/* $Id: DevACPI.cpp 46491 2013-06-11 13:02:32Z vboxsync $ */ /** @file * DevACPI - Advanced Configuration and Power Interface (ACPI) Device. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_ACPI #include #include #include #include #include #include #include #include #include #include #ifdef IN_RING3 # include # include # include #endif /* IN_RING3 */ #include "VBoxDD.h" #ifdef LOG_ENABLED # define DEBUG_ACPI #endif /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #ifdef IN_RING3 /** Locks the device state, ring-3 only. */ # define DEVACPI_LOCK_R3(a_pThis) \ do { \ int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \ AssertRC(rcLock); \ } while (0) #endif /** Unlocks the device state (all contexts). */ #define DEVACPI_UNLOCK(a_pThis) \ do { PDMCritSectLeave(&(a_pThis)->CritSect); } while (0) #define DEBUG_HEX 0x3000 #define DEBUG_CHR 0x3001 #define PM_TMR_FREQ 3579545 /* Default base for PM PIIX4 device */ #define PM_PORT_BASE 0x4000 /* Port offsets in PM device */ enum { PM1a_EVT_OFFSET = 0x00, PM1b_EVT_OFFSET = -1, /**< not supported */ PM1a_CTL_OFFSET = 0x04, PM1b_CTL_OFFSET = -1, /**< not supported */ PM2_CTL_OFFSET = -1, /**< not supported */ PM_TMR_OFFSET = 0x08, GPE0_OFFSET = 0x20, GPE1_OFFSET = -1 /**< not supported */ }; #define BAT_INDEX 0x00004040 #define BAT_DATA 0x00004044 #define SYSI_INDEX 0x00004048 #define SYSI_DATA 0x0000404c #define ACPI_RESET_BLK 0x00004050 /* PM1x status register bits */ #define TMR_STS RT_BIT(0) #define RSR1_STS (RT_BIT(1) | RT_BIT(2) | RT_BIT(3)) #define BM_STS RT_BIT(4) #define GBL_STS RT_BIT(5) #define RSR2_STS (RT_BIT(6) | RT_BIT(7)) #define PWRBTN_STS RT_BIT(8) #define SLPBTN_STS RT_BIT(9) #define RTC_STS RT_BIT(10) #define IGN_STS RT_BIT(11) #define RSR3_STS (RT_BIT(12) | RT_BIT(13) | RT_BIT(14)) #define WAK_STS RT_BIT(15) #define RSR_STS (RSR1_STS | RSR2_STS | RSR3_STS) /* PM1x enable register bits */ #define TMR_EN RT_BIT(0) #define RSR1_EN (RT_BIT(1) | RT_BIT(2) | RT_BIT(3) | RT_BIT(4)) #define GBL_EN RT_BIT(5) #define RSR2_EN (RT_BIT(6) | RT_BIT(7)) #define PWRBTN_EN RT_BIT(8) #define SLPBTN_EN RT_BIT(9) #define RTC_EN RT_BIT(10) #define RSR3_EN (RT_BIT(11) | RT_BIT(12) | RT_BIT(13) | RT_BIT(14) | RT_BIT(15)) #define RSR_EN (RSR1_EN | RSR2_EN | RSR3_EN) #define IGN_EN 0 /* PM1x control register bits */ #define SCI_EN RT_BIT(0) #define BM_RLD RT_BIT(1) #define GBL_RLS RT_BIT(2) #define RSR1_CNT (RT_BIT(3) | RT_BIT(4) | RT_BIT(5) | RT_BIT(6) | RT_BIT(7) | RT_BIT(8)) #define IGN_CNT RT_BIT(9) #define SLP_TYPx_SHIFT 10 #define SLP_TYPx_MASK 7 #define SLP_EN RT_BIT(13) #define RSR2_CNT (RT_BIT(14) | RT_BIT(15)) #define RSR_CNT (RSR1_CNT | RSR2_CNT) #define GPE0_BATTERY_INFO_CHANGED RT_BIT(0) enum { BAT_STATUS_STATE = 0x00, /**< BST battery state */ BAT_STATUS_PRESENT_RATE = 0x01, /**< BST battery present rate */ BAT_STATUS_REMAINING_CAPACITY = 0x02, /**< BST battery remaining capacity */ BAT_STATUS_PRESENT_VOLTAGE = 0x03, /**< BST battery present voltage */ BAT_INFO_UNITS = 0x04, /**< BIF power unit */ BAT_INFO_DESIGN_CAPACITY = 0x05, /**< BIF design capacity */ BAT_INFO_LAST_FULL_CHARGE_CAPACITY = 0x06, /**< BIF last full charge capacity */ BAT_INFO_TECHNOLOGY = 0x07, /**< BIF battery technology */ BAT_INFO_DESIGN_VOLTAGE = 0x08, /**< BIF design voltage */ BAT_INFO_DESIGN_CAPACITY_OF_WARNING = 0x09, /**< BIF design capacity of warning */ BAT_INFO_DESIGN_CAPACITY_OF_LOW = 0x0A, /**< BIF design capacity of low */ BAT_INFO_CAPACITY_GRANULARITY_1 = 0x0B, /**< BIF battery capacity granularity 1 */ BAT_INFO_CAPACITY_GRANULARITY_2 = 0x0C, /**< BIF battery capacity granularity 2 */ BAT_DEVICE_STATUS = 0x0D, /**< STA device status */ BAT_POWER_SOURCE = 0x0E, /**< PSR power source */ BAT_INDEX_LAST }; enum { CPU_EVENT_TYPE_ADD = 0x01, /**< Event type add */ CPU_EVENT_TYPE_REMOVE = 0x03 /**< Event type remove */ }; enum { SYSTEM_INFO_INDEX_LOW_MEMORY_LENGTH = 0, SYSTEM_INFO_INDEX_USE_IOAPIC = 1, SYSTEM_INFO_INDEX_HPET_STATUS = 2, SYSTEM_INFO_INDEX_SMC_STATUS = 3, SYSTEM_INFO_INDEX_FDC_STATUS = 4, SYSTEM_INFO_INDEX_CPU0_STATUS = 5, /**< For compatibility with older saved states. */ SYSTEM_INFO_INDEX_CPU1_STATUS = 6, /**< For compatibility with older saved states. */ SYSTEM_INFO_INDEX_CPU2_STATUS = 7, /**< For compatibility with older saved states. */ SYSTEM_INFO_INDEX_CPU3_STATUS = 8, /**< For compatibility with older saved states. */ SYSTEM_INFO_INDEX_HIGH_MEMORY_LENGTH= 9, SYSTEM_INFO_INDEX_RTC_STATUS = 10, SYSTEM_INFO_INDEX_CPU_LOCKED = 11, /**< Contains a flag indicating whether the CPU is locked or not */ SYSTEM_INFO_INDEX_CPU_LOCK_CHECK = 12, /**< For which CPU the lock status should be checked */ SYSTEM_INFO_INDEX_CPU_EVENT_TYPE = 13, /**< Type of the CPU hot-plug event */ SYSTEM_INFO_INDEX_CPU_EVENT = 14, /**< The CPU id the event is for */ SYSTEM_INFO_INDEX_NIC_ADDRESS = 15, /**< NIC PCI address, or 0 */ SYSTEM_INFO_INDEX_AUDIO_ADDRESS = 16, /**< Audio card PCI address, or 0 */ SYSTEM_INFO_INDEX_POWER_STATES = 17, SYSTEM_INFO_INDEX_IOC_ADDRESS = 18, /**< IO controller PCI address */ SYSTEM_INFO_INDEX_HBC_ADDRESS = 19, /**< host bus controller PCI address */ SYSTEM_INFO_INDEX_PCI_BASE = 20, /**< PCI bus MCFG MMIO range base */ SYSTEM_INFO_INDEX_PCI_LENGTH = 21, /**< PCI bus MCFG MMIO range length */ SYSTEM_INFO_INDEX_SERIAL0_IOBASE = 22, SYSTEM_INFO_INDEX_SERIAL0_IRQ = 23, SYSTEM_INFO_INDEX_SERIAL1_IOBASE = 24, SYSTEM_INFO_INDEX_SERIAL1_IRQ = 25, SYSTEM_INFO_INDEX_END = 26, SYSTEM_INFO_INDEX_INVALID = 0x80, SYSTEM_INFO_INDEX_VALID = 0x200 }; #define AC_OFFLINE 0 #define AC_ONLINE 1 #define BAT_TECH_PRIMARY 1 #define BAT_TECH_SECONDARY 2 #define STA_DEVICE_PRESENT_MASK RT_BIT(0) /**< present */ #define STA_DEVICE_ENABLED_MASK RT_BIT(1) /**< enabled and decodes its resources */ #define STA_DEVICE_SHOW_IN_UI_MASK RT_BIT(2) /**< should be shown in UI */ #define STA_DEVICE_FUNCTIONING_PROPERLY_MASK RT_BIT(3) /**< functioning properly */ #define STA_BATTERY_PRESENT_MASK RT_BIT(4) /**< the battery is present */ /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * The ACPI device state. */ typedef struct ACPIState { PCIDevice dev; /** Critical section protecting the ACPI state. */ PDMCRITSECT CritSect; uint16_t pm1a_en; uint16_t pm1a_sts; uint16_t pm1a_ctl; /** Number of logical CPUs in guest */ uint16_t cCpus; uint64_t u64PmTimerInitial; PTMTIMERR3 pPmTimerR3; PTMTIMERR0 pPmTimerR0; PTMTIMERRC pPmTimerRC; uint32_t gpe0_en; uint32_t gpe0_sts; uint32_t uBatteryIndex; uint32_t au8BatteryInfo[13]; uint32_t uSystemInfoIndex; uint64_t u64RamSize; /** The number of bytes above 4GB. */ uint64_t cbRamHigh; /** The number of bytes below 4GB. */ uint32_t cbRamLow; /** Current ACPI S* state. We support S0 and S5. */ uint32_t uSleepState; uint8_t au8RSDPPage[0x1000]; /** This is a workaround for incorrect index field handling by Intels ACPICA. * The system info _INI method writes to offset 0x200. We either observe a * write request to index 0x80 (in that case we don't change the index) or a * write request to offset 0x200 (in that case we divide the index value by * 4. Note that the _STA method is sometimes called prior to the _INI method * (ACPI spec 6.3.7, _STA). See the special case for BAT_DEVICE_STATUS in * acpiR3BatIndexWrite() for handling this. */ uint8_t u8IndexShift; /** provide an I/O-APIC */ uint8_t u8UseIOApic; /** provide a floppy controller */ bool fUseFdc; /** If High Precision Event Timer device should be supported */ bool fUseHpet; /** If System Management Controller device should be supported */ bool fUseSmc; /** the guest handled the last power button event */ bool fPowerButtonHandled; /** If ACPI CPU device should be shown */ bool fShowCpu; /** If Real Time Clock ACPI object to be shown */ bool fShowRtc; /** I/O port address of PM device. */ RTIOPORT uPmIoPortBase; /** Flag whether the GC part of the device is enabled. */ bool fGCEnabled; /** Flag whether the R0 part of the device is enabled. */ bool fR0Enabled; /** Array of flags of attached CPUs */ VMCPUSET CpuSetAttached; /** Which CPU to check for the locked status. */ uint32_t idCpuLockCheck; /** Mask of locked CPUs (used by the guest). */ VMCPUSET CpuSetLocked; /** The CPU event type. */ uint32_t u32CpuEventType; /** The CPU id affected. */ uint32_t u32CpuEvent; /** Flag whether CPU hot plugging is enabled. */ bool fCpuHotPlug; /** If MCFG ACPI table shown to the guest */ bool fUseMcfg; /** Primary NIC PCI address. */ uint32_t u32NicPciAddress; /** Primary audio card PCI address. */ uint32_t u32AudioPciAddress; /** Flag whether S1 power state is enabled. */ bool fS1Enabled; /** Flag whether S4 power state is enabled. */ bool fS4Enabled; /** Flag whether S1 triggers a state save. */ bool fSuspendToSavedState; /** Flag whether to set WAK_STS on resume (restore included). */ bool fSetWakeupOnResume; /** PCI address of the IO controller device. */ uint32_t u32IocPciAddress; /** PCI address of the host bus controller device. */ uint32_t u32HbcPciAddress; /* Physical address of PCI config space MMIO region */ uint64_t u64PciConfigMMioAddress; /* Length of PCI config space MMIO region */ uint64_t u64PciConfigMMioLength; /** Serial 0 IRQ number */ uint8_t uSerial0Irq; /** Serial 1 IRQ number */ uint8_t uSerial1Irq; /** Serial 0 IO port base */ RTIOPORT uSerial0IoPortBase; /** Serial 1 IO port base */ RTIOPORT uSerial1IoPortBase; /** ACPI port base interface. */ PDMIBASE IBase; /** ACPI port interface. */ PDMIACPIPORT IACPIPort; /** Pointer to the device instance. */ PPDMDEVINSR3 pDevIns; /** Pointer to the driver base interface. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** Pointer to the driver connector interface. */ R3PTRTYPE(PPDMIACPICONNECTOR) pDrv; /** Pointer to default PCI config read function. */ R3PTRTYPE(PFNPCICONFIGREAD) pfnAcpiPciConfigRead; /** Pointer to default PCI config write function. */ R3PTRTYPE(PFNPCICONFIGWRITE) pfnAcpiPciConfigWrite; /** If custom table should be supported */ bool fUseCust; /** ACPI OEM ID */ uint8_t au8OemId[6]; /** ACPI Crator ID */ uint8_t au8CreatorId[4]; /** ACPI Crator Rev */ uint32_t u32CreatorRev; /** ACPI custom OEM Tab ID */ uint8_t au8OemTabId[8]; /** ACPI custom OEM Rev */ uint32_t u32OemRevision; uint32_t Alignment0; /** The custom table binary data. */ R3PTRTYPE(uint8_t *) pu8CustBin; /** The size of the custom table binary. */ uint64_t cbCustBin; } ACPIState; #pragma pack(1) /** Generic Address Structure (see ACPIspec 3.0, 5.2.3.1) */ struct ACPIGENADDR { uint8_t u8AddressSpaceId; /**< 0=sys, 1=IO, 2=PCICfg, 3=emb, 4=SMBus */ uint8_t u8RegisterBitWidth; /**< size in bits of the given register */ uint8_t u8RegisterBitOffset; /**< bit offset of register */ uint8_t u8AccessSize; /**< 1=byte, 2=word, 3=dword, 4=qword */ uint64_t u64Address; /**< 64-bit address of register */ }; AssertCompileSize(ACPIGENADDR, 12); /** Root System Description Pointer */ struct ACPITBLRSDP { uint8_t au8Signature[8]; /**< 'RSD PTR ' */ uint8_t u8Checksum; /**< checksum for the first 20 bytes */ uint8_t au8OemId[6]; /**< OEM-supplied identifier */ uint8_t u8Revision; /**< revision number, currently 2 */ #define ACPI_REVISION 2 /**< ACPI 3.0 */ uint32_t u32RSDT; /**< phys addr of RSDT */ uint32_t u32Length; /**< bytes of this table */ uint64_t u64XSDT; /**< 64-bit phys addr of XSDT */ uint8_t u8ExtChecksum; /**< checksum of entire table */ uint8_t u8Reserved[3]; /**< reserved */ }; AssertCompileSize(ACPITBLRSDP, 36); /** System Description Table Header */ struct ACPITBLHEADER { uint8_t au8Signature[4]; /**< table identifier */ uint32_t u32Length; /**< length of the table including header */ uint8_t u8Revision; /**< revision number */ uint8_t u8Checksum; /**< all fields inclusive this add to zero */ uint8_t