(&pApic->StatTimerSetLvtNoRelevantChange); } # ifdef IN_RING3 /** * Timer callback function. * * @param pDevIns The device state. * @param pTimer The timer handle. * @param pvUser User argument pointing to the APIC instance. */ static DECLCALLBACK(void) apicR3TimerCallback(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); APICState *pApic = (APICState *)pvUser; Assert(pApic->pTimerR3 == pTimer); Assert(pApic->fTimerArmed); Assert(PDMCritSectIsOwner(pDev->pCritSectR3)); Assert(TMTimerIsLockOwner(pTimer)); if (!(pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)) { LogFlow(("apic_timer: trigger irq\n")); apic_set_irq(pDev, pApic, pApic->lvt[APIC_LVT_TIMER] & 0xff, APIC_TRIGGER_EDGE, pDev->CTX_SUFF(pApicHlp)->pfnCalcIrqTag(pDevIns, PDM_IRQ_LEVEL_HIGH)); if ( (pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) && pApic->initial_count > 0) { /* new interval. */ pApic->next_time += (((uint64_t)pApic->initial_count + 1) << pApic->count_shift); TMTimerSet(pApic->CTX_SUFF(pTimer), pApic->next_time); pApic->fTimerArmed = true; apicDoFrequencyHinting(pApic); Log2(("apicR3TimerCallback: ic=%#x sh=%#x nxt=%#llx\n", pApic->initial_count, pApic->count_shift, pApic->next_time)); } else { /* single shot or disabled. */ pApic->fTimerArmed = false; pApic->uHintedCountShift = pApic->uHintedInitialCount = 0; } } else { /* masked, do not rearm. */ pApic->fTimerArmed = false; pApic->uHintedCountShift = pApic->uHintedInitialCount = 0; } } #ifdef APIC_FUZZY_SSM_COMPAT_TEST /** * Helper for dumping per-VCPU APIC state to the release logger. * * This is primarily concerned about the APIC state relevant for saved-states. * * @param pApic The APIC state. * @param pszPrefix A caller supplied prefix before dumping the state. */ static void apic_dump_state(APICState *pApic, const char *pszPrefix) { LogRel(("APIC%u: %s\n", pApic->phys_id, pszPrefix)); LogRel(("APIC%u: uApicBaseMsr = %#RX32\n", pApic->phys_id, pApic->apicbase)); LogRel(("APIC%u: uId = %#RX32\n", pApic->phys_id, pApic->id)); LogRel(("APIC%u: uPhysId = %#RX32\n", pApic->phys_id, pApic->phys_id)); LogRel(("APIC%u: uArbId = %#RX32\n", pApic->phys_id, pApic->arb_id)); LogRel(("APIC%u: uTrp = %#RX32\n", pApic->phys_id, pApic->tpr)); LogRel(("APIC%u: uSvr = %#RX32\n", pApic->phys_id, pApic->spurious_vec)); LogRel(("APIC%u: uLdr = %#x\n", pApic->phys_id, pApic->log_dest)); LogRel(("APIC%u: uDfr = %#x\n", pApic->phys_id, pApic->dest_mode)); for (size_t i = 0; i < 8; i++) { LogRel(("APIC%u: Isr[%u].u32Reg = %#RX32\n", pApic->phys_id, i, pApic->isr.au32Bitmap[i])); LogRel(("APIC%u: Tmr[%u].u32Reg = %#RX32\n", pApic->phys_id, i, pApic->tmr.au32Bitmap[i])); LogRel(("APIC%u: Irr[%u].u32Reg = %#RX32\n", pApic->phys_id, i, pApic->irr.au32Bitmap[i])); } for (size_t i = 0; i < APIC_LVT_NB; i++) LogRel(("APIC%u: Lvt[%u].u32Reg = %#RX32\n", pApic->phys_id, i, pApic->lvt[i])); LogRel(("APIC%u: uEsr = %#RX32\n", pApic->phys_id, pApic->esr)); LogRel(("APIC%u: uIcr_Lo = %#RX32\n", pApic->phys_id, pApic->icr[0])); LogRel(("APIC%u: uIcr_Hi = %#RX32\n", pApic->phys_id, pApic->icr[1])); LogRel(("APIC%u: uTimerDcr = %#RX32\n", pApic->phys_id, pApic->divide_conf)); LogRel(("APIC%u: uCountShift = %#RX32\n", pApic->phys_id, pApic->count_shift)); LogRel(("APIC%u: uInitialCount = %#RX32\n", pApic->phys_id, pApic->initial_count)); LogRel(("APIC%u: u64InitialCountLoadTime = %#RX64\n", pApic->phys_id, pApic->initial_count_load_time)); LogRel(("APIC%u: u64NextTime / TimerCCR = %#RX64\n", pApic->phys_id, pApic->next_time)); } /** * Fuzzies up the APIC state with completely random bits for testing & * validation purposes. * * @param pApic The APIC state. * @remarks Warning! This should ONLY be used for diagnostics, otherwise will * corrupt saved-states and may result in loss of data! */ static