au8OemId[6]; /**< OEM-supplied string */ uint8_t au8OemTabId[8]; /**< to identify the particular data table */ uint32_t u32OemRevision; /**< OEM-supplied revision number */ uint8_t au8CreatorId[4]; /**< ID for the ASL compiler */ uint32_t u32CreatorRev; /**< revision for the ASL compiler */ }; AssertCompileSize(ACPITBLHEADER, 36); /** Root System Description Table */ struct ACPITBLRSDT { ACPITBLHEADER header; uint32_t u32Entry[1]; /**< array of phys. addresses to other tables */ }; AssertCompileSize(ACPITBLRSDT, 40); /** Extended System Description Table */ struct ACPITBLXSDT { ACPITBLHEADER header; uint64_t u64Entry[1]; /**< array of phys. addresses to other tables */ }; AssertCompileSize(ACPITBLXSDT, 44); /** Fixed ACPI Description Table */ struct ACPITBLFADT { ACPITBLHEADER header; uint32_t u32FACS; /**< phys. address of FACS */ uint32_t u32DSDT; /**< phys. address of DSDT */ uint8_t u8IntModel; /**< was eleminated in ACPI 2.0 */ #define INT_MODEL_DUAL_PIC 1 /**< for ACPI 2+ */ #define INT_MODEL_MULTIPLE_APIC 2 uint8_t u8PreferredPMProfile; /**< preferred power management profile */ uint16_t u16SCIInt; /**< system vector the SCI is wired in 8259 mode */ #define SCI_INT 9 uint32_t u32SMICmd; /**< system port address of SMI command port */ #define SMI_CMD 0x0000442e uint8_t u8AcpiEnable; /**< SMICmd val to disable ownership of ACPIregs */ #define ACPI_ENABLE 0xa1 uint8_t u8AcpiDisable; /**< SMICmd val to re-enable ownership of ACPIregs */ #define ACPI_DISABLE 0xa0 uint8_t u8S4BIOSReq; /**< SMICmd val to enter S4BIOS state */ uint8_t u8PStateCnt; /**< SMICmd val to assume processor performance state control responsibility */ uint32_t u32PM1aEVTBLK; /**< port addr of PM1a event regs block */ uint32_t u32PM1bEVTBLK; /**< port addr of PM1b event regs block */ uint32_t u32PM1aCTLBLK; /**< port addr of PM1a control regs block */ uint32_t u32PM1bCTLBLK; /**< port addr of PM1b control regs block */ uint32_t u32PM2CTLBLK; /**< port addr of PM2 control regs block */ uint32_t u32PMTMRBLK; /**< port addr of PMTMR regs block */ uint32_t u32GPE0BLK; /**< port addr of gen-purp event 0 regs block */ uint32_t u32GPE1BLK; /**< port addr of gen-purp event 1 regs block */ uint8_t u8PM1EVTLEN; /**< bytes decoded by PM1a_EVT_BLK. >= 4 */ uint8_t u8PM1CTLLEN; /**< bytes decoded by PM1b_CNT_BLK. >= 2 */ uint8_t u8PM2CTLLEN; /**< bytes decoded by PM2_CNT_BLK. >= 1 or 0 */ uint8_t u8PMTMLEN; /**< bytes decoded by PM_TMR_BLK. ==4 */ uint8_t u8GPE0BLKLEN; /**< bytes decoded by GPE0_BLK. %2==0 */ #define GPE0_BLK_LEN 2 uint8_t u8GPE1BLKLEN; /**< bytes decoded by GPE1_BLK. %2==0 */ #define GPE1_BLK_LEN 0 uint8_t u8GPE1BASE; /**< offset of GPE1 based events */ #define GPE1_BASE 0 uint8_t u8CSTCNT; /**< SMICmd val to indicate OS supp for C states */ uint16_t u16PLVL2LAT; /**< us to enter/exit C2. >100 => unsupported */ #define P_LVL2_LAT 101 /**< C2 state not supported */ uint16_t u16PLVL3LAT; /**< us to enter/exit C3. >1000 => unsupported */ #define P_LVL3_LAT 1001 /**< C3 state not supported */ uint16_t u16FlushSize; /**< # of flush strides to read to flush dirty lines from any processors memory caches */ #define FLUSH_SIZE 0 /**< Ignored if WBVIND set in FADT_FLAGS */ uint16_t u16FlushStride; /**< cache line width */ #define FLUSH_STRIDE 0 /**< Ignored if WBVIND set in FADT_FLAGS */ uint8_t u8DutyOffset; uint8_t u8DutyWidth; uint8_t u8DayAlarm; /**< RTC CMOS RAM index of day-of-month alarm */ uint8_t u8MonAlarm; /**< RTC CMOS RAM index of month-of-year alarm */ uint8_t u8Century; /**< RTC CMOS RAM index of century */ uint16_t u16IAPCBOOTARCH; /**< IA-PC boot architecture flags */ #define IAPC_BOOT_ARCH_LEGACY_DEV RT_BIT(0) /**< legacy devices present such as LPT (COM too?) */ #define IAPC_BOOT_ARCH_8042 RT_BIT(1) /**< legacy keyboard device present */ #define IAPC_BOOT_ARCH_NO_VGA RT_BIT(2) /**< VGA not present */ #define IAPC_BOOT_ARCH_NO_MSI RT_BIT(3) /**< OSPM must not enable MSIs on this platform */ #define IAPC_BOOT_ARCH_NO_ASPM RT_BIT(4) /**< OSPM must not enable ASPM on this platform */ uint8_t u8Must0_0; /**< must be 0 */ uint32_t u32Flags; /**< fixed feature flags */ #define FADT_FL_WBINVD RT_BIT(0) /**< emulation of WBINVD available */ #define FADT_FL_WBINVD_FLUSH RT_BIT(1) #define FADT_FL_PROC_C1 RT_BIT(2) /**< 1=C1 supported on all processors */ #define FADT_FL_P_LVL2_UP RT_BIT(3) /**< 1=C2 works on SMP and UNI systems */ #define FADT_FL_PWR_BUTTON RT_BIT(4) /**< 1=power button handled as ctrl method dev */ #define FADT_FL_SLP_BUTTON RT_BIT(5) /**< 1=sleep button handled as ctrl method dev */ #define FADT_FL_FIX_RTC RT_BIT(6) /**< 0=RTC wake status in fixed register */ #define FADT_FL_RTC_S4 RT_BIT(7) /**< 1=RTC can wake system from S4 */ #define FADT_FL_TMR_VAL_EXT RT_BIT(8) /**< 1=TMR_VAL implemented as 32 bit */ #define FADT_FL_DCK_CAP RT_BIT(9) /**< 0=system cannot support docking */ #define FADT_FL_RESET_REG_SUP RT_BIT(10) /**< 1=system supports system resets */ #define FADT_FL_SEALED_CASE RT_BIT(11) /**< 1=case is sealed */ #define FADT_FL_HEADLESS RT_BIT(12) /**< 1=system cannot detect moni/keyb/mouse */ #define FADT_FL_CPU_SW_SLP RT_BIT(13) #define FADT_FL_PCI_EXT_WAK RT_BIT(14) /**< 1=system supports PCIEXP_WAKE_STS */ #define FADT_FL_USE_PLATFORM_CLOCK RT_BIT(15) /**< 1=system has ACPI PM timer */ #define FADT_FL_S4_RTC_STS_VALID RT_BIT(16) /**< 1=RTC_STS flag is valid when waking from S4 */ #define FADT_FL_REMOVE_POWER_ON_CAPABLE RT_BIT(17) /**< 1=platform can remote power on */ #define FADT_FL_FORCE_APIC_CLUSTER_MODEL RT_BIT(18) #define FADT_FL_FORCE_APIC_PHYS_DEST_MODE RT_BIT(19) /** Start of the ACPI 2.0 extension. */ ACPIGENADDR ResetReg; /**< ext addr of reset register */ uint8_t u8ResetVal; /**< ResetReg value to reset the system */ #define ACPI_RESET_REG_VAL 0x10 uint8_t au8Must0_1[3]; /**< must be 0 */ uint64_t u64XFACS; /**< 64-bit phys address of FACS */ uint64_t u64XDSDT; /**< 64-bit phys address of DSDT */ ACPIGENADDR X_PM1aEVTBLK; /**< ext addr of PM1a event regs block */ ACPIGENADDR X_PM1bEVTBLK; /**< ext addr of PM1b event regs block */ ACPIGENADDR X_PM1aCTLBLK; /**< ext addr of PM1a control regs block */ ACPIGENADDR X_PM1bCTLBLK; /**< ext addr of PM1b control regs block */ ACPIGENADDR X_PM2CTLBLK; /**< ext addr of PM2 control regs block */ ACPIGENADDR X_PMTMRBLK; /**< ext addr of PMTMR control regs block */ ACPIGENADDR X_GPE0BLK; /**< ext addr of GPE1 regs block */ ACPIGENADDR X_GPE1BLK; /**< ext addr of GPE1 regs block */ }; AssertCompileSize(ACPITBLFADT, 244); #define ACPITBLFADT_VERSION1_SIZE RT_OFFSETOF(ACPITBLFADT, ResetReg) /** Firmware ACPI Control Structure */ struct ACPITBLFACS { uint8_t au8Signature[4]; /**< 'FACS' */ uint32_t u32Length; /**< bytes of entire FACS structure >= 64 */ uint32_t u32HWSignature; /**< systems HW signature at last boot */ uint32_t u32FWVector; /**< address of waking vector */ uint32_t u32GlobalLock; /**< global lock to sync HW/SW */ uint32_t u32Flags; /**< FACS flags */ uint64_t u64X_FWVector; /**< 64-bit waking vector */ uint8_t u8Version; /**< version of this table */ uint8_t au8Reserved[31]; /**< zero */ }; AssertCompileSize(ACPITBLFACS, 64); /** Processor Local APIC Structure */ struct ACPITBLLAPIC { uint8_t u8Type; /**< 0 = LAPIC */ uint8_t u8Length; /**< 8 */ uint8_t u8ProcId; /**< processor ID */ uint8_t u8ApicId; /**< local APIC ID */ uint32_t u32Flags; /**< Flags */ #define LAPIC_ENABLED 0x1 }; AssertCompileSize(ACPITBLLAPIC, 8); /** I/O APIC Structure */ struct ACPITBLIOAPIC { uint8_t u8Type; /**< 1 == I/O APIC */ uint8_t u8Length; /**< 12 */ uint8_t u8IOApicId; /**< I/O APIC ID */ uint8_t u8Reserved; /**< 0 */ uint32_t u32Address; /**< phys address to access I/O APIC */ uint32_t u32GSIB; /**< global system interrupt number to start */ }; AssertCompileSize(ACPITBLIOAPIC, 12); /** Interrupt Source Override Structure */ struct ACPITBLISO { uint8_t u8Type; /**< 2 == Interrupt Source Override*/ uint8_t u8Length; /**< 10 */ uint8_t u8Bus; /**< Bus */ uint8_t u8Source; /**< Bus-relative interrupt source (IRQ) */ uint32_t u32GSI; /**< Global System Interrupt */ uint16_t u16Flags; /**< MPS INTI flags Global */ }; AssertCompileSize(ACPITBLISO, 10); #define NUMBER_OF_IRQ_SOURCE_OVERRIDES 2 /** HPET Descriptor Structure */ struct ACPITBLHPET { ACPITBLHEADER aHeader; uint32_t u32Id; /**< hardware ID of event timer block [31:16] PCI vendor ID of first timer block [15] legacy replacement IRQ routing capable [14] reserved [13] COUNT_SIZE_CAP counter size [12:8] number of comparators in first timer block [7:0] hardware rev ID */ ACPIGENADDR HpetAddr; /**< lower 32-bit base address */ uint8_t u32Number; /**< sequence number starting at 0 */ uint16_t u32MinTick; /**< minimum clock ticks which can be set without lost interrupts while the counter is programmed to operate in periodic mode. Unit: clock tick. */ uint8_t u8Attributes; /**< page protection and OEM attribute. */ }; AssertCompileSize(ACPITBLHPET, 56); /** MCFG Descriptor Structure */ typedef struct ACPITBLMCFG { ACPITBLHEADER aHeader; uint64_t u64Reserved; } ACPITBLMCFG; AssertCompileSize(ACPITBLMCFG, 44); /** Number of such entries can be computed from the whole table length in header */ typedef struct ACPITBLMCFGENTRY { uint64_t u64BaseAddress; uint16_t u16PciSegmentGroup; uint8_t u8StartBus; uint8_t u8EndBus; uint32_t u32Reserved; } ACPITBLMCFGENTRY; AssertCompileSize(ACPITBLMCFGENTRY, 16); #define PCAT_COMPAT 0x1 /**< system has also a dual-8259 setup */ /** Custom Description Table */ struct ACPITBLCUST { ACPITBLHEADER header; uint8_t au8Data[476]; }; AssertCompileSize(ACPITBLCUST, 512); #pragma pack() #ifndef VBOX_DEVICE_STRUCT_TESTCASE /* exclude the rest of the file */ /******************************************************************************* * Internal Functions * *******************************************************************************/ RT_C_DECLS_BEGIN PDMBOTHCBDECL(int) acpiPMTmrRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb); RT_C_DECLS_END #ifdef IN_RING3 static int acpiR3PlantTables(ACPIState *pThis); #endif #ifdef IN_RING3 /* SCI IRQ */ DECLINLINE(void) acpiR3SetIrq(ACPIState *pThis, int level) { if (pThis->pm1a_ctl & SCI_EN) PDMDevHlpPCISetIrq(pThis->pDevIns, 0, level); } DECLINLINE(uint32_t) pm1a_pure_en(uint32_t en) { return en & ~(RSR_EN | IGN_EN); } DECLINLINE(uint32_t) pm1a_pure_sts(uint32_t sts) { return sts & ~(RSR_STS | IGN_STS); } DECLINLINE(int) pm1a_level(ACPIState *pThis) { return (pm1a_pure_en(pThis->pm1a_en) & pm1a_pure_sts(pThis->pm1a_sts)) != 0; } DECLINLINE(bool) gpe0_level(ACPIState *pThis) { return (pThis->gpe0_en & pThis->gpe0_sts) != 0; } /** * Used by acpiR3PM1aStsWrite, acpiR3PM1aEnWrite, acpiR3PmTimer, * acpiR3Port_PowerBuffonPress and acpiR3Port_SleepButtonPress to * update the GPE0.STS and GPE0.EN registers and trigger IRQs. * * Caller must hold the state lock. * * @param pThis The ACPI instance. * @param sts The new GPE0.STS value. * @param en The new GPE0.EN value. */ static void apicR3UpdatePm1a(ACPIState *pThis, uint32_t sts, uint32_t en) { Assert(PDMCritSectIsOwner(&pThis->CritSect)); if (gpe0_level(pThis)) return; int const old_level = pm1a_level(pThis); int const new_level = (pm1a_pure_en(en) & pm1a_pure_sts(sts)) != 0; Log(("apicR3UpdatePm1a() old=%x new=%x\n", old_level, new_level)); pThis->pm1a_en = en; pThis->pm1a_sts = sts; if (new_level != old_level) acpiR3SetIrq(pThis, new_level); } /** * Used by acpiR3Gpe0StsWrite, acpiR3Gpe0EnWrite, acpiAttach and acpiDetach to * update the GPE0.STS and GPE0.EN registers and trigger IRQs. * * Caller must hold the state lock. * * @param pThis The ACPI instance. * @param sts The new GPE0.STS value. * @param en The new GPE0.EN value. */ static void apicR3UpdateGpe0(ACPIState *pThis, uint32_t sts, uint32_t en) { Assert(PDMCritSectIsOwner(&pThis->CritSect)); if (pm1a_level(pThis)) return; int const old_level = (pThis->gpe0_en & pThis->gpe0_sts) != 0; int const new_level = (en & sts) != 0; pThis->gpe0_en = en; pThis->gpe0_sts = sts; if (new_level != old_level) acpiR3SetIrq(pThis, new_level); } /** * Used by acpiR3PM1aCtlWrite to power off the VM. * * @param pThis The ACPI instance. * @returns Strict VBox status code. */ static int acpiR3DoPowerOff(ACPIState *pThis) { int rc = PDMDevHlpVMPowerOff(pThis->pDevIns); if (RT_FAILURE(rc)) AssertMsgFailed(("Could not power down the VM. rc = %Rrc\n", rc)); return rc; } /** * Used by acpiR3PM1aCtlWrite to put the VM to sleep. * * @param pThis The ACPI instance. * @returns Strict VBox status code. */ static int acpiR3DoSleep(ACPIState *pThis) { /* We must set WAK_STS on resume (includes restore) so the guest knows that we've woken up and can continue executing code. The guest is probably reading the PMSTS register in a loop to check this. */ int rc; pThis->fSetWakeupOnResume = true; if (pThis->fSuspendToSavedState) { rc = PDMDevHlpVMSuspendSaveAndPowerOff(pThis->pDevIns); if (rc != VERR_NOT_SUPPORTED) AssertRC(rc); else { LogRel(("ACPI: PDMDevHlpVMSuspendSaveAndPowerOff is not supported, falling back to suspend-only\n")); rc = PDMDevHlpVMSuspend(pThis->pDevIns); AssertRC(rc); } } else { rc = PDMDevHlpVMSuspend(pThis->pDevIns); AssertRC(rc); } return rc; } /** * @interface_method_impl{PDMIACPIPORT,pfnPowerButtonPress} */ static DECLCALLBACK(int) acpiR3Port_PowerButtonPress(PPDMIACPIPORT pInterface) { ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IACPIPort); DEVACPI_LOCK_R3(pThis); Log(("acpiR3Port_PowerButtonPress: handled=%d status=%x\n", pThis->fPowerButtonHandled, pThis->pm1a_sts)); pThis->fPowerButtonHandled = false; apicR3UpdatePm1a(pThis, pThis->pm1a_sts | PWRBTN_STS, pThis->pm1a_en); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @interface_method_impl{PDMIACPIPORT,pfnGetPowerButtonHandled} */ static DECLCALLBACK(int) acpiR3Port_GetPowerButtonHandled(PPDMIACPIPORT pInterface, bool *pfHandled) { ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IACPIPort); DEVACPI_LOCK_R3(pThis); *pfHandled = pThis->fPowerButtonHandled; DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @interface_method_impl{PDMIACPIPORT,pfnGetGuestEnteredACPIMode, Check if the * Guest entered into G0 (working) or G1 (sleeping)} */ static DECLCALLBACK(int) acpiR3Port_GetGuestEnteredACPIMode(PPDMIACPIPORT pInterface, bool *pfEntered) { ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IACPIPort); DEVACPI_LOCK_R3(pThis); *pfEntered = (pThis->pm1a_ctl & SCI_EN) != 0; DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @interface_method_impl{PDMIACPIPORT,pfnGetCpuStatus} */ static DECLCALLBACK(int) acpiR3Port_GetCpuStatus(PPDMIACPIPORT pInterface, unsigned uCpu, bool *pfLocked) { ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IACPIPort); DEVACPI_LOCK_R3(pThis); *pfLocked = VMCPUSET_IS_PRESENT(&pThis->CpuSetLocked, uCpu); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * Send an ACPI sleep button event. * * @returns VBox status code * @param pInterface Pointer to the interface structure containing the called function pointer. */ static DECLCALLBACK(int) acpiR3Port_SleepButtonPress(PPDMIACPIPORT pInterface) { ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IACPIPort); DEVACPI_LOCK_R3(pThis); apicR3UpdatePm1a(pThis, pThis->pm1a_sts | SLPBTN_STS, pThis->pm1a_en); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * Used by acpiR3PmTimer to re-arm the PM timer. * * The caller is expected to either hold the clock lock or to have made sure * the VM is resetting or loading state. * * @param pThis The ACPI instance. * @param uNow The current time. */ static void acpiR3PmTimerReset(ACPIState *pThis, uint64_t uNow) { uint64_t uTimerFreq = TMTimerGetFreq(pThis->CTX_SUFF(pPmTimer)); uint64_t uInterval = ASMMultU64ByU32DivByU32(0xffffffff, uTimerFreq, PM_TMR_FREQ); TMTimerSet(pThis->pPmTimerR3, uNow + uInterval); Log(("acpi: uInterval = %RU64\n", uInterval)); } /** * @callback_method_impl{FNTMTIMERDEV, PM Timer callback} */ static DECLCALLBACK(void) acpiR3PmTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser) { ACPIState *pThis = (ACPIState *)pvUser; Assert(TMTimerIsLockOwner(pTimer)); NOREF(pDevIns); DEVACPI_LOCK_R3(pThis); Log(("acpi: pm timer sts %#x (%d), en %#x (%d)\n", pThis->pm1a_sts, (pThis->pm1a_sts & TMR_STS) != 0, pThis->pm1a_en, (pThis->pm1a_en & TMR_EN) != 0)); apicR3UpdatePm1a(pThis, pThis->pm1a_sts | TMR_STS, pThis->pm1a_en); DEVACPI_UNLOCK(pThis); acpiR3PmTimerReset(pThis, TMTimerGet(pTimer)); } /** * _BST method - used by acpiR3BatDataRead to implement BAT_STATUS_STATE and * acpiR3LoadState. * * @returns VINF_SUCCESS. * @param pThis The ACPI instance. */ static int acpiR3FetchBatteryStatus(ACPIState *pThis) { uint32_t *p = pThis->au8BatteryInfo; bool fPresent; /* battery present? */ PDMACPIBATCAPACITY hostRemainingCapacity; /* 0..100 */ PDMACPIBATSTATE hostBatteryState; /* bitfield */ uint32_t hostPresentRate; /* 0..1000 */ int rc; if (!pThis->pDrv) return VINF_SUCCESS; rc = pThis->pDrv->pfnQueryBatteryStatus(pThis->pDrv, &fPresent, &hostRemainingCapacity, &hostBatteryState, &hostPresentRate); AssertRC(rc); /* default values */ p[BAT_STATUS_STATE] = hostBatteryState; p[BAT_STATUS_PRESENT_RATE] = hostPresentRate == ~0U ? 0xFFFFFFFF : hostPresentRate * 50; /* mW */ p[BAT_STATUS_REMAINING_CAPACITY] = 50000; /* mWh */ p[BAT_STATUS_PRESENT_VOLTAGE] = 10000; /* mV */ /* did we get a valid battery state? */ if (hostRemainingCapacity != PDM_ACPI_BAT_CAPACITY_UNKNOWN) p[BAT_STATUS_REMAINING_CAPACITY] = hostRemainingCapacity * 500; /* mWh */ if (hostBatteryState == PDM_ACPI_BAT_STATE_CHARGED) p[BAT_STATUS_PRESENT_RATE] = 0; /* mV */ return VINF_SUCCESS; } /** * _BIF method - used by acpiR3BatDataRead to implement BAT_INFO_UNITS and * acpiR3LoadState. * * @returns VINF_SUCCESS. * @param pThis The ACPI instance. */ static int acpiR3FetchBatteryInfo(ACPIState *pThis) { uint32_t *p = pThis->au8BatteryInfo; p[BAT_INFO_UNITS] = 0; /* mWh */ p[BAT_INFO_DESIGN_CAPACITY] = 50000; /* mWh */ p[BAT_INFO_LAST_FULL_CHARGE_CAPACITY] = 50000; /* mWh */ p[BAT_INFO_TECHNOLOGY] = BAT_TECH_PRIMARY; p[BAT_INFO_DESIGN_VOLTAGE] = 10000; /* mV */ p[BAT_INFO_DESIGN_CAPACITY_OF_WARNING] = 100; /* mWh */ p[BAT_INFO_DESIGN_CAPACITY_OF_LOW] = 50; /* mWh */ p[BAT_INFO_CAPACITY_GRANULARITY_1] = 1; /* mWh */ p[BAT_INFO_CAPACITY_GRANULARITY_2] = 1; /* mWh */ return VINF_SUCCESS; } /** * The _STA method - used by acpiR3BatDataRead to implement BAT_DEVICE_STATUS. * * @returns status mask or 0. * @param pThis The ACPI instance. */ static uint32_t acpiR3GetBatteryDeviceStatus(ACPIState *pThis) { bool fPresent; /* battery present? */ PDMACPIBATCAPACITY hostRemainingCapacity; /* 0..100 */ PDMACPIBATSTATE hostBatteryState; /* bitfield */ uint32_t hostPresentRate; /* 0..1000 */ int rc; if (!pThis->pDrv) return 0; rc = pThis->pDrv->pfnQueryBatteryStatus(pThis->pDrv, &fPresent, &hostRemainingCapacity, &hostBatteryState, &hostPresentRate); AssertRC(rc); return fPresent ? STA_DEVICE_PRESENT_MASK /* present */ | STA_DEVICE_ENABLED_MASK /* enabled and decodes its resources */ | STA_DEVICE_SHOW_IN_UI_MASK /* should be shown in UI */ | STA_DEVICE_FUNCTIONING_PROPERLY_MASK /* functioning properly */ | STA_BATTERY_PRESENT_MASK /* battery is present */ : 0; /* device not present */ } /** * Used by acpiR3BatDataRead to implement BAT_POWER_SOURCE. * * @returns status. * @param pThis The ACPI instance. */ static uint32_t acpiR3GetPowerSource(ACPIState *pThis) { /* query the current power source from the host driver */ if (!pThis->pDrv) return AC_ONLINE; PDMACPIPOWERSOURCE ps; int rc = pThis->pDrv->pfnQueryPowerSource(pThis->pDrv, &ps); AssertRC(rc); return ps == PDM_ACPI_POWER_SOURCE_BATTERY ? AC_OFFLINE : AC_ONLINE; } /** * @callback_method_impl{FNIOMIOPORTOUT, Battery status index} */ PDMBOTHCBDECL(int) acpiR3BatIndexWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { Log(("acpiR3BatIndexWrite: %#x (%#x)\n", u32, u32 >> 2)); if (cb != 4) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); u32 >>= pThis->u8IndexShift; /* see comment at the declaration of u8IndexShift */ if (pThis->u8IndexShift == 0 && u32 == (BAT_DEVICE_STATUS << 2)) { pThis->u8IndexShift = 2; u32 >>= 2; } Assert(u32 < BAT_INDEX_LAST); pThis->uBatteryIndex = u32; DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, Battery status data} */ PDMBOTHCBDECL(int) acpiR3BatDataRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 4) return VERR_IOM_IOPORT_UNUSED; ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); int rc = VINF_SUCCESS; switch (pThis->uBatteryIndex) { case BAT_STATUS_STATE: acpiR3FetchBatteryStatus(pThis); /* fall thru */ case BAT_STATUS_PRESENT_RATE: case BAT_STATUS_REMAINING_CAPACITY: case BAT_STATUS_PRESENT_VOLTAGE: *pu32 = pThis->au8BatteryInfo[pThis->uBatteryIndex]; break; case BAT_INFO_UNITS: acpiR3FetchBatteryInfo(pThis); /* fall thru */ case BAT_INFO_DESIGN_CAPACITY: case BAT_INFO_LAST_FULL_CHARGE_CAPACITY: case BAT_INFO_TECHNOLOGY: case BAT_INFO_DESIGN_VOLTAGE: case BAT_INFO_DESIGN_CAPACITY_OF_WARNING: case BAT_INFO_DESIGN_CAPACITY_OF_LOW: case BAT_INFO_CAPACITY_GRANULARITY_1: case BAT_INFO_CAPACITY_GRANULARITY_2: *pu32 = pThis->au8BatteryInfo[pThis->uBatteryIndex]; break; case BAT_DEVICE_STATUS: *pu32 = acpiR3GetBatteryDeviceStatus(pThis); break; case BAT_POWER_SOURCE: *pu32 = acpiR3GetPowerSource(pThis); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u idx=%u\n", cb, Port, pThis->uBatteryIndex); *pu32 = UINT32_MAX; break; } DEVACPI_UNLOCK(pThis); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT, System info index} */ PDMBOTHCBDECL(int) acpiR3SysInfoIndexWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { Log(("acpiR3SysInfoIndexWrite: %#x (%#x)\n", u32, u32 >> 2)); if (cb != 4) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); if (u32 == SYSTEM_INFO_INDEX_VALID || u32 == SYSTEM_INFO_INDEX_INVALID) pThis->uSystemInfoIndex = u32; else { /* see comment at the declaration of u8IndexShift */ if (u32 > SYSTEM_INFO_INDEX_END && pThis->u8IndexShift == 0) { if ((u32 >> 2) < SYSTEM_INFO_INDEX_END && (u32 & 0x3) == 0) pThis->u8IndexShift = 2; } u32 >>= pThis->u8IndexShift; Assert(u32 < SYSTEM_INFO_INDEX_END); pThis->uSystemInfoIndex = u32; } DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, System info data} */ PDMBOTHCBDECL(int) acpiR3SysInfoDataRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 4) return VERR_IOM_IOPORT_UNUSED; ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); int rc = VINF_SUCCESS; uint32_t const uSystemInfoIndex = pThis->uSystemInfoIndex; switch (uSystemInfoIndex) { case SYSTEM_INFO_INDEX_LOW_MEMORY_LENGTH: *pu32 = pThis->cbRamLow; break; case SYSTEM_INFO_INDEX_HIGH_MEMORY_LENGTH: *pu32 = pThis->cbRamHigh >> 16; /* 64KB units */ Assert(((uint64_t)*pu32 << 16) == pThis->cbRamHigh); break; case SYSTEM_INFO_INDEX_USE_IOAPIC: *pu32 = pThis->u8UseIOApic; break; case SYSTEM_INFO_INDEX_HPET_STATUS: *pu32 = pThis->fUseHpet ? ( STA_DEVICE_PRESENT_MASK | STA_DEVICE_ENABLED_MASK | STA_DEVICE_SHOW_IN_UI_MASK | STA_DEVICE_FUNCTIONING_PROPERLY_MASK) : 0; break; case SYSTEM_INFO_INDEX_SMC_STATUS: *pu32 = pThis->fUseSmc ? ( STA_DEVICE_PRESENT_MASK | STA_DEVICE_ENABLED_MASK /* no need to show this device in the UI */ | STA_DEVICE_FUNCTIONING_PROPERLY_MASK) : 0; break; case SYSTEM_INFO_INDEX_FDC_STATUS: *pu32 = pThis->fUseFdc ? ( STA_DEVICE_PRESENT_MASK | STA_DEVICE_ENABLED_MASK | STA_DEVICE_SHOW_IN_UI_MASK | STA_DEVICE_FUNCTIONING_PROPERLY_MASK) : 0; break; case SYSTEM_INFO_INDEX_NIC_ADDRESS: *pu32 = pThis->u32NicPciAddress; break; case SYSTEM_INFO_INDEX_AUDIO_ADDRESS: *pu32 = pThis->u32AudioPciAddress; break; case SYSTEM_INFO_INDEX_POWER_STATES: *pu32 = RT_BIT(0) | RT_BIT(5); /* S1 and S5 always exposed */ if (pThis->fS1Enabled) /* Optionally expose S1 and S4 */ *pu32 |= RT_BIT(1); if (pThis->fS4Enabled) *pu32 |= RT_BIT(4); break; case SYSTEM_INFO_INDEX_IOC_ADDRESS: *pu32 = pThis->u32IocPciAddress; break; case SYSTEM_INFO_INDEX_HBC_ADDRESS: *pu32 = pThis->u32HbcPciAddress; break; case SYSTEM_INFO_INDEX_PCI_BASE: /** @todo couldn't MCFG be in 64-bit range? */ Assert(pThis->u64PciConfigMMioAddress < 0xffffffff); *pu32 = (uint32_t)pThis->u64PciConfigMMioAddress; break; case SYSTEM_INFO_INDEX_PCI_LENGTH: /** @todo couldn't MCFG be in 64-bit range? */ Assert(pThis->u64PciConfigMMioLength< 0xffffffff); *pu32 = (uint32_t)pThis->u64PciConfigMMioLength; break; /* This is only for compatibility with older saved states that may include ACPI code that read these values. Legacy is a wonderful thing, isn't it? :-) */ case SYSTEM_INFO_INDEX_CPU0_STATUS: case SYSTEM_INFO_INDEX_CPU1_STATUS: case SYSTEM_INFO_INDEX_CPU2_STATUS: case SYSTEM_INFO_INDEX_CPU3_STATUS: *pu32 = ( pThis->fShowCpu && pThis->uSystemInfoIndex - SYSTEM_INFO_INDEX_CPU0_STATUS < pThis->cCpus && VMCPUSET_IS_PRESENT(&pThis->CpuSetAttached, pThis->uSystemInfoIndex - SYSTEM_INFO_INDEX_CPU0_STATUS) ) ? ( STA_DEVICE_PRESENT_MASK | STA_DEVICE_ENABLED_MASK | STA_DEVICE_SHOW_IN_UI_MASK | STA_DEVICE_FUNCTIONING_PROPERLY_MASK) : 0; break; case SYSTEM_INFO_INDEX_RTC_STATUS: *pu32 = pThis->fShowRtc ? ( STA_DEVICE_PRESENT_MASK | STA_DEVICE_ENABLED_MASK | STA_DEVICE_SHOW_IN_UI_MASK | STA_DEVICE_FUNCTIONING_PROPERLY_MASK) : 0; break; case SYSTEM_INFO_INDEX_CPU_LOCKED: if (pThis->idCpuLockCheck < VMM_MAX_CPU_COUNT) { *pu32 = VMCPUSET_IS_PRESENT(&pThis->CpuSetLocked, pThis->idCpuLockCheck); pThis->idCpuLockCheck = UINT32_C(0xffffffff); /* Make the entry invalid */ } else { rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "CPU lock check protocol violation (idCpuLockCheck=%#x)\n", pThis->idCpuLockCheck); /* Always return locked status just to be safe */ *pu32 = 1; } break; case SYSTEM_INFO_INDEX_CPU_EVENT_TYPE: *pu32 = pThis->u32CpuEventType; break; case SYSTEM_INFO_INDEX_CPU_EVENT: *pu32 = pThis->u32CpuEvent; break; case SYSTEM_INFO_INDEX_SERIAL0_IOBASE: *pu32 = pThis->uSerial0IoPortBase; break; case SYSTEM_INFO_INDEX_SERIAL0_IRQ: *pu32 = pThis->uSerial0Irq; break; case SYSTEM_INFO_INDEX_SERIAL1_IOBASE: *pu32 = pThis->uSerial1IoPortBase; break; case SYSTEM_INFO_INDEX_SERIAL1_IRQ: *pu32 = pThis->uSerial1Irq; break; case SYSTEM_INFO_INDEX_END: /** @todo why isn't this setting any output value? */ break; /* Solaris 9 tries to read from this index */ case SYSTEM_INFO_INDEX_INVALID: *pu32 = 0; break; default: *pu32 = UINT32_MAX; rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u idx=%u\n", cb, Port, pThis->uBatteryIndex); break; } DEVACPI_UNLOCK(pThis); Log(("acpiR3SysInfoDataRead: idx=%d val=%#x (%d) rc=%Rrc\n", uSystemInfoIndex, *pu32, *pu32, rc)); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT, System info data} */ PDMBOTHCBDECL(int) acpiR3SysInfoDataWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { ACPIState *pThis = (ACPIState *)pvUser; if (cb != 4) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x idx=%u\n", cb, Port, u32, pThis->uSystemInfoIndex); DEVACPI_LOCK_R3(pThis); Log(("addr=%#x cb=%d u32=%#x si=%#x\n", Port, cb, u32, pThis->uSystemInfoIndex)); int rc = VINF_SUCCESS; switch (pThis->uSystemInfoIndex) { case SYSTEM_INFO_INDEX_INVALID: AssertMsg(u32 == 0xbadc0de, ("u32=%u\n", u32)); pThis->u8IndexShift = 0; break; case SYSTEM_INFO_INDEX_VALID: AssertMsg(u32 == 0xbadc0de, ("u32=%u\n", u32)); pThis->u8IndexShift = 2; break; case SYSTEM_INFO_INDEX_CPU_LOCK_CHECK: pThis->idCpuLockCheck = u32; break; case SYSTEM_INFO_INDEX_CPU_LOCKED: if (u32 < pThis->cCpus) VMCPUSET_DEL(&pThis->CpuSetLocked, u32); /* Unlock the CPU */ else LogRel(("ACPI: CPU %u does not exist\n", u32)); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x idx=%u\n", cb, Port, u32, pThis->uSystemInfoIndex); break; } DEVACPI_UNLOCK(pThis); return rc; } /** * @callback_method_impl{FNIOMIOPORTIN, PM1a Enable} */ PDMBOTHCBDECL(int) acpiR3Pm1aEnRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { NOREF(pDevIns); NOREF(Port); if (cb != 2) return VERR_IOM_IOPORT_UNUSED; ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); *pu32 = pThis->pm1a_en; DEVACPI_UNLOCK(pThis); Log(("acpiR3Pm1aEnRead -> %#x\n", *pu32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, PM1a Enable} */ PDMBOTHCBDECL(int) acpiR3PM1aEnWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { if (cb != 2 && cb != 4) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); Log(("acpiR3PM1aEnWrite: %#x (%#x)\n", u32, u32 & ~(RSR_EN | IGN_EN) & 0xffff)); u32 &= ~(RSR_EN | IGN_EN); u32 &= 0xffff; apicR3UpdatePm1a(pThis, pThis->pm1a_sts, u32); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, PM1a Status} */ PDMBOTHCBDECL(int) acpiR3Pm1aStsRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 2) { int rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u\n", cb, Port); return rc == VINF_SUCCESS ? VERR_IOM_IOPORT_UNUSED : rc; } ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); *pu32 = pThis->pm1a_sts; DEVACPI_UNLOCK(pThis); Log(("acpiR3Pm1aStsRead: %#x\n", *pu32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, PM1a Status} */ PDMBOTHCBDECL(int) acpiR3PM1aStsWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { if (cb != 2 && cb != 4) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); Log(("acpiR3PM1aStsWrite: %#x (%#x)\n", u32, u32 & ~(RSR_STS | IGN_STS) & 0xffff)); u32 &= 0xffff; if (u32 & PWRBTN_STS) pThis->fPowerButtonHandled = true; /* Remember that the guest handled the last power button event */ u32 = pThis->pm1a_sts & ~(u32 & ~(RSR_STS | IGN_STS)); apicR3UpdatePm1a(pThis, u32, pThis->pm1a_en); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, PM1a Control} */ PDMBOTHCBDECL(int) acpiR3Pm1aCtlRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 2) { int rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u\n", cb, Port); return rc == VINF_SUCCESS ? VERR_IOM_IOPORT_UNUSED : rc; } ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); *pu32 = pThis->pm1a_ctl; DEVACPI_UNLOCK(pThis); Log(("acpiR3Pm1aCtlRead: %#x\n", *pu32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, PM1a Control} */ PDMBOTHCBDECL(int) acpiR3PM1aCtlWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { if (cb != 2 && cb != 4) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); Log(("acpiR3PM1aCtlWrite: %#x (%#x)\n", u32, u32 & ~(RSR_CNT | IGN_CNT) & 0xffff)); u32 &= 0xffff; pThis->pm1a_ctl = u32 & ~(RSR_CNT | IGN_CNT); int rc = VINF_SUCCESS; uint32_t const uSleepState = (pThis->pm1a_ctl >> SLP_TYPx_SHIFT) & SLP_TYPx_MASK; if (uSleepState != pThis->uSleepState) { pThis->uSleepState = uSleepState; switch (uSleepState) { case 0x00: /* S0 */ break; case 0x01: /* S1 */ if (pThis->fS1Enabled) { LogRel(("Entering S1 power state (powered-on suspend)\n")); rc = acpiR3DoSleep(pThis); break; } LogRel(("Ignoring guest attempt to enter S1 power state (powered-on suspend)!\n")); /* fall thru */ case 0x04: /* S4 */ if (pThis->fS4Enabled) { LogRel(("Entering S4 power state (suspend to disk)\n")); rc = acpiR3DoPowerOff(pThis);/* Same behavior as S5 */ break; } LogRel(("Ignoring guest attempt to enter S4 power state (suspend to disk)!\n")); /* fall thru */ case 0x05: /* S5 */ LogRel(("Entering S5 power state (power down)\n")); rc = acpiR3DoPowerOff(pThis); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "Unknown sleep state %#x (u32=%#x)\n", uSleepState, u32); break; } } DEVACPI_UNLOCK(pThis); Log(("acpiR3PM1aCtlWrite: rc=%Rrc\n", rc)); return rc; } #endif /* IN_RING3 */ /** * @callback_method_impl{FNIOMIOPORTIN, PMTMR} * * @remarks Only I/O port currently implemented in all contexts. */ PDMBOTHCBDECL(int) acpiPMTmrRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 4) return VERR_IOM_IOPORT_UNUSED; ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); /* * We use the clock lock to serialize access to u64PmTimerInitial and to * make sure we get a reliable time from the clock. */ int rc = TMTimerLock(pThis->CTX_SUFF(pPmTimer), VINF_IOM_R3_IOPORT_READ); if (rc == VINF_SUCCESS) { uint64_t const u64PmTimerInitial = pThis->u64PmTimerInitial; uint64_t u64Now = TMTimerGet(pThis->CTX_SUFF(pPmTimer)); TMTimerUnlock(pThis->CTX_SUFF(pPmTimer)); /* * Calculate the return value. */ DBGFTRACE_PDM_U64_TAG(pDevIns, u64Now, "acpi"); uint64_t u64Elapsed = u64Now - u64PmTimerInitial; *pu32 = ASMMultU64ByU32DivByU32(u64Elapsed, PM_TMR_FREQ, TMTimerGetFreq(pThis->CTX_SUFF(pPmTimer))); Log(("acpi: acpiPMTmrRead -> %#x\n", *pu32)); } NOREF(pvUser); NOREF(Port); return rc; } #ifdef IN_RING3 /** * @callback_method_impl{FNIOMIOPORTIN, GPE0 Status} */ PDMBOTHCBDECL(int) acpiR3Gpe0StsRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 1) { int rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u\n", cb, Port); return rc == VINF_SUCCESS ? VERR_IOM_IOPORT_UNUSED : rc; } ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); *pu32 = pThis->gpe0_sts & 0xff; DEVACPI_UNLOCK(pThis); Log(("acpiR3Gpe0StsRead: %#x\n", *pu32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, GPE0 Status} */ PDMBOTHCBDECL(int) acpiR3Gpe0StsWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { if (cb != 1) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); Log(("acpiR3Gpe0StsWrite: %#x (%#x)\n", u32, pThis->gpe0_sts & ~u32)); u32 = pThis->gpe0_sts & ~u32; apicR3UpdateGpe0(pThis, u32, pThis->gpe0_en); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTIN, GPE0 Enable} */ PDMBOTHCBDECL(int) acpiR3Gpe0EnRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { if (cb != 1) { int rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u\n", cb, Port); return rc == VINF_SUCCESS ? VERR_IOM_IOPORT_UNUSED : rc; } ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); *pu32 = pThis->gpe0_en & 0xff; DEVACPI_UNLOCK(pThis); Log(("acpiR3Gpe0EnRead: %#x\n", *pu32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, GPE0 Enable} */ PDMBOTHCBDECL(int) acpiR3Gpe0EnWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { if (cb != 1) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); Log(("acpiR3Gpe0EnWrite: %#x\n", u32)); apicR3UpdateGpe0(pThis, pThis->gpe0_sts, u32); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, SMI_CMD} */ PDMBOTHCBDECL(int) acpiR3SmiWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { Log(("acpiR3SmiWrite %#x\n", u32)); if (cb != 1) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); ACPIState *pThis = (ACPIState *)pvUser; DEVACPI_LOCK_R3(pThis); if (u32 == ACPI_ENABLE) pThis->pm1a_ctl |= SCI_EN; else if (u32 == ACPI_DISABLE) pThis->pm1a_ctl &= ~SCI_EN; else Log(("acpiR3SmiWrite: %#x <- unknown value\n", u32)); DEVACPI_UNLOCK(pThis); return VINF_SUCCESS; } /** * @{FNIOMIOPORTOUT, ACPI_RESET_BLK} */ PDMBOTHCBDECL(int) acpiR3ResetWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { Log(("acpiR3ResetWrite: %#x\n", u32)); NOREF(pvUser); if (cb != 1) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); /* No state locking required. */ int rc = VINF_SUCCESS; if (u32 == ACPI_RESET_REG_VAL) { LogRel(("Reset initiated by ACPI\n")); rc = PDMDevHlpVMReset(pDevIns); } else Log(("acpiR3ResetWrite: %#x <- unknown value\n", u32)); return rc; } # ifdef DEBUG_ACPI /** * @callback_method_impl{FNIOMIOPORTOUT, Debug hex value logger} */ PDMBOTHCBDECL(int) acpiR3DhexWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { NOREF(pvUser); switch (cb) { case 1: Log(("%#x\n", u32 & 0xff)); break; case 2: Log(("%#6x\n", u32 & 0xffff)); case 4: Log(("%#10x\n", u32)); break; default: return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); } return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTOUT, Debug char logger} */ PDMBOTHCBDECL(int) acpiR3DchrWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { NOREF(pvUser); switch (cb) { case 1: Log(("%c", u32 & 0xff)); break; default: return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "cb=%d Port=%u u32=%#x\n", cb, Port, u32); } return VINF_SUCCESS; } # endif /* DEBUG_ACPI */ /** * Used to calculate the value of a PM I/O port. * * @returns The actual I/O port value. * @param pThis The ACPI instance. * @param offset The offset into the I/O space, or -1 if invalid. */ static RTIOPORT acpiR3CalcPmPort(ACPIState *pThis, int32_t offset) { Assert(pThis->uPmIoPortBase != 0); if (offset == -1) return 0; return (RTIOPORT)(pThis->uPmIoPortBase + offset); } /** * Called by acpiR3LoadState and acpiR3UpdatePmHandlers to register the PM1a, PM * timer and GPE0 I/O ports. * * @returns VBox status code. * @param pThis The ACPI instance. */ static int acpiR3RegisterPmHandlers(ACPIState *pThis) { int rc = VINF_SUCCESS; #define R(offset, cnt, writer, reader, description) \ do { \ rc = PDMDevHlpIOPortRegister(pThis->pDevIns, acpiR3CalcPmPort(pThis, offset), cnt, pThis, writer, reader, \ NULL, NULL, description); \ if (RT_FAILURE(rc)) \ return rc; \ } while (0) #define L (GPE0_BLK_LEN / 2) R(PM1a_EVT_OFFSET+2, 1, acpiR3PM1aEnWrite, acpiR3Pm1aEnRead, "ACPI PM1a Enable"); R(PM1a_EVT_OFFSET, 1, acpiR3PM1aStsWrite, acpiR3Pm1aStsRead, "ACPI PM1a Status"); R(PM1a_CTL_OFFSET, 1, acpiR3PM1aCtlWrite, acpiR3Pm1aCtlRead, "ACPI PM1a Control"); R(PM_TMR_OFFSET, 1, NULL, acpiPMTmrRead, "ACPI PM Timer"); R(GPE0_OFFSET + L, L, acpiR3Gpe0EnWrite, acpiR3Gpe0EnRead, "ACPI GPE0 Enable"); R(GPE0_OFFSET, L, acpiR3Gpe0StsWrite, acpiR3Gpe0StsRead, "ACPI GPE0 Status"); #undef L #undef R /* register RC stuff */ if (pThis->fGCEnabled) { rc = PDMDevHlpIOPortRegisterRC(pThis->pDevIns, acpiR3CalcPmPort(pThis, PM_TMR_OFFSET), 1, 0, NULL, "acpiPMTmrRead", NULL, NULL, "ACPI PM Timer"); AssertRCReturn(rc, rc); } /* register R0 stuff */ if (pThis->fR0Enabled) { rc = PDMDevHlpIOPortRegisterR0(pThis->pDevIns, acpiR3CalcPmPort(pThis, PM_TMR_OFFSET), 1, 0, NULL, "acpiPMTmrRead", NULL, NULL, "ACPI PM Timer"); AssertRCReturn(rc, rc); } return rc; } /** * Called by acpiR3LoadState and acpiR3UpdatePmHandlers to unregister the PM1a, PM * timer and GPE0 I/O ports. * * @returns VBox status code. * @param pThis The ACPI instance. */ static int acpiR3UnregisterPmHandlers(ACPIState *pThis) { #define U(offset, cnt) \ do { \ int rc = PDMDevHlpIOPortDeregister(pThis->pDevIns, acpiR3CalcPmPort(pThis, offset), cnt); \ AssertRCReturn(rc, rc); \ } while (0) #define L (GPE0_BLK_LEN / 2) U(PM1a_EVT_OFFSET+2, 1); U(PM1a_EVT_OFFSET, 1); U(PM1a_CTL_OFFSET, 1); U(PM_TMR_OFFSET, 1); U(GPE0_OFFSET + L, L); U(GPE0_OFFSET, L); #undef L #undef U return VINF_SUCCESS; } /** * Called by acpiR3PciConfigWrite and acpiReset to change the location of the * PM1a, PM timer and GPE0 ports. * * @returns VBox status code. * * @param pThis The ACPI instance. * @param NewIoPortBase The new base address of the I/O ports. */ static int acpiR3UpdatePmHandlers(ACPIState *pThis, RTIOPORT NewIoPortBase) { Log(("acpi: rebasing PM 0x%x -> 0x%x\n", pThis->uPmIoPortBase, NewIoPortBase)); if (NewIoPortBase != pThis->uPmIoPortBase) { int rc = acpiR3UnregisterPmHandlers(pThis); if (RT_FAILURE(rc)) return rc; pThis->uPmIoPortBase = NewIoPortBase; rc = acpiR3RegisterPmHandlers(pThis); if (RT_FAILURE(rc)) return rc; /* We have to update FADT table acccording to the new base */ rc = acpiR3PlantTables(pThis); AssertRC(rc); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Saved state structure description, version 4. */ static const SSMFIELD g_AcpiSavedStateFields4[] = { SSMFIELD_ENTRY(ACPIState, pm1a_en), SSMFIELD_ENTRY(ACPIState, pm1a_sts), SSMFIELD_ENTRY(ACPIState, pm1a_ctl), SSMFIELD_ENTRY(ACPIState, u64PmTimerInitial), SSMFIELD_ENTRY(ACPIState, gpe0_en), SSMFIELD_ENTRY(ACPIState, gpe0_sts), SSMFIELD_ENTRY(ACPIState, uBatteryIndex), SSMFIELD_ENTRY(ACPIState, uSystemInfoIndex), SSMFIELD_ENTRY(ACPIState, u64RamSize), SSMFIELD_ENTRY(ACPIState, u8IndexShift), SSMFIELD_ENTRY(ACPIState, u8UseIOApic), SSMFIELD_ENTRY(ACPIState, uSleepState), SSMFIELD_ENTRY_TERM() }; /** * Saved state structure description, version 5. */ static const SSMFIELD g_AcpiSavedStateFields5[] = { SSMFIELD_ENTRY(ACPIState, pm1a_en), SSMFIELD_ENTRY(ACPIState, pm1a_sts), SSMFIELD_ENTRY(ACPIState, pm1a_ctl), SSMFIELD_ENTRY(ACPIState, u64PmTimerInitial), SSMFIELD_ENTRY(ACPIState, gpe0_en), SSMFIELD_ENTRY(ACPIState, gpe0_sts), SSMFIELD_ENTRY(ACPIState, uBatteryIndex), SSMFIELD_ENTRY(ACPIState, uSystemInfoIndex), SSMFIELD_ENTRY(ACPIState, uSleepState), SSMFIELD_ENTRY(ACPIState, u8IndexShift), SSMFIELD_ENTRY(ACPIState, uPmIoPortBase), SSMFIELD_ENTRY_TERM() }; /** * Saved state structure description, version 6. */ static const SSMFIELD g_AcpiSavedStateFields6[] = { SSMFIELD_ENTRY(ACPIState, pm1a_en), SSMFIELD_ENTRY(ACPIState, pm1a_sts), SSMFIELD_ENTRY(ACPIState, pm1a_ctl), SSMFIELD_ENTRY(ACPIState, u64PmTimerInitial), SSMFIELD_ENTRY(ACPIState, gpe0_en), SSMFIELD_ENTRY(ACPIState, gpe0_sts), SSMFIELD_ENTRY(ACPIState, uBatteryIndex), SSMFIELD_ENTRY(ACPIState, uSystemInfoIndex), SSMFIELD_ENTRY(ACPIState, uSleepState), SSMFIELD_ENTRY(ACPIState, u8IndexShift), SSMFIELD_ENTRY(ACPIState, uPmIoPortBase), SSMFIELD_ENTRY(ACPIState, fSuspendToSavedState), SSMFIELD_ENTRY_TERM() }; /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) acpiR3SaveState(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); return SSMR3PutStruct(pSSMHandle, pThis, &g_AcpiSavedStateFields6[0]); } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) acpiR3LoadState(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t uVersion, uint32_t uPass) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Unregister PM handlers, will register with actual base after state * successfully loaded. */ int rc = acpiR3UnregisterPmHandlers(pThis); if (RT_FAILURE(rc)) return rc; switch (uVersion) { case 4: rc = SSMR3GetStruct(pSSMHandle, pThis, &g_AcpiSavedStateFields4[0]); break; case 5: rc = SSMR3GetStruct(pSSMHandle, pThis, &g_AcpiSavedStateFields5[0]); break; case 6: rc = SSMR3GetStruct(pSSMHandle, pThis, &g_AcpiSavedStateFields6[0]); break; default: rc = VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; break; } if (RT_SUCCESS(rc)) { rc = acpiR3RegisterPmHandlers(pThis); if (RT_FAILURE(rc)) return rc; rc = acpiR3FetchBatteryStatus(pThis); if (RT_FAILURE(rc)) return rc; rc = acpiR3FetchBatteryInfo(pThis); if (RT_FAILURE(rc)) return rc; TMTimerLock(pThis->pPmTimerR3, VERR_IGNORED); acpiR3PmTimerReset(pThis, TMTimerGet(pThis->pPmTimerR3)); TMTimerUnlock(pThis->pPmTimerR3); } return rc; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) acpiR3QueryInterface(PPDMIBASE pInterface, const char *pszIID) { ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIACPIPORT, &pThis->IACPIPort); return NULL; } /** * Calculate the check sum for some ACPI data before planting it. * * All the bytes must add up to 0. * * @returns check sum. * @param pvSrc What to check sum. * @param cbData The amount of data to checksum. */ static uint8_t acpiR3Checksum(const void * const pvSrc, size_t cbData) { uint8_t const *pbSrc = (uint8_t const *)pvSrc; uint8_t uSum = 0; for (size_t i = 0; i < cbData; ++i) uSum += pbSrc[i]; return -uSum; } /** * Prepare a ACPI table header. */ static void acpiR3PrepareHeader(ACPIState *pThis, ACPITBLHEADER *header, const char au8Signature[4], uint32_t u32Length, uint8_t u8Revision) { memcpy(header->au8Signature, au8Signature, 4); header->u32Length = RT_H2LE_U32(u32Length); header->u8Revision = u8Revision; memcpy(header->au8OemId, pThis->au8OemId, 6); memcpy(header->au8OemTabId, "VBOX", 4); memcpy(header->au8OemTabId+4, au8Signature, 4); header->u32OemRevision = RT_H2LE_U32(1); memcpy(header->au8CreatorId, pThis->au8CreatorId, 4); header->u32CreatorRev = pThis->u32CreatorRev; } /** * Initialize a generic address structure (ACPIGENADDR). */ static void acpiR3WriteGenericAddr(ACPIGENADDR *g, uint8_t u8AddressSpaceId, uint8_t u8RegisterBitWidth, uint8_t u8RegisterBitOffset, uint8_t u8AccessSize, uint64_t u64Address) { g->u8AddressSpaceId = u8AddressSpaceId; g->u8RegisterBitWidth = u8RegisterBitWidth; g->u8RegisterBitOffset = u8RegisterBitOffset; g->u8AccessSize = u8AccessSize; g->u64Address = RT_H2LE_U64(u64Address); } /** * Wrapper around PDMDevHlpPhysWrite used when planting ACPI tables. */ DECLINLINE(void) acpiR3PhysCopy(ACPIState *pThis, RTGCPHYS32 GCPhys32Dst, const void *pvSrc, size_t cbToCopy) { PDMDevHlpPhysWrite(pThis->pDevIns, GCPhys32Dst, pvSrc, cbToCopy); } /** * Plant the Differentiated System Description Table (DSDT). */ static void acpiR3SetupDsdt(ACPIState *pThis, RTGCPHYS32 GCPhys32, void *pvPtr, size_t cbDsdt) { acpiR3PhysCopy(pThis, GCPhys32, pvPtr, cbDsdt); } /** * Plan the Secondary System Description Table (SSDT). */ static void acpiR3SetupSsdt(ACPIState *pThis, RTGCPHYS32 addr, void* pPtr, size_t uSsdtLen) { acpiR3PhysCopy(pThis, addr, pPtr, uSsdtLen); } /** * Plant the Firmware ACPI Control Structure (FACS). */ static void acpiR3SetupFacs(ACPIState *pThis, RTGCPHYS32 addr) { ACPITBLFACS facs; memset(&facs, 0, sizeof(facs)); memcpy(facs.au8Signature, "FACS", 4); facs.u32Length = RT_H2LE_U32(sizeof(ACPITBLFACS)); facs.u32HWSignature = RT_H2LE_U32(0); facs.u32FWVector = RT_H2LE_U32(0); facs.u32GlobalLock = RT_H2LE_U32(0); facs.u32Flags = RT_H2LE_U32(0); facs.u64X_FWVector = RT_H2LE_U64(0); facs.u8Version = 1; acpiR3PhysCopy(pThis, addr, (const uint8_t *)&facs, sizeof(facs)); } /** * Plant the Fixed ACPI Description Table (FADT aka FACP). */ static void acpiR3SetupFadt(ACPIState *pThis, RTGCPHYS32 GCPhysAcpi1, RTGCPHYS32 GCPhysAcpi2, RTGCPHYS32 GCPhysFacs, RTGCPHYS GCPhysDsdt) { ACPITBLFADT fadt; /* First the ACPI version 2+ version of the structure. */ memset(&fadt, 0, sizeof(fadt)); acpiR3PrepareHeader(pThis, &fadt.header, "FACP", sizeof(fadt), 4); fadt.u32FACS = RT_H2LE_U32(GCPhysFacs); fadt.u32DSDT = RT_H2LE_U32(GCPhysDsdt); fadt.u8IntModel = 0; /* dropped from the ACPI 2.0 spec. */ fadt.u8PreferredPMProfile = 0; /* unspecified */ fadt.u16SCIInt = RT_H2LE_U16(SCI_INT); fadt.u32SMICmd = RT_H2LE_U32(SMI_CMD); fadt.u8AcpiEnable = ACPI_ENABLE; fadt.u8AcpiDisable = ACPI_DISABLE; fadt.u8S4BIOSReq = 0; fadt.u8PStateCnt = 0; fadt.u32PM1aEVTBLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, PM1a_EVT_OFFSET)); fadt.u32PM1bEVTBLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, PM1b_EVT_OFFSET)); fadt.u32PM1aCTLBLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, PM1a_CTL_OFFSET)); fadt.u32PM1bCTLBLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, PM1b_CTL_OFFSET)); fadt.u32PM2CTLBLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, PM2_CTL_OFFSET)); fadt.u32PMTMRBLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, PM_TMR_OFFSET)); fadt.u32GPE0BLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, GPE0_OFFSET)); fadt.u32GPE1BLK = RT_H2LE_U32(acpiR3CalcPmPort(pThis, GPE1_OFFSET)); fadt.u8PM1EVTLEN = 4; fadt.u8PM1CTLLEN = 2; fadt.u8PM2CTLLEN = 0; fadt.u8PMTMLEN = 4; fadt.u8GPE0BLKLEN = GPE0_BLK_LEN; fadt.u8GPE1BLKLEN = GPE1_BLK_LEN; fadt.u8GPE1BASE = GPE1_BASE; fadt.u8CSTCNT = 0; fadt.u16PLVL2LAT = RT_H2LE_U16(P_LVL2_LAT); fadt.u16PLVL3LAT = RT_H2LE_U16(P_LVL3_LAT); fadt.u16FlushSize = RT_H2LE_U16(FLUSH_SIZE); fadt.u16FlushStride = RT_H2LE_U16(FLUSH_STRIDE); fadt.u8DutyOffset = 0; fadt.u8DutyWidth = 0; fadt.u8DayAlarm = 0; fadt.u8MonAlarm = 0; fadt.u8Century = 0; fadt.u16IAPCBOOTARCH = RT_H2LE_U16(IAPC_BOOT_ARCH_LEGACY_DEV | IAPC_BOOT_ARCH_8042); /** @note WBINVD is required for ACPI versions newer than 1.0 */ fadt.u32Flags = RT_H2LE_U32( FADT_FL_WBINVD | FADT_FL_FIX_RTC | FADT_FL_TMR_VAL_EXT | FADT_FL_RESET_REG_SUP); /* We have to force physical APIC mode or Linux can't use more than 8 CPUs */ if (pThis->fCpuHotPlug) fadt.u32Flags |= RT_H2LE_U32(FADT_FL_FORCE_APIC_PHYS_DEST_MODE); acpiR3WriteGenericAddr(&fadt.ResetReg, 1, 8, 0, 1, ACPI_RESET_BLK); fadt.u8ResetVal = ACPI_RESET_REG_VAL; fadt.u64XFACS = RT_H2LE_U64((uint64_t)GCPhysFacs); fadt.u64XDSDT = RT_H2LE_U64((uint64_t)GCPhysDsdt); acpiR3WriteGenericAddr(&fadt.X_PM1aEVTBLK, 1, 32, 0, 2, acpiR3CalcPmPort(pThis, PM1a_EVT_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_PM1bEVTBLK, 0, 0, 0, 0, acpiR3CalcPmPort(pThis, PM1b_EVT_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_PM1aCTLBLK, 1, 16, 0, 2, acpiR3CalcPmPort(pThis, PM1a_CTL_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_PM1bCTLBLK, 0, 0, 0, 0, acpiR3CalcPmPort(pThis, PM1b_CTL_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_PM2CTLBLK, 0, 0, 0, 0, acpiR3CalcPmPort(pThis, PM2_CTL_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_PMTMRBLK, 1, 32, 0, 3, acpiR3CalcPmPort(pThis, PM_TMR_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_GPE0BLK, 1, 16, 0, 1, acpiR3CalcPmPort(pThis, GPE0_OFFSET)); acpiR3WriteGenericAddr(&fadt.X_GPE1BLK, 0, 0, 0, 0, acpiR3CalcPmPort(pThis, GPE1_OFFSET)); fadt.header.u8Checksum = acpiR3Checksum(&fadt, sizeof(fadt)); acpiR3PhysCopy(pThis, GCPhysAcpi2, &fadt, sizeof(fadt)); /* Now the ACPI 1.0 version. */ fadt.header.u32Length = ACPITBLFADT_VERSION1_SIZE; fadt.u8IntModel = INT_MODEL_DUAL_PIC; fadt.header.u8Checksum = 0; /* Must be zeroed before recalculating checksum! */ fadt.header.u8Checksum = acpiR3Checksum(&fadt, ACPITBLFADT_VERSION1_SIZE); acpiR3PhysCopy(pThis, GCPhysAcpi1, &fadt, ACPITBLFADT_VERSION1_SIZE); } /** * Plant the root System Description Table. * * The RSDT and XSDT tables are basically identical. The only difference is 32 * vs 64 bits addresses for description headers. RSDT is for ACPI 1.0. XSDT for * ACPI 2.0 and up. */ static int acpiR3SetupRsdt(ACPIState *pThis, RTGCPHYS32 addr, unsigned int nb_entries, uint32_t *addrs) { ACPITBLRSDT *rsdt; const size_t size = sizeof(ACPITBLHEADER) + nb_entries * sizeof(rsdt->u32Entry[0]); rsdt = (ACPITBLRSDT*)RTMemAllocZ(size); if (!rsdt) return PDMDEV_SET_ERROR(pThis->pDevIns, VERR_NO_TMP_MEMORY, N_("Cannot allocate RSDT")); acpiR3PrepareHeader(pThis, &rsdt->header, "RSDT", (uint32_t)size, 1); for (unsigned int i = 0; i < nb_entries; ++i) { rsdt->u32Entry[i] = RT_H2LE_U32(addrs[i]); Log(("Setup RSDT: [%d] = %x\n", i, rsdt->u32Entry[i])); } rsdt->header.u8Checksum = acpiR3Checksum(rsdt, size); acpiR3PhysCopy(pThis, addr, rsdt, size); RTMemFree(rsdt); return VINF_SUCCESS; } /** * Plant the Extended System Description Table. */ static int acpiR3SetupXsdt(ACPIState *pThis, RTGCPHYS32 addr, unsigned int nb_entries, uint32_t *addrs) { ACPITBLXSDT *xsdt; const size_t size = sizeof(ACPITBLHEADER) + nb_entries * sizeof(xsdt->u64Entry[0]); xsdt = (ACPITBLXSDT*)RTMemAllocZ(size); if (!xsdt) return VERR_NO_TMP_MEMORY; acpiR3PrepareHeader(pThis, &xsdt->header, "XSDT", (uint32_t)size, 1 /* according to ACPI 3.0 specs */); if (pThis->fUseCust) memcpy(xsdt->header.au8OemTabId, pThis->au8OemTabId, 8); for (unsigned int i = 0; i < nb_entries; ++i) { xsdt->u64Entry[i] = RT_H2LE_U64((uint64_t)addrs[i]); Log(("Setup XSDT: [%d] = %RX64\n", i, xsdt->u64Entry[i])); } xsdt->header.u8Checksum = acpiR3Checksum(xsdt, size); acpiR3PhysCopy(pThis, addr, xsdt, size); RTMemFree(xsdt); return VINF_SUCCESS; } /** * Plant the Root System Description Pointer (RSDP). */ static void acpiR3SetupRsdp(ACPIState *pThis, ACPITBLRSDP *rsdp, RTGCPHYS32 GCPhysRsdt, RTGCPHYS GCPhysXsdt) { memset(rsdp, 0, sizeof(*rsdp)); /* ACPI 1.0 part (RSDT) */ memcpy(rsdp->au8Signature, "RSD PTR ", 8); memcpy(rsdp->au8OemId, pThis->au8OemId, 6); rsdp->u8Revision = ACPI_REVISION; rsdp->u32RSDT = RT_H2LE_U32(GCPhysRsdt); rsdp->u8Checksum = acpiR3Checksum(rsdp, RT_OFFSETOF(ACPITBLRSDP, u32Length)); /* ACPI 2.0 part (XSDT) */ rsdp->u32Length = RT_H2LE_U32(sizeof(ACPITBLRSDP)); rsdp->u64XSDT = RT_H2LE_U64(GCPhysXsdt); rsdp->u8ExtChecksum = acpiR3Checksum(rsdp, sizeof(ACPITBLRSDP)); } /** * Multiple APIC Description Table. * * This structure looks somewhat convoluted due layout of MADT table in MP case. * There extpected to be multiple LAPIC records for each CPU, thus we cannot * use regular C structure and proxy to raw memory instead. */ class AcpiTableMadt { /** * All actual data stored in dynamically allocated memory pointed by this field. */ uint8_t *m_pbData; /** * Number of CPU entries in this MADT. */ uint32_t m_cCpus; /** * Number of interrupt overrides. */ uint32_t m_cIsos; public: /** * Address of ACPI header */ inline ACPITBLHEADER *header_addr(void) const { return (ACPITBLHEADER *)m_pbData; } /** * Address of local APIC for each CPU. Note that different CPUs address different LAPICs, * although address is the same for all of them. */ inline uint32_t *u32LAPIC_addr(void) const { return (uint32_t *)(header_addr() + 1); } /** * Address of APIC flags */ inline uint32_t *u32Flags_addr(void) const { return (uint32_t *)(u32LAPIC_addr() + 1); } /** * Address of ISO description */ inline ACPITBLISO *ISO_addr(void) const { return (ACPITBLISO *)(u32Flags_addr() + 1); } /** * Address of per-CPU LAPIC descriptions */ inline ACPITBLLAPIC *LApics_addr(void) const { return (ACPITBLLAPIC *)(ISO_addr() + m_cIsos); } /** * Address of IO APIC description */ inline ACPITBLIOAPIC *IOApic_addr(void) const { return (ACPITBLIOAPIC *)(LApics_addr() + m_cCpus); } /** * Size of MADT. * Note that this function assumes IOApic to be the last field in structure. */ inline uint32_t size(void) const { return (uint8_t *)(IOApic_addr() + 1) - (uint8_t *)header_addr(); } /** * Raw data of MADT. */ inline const uint8_t *data(void) const { return m_pbData; } /** * Size of MADT for given ACPI config, useful to compute layout. */ static uint32_t sizeFor(ACPIState *pThis, uint32_t cIsos) { return AcpiTableMadt(pThis->cCpus, cIsos).size(); } /* * Constructor, only works in Ring 3, doesn't look like a big deal. */ AcpiTableMadt(uint32_t cCpus, uint32_t cIsos) { m_cCpus = cCpus; m_cIsos = cIsos; m_pbData = NULL; /* size() uses this and gcc will complain if not initialized. */ uint32_t cb = size(); m_pbData = (uint8_t *)RTMemAllocZ(cb); } ~AcpiTableMadt() { RTMemFree(m_pbData); } }; /** * Plant the Multiple APIC Description Table (MADT). * * @note APIC without IO-APIC hangs Windows Vista therefore we setup both. * * @todo All hardcoded, should set this up based on the actual VM config!!!!! */ static void acpiR3SetupMadt(ACPIState *pThis, RTGCPHYS32 addr) { uint16_t cpus = pThis->cCpus; AcpiTableMadt madt(cpus, NUMBER_OF_IRQ_SOURCE_OVERRIDES); acpiR3PrepareHeader(pThis, madt.header_addr(), "APIC", madt.size(), 2); *madt.u32LAPIC_addr() = RT_H2LE_U32(0xfee00000); *madt.u32Flags_addr() = RT_H2LE_U32(PCAT_COMPAT); /* LAPICs records */ ACPITBLLAPIC* lapic = madt.LApics_addr(); for (uint16_t i = 0; i < cpus; i++) { lapic->u8Type = 0; lapic->u8Length = sizeof(ACPITBLLAPIC); lapic->u8ProcId = i; /** Must match numbering convention in MPTABLES */ lapic->u8ApicId = i; lapic->u32Flags = VMCPUSET_IS_PRESENT(&pThis->CpuSetAttached, i) ? RT_H2LE_U32(LAPIC_ENABLED) : 0; lapic++; } /* IO-APIC record */ ACPITBLIOAPIC* ioapic = madt.IOApic_addr(); ioapic->u8Type = 1; ioapic->u8Length = sizeof(ACPITBLIOAPIC); /** Must match MP tables ID */ ioapic->u8IOApicId = cpus; ioapic->u8Reserved = 0; ioapic->u32Address = RT_H2LE_U32(0xfec00000); ioapic->u32GSIB = RT_H2LE_U32(0); /* Interrupt Source Overrides */ /* Flags: bits[3:2]: 00 conforms to the bus 01 edge-triggered 10 reserved 11 level-triggered bits[1:0] 00 conforms to the bus 01 active-high 10 reserved 11 active-low */ /* If changing, also update PDMIsaSetIrq() and MPS */ ACPITBLISO* isos = madt.ISO_addr(); /* Timer interrupt rule IRQ0 to GSI2 */ isos[0].u8Type = 2; isos[0].u8Length = sizeof(ACPITBLISO); isos[0].u8Bus = 0; /* Must be 0 */ isos[0].u8Source = 0; /* IRQ0 */ isos[0].u32GSI = 2; /* connected to pin 2 */ isos[0].u16Flags = 0; /* conform to the bus */ /* ACPI interrupt rule - IRQ9 to GSI9 */ isos[1].u8Type = 2; isos[1].u8Length = sizeof(ACPITBLISO); isos[1].u8Bus = 0; /* Must be 0 */ isos[1].u8Source = 9; /* IRQ9 */ isos[1].u32GSI = 9; /* connected to pin 9 */ isos[1].u16Flags = 0xd; /* active high, level triggered */ Assert(NUMBER_OF_IRQ_SOURCE_OVERRIDES == 2); madt.header_addr()->u8Checksum = acpiR3Checksum(madt.data(), madt.size()); acpiR3PhysCopy(pThis, addr, madt.data(), madt.size()); } /** * Plant the High Performance Event Timer (HPET) descriptor. */ static void acpiR3SetupHpet(ACPIState *pThis, RTGCPHYS32 addr) { ACPITBLHPET hpet; memset(&hpet, 0, sizeof(hpet)); acpiR3PrepareHeader(pThis, &hpet.aHeader, "HPET", sizeof(hpet), 1); /* Keep base address consistent with appropriate DSDT entry (vbox.dsl) */ acpiR3WriteGenericAddr(&hpet.HpetAddr, 0 /* Memory address space */, 64 /* Register bit width */, 0 /* Bit offset */, 0, /* Register access size, is it correct? */ 0xfed00000 /* Address */); hpet.u32Id = 0x8086a201; /* must match what HPET ID returns, is it correct ? */ hpet.u32Number = 0; hpet.u32MinTick = 4096; hpet.u8Attributes = 0; hpet.aHeader.u8Checksum = acpiR3Checksum(&hpet, sizeof(hpet)); acpiR3PhysCopy(pThis, addr, (const uint8_t *)&hpet, sizeof(hpet)); } /** Custom Description Table */ static void acpiR3SetupCust(ACPIState *pThis, RTGCPHYS32 addr) { ACPITBLCUST cust; /* First the ACPI version 1 version of the structure. */ memset(&cust, 0, sizeof(cust)); acpiR3PrepareHeader(pThis, &cust.header, "CUST", sizeof(cust), 1); memcpy(cust.header.au8OemTabId, pThis->au8OemTabId, 8); cust.header.u32OemRevision = RT_H2LE_U32(pThis->u32OemRevision); cust.header.u8Checksum = acpiR3Checksum((uint8_t *)&cust, sizeof(cust)); acpiR3PhysCopy(pThis, addr, pThis->pu8CustBin, pThis->cbCustBin); } /** * Used by acpiR3PlantTables to plant a MMCONFIG PCI config space access (MCFG) * descriptor. * * @param pThis The ACPI instance. * @param GCPhysDst Where to plant it. */ static void acpiR3SetupMcfg(ACPIState *pThis, RTGCPHYS32 GCPhysDst) { struct { ACPITBLMCFG hdr; ACPITBLMCFGENTRY entry; } tbl; uint8_t u8StartBus = 0; uint8_t u8EndBus = (pThis->u64PciConfigMMioLength >> 20) - 1; RT_ZERO(tbl); acpiR3PrepareHeader(pThis, &tbl.hdr.aHeader, "MCFG", sizeof(tbl), 1); tbl.entry.u64BaseAddress = pThis->u64PciConfigMMioAddress; tbl.entry.u8StartBus = u8StartBus; tbl.entry.u8EndBus = u8EndBus; // u16PciSegmentGroup must match _SEG in ACPI table tbl.hdr.aHeader.u8Checksum = acpiR3Checksum(&tbl, sizeof(tbl)); acpiR3PhysCopy(pThis, GCPhysDst, (const uint8_t *)&tbl, sizeof(tbl)); } /** * Used by acpiR3PlantTables and acpiConstruct. * * @returns Guest memory address. */ static uint32_t apicR3FindRsdpSpace(void) { return 0xe0000; } /** * Create the ACPI tables in guest memory. */ static int acpiR3PlantTables(ACPIState *pThis) { int rc; RTGCPHYS32 GCPhysCur, GCPhysRsdt, GCPhysXsdt, GCPhysFadtAcpi1, GCPhysFadtAcpi2, GCPhysFacs, GCPhysDsdt; RTGCPHYS32 GCPhysHpet = 0; RTGCPHYS32 GCPhysApic = 0; RTGCPHYS32 GCPhysSsdt = 0; RTGCPHYS32 GCPhysMcfg = 0; RTGCPHYS32 GCPhysCust = 0; uint32_t addend = 0; RTGCPHYS32 aGCPhysRsdt[8]; RTGCPHYS32 aGCPhysXsdt[8]; uint32_t cAddr; uint32_t iMadt = 0; uint32_t iHpet = 0; uint32_t iSsdt = 0; uint32_t iMcfg = 0; uint32_t iCust = 0; size_t cbRsdt = sizeof(ACPITBLHEADER); size_t cbXsdt = sizeof(ACPITBLHEADER); cAddr = 1; /* FADT */ if (pThis->u8UseIOApic) iMadt = cAddr++; /* MADT */ if (pThis->fUseHpet) iHpet = cAddr++; /* HPET */ if (pThis->fUseMcfg) iMcfg = cAddr++; /* MCFG */ if (pThis->fUseCust) iCust = cAddr++; /* CUST */ iSsdt = cAddr++; /* SSDT */ Assert(cAddr < RT_ELEMENTS(aGCPhysRsdt)); Assert(cAddr < RT_ELEMENTS(aGCPhysXsdt)); cbRsdt += cAddr*sizeof(uint32_t); /* each entry: 32 bits phys. address. */ cbXsdt += cAddr*sizeof(uint64_t); /* each entry: 64 bits phys. address. */ rc = CFGMR3QueryU64(pThis->pDevIns->pCfg, "RamSize", &pThis->u64RamSize); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: Querying \"RamSize\" as integer failed")); uint32_t cbRamHole; rc = CFGMR3QueryU32Def(pThis->pDevIns->pCfg, "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: Querying \"RamHoleSize\" as integer failed")); /* * Calculate the sizes for the high and low regions. */ const uint64_t offRamHole = _4G - cbRamHole; pThis->cbRamHigh = offRamHole < pThis->u64RamSize ? pThis->u64RamSize - offRamHole : 0; uint64_t cbRamLow = offRamHole < pThis->u64RamSize ? offRamHole : pThis->u64RamSize; if (cbRamLow > UINT32_C(0xffe00000)) /* See MEM3. */ { /* Note: This is also enforced by DevPcBios.cpp. */ LogRel(("DevACPI: Clipping cbRamLow=%#RX64 down to 0xffe00000.\n", cbRamLow)); cbRamLow = UINT32_C(0xffe00000); } pThis->cbRamLow = (uint32_t)cbRamLow; GCPhysCur = 0; GCPhysRsdt = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + cbRsdt, 16); GCPhysXsdt = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + cbXsdt, 16); GCPhysFadtAcpi1 = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + ACPITBLFADT_VERSION1_SIZE, 16); GCPhysFadtAcpi2 = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLFADT), 64); GCPhysFacs = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLFACS), 16); if (pThis->u8UseIOApic) { GCPhysApic = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + AcpiTableMadt::sizeFor(pThis, NUMBER_OF_IRQ_SOURCE_OVERRIDES), 16); } if (pThis->fUseHpet) { GCPhysHpet = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLHPET), 16); } if (pThis->fUseMcfg) { GCPhysMcfg = GCPhysCur; /* Assume one entry */ GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLMCFG) + sizeof(ACPITBLMCFGENTRY), 16); } if (pThis->fUseCust) { GCPhysCust = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + pThis->cbCustBin, 16); } void *pvSsdtCode = NULL; size_t cbSsdt = 0; rc = acpiPrepareSsdt(pThis->pDevIns, &pvSsdtCode, &cbSsdt); if (RT_FAILURE(rc)) return rc; GCPhysSsdt = GCPhysCur; GCPhysCur = RT_ALIGN_32(GCPhysCur + cbSsdt, 16); GCPhysDsdt = GCPhysCur; void *pvDsdtCode = NULL; size_t cbDsdt = 0; rc = acpiPrepareDsdt(pThis->pDevIns, &pvDsdtCode, &cbDsdt); if (RT_FAILURE(rc)) return rc; GCPhysCur = RT_ALIGN_32(GCPhysCur + cbDsdt, 16); if (GCPhysCur > 0x10000) return PDMDEV_SET_ERROR(pThis->pDevIns, VERR_TOO_MUCH_DATA, N_("Error: ACPI tables bigger than 64KB")); Log(("RSDP 0x%08X\n", apicR3FindRsdpSpace())); addend = pThis->cbRamLow - 0x10000; Log(("RSDT 0x%08X XSDT 0x%08X\n", GCPhysRsdt + addend, GCPhysXsdt + addend)); Log(("FACS 0x%08X FADT (1.0) 0x%08X, FADT (2+) 0x%08X\n", GCPhysFacs + addend, GCPhysFadtAcpi1 + addend, GCPhysFadtAcpi2 + addend)); Log(("DSDT 0x%08X", GCPhysDsdt + addend)); if (pThis->u8UseIOApic) Log((" MADT 0x%08X", GCPhysApic + addend)); if (pThis->fUseHpet) Log((" HPET 0x%08X", GCPhysHpet + addend)); if (pThis->fUseMcfg) Log((" MCFG 0x%08X", GCPhysMcfg + addend)); if (pThis->fUseCust) Log((" CUST 0x%08X", GCPhysCust + addend)); Log((" SSDT 0x%08X", GCPhysSsdt + addend)); Log(("\n")); acpiR3SetupRsdp(pThis, (ACPITBLRSDP *)pThis->au8RSDPPage, GCPhysRsdt + addend, GCPhysXsdt + addend); acpiR3SetupDsdt(pThis, GCPhysDsdt + addend, pvDsdtCode, cbDsdt); acpiCleanupDsdt(pThis->pDevIns, pvDsdtCode); acpiR3SetupFacs(pThis, GCPhysFacs + addend); acpiR3SetupFadt(pThis, GCPhysFadtAcpi1 + addend, GCPhysFadtAcpi2 + addend, GCPhysFacs + addend, GCPhysDsdt + addend); aGCPhysRsdt[0] = GCPhysFadtAcpi1 + addend; aGCPhysXsdt[0] = GCPhysFadtAcpi2 + addend; if (pThis->u8UseIOApic) { acpiR3SetupMadt(pThis, GCPhysApic + addend); aGCPhysRsdt[iMadt] = GCPhysApic + addend; aGCPhysXsdt[iMadt] = GCPhysApic + addend; } if (pThis->fUseHpet) { acpiR3SetupHpet(pThis, GCPhysHpet + addend); aGCPhysRsdt[iHpet] = GCPhysHpet + addend; aGCPhysXsdt[iHpet] = GCPhysHpet + addend; } if (pThis->fUseMcfg) { acpiR3SetupMcfg(pThis, GCPhysMcfg + addend); aGCPhysRsdt[iMcfg] = GCPhysMcfg + addend; aGCPhysXsdt[iMcfg] = GCPhysMcfg + addend; } if (pThis->fUseCust) { acpiR3SetupCust(pThis, GCPhysCust + addend); aGCPhysRsdt[iCust] = GCPhysCust + addend; aGCPhysXsdt[iCust] = GCPhysCust + addend; } acpiR3SetupSsdt(pThis, GCPhysSsdt + addend, pvSsdtCode, cbSsdt); acpiCleanupSsdt(pThis->pDevIns, pvSsdtCode); aGCPhysRsdt[iSsdt] = GCPhysSsdt + addend; aGCPhysXsdt[iSsdt] = GCPhysSsdt + addend; rc = acpiR3SetupRsdt(pThis, GCPhysRsdt + addend, cAddr, aGCPhysRsdt); if (RT_FAILURE(rc)) return rc; return acpiR3SetupXsdt(pThis, GCPhysXsdt + addend, cAddr, aGCPhysXsdt); } /** * @callback_method_impl{FNPCICONFIGREAD} */ static DECLCALLBACK(uint32_t) acpiR3PciConfigRead(PPCIDEVICE pPciDev, uint32_t Address, unsigned cb) { PPDMDEVINS pDevIns = pPciDev->pDevIns; ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); Log2(("acpi: PCI config read: 0x%x (%d)\n", Address, cb)); return pThis->pfnAcpiPciConfigRead(pPciDev, Address, cb); } /** * @callback_method_impl{FNPCICONFIGWRITE} */ static DECLCALLBACK(void) acpiR3PciConfigWrite(PPCIDEVICE pPciDev, uint32_t Address, uint32_t u32Value, unsigned cb) { PPDMDEVINS pDevIns = pPciDev->pDevIns; ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); Log2(("acpi: PCI config write: 0x%x -> 0x%x (%d)\n", u32Value, Address, cb)); DEVACPI_LOCK_R3(pThis); if (Address == VBOX_PCI_INTERRUPT_LINE) { Log(("acpi: ignore interrupt line settings: %d, we'll use hardcoded value %d\n", u32Value, SCI_INT)); u32Value = SCI_INT; } pThis->pfnAcpiPciConfigWrite(pPciDev, Address, u32Value, cb); /* PMREGMISC written */ if (Address == 0x80) { /* Check Power Management IO Space Enable (PMIOSE) bit */ if (pPciDev->config[0x80] & 0x1) { RTIOPORT NewIoPortBase = (RTIOPORT)PCIDevGetDWord(pPciDev, 0x40); NewIoPortBase &= 0xffc0; int rc = acpiR3UpdatePmHandlers(pThis, NewIoPortBase); AssertRC(rc); } } DEVACPI_UNLOCK(pThis); } /** * Attach a new CPU. * * @returns VBox status code. * @param pDevIns The device instance. * @param iLUN The logical unit which is being attached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. * * @remarks This code path is not used during construction. */ static DECLCALLBACK(int) acpiR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); LogFlow(("acpiAttach: pDevIns=%p iLUN=%u fFlags=%#x\n", pDevIns, iLUN, fFlags)); AssertMsgReturn(!(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG), ("Hot-plug flag is not set\n"), VERR_NOT_SUPPORTED); AssertReturn(iLUN < VMM_MAX_CPU_COUNT, VERR_PDM_NO_SUCH_LUN); /* Check if it was already attached */ int rc = VINF_SUCCESS; DEVACPI_LOCK_R3(pThis); if (!VMCPUSET_IS_PRESENT(&pThis->CpuSetAttached, iLUN)) { PPDMIBASE IBaseTmp; rc = PDMDevHlpDriverAttach(pDevIns, iLUN, &pThis->IBase, &IBaseTmp, "ACPI CPU"); if (RT_SUCCESS(rc)) { /* Enable the CPU */ VMCPUSET_ADD(&pThis->CpuSetAttached, iLUN); /* * Lock the CPU because we don't know if the guest will use it or not. * Prevents ejection while the CPU is still used */ VMCPUSET_ADD(&pThis->CpuSetLocked, iLUN); pThis->u32CpuEventType = CPU_EVENT_TYPE_ADD; pThis->u32CpuEvent = iLUN; /* Notify the guest */ apicR3UpdateGpe0(pThis, pThis->gpe0_sts | 0x2, pThis->gpe0_en); } } DEVACPI_UNLOCK(pThis); return rc; } /** * Detach notification. * * @param pDevIns The device instance. * @param iLUN The logical unit which is being detached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. */ static DECLCALLBACK(void) acpiR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); LogFlow(("acpiDetach: pDevIns=%p iLUN=%u fFlags=%#x\n", pDevIns, iLUN, fFlags)); AssertMsgReturnVoid(!(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG), ("Hot-plug flag is not set\n")); /* Check if it was already detached */ DEVACPI_LOCK_R3(pThis); if (VMCPUSET_IS_PRESENT(&pThis->CpuSetAttached, iLUN)) { if (!VMCPUSET_IS_PRESENT(&pThis->CpuSetLocked, iLUN)) { /* Disable the CPU */ VMCPUSET_DEL(&pThis->CpuSetAttached, iLUN); pThis->u32CpuEventType = CPU_EVENT_TYPE_REMOVE; pThis->u32CpuEvent = iLUN; /* Notify the guest */ apicR3UpdateGpe0(pThis, pThis->gpe0_sts | 0x2, pThis->gpe0_en); } else AssertMsgFailed(("CPU is still locked by the guest\n")); } DEVACPI_UNLOCK(pThis); } /** * @interface_method_impl{PDMDEVREG,pfnResume} */ static DECLCALLBACK(void) acpiR3Resume(PPDMDEVINS pDevIns) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); if (pThis->fSetWakeupOnResume) { Log(("acpiResume: setting WAK_STS\n")); pThis->fSetWakeupOnResume = false; pThis->pm1a_sts |= WAK_STS; } } /** * @interface_method_impl{PDMDEVREG,pfnMemSetup} */ static DECLCALLBACK(void) acpiR3MemSetup(PPDMDEVINS pDevIns, PDMDEVMEMSETUPCTX enmCtx) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); acpiR3PlantTables(pThis); } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) acpiR3Reset(PPDMDEVINS pDevIns) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); TMTimerLock(pThis->pPmTimerR3, VERR_IGNORED); pThis->pm1a_en = 0; pThis->pm1a_sts = 0; pThis->pm1a_ctl = 0; pThis->u64PmTimerInitial = TMTimerGet(pThis->pPmTimerR3); acpiR3PmTimerReset(pThis, pThis->u64PmTimerInitial); pThis->uBatteryIndex = 0; pThis->uSystemInfoIndex = 0; pThis->gpe0_en = 0; pThis->gpe0_sts = 0; pThis->uSleepState = 0; TMTimerUnlock(pThis->pPmTimerR3); /** @todo Should we really reset PM base? */ acpiR3UpdatePmHandlers(pThis, PM_PORT_BASE); } /** * @interface_method_impl{PDMDEVREG,pfnRelocate} */ static DECLCALLBACK(void) acpiR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); pThis->pPmTimerRC = TMTimerRCPtr(pThis->pPmTimerR3); NOREF(offDelta); } /** * @interface_methid_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) acpiR3Destruct(PPDMDEVINS pDevIns) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); if (pThis->pu8CustBin) { MMR3HeapFree(pThis->pu8CustBin); pThis->pu8CustBin = NULL; } return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) acpiR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *); PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* * Init data and set defaults. */ /** @todo move more of the code up! */ pThis->pDevIns = pDevIns; VMCPUSET_EMPTY(&pThis->CpuSetAttached); VMCPUSET_EMPTY(&pThis->CpuSetLocked); pThis->idCpuLockCheck = UINT32_C(0xffffffff); pThis->u32CpuEventType = 0; pThis->u32CpuEvent = UINT32_C(0xffffffff); /* The first CPU can't be attached/detached */ VMCPUSET_ADD(&pThis->CpuSetAttached, 0); VMCPUSET_ADD(&pThis->CpuSetLocked, 0); /* IBase */ pThis->IBase.pfnQueryInterface = acpiR3QueryInterface; /* IACPIPort */ pThis->IACPIPort.pfnSleepButtonPress = acpiR3Port_SleepButtonPress; pThis->IACPIPort.pfnPowerButtonPress = acpiR3Port_PowerButtonPress; pThis->IACPIPort.pfnGetPowerButtonHandled = acpiR3Port_GetPowerButtonHandled; pThis->IACPIPort.pfnGetGuestEnteredACPIMode = acpiR3Port_GetGuestEnteredACPIMode; pThis->IACPIPort.pfnGetCpuStatus = acpiR3Port_GetCpuStatus; /* * Set the default critical section to NOP (related to the PM timer). */ int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "acpi#%u", iInstance); AssertRCReturn(rc, rc); /* * Validate and read the configuration. */ if (!CFGMR3AreValuesValid(pCfg, "RamSize\0" "RamHoleSize\0" "IOAPIC\0" "NumCPUs\0" "GCEnabled\0" "R0Enabled\0" "HpetEnabled\0" "McfgEnabled\0" "McfgBase\0" "McfgLength\0" "SmcEnabled\0" "FdcEnabled\0" "ShowRtc\0" "ShowCpu\0" "NicPciAddress\0" "AudioPciAddress\0" "IocPciAddress\0" "HostBusPciAddress\0" "EnableSuspendToDisk\0" "PowerS1Enabled\0" "PowerS4Enabled\0" "CpuHotPlug\0" "AmlFilePath\0" "Serial0IoPortBase\0" "Serial1IoPortBase\0" "Serial0Irq\0" "Serial1Irq\0" "AcpiOemId\0" "AcpiCreatorId\0" "AcpiCreatorRev\0" "CustomTable\0" "SLICTable\0" )) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_("Configuration error: Invalid config key for ACPI device")); /* query whether we are supposed to present an IOAPIC */ rc = CFGMR3QueryU8Def(pCfg, "IOAPIC", &pThis->u8UseIOApic, 1); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"IOAPIC\"")); rc = CFGMR3QueryU16Def(pCfg, "NumCPUs", &pThis->cCpus, 1); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"NumCPUs\" as integer failed")); /* query whether we are supposed to present an FDC controller */ rc = CFGMR3QueryBoolDef(pCfg, "FdcEnabled", &pThis->fUseFdc, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"FdcEnabled\"")); /* query whether we are supposed to present HPET */ rc = CFGMR3QueryBoolDef(pCfg, "HpetEnabled", &pThis->fUseHpet, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"HpetEnabled\"")); /* query MCFG configuration */ rc = CFGMR3QueryU64Def(pCfg, "McfgBase", &pThis->u64PciConfigMMioAddress, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"McfgBase\"")); rc = CFGMR3QueryU64Def(pCfg, "McfgLength", &pThis->u64PciConfigMMioLength, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"McfgLength\"")); pThis->fUseMcfg = (pThis->u64PciConfigMMioAddress != 0) && (pThis->u64PciConfigMMioLength != 0); /* query whether we are supposed to present custom table */ pThis->fUseCust = false; /* query whether we are supposed to present SMC */ rc = CFGMR3QueryBoolDef(pCfg, "SmcEnabled", &pThis->fUseSmc, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"SmcEnabled\"")); /* query whether we are supposed to present RTC object */ rc = CFGMR3QueryBoolDef(pCfg, "ShowRtc", &pThis->fShowRtc, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"ShowRtc\"")); /* query whether we are supposed to present CPU objects */ rc = CFGMR3QueryBoolDef(pCfg, "ShowCpu", &pThis->fShowCpu, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"ShowCpu\"")); /* query primary NIC PCI address */ rc = CFGMR3QueryU32Def(pCfg, "NicPciAddress", &pThis->u32NicPciAddress, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"NicPciAddress\"")); /* query primary NIC PCI address */ rc = CFGMR3QueryU32Def(pCfg, "AudioPciAddress", &pThis->u32AudioPciAddress, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"AudioPciAddress\"")); /* query IO controller (southbridge) PCI address */ rc = CFGMR3QueryU32Def(pCfg, "IocPciAddress", &pThis->u32IocPciAddress, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"IocPciAddress\"")); /* query host bus controller PCI address */ rc = CFGMR3QueryU32Def(pCfg, "HostBusPciAddress", &pThis->u32HbcPciAddress, 0); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"HostBusPciAddress\"")); /* query whether S1 power state should be exposed */ rc = CFGMR3QueryBoolDef(pCfg, "PowerS1Enabled", &pThis->fS1Enabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"PowerS1Enabled\"")); /* query whether S4 power state should be exposed */ rc = CFGMR3QueryBoolDef(pCfg, "PowerS4Enabled", &pThis->fS4Enabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"PowerS4Enabled\"")); /* query whether S1 power state should save the VM state */ rc = CFGMR3QueryBoolDef(pCfg, "EnableSuspendToDisk", &pThis->fSuspendToSavedState, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"EnableSuspendToDisk\"")); /* query whether we are allow CPU hot plugging */ rc = CFGMR3QueryBoolDef(pCfg, "CpuHotPlug", &pThis->fCpuHotPlug, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"CpuHotPlug\"")); rc = CFGMR3QueryBoolDef(pCfg, "GCEnabled", &pThis->fGCEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"GCEnabled\"")); rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &pThis->fR0Enabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("configuration error: failed to read \"R0Enabled\"")); /* query serial info */ rc = CFGMR3QueryU8Def(pCfg, "Serial0Irq", &pThis->uSerial0Irq, 4); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"Serial0Irq\"")); rc = CFGMR3QueryU16Def(pCfg, "Serial0IoPortBase", &pThis->uSerial0IoPortBase, 0x3f8); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"Serial0IoPortBase\"")); /* Serial 1 is enabled, get config data */ rc = CFGMR3QueryU8Def(pCfg, "Serial1Irq", &pThis->uSerial1Irq, 3); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"Serial1Irq\"")); rc = CFGMR3QueryU16Def(pCfg, "Serial1IoPortBase", &pThis->uSerial1IoPortBase, 0x2f8); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"Serial1IoPortBase\"")); /* Try to attach the other CPUs */ for (unsigned i = 1; i < pThis->cCpus; i++) { if (pThis->fCpuHotPlug) { PPDMIBASE IBaseTmp; rc = PDMDevHlpDriverAttach(pDevIns, i, &pThis->IBase, &IBaseTmp, "ACPI CPU"); if (RT_SUCCESS(rc)) { VMCPUSET_ADD(&pThis->CpuSetAttached, i); VMCPUSET_ADD(&pThis->CpuSetLocked, i); Log(("acpi: Attached CPU %u\n", i)); } else if (rc == VERR_PDM_NO_ATTACHED_DRIVER) Log(("acpi: CPU %u not attached yet\n", i)); else return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach CPU object\n")); } else { /* CPU is always attached if hot-plug is not enabled. */ VMCPUSET_ADD(&pThis->CpuSetAttached, i); VMCPUSET_ADD(&pThis->CpuSetLocked, i); } } char *pszOemId = NULL; rc = CFGMR3QueryStringAllocDef(pThis->pDevIns->pCfg, "AcpiOemId", &pszOemId, "VBOX "); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: Querying \"AcpiOemId\" as string failed")); size_t cbOemId = strlen(pszOemId); if (cbOemId > 6) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: \"AcpiOemId\" must contain not more than 6 characters")); memset(pThis->au8OemId, ' ', sizeof(pThis->au8OemId)); memcpy(pThis->au8OemId, pszOemId, cbOemId); MMR3HeapFree(pszOemId); char *pszCreatorId = NULL; rc = CFGMR3QueryStringAllocDef(pThis->pDevIns->pCfg, "AcpiCreatorId", &pszCreatorId, "ASL "); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: Querying \"AcpiCreatorId\" as string failed")); size_t cbCreatorId = strlen(pszCreatorId); if (cbCreatorId > 4) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: \"AcpiCreatorId\" must contain not more than 4 characters")); memset(pThis->au8CreatorId, ' ', sizeof(pThis->au8CreatorId)); memcpy(pThis->au8CreatorId, pszCreatorId, cbCreatorId); MMR3HeapFree(pszCreatorId); rc = CFGMR3QueryU32Def(pThis->pDevIns->pCfg, "AcpiCreatorRev", &pThis->u32CreatorRev, RT_H2LE_U32(0x61)); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: Querying \"AcpiCreatorRev\" as integer failed")); pThis->u32OemRevision = RT_H2LE_U32(0x1); /* * Get the custom table binary file name. */ char *pszCustBinFile; rc = CFGMR3QueryStringAlloc(pThis->pDevIns->pCfg, "CustomTable", &pszCustBinFile); if (rc == VERR_CFGM_VALUE_NOT_FOUND) rc = CFGMR3QueryStringAlloc(pThis->pDevIns->pCfg, "SLICTable", &pszCustBinFile); if (rc == VERR_CFGM_VALUE_NOT_FOUND) { pszCustBinFile = NULL; rc = VINF_SUCCESS; } else if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pThis->pDevIns, rc, N_("Configuration error: Querying \"CustomTable\" as a string failed")); else if (!*pszCustBinFile) { MMR3HeapFree(pszCustBinFile); pszCustBinFile = NULL; } /* * Determine the custom table binary size, open specified ROM file in the process. */ if (pszCustBinFile) { RTFILE FileCUSTBin; rc = RTFileOpen(&FileCUSTBin, pszCustBinFile, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_WRITE); if (RT_SUCCESS(rc)) { rc = RTFileGetSize(FileCUSTBin, &pThis->cbCustBin); if (RT_SUCCESS(rc)) { /* The following checks should be in sync the AssertReleaseMsg's below. */ if ( pThis->cbCustBin > 3072 || pThis->cbCustBin < sizeof(ACPITBLHEADER)) rc = VERR_TOO_MUCH_DATA; /* * Allocate buffer for the custom table binary data. */ pThis->pu8CustBin = (uint8_t *)PDMDevHlpMMHeapAlloc(pThis->pDevIns, pThis->cbCustBin); if (pThis->pu8CustBin) { rc = RTFileRead(FileCUSTBin, pThis->pu8CustBin, pThis->cbCustBin, NULL); if (RT_FAILURE(rc)) { AssertMsgFailed(("RTFileRead(,,%d,NULL) -> %Rrc\n", pThis->cbCustBin, rc)); MMR3HeapFree(pThis->pu8CustBin); pThis->pu8CustBin = NULL; } else { pThis->fUseCust = true; memcpy(&pThis->au8OemId[0], &pThis->pu8CustBin[10], 6); memcpy(&pThis->au8OemTabId[0], &pThis->pu8CustBin[16], 8); memcpy(&pThis->u32OemRevision, &pThis->pu8CustBin[24], 4); memcpy(&pThis->au8CreatorId[0], &pThis->pu8CustBin[28], 4); memcpy(&pThis->u32CreatorRev, &pThis->pu8CustBin[32], 4); LogRel(("Reading custom ACPI table from file '%s' (%d bytes)\n", pszCustBinFile, pThis->cbCustBin)); } } else rc = VERR_NO_MEMORY; RTFileClose(FileCUSTBin); } } MMR3HeapFree(pszCustBinFile); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Error reading custom ACPI table")); } /* Set default port base */ pThis->uPmIoPortBase = PM_PORT_BASE; /* * FDC and SMC try to use the same non-shareable interrupt (6), * enable only one device. */ if (pThis->fUseSmc) pThis->fUseFdc = false; /* * Plant ACPI tables. */ /** @todo Part of this is redone by acpiR3MemSetup, we only need to init the * au8RSDPPage here. However, there should be no harm in doing it * twice, so the lazy bird is taking the quick way out for now. */ RTGCPHYS32 GCPhysRsdp = apicR3FindRsdpSpace(); if (!GCPhysRsdp) return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Can not find space for RSDP. ACPI is disabled")); rc = acpiR3PlantTables(pThis); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpROMRegister(pDevIns, GCPhysRsdp, 0x1000, pThis->au8RSDPPage, 0x1000, PGMPHYS_ROM_FLAGS_PERMANENT_BINARY, "ACPI RSDP"); if (RT_FAILURE(rc)) return rc; /* * Register I/O ports. */ rc = acpiR3RegisterPmHandlers(pThis); if (RT_FAILURE(rc)) return rc; #define R(addr, cnt, writer, reader, description) \ do { \ rc = PDMDevHlpIOPortRegister(pDevIns, addr, cnt, pThis, writer, reader, \ NULL, NULL, description); \ if (RT_FAILURE(rc)) \ return rc; \ } while (0) R(SMI_CMD, 1, acpiR3SmiWrite, NULL, "ACPI SMI"); #ifdef DEBUG_ACPI R(DEBUG_HEX, 1, acpiR3DhexWrite, NULL, "ACPI Debug hex"); R(DEBUG_CHR, 1, acpiR3DchrWrite, NULL, "ACPI Debug char"); #endif R(BAT_INDEX, 1, acpiR3BatIndexWrite, NULL, "ACPI Battery status index"); R(BAT_DATA, 1, NULL, acpiR3BatDataRead, "ACPI Battery status data"); R(SYSI_INDEX, 1, acpiR3SysInfoIndexWrite, NULL, "ACPI system info index"); R(SYSI_DATA, 1, acpiR3SysInfoDataWrite, acpiR3SysInfoDataRead, "ACPI system info data"); R(ACPI_RESET_BLK, 1, acpiR3ResetWrite, NULL, "ACPI Reset"); #undef R /* * Create the PM timer. */ PTMTIMER pTimer; rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, acpiR3PmTimer, &pThis->dev, TMTIMER_FLAGS_NO_CRIT_SECT, "ACPI PM Timer", &pTimer); AssertRCReturn(rc, rc); pThis->pPmTimerR3 = pTimer; pThis->pPmTimerR0 = TMTimerR0Ptr(pTimer); pThis->pPmTimerRC = TMTimerRCPtr(pTimer); rc = TMTimerLock(pTimer, VERR_IGNORED); AssertRCReturn(rc, rc); pThis->u64PmTimerInitial = TMTimerGet(pTimer); acpiR3PmTimerReset(pThis, pThis->u64PmTimerInitial); TMTimerUnlock(pTimer); /* * Set up the PCI device. */ PCIDevSetVendorId(&pThis->dev, 0x8086); /* Intel */ PCIDevSetDeviceId(&pThis->dev, 0x7113); /* 82371AB */ /* See p. 50 of PIIX4 manual */ PCIDevSetCommand(&pThis->dev, 0x01); PCIDevSetStatus(&pThis->dev, 0x0280); PCIDevSetRevisionId(&pThis->dev, 0x08); PCIDevSetClassProg(&pThis->dev, 0x00); PCIDevSetClassSub(&pThis->dev, 0x80); PCIDevSetClassBase(&pThis->dev, 0x06); PCIDevSetHeaderType(&pThis->dev, 0x80); PCIDevSetBIST(&pThis->dev, 0x00); PCIDevSetInterruptLine(&pThis->dev, SCI_INT); PCIDevSetInterruptPin (&pThis->dev, 0x01); pThis->dev.config[0x40] = 0x01; /* PM base address, this bit marks it as IO range, not PA */ #if 0 int smb_io_base = 0xb100