void apic_fuzz_state(APICState *pApic) { pApic->apicbase = RTRandU32(); pApic->id = RTRandU32(); pApic->phys_id = RTRandU32(); pApic->arb_id = RTRandU32(); pApic->tpr = RTRandU32(); pApic->spurious_vec = RTRandU32(); pApic->log_dest = RTRandU32(); pApic->dest_mode = RTRandU32(); for (size_t i = 0; i < 8; i++) { pApic->isr.au32Bitmap[i] = RTRandU32(); pApic->tmr.au32Bitmap[i] = RTRandU32(); pApic->irr.au32Bitmap[i] = RTRandU32(); } for (size_t i = 0; i < APIC_LVT_NB; i++) pApic->lvt[i] = RTRandU32(); pApic->esr = RTRandU32(); pApic->icr[0] = RTRandU32(); pApic->icr[1] = RTRandU32(); pApic->divide_conf = RTRandU32(); int v = (pApic->divide_conf & 3) | ((pApic->divide_conf >> 1) & 4); pApic->count_shift = (v + 1) & 7; pApic->initial_count = RTRandU32(); pApic->initial_count_load_time = RTRandU64(); pApic->next_time = pApic->initial_count_load_time; } #endif /* APIC_FUZZY_SSM_COMPAT_TEST */ static void apic_save(SSMHANDLE* f, void *opaque) { APICState *pApic = (APICState*)opaque; int i; #ifdef APIC_FUZZY_SSM_COMPAT_TEST #error "Fuzzying state is purely for testing. Remove this manually and proceed at your own risk!" APICState *pOriginal = pApic; APICState FuzzedApic; apic_fuzz_state(&FuzzedApic); pApic = &FuzzedApic; pApic->phys_id = pOriginal->phys_id; #endif SSMR3PutU32(f, pApic->apicbase); SSMR3PutU32(f, pApic->id); SSMR3PutU32(f, pApic->phys_id); SSMR3PutU32(f, pApic->arb_id); SSMR3PutU32(f, pApic->tpr); SSMR3PutU32(f, pApic->spurious_vec); SSMR3PutU8(f, pApic->log_dest); SSMR3PutU8(f, pApic->dest_mode); for (i = 0; i < 8; i++) { SSMR3PutU32(f, pApic->isr.au32Bitmap[i]); SSMR3PutU32(f, pApic->tmr.au32Bitmap[i]); SSMR3PutU32(f, pApic->irr.au32Bitmap[i]); } for (i = 0; i < APIC_LVT_NB; i++) { SSMR3PutU32(f, pApic->lvt[i]); } SSMR3PutU32(f, pApic->esr); SSMR3PutU32(f, pApic->icr[0]); SSMR3PutU32(f, pApic->icr[1]); SSMR3PutU32(f, pApic->divide_conf); SSMR3PutU32(f, pApic->count_shift); SSMR3PutU32(f, pApic->initial_count); SSMR3PutU64(f, pApic->initial_count_load_time); SSMR3PutU64(f, pApic->next_time); #ifdef APIC_FUZZY_SSM_COMPAT_TEST apic_dump_state(pApic, "Saved state:"); pApic = pOriginal; #endif TMR3TimerSave(pApic->CTX_SUFF(pTimer), f); } static int apic_load(SSMHANDLE *f, void *opaque, int version_id) { APICState *pApic = (APICState*)opaque; int i; /** @todo XXX: what if the base changes? (registered memory regions) */ SSMR3GetU32(f, &pApic->apicbase); switch (version_id) { case APIC_SAVED_STATE_VERSION_ANCIENT: { uint8_t val = 0; SSMR3GetU8(f, &val); pApic->id = val; /* UP only in old saved states */ pApic->phys_id = 0; SSMR3GetU8(f, &val); pApic->arb_id = val; break; } case APIC_SAVED_STATE_VERSION: case APIC_SAVED_STATE_VERSION_VBOX_30: SSMR3GetU32(f, &pApic->id); SSMR3GetU32(f, &pApic->phys_id); SSMR3GetU32(f, &pApic->arb_id); break; default: return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } SSMR3GetU32(f, &pApic->tpr); SSMR3GetU32(f, &pApic->spurious_vec); SSMR3GetU8(f, &pApic->log_dest); SSMR3GetU8(f, &pApic->dest_mode); for (i = 0; i < 8; i++) { SSMR3GetU32(f, &pApic->isr.au32Bitmap[i]); SSMR3GetU32(f, &pApic->tmr.au32Bitmap[i]); SSMR3GetU32(f, &pApic->irr.au32Bitmap[i]); } for (i = 0; i < APIC_LVT_NB; i++) { SSMR3GetU32(f, &pApic->lvt[i]); } SSMR3GetU32(f, &pApic->esr); SSMR3GetU32(f, &pApic->icr[0]); SSMR3GetU32(f, &pApic->icr[1]); SSMR3GetU32(f, &pApic->divide_conf); SSMR3GetU32(f, (uint32_t *)&pApic->count_shift); SSMR3GetU32(f, (uint32_t *)&pApic->initial_count); SSMR3GetU64(f, (uint64_t *)&pApic->initial_count_load_time); SSMR3GetU64(f, (uint64_t *)&pApic->next_time); int rc = TMR3TimerLoad(pApic->CTX_SUFF(pTimer), f); AssertRCReturn(rc, rc); pApic->uHintedCountShift = pApic->uHintedInitialCount = 0; pApic->fTimerArmed = TMTimerIsActive(pApic->CTX_SUFF(pTimer)); if (pApic->fTimerArmed) apicDoFrequencyHinting(pApic); return VINF_SUCCESS; /** @todo darn mess! */ } #endif /* IN_RING3 */ /* LAPIC */ PDMBOTHCBDECL(int) apicMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); APICState *pApic = apicGetStateByCurEmt(pDev); Assert(cb == 4); /** @todo add LAPIC range validity checks (different LAPICs can * theoretically have different physical addresses, see @bugref{3092}) */ STAM_COUNTER_INC(&CTXSUFF(pDev->StatMMIORead)); #if 0 /* Note! experimental */ #ifndef IN_RING3 uint32_t index = (GCPhysAddr >> 4) & 0xff; if ( index == 0x08 /* TPR */ && ++pApic->cTPRPatchAttempts < APIC_MAX_PATCH_ATTEMPTS) { # ifdef IN_RC pDevIns->pDevHlpGC->pfnPATMSetMMIOPatchInfo(pDevIns, GCPhysAddr, &pApic->tpr); # else RTGCPTR pDevInsGC = PDMINS2DATA_GCPTR(pDevIns); pDevIns->pHlpR0->pfnPATMSetMMIOPatchInfo(pDevIns, GCPhysAddr, pDevIns + RT_OFFSETOF(APICState, tpr)); # endif return VINF_PATM_HC_MMIO_PATCH_READ; } #endif #endif /* experimental */ /* Note! apicReadRegister does its own locking. */ uint64_t u64Value = 0; int rc = apicReadRegister(pDev, pApic, (GCPhysAddr >> 4) & 0xff, &u64Value, VINF_IOM_R3_MMIO_READ, false /*fMsr*/); *(uint32_t *)pv = (uint32_t)u64Value; Log(("CPU%d: apicMMIORead at %RGp returns %#RX32\n", pApic->phys_id, GCPhysAddr, (uint32_t)u64Value)); return rc; } PDMBOTHCBDECL(int) apicMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); APICState *pApic = apicGetStateByCurEmt(pDev); Log(("CPU%d: apicMMIOWrite at %RGp uValue=%#RX32\n", pApic->phys_id, GCPhysAddr, *(uint32_t const *)pv)); Assert(cb == 4); /** @todo add LAPIC range validity checks (multiple LAPICs can theoretically * have different physical addresses, see @bugref{3092}) */ STAM_COUNTER_INC(&CTXSUFF(pDev->StatMMIOWrite)); /* Note! It does its own locking. */ return apicWriteRegister(pDev, pApic, (GCPhysAddr >> 4) & 0xff, *(uint32_t const *)pv, VINF_IOM_R3_MMIO_WRITE, false /*fMsr*/); } #ifdef IN_RING3 /** * Wrapper around apicReadRegister. * * @returns 64-bit register value. * @param pDev The PDM device instance. * @param pApic The Local APIC in question. * @param iReg The APIC register index. */ static uint64_t apicR3InfoReadReg(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg) { uint64_t u64Value; int rc = apicReadRegister(pDev, pApic, iReg, &u64Value, VINF_SUCCESS, true /*fMsr*/); AssertRCReturn(rc, UINT64_MAX); return u64Value; } /** * Print an 8-DWORD Local APIC bit map (256 bits). * * @param pDev The PDM device instance. * @param pApic The Local APIC in question. * @param pHlp The output helper. * @param iStartReg The register to start at. */ static void apicR3DumpVec(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp, uint32_t iStartReg) { for (int i = 7; i >= 0; --i) pHlp->pfnPrintf(pHlp, "%08x", apicR3InfoReadReg(pDev, pApic, iStartReg + i)); pHlp->pfnPrintf(pHlp, "\n"); } /** * Print the set of pending interrupts in a 256-bit map. * * @param pDev The PDM device instance. * @param pApic The Local APIC in question. * @param pHlp The output helper. * @param iStartReg The register to start at. */ static void apicR3DumpPending(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp, PCAPIC256BITREG pReg) { APIC256BITREG pending; int iMax; int cPending = 0; pending = *pReg; pHlp->pfnPrintf(pHlp, " pending ="); while ((iMax = Apic256BitReg_FindLastSetBit(&pending, -1)) != -1) { pHlp->pfnPrintf(pHlp, " %02x", iMax); Apic256BitReg_ClearBit(&pending, iMax); ++cPending; } if (!cPending) pHlp->pfnPrintf(pHlp, " none"); pHlp->pfnPrintf(pHlp, "\n"); } /** * Print basic Local APIC state. * * @param pDev The PDM device instance. * @param pApic The Local APIC in question. * @param pHlp The output helper. */ static void apicR3InfoBasic(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp) { uint64_t u64; pHlp->pfnPrintf(pHlp, "CPU%u: Local APIC at %08llx:\n", pApic->phys_id, pApic->apicbase); u64 = apicR3InfoReadReg(pDev, pApic, 0x2); pHlp->pfnPrintf(pHlp, " LAPIC ID : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " APIC ID = %02llx\n", (u64 >> 24) & 0xff); u64 = apicR3InfoReadReg(pDev, pApic, 0x3); pHlp->pfnPrintf(pHlp, " APIC VER : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " version = %02x\n", (int)RT_BYTE1(u64)); pHlp->pfnPrintf(pHlp, " lvts = %d\n", (int)RT_BYTE3(u64) + 1); u64 = apicR3InfoReadReg(pDev, pApic, 0x8); pHlp->pfnPrintf(pHlp, " TPR : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " task pri = %lld/%lld\n", (u64 >> 4) & 0xf, u64 & 0xf); u64 = apicR3InfoReadReg(pDev, pApic, 0xA); pHlp->pfnPrintf(pHlp, " PPR : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " cpu pri = %lld/%lld\n", (u64 >> 4) & 0xf, u64 & 0xf); u64 = apicR3InfoReadReg(pDev, pApic, 0xD); pHlp->pfnPrintf(pHlp, " LDR : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " log id = %02llx\n", (u64 >> 24) & 0xff); pHlp->pfnPrintf(pHlp, " DFR : %08llx\n", apicR3InfoReadReg(pDev, pApic, 0xE)); u64 = apicR3InfoReadReg(pDev, pApic, 0xF); pHlp->pfnPrintf(pHlp, " SVR : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " focus = %s\n", u64 & RT_BIT(9) ? "check off" : "check on"); pHlp->pfnPrintf(pHlp, " lapic = %s\n", u64 & RT_BIT(8) ? "ENABLED" : "DISABLED"); pHlp->pfnPrintf(pHlp, " vector = %02x\n", (unsigned)RT_BYTE1(u64)); pHlp->pfnPrintf(pHlp, " ISR : "); apicR3DumpVec(pDev, pApic, pHlp, 0x10); apicR3DumpPending(pDev, pApic, pHlp, &pApic->isr); pHlp->pfnPrintf(pHlp, " IRR : "); apicR3DumpVec(pDev, pApic, pHlp, 0x20); apicR3DumpPending(pDev, pApic, pHlp, &pApic->irr); } /** * Print the more interesting Local APIC LVT entries. * * @param pDev The PDM device instance. * @param pApic The Local APIC in question. * @param pHlp The output helper. */ static void apicR3InfoLVT(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp) { static const char * const s_apszDeliveryModes[] = { "Fixed ", "Reserved", "SMI", "Reserved", "NMI", "INIT", "Reserved", "ExtINT" }; uint64_t u64; u64 = apicR3InfoReadReg(pDev, pApic, 0x32); pHlp->pfnPrintf(pHlp, " LVT Timer : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " mode = %s\n", u64 & RT_BIT(17) ? "periodic" : "one-shot"); pHlp->pfnPrintf(pHlp, " mask = %llu\n", (u64 >> 16) & 1); pHlp->pfnPrintf(pHlp, " status = %s\n", u64 & RT_BIT(12) ? "pending" : "idle"); pHlp->pfnPrintf(pHlp, " vector = %02llx\n", u64 & 0xff); u64 = apicR3InfoReadReg(pDev, pApic, 0x35); pHlp->pfnPrintf(pHlp, " LVT LINT0 : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " mask = %llu\n", (u64 >> 16) & 1); pHlp->pfnPrintf(pHlp, " trigger = %s\n", u64 & RT_BIT(15) ? "level" : "edge"); pHlp->pfnPrintf(pHlp, " rem irr = %llu\n", (u64 >> 14) & 1); pHlp->pfnPrintf(pHlp, " polarty = %llu\n", (u64 >> 13) & 1); pHlp->pfnPrintf(pHlp, " status = %s\n", u64 & RT_BIT(12) ? "pending" : "idle"); pHlp->pfnPrintf(pHlp, " delivry = %s\n", s_apszDeliveryModes[(u64 >> 8) & 7]); pHlp->pfnPrintf(pHlp, " vector = %02llx\n", u64 & 0xff); u64 = apicR3InfoReadReg(pDev, pApic, 0x36); pHlp->pfnPrintf(pHlp, " LVT LINT1 : %08llx\n", u64); pHlp->pfnPrintf(pHlp, " mask = %llu\n", (u64 >> 16) & 1); pHlp->pfnPrintf(pHlp, " trigger = %s\n", u64 & RT_BIT(15) ? "level" : "edge"); pHlp->pfnPrintf(pHlp, " rem irr = %lld\n", (u64 >> 14) & 1); pHlp->pfnPrintf(pHlp, " polarty = %lld\n", (u64 >> 13) & 1); pHlp->pfnPrintf(pHlp, " status = %s\n", u64 & RT_BIT(12) ? "pending" : "idle"); pHlp->pfnPrintf(pHlp, " delivry = %s\n", s_apszDeliveryModes[(u64 >> 8) & 7]); pHlp->pfnPrintf(pHlp, " vector = %02llx\n", u64 & 0xff); } /** * Print LAPIC timer state. * * @param pDev The PDM device instance. * @param pApic The Local APIC in question. * @param pHlp The output helper. */ static void apicR3InfoTimer(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp) { pHlp->pfnPrintf(pHlp, "Local APIC timer:\n"); pHlp->pfnPrintf(pHlp, " Initial count : %08llx\n", apicR3InfoReadReg(pDev, pApic, 0x38)); pHlp->pfnPrintf(pHlp, " Current count : %08llx\n", apicR3InfoReadReg(pDev, pApic, 0x39)); uint64_t u64 = apicR3InfoReadReg(pDev, pApic, 0x3e); pHlp->pfnPrintf(pHlp, " Divide config : %08llx\n", u64); unsigned uDivider = ((u64 >> 1) & 0x04) | (u64 & 0x03); pHlp->pfnPrintf(pHlp, " divider = %u\n", uDivider == 7 ? 1 : 2 << uDivider); } /** * @callback_method_impl{FNDBGFHANDLERDEV, * Dumps the Local APIC state according to given argument.} */ static DECLCALLBACK(void) apicR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); PVM pVM = PDMDevHlpGetVM(pDevIns); VMCPUID idCpu = VMMGetCpuId(pVM); if (idCpu == NIL_VMCPUID) /* Don't crash if we're not on EMT, just assume EMT0 for now. */ idCpu = 0; APICState *pApic = apicGetStateById(pDev, idCpu); if (pszArgs == NULL || !*pszArgs || !strcmp(pszArgs, "basic")) apicR3InfoBasic(pDev, pApic, pHlp); else if (!strcmp(pszArgs, "lvt")) apicR3InfoLVT(pDev, pApic, pHlp); else if (!strcmp(pszArgs, "timer")) apicR3InfoTimer(pDev, pApic, pHlp); else pHlp->pfnPrintf(pHlp, "Invalid argument. Recognized arguments are 'basic', 'lvt', 'timer'.\n"); } /** * @copydoc FNSSMDEVLIVEEXEC */ static DECLCALLBACK(int) apicR3LiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); SSMR3PutU32( pSSM, pDev->cCpus); SSMR3PutBool(pSSM, pDev->fIoApic); SSMR3PutU32( pSSM, pDev->enmMode); AssertCompile(PDMAPICMODE_APIC == 2); return VINF_SSM_DONT_CALL_AGAIN; } /** * @copydoc FNSSMDEVSAVEEXEC */ static DECLCALLBACK(int) apicR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); /* config */ apicR3LiveExec(pDevIns, pSSM, SSM_PASS_FINAL); /* save all APICs data */ /** @todo is it correct? */ APIC_FOREACH_BEGIN(pDev); apic_save(pSSM, pCurApic); APIC_FOREACH_END(); return VINF_SUCCESS; } /** * @copydoc FNSSMDEVLOADEXEC */ static DECLCALLBACK(int) apicR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); if ( uVersion != APIC_SAVED_STATE_VERSION && uVersion != APIC_SAVED_STATE_VERSION_VBOX_30 && uVersion != APIC_SAVED_STATE_VERSION_ANCIENT) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; /* config */ if (uVersion > APIC_SAVED_STATE_VERSION_VBOX_30) { uint32_t cCpus; int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc); if (cCpus != pDev->cCpus) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - cCpus: saved=%#x config=%#x"), cCpus, pDev->cCpus); bool fIoApic; rc = SSMR3GetBool(pSSM, &fIoApic); AssertRCReturn(rc, rc); if (fIoApic != pDev->fIoApic) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - fIoApic: saved=%RTbool config=%RTbool"), fIoApic, pDev->fIoApic); uint32_t uApicMode; rc = SSMR3GetU32(pSSM, &uApicMode); AssertRCReturn(rc, rc); if (uApicMode != (uint32_t)pDev->enmMode) return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - uApicMode: saved=%#x config=%#x"), uApicMode, pDev->enmMode); } if (uPass != SSM_PASS_FINAL) return VINF_SUCCESS; /* load all APICs data */ /** @todo is it correct? */ APIC_LOCK(pDev, VERR_INTERNAL_ERROR_3); int rc = VINF_SUCCESS; APIC_FOREACH_BEGIN(pDev); rc = apic_load(pSSM, pCurApic, uVersion); if (RT_FAILURE(rc)) break; APIC_FOREACH_END(); APIC_UNLOCK(pDev); return rc; } /** * @copydoc FNPDMDEVRESET */ static DECLCALLBACK(void) apicR3Reset(PPDMDEVINS pDevIns) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); TMTimerLock(pDev->paLapicsR3[0].pTimerR3, VERR_IGNORED); APIC_LOCK_VOID(pDev, VERR_IGNORED); /* Reset all APICs. */ for (VMCPUID i = 0; i < pDev->cCpus; i++) { APICState *pApic = &pDev->CTX_SUFF(paLapics)[i]; TMTimerStop(pApic->CTX_SUFF(pTimer)); /* Clear LAPIC state as if an INIT IPI was sent. */ apicR3InitIpi(pDev, pApic); /* The IDs are not touched by apicR3InitIpi() and must be reset now. */ pApic->arb_id = pApic->id = i; Assert(pApic->id == pApic->phys_id); /* The two should match again. */ /* Reset should re-enable the APIC, see comment in msi.h */ pApic->apicbase = VBOX_MSI_ADDR_BASE | MSR_IA32_APICBASE_ENABLE; if (pApic->phys_id == 0) pApic->apicbase |= MSR_IA32_APICBASE_BSP; /* Clear any pending APIC interrupt action flag. */ apicCpuClearInterrupt(pDev, pApic); } LogRel(("APIC: Re-activating Local APIC\n")); pDev->pApicHlpR3->pfnChangeFeature(pDev->pDevInsR3, pDev->enmMode); APIC_UNLOCK(pDev); TMTimerUnlock(pDev->paLapicsR3[0].pTimerR3); } /** * @copydoc FNPDMDEVRELOCATE */ static DECLCALLBACK(void) apicR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); pDev->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pDev->pApicHlpRC = pDev->pApicHlpR3->pfnGetRCHelpers(pDevIns); pDev->paLapicsRC = MMHyperR3ToRC(PDMDevHlpGetVM(pDevIns), pDev->paLapicsR3); pDev->pCritSectRC = pDev->pApicHlpR3->pfnGetRCCritSect(pDevIns); for (uint32_t i = 0; i < pDev->cCpus; i++) pDev->paLapicsR3[i].pTimerRC = TMTimerRCPtr(pDev->paLapicsR3[i].pTimerR3); } /** * Initializes the state of one local APIC. * * @param pApic The Local APIC state to init. * @param id The Local APIC ID. */ static void apicR3StateInit(APICState *pApic, uint8_t id) { memset(pApic, 0, sizeof(*pApic)); /* See comment in msi.h for LAPIC base info. */ pApic->apicbase = VBOX_MSI_ADDR_BASE | MSR_IA32_APICBASE_ENABLE; if (id == 0) /* Mark first CPU as BSP. */ pApic->apicbase |= MSR_IA32_APICBASE_BSP; for (int i = 0; i < APIC_LVT_NB; i++) pApic->lvt[i] = RT_BIT_32(16); /* mask LVT */ pApic->spurious_vec = 0xff; pApic->phys_id = id; pApic->id = id; } /** * @copydoc FNPDMDEVCONSTRUCT */ static DECLCALLBACK(int) apicR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *); uint32_t i; /* * Only single device instance. */ Assert(iInstance == 0); /* * Validate configuration. */ PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "IOAPIC|RZEnabled|NumCPUs", ""); bool fIoApic; int rc = CFGMR3QueryBoolDef(pCfg, "IOAPIC", &fIoApic, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"IOAPIC\"")); bool fRZEnabled; rc = CFGMR3QueryBoolDef(pCfg, "RZEnabled", &fRZEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to query boolean value \"RZEnabled\"")); uint32_t cCpus; rc = CFGMR3QueryU32Def(pCfg, "NumCPUs", &cCpus, 1); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to query integer value \"NumCPUs\"")); Log(("APIC: cCpus=%d fRZEnabled=%RTbool fIoApic=%RTbool\n", cCpus, fRZEnabled, fIoApic)); if (cCpus > 255) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Invalid value for \"NumCPUs\"")); /* * Init the data. */ pDev->pDevInsR3 = pDevIns; pDev->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pDev->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pDev->cCpus = cCpus; pDev->fIoApic = fIoApic; /** @todo Finish X2APIC implementation. Must, among other things, set * PDMAPICMODE_X2APIC here when X2APIC is configured. */ pDev->enmMode = PDMAPICMODE_APIC; /* Disable locking in this device. */ rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); PVM pVM = PDMDevHlpGetVM(pDevIns); /* * We are not freeing this memory, as it's automatically released when guest exits. */ rc = MMHyperAlloc(pVM, cCpus * sizeof(APICState), 1, MM_TAG_PDM_DEVICE_USER, (void **)&pDev->paLapicsR3); if (RT_FAILURE(rc)) return VERR_NO_MEMORY; pDev->paLapicsR0 = MMHyperR3ToR0(pVM, pDev->paLapicsR3); pDev->paLapicsRC = MMHyperR3ToRC(pVM, pDev->paLapicsR3); for (i = 0; i < cCpus; i++) apicR3StateInit(&pDev->paLapicsR3[i], i); /* * Register the APIC. */ PDMAPICREG ApicReg; ApicReg.u32Version = PDM_APICREG_VERSION; ApicReg.pfnGetInterruptR3 = apicGetInterrupt; ApicReg.pfnSetBaseMsrR3 = apicSetBase; ApicReg.pfnGetBaseMsrR3 = apicGetBase; ApicReg.pfnSetTprR3 = apicSetTPR; ApicReg.pfnGetTprR3 = apicGetTPR; ApicReg.pfnWriteMsrR3 = apicWriteMSR; ApicReg.pfnReadMsrR3 = apicReadMSR; ApicReg.pfnBusDeliverR3 = apicBusDeliverCallback; ApicReg.pfnLocalInterruptR3 = apicLocalInterrupt; ApicReg.pfnGetTimerFreqR3 = apicGetTimerFreq; if (fRZEnabled) { ApicReg.pszGetInterruptRC = "apicGetInterrupt"; ApicReg.pszSetBaseMsrRC = "apicSetBase"; ApicReg.pszGetBaseMsrRC = "apicGetBase"; ApicReg.pszSetTprRC = "apicSetTPR"; ApicReg.pszGetTprRC = "apicGetTPR"; ApicReg.pszWriteMsrRC = "apicWriteMSR"; ApicReg.pszReadMsrRC = "apicReadMSR"; ApicReg.pszBusDeliverRC = "apicBusDeliverCallback"; ApicReg.pszLocalInterruptRC = "apicLocalInterrupt"; ApicReg.pszGetTimerFreqRC = "apicGetTimerFreq"; ApicReg.pszGetInterruptR0 = "apicGetInterrupt"; ApicReg.pszSetBaseMsrR0 = "apicSetBase"; ApicReg.pszGetBaseMsrR0 = "apicGetBase"; ApicReg.pszSetTprR0 = "apicSetTPR"; ApicReg.pszGetTprR0 = "apicGetTPR"; ApicReg.pszWriteMsrR0 = "apicWriteMSR"; ApicReg.pszReadMsrR0 = "apicReadMSR"; ApicReg.pszBusDeliverR0 = "apicBusDeliverCallback"; ApicReg.pszLocalInterruptR0 = "apicLocalInterrupt"; ApicReg.pszGetTimerFreqR0 = "apicGetTimerFreq"; } else { ApicReg.pszGetInterruptRC = NULL; ApicReg.pszSetBaseMsrRC = NULL; ApicReg.pszGetBaseMsrRC = NULL; ApicReg.pszSetTprRC = NULL; ApicReg.pszGetTprRC = NULL; ApicReg.pszWriteMsrRC = NULL; ApicReg.pszReadMsrRC = NULL; ApicReg.pszBusDeliverRC = NULL; ApicReg.pszLocalInterruptRC = NULL; ApicReg.pszGetTimerFreqRC = NULL; ApicReg.pszGetInterruptR0 = NULL; ApicReg.pszSetBaseMsrR0 = NULL; ApicReg.pszGetBaseMsrR0 = NULL; ApicReg.pszSetTprR0 = NULL; ApicReg.pszGetTprR0 = NULL; ApicReg.pszWriteMsrR0 = NULL; ApicReg.pszReadMsrR0 = NULL; ApicReg.pszBusDeliverR0 = NULL; ApicReg.pszLocalInterruptR0 = NULL; ApicReg.pszGetTimerFreqR0 = NULL; } rc = PDMDevHlpAPICRegister(pDevIns, &ApicReg, &pDev->pApicHlpR3); AssertLogRelRCReturn(rc, rc); pDev->pCritSectR3 = pDev->pApicHlpR3->pfnGetR3CritSect(pDevIns); /* * The CPUID feature bit. */ LogRel(("APIC: Activating Local APIC\n")); pDev->pApicHlpR3->pfnChangeFeature(pDevIns, pDev->enmMode); /* * Register the MMIO range. */ /** @todo shall reregister, if base changes. */ uint32_t ApicBase = pDev->paLapicsR3[0].apicbase & ~0xfff; rc = PDMDevHlpMMIORegister(pDevIns, ApicBase, 0x1000, pDev, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_DWORD_ZEROED, apicMMIOWrite, apicMMIORead, "APIC Memory"); if (RT_FAILURE(rc)) return rc; if (fRZEnabled) { pDev->pApicHlpRC = pDev->pApicHlpR3->pfnGetRCHelpers(pDevIns); pDev->pCritSectRC = pDev->pApicHlpR3->pfnGetRCCritSect(pDevIns); rc = PDMDevHlpMMIORegisterRC(pDevIns, ApicBase, 0x1000, NIL_RTRCPTR /*pvUser*/, "apicMMIOWrite", "apicMMIORead"); if (RT_FAILURE(rc)) return rc; pDev->pApicHlpR0 = pDev->pApicHlpR3->pfnGetR0Helpers(pDevIns); pDev->pCritSectR0 = pDev->pApicHlpR3->pfnGetR0CritSect(pDevIns); rc = PDMDevHlpMMIORegisterR0(pDevIns, ApicBase, 0x1000, NIL_RTR0PTR /*pvUser*/, "apicMMIOWrite", "apicMMIORead"); if (RT_FAILURE(rc)) return rc; } /* * Create the APIC timers. */ for (i = 0; i < cCpus; i++) { APICState *pApic = &pDev->paLapicsR3[i]; pApic->pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PDM_DEVICE_USER, "APIC Timer #%u", i); rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, apicR3TimerCallback, pApic, TMTIMER_FLAGS_NO_CRIT_SECT, pApic->pszDesc, &pApic->pTimerR3); if (RT_FAILURE(rc)) return rc; pApic->pTimerR0 = TMTimerR0Ptr(pApic->pTimerR3); pApic->pTimerRC = TMTimerRCPtr(pApic->pTimerR3); TMR3TimerSetCritSect(pApic->pTimerR3, pDev->pCritSectR3); } /* * Saved state. */ rc = PDMDevHlpSSMRegister3(pDevIns, APIC_SAVED_STATE_VERSION, sizeof(*pDev), apicR3LiveExec, apicR3SaveExec, apicR3LoadExec); if (RT_FAILURE(rc)) return rc; /* * Register debugger info callback. */ PDMDevHlpDBGFInfoRegister(pDevIns, "apic", "Display Local APIC state for current CPU. " "Recognizes 'basic', 'lvt', 'timer' as arguments, defaulting to 'basic'.", apicR3Info); #ifdef VBOX_WITH_STATISTICS /* * Statistics. */ PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOReadGC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOReadGC", STAMUNIT_OCCURENCES, "Number of APIC MMIO reads in GC."); PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOReadHC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOReadHC", STAMUNIT_OCCURENCES, "Number of APIC MMIO reads in HC."); PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOWriteGC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOWriteGC", STAMUNIT_OCCURENCES, "Number of APIC MMIO writes in GC."); PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOWriteHC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOWriteHC", STAMUNIT_OCCURENCES, "Number of APIC MMIO writes in HC."); PDMDevHlpSTAMRegister(pDevIns, &pDev->StatClearedActiveIrq,STAMTYPE_COUNTER, "/Devices/APIC/MaskedActiveIRQ", STAMUNIT_OCCURENCES, "Number of cleared irqs."); for (i = 0; i < cCpus; i++) { APICState *pApic = &pDev->paLapicsR3[i]; PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetInitialCount, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Calls to apicTimerSetInitialCount.", "/Devices/APIC/%u/TimerSetInitialCount", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetInitialCountArm, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSetRelative calls.", "/Devices/APIC/%u/TimerSetInitialCount/Arm", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetInitialCountDisarm, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerStop calls.", "/Devices/APIC/%u/TimerSetInitialCount/Disasm", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Calls to apicTimerSetLvt.", "/Devices/APIC/%u/TimerSetLvt", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtClearPeriodic, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Clearing APIC_LVT_TIMER_PERIODIC.", "/Devices/APIC/%u/TimerSetLvt/ClearPeriodic", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtPostponed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerStop postponed.", "/Devices/APIC/%u/TimerSetLvt/Postponed", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtArmed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSet avoided.", "/Devices/APIC/%u/TimerSetLvt/Armed", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtArm, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSet necessary.", "/Devices/APIC/%u/TimerSetLvt/Arm", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtArmRetries, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSet retries.", "/Devices/APIC/%u/TimerSetLvt/ArmRetries", i); PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtNoRelevantChange,STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "No relevant flags changed.", "/Devices/APIC/%u/TimerSetLvt/NoRelevantChange", i); } #endif return VINF_SUCCESS; } /** * APIC device registration structure. */ const PDMDEVREG g_DeviceAPIC = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "apic", /* szRCMod */ "VBoxDD2RC.rc", /* szR0Mod */ "VBoxDD2R0.r0", /* pszDescription */ "Advanced Programmable Interrupt Controller (APIC) Device", /* fFlags */ PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_32_64 | PDM_DEVREG_FLAGS_PAE36 | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_PIC, /* cMaxInstances */ 1, /* cbInstance */ sizeof(APICState), /* pfnConstruct */ apicR3Construct, /* pfnDestruct */ NULL, /* pfnRelocate */ apicR3Relocate, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ apicR3Reset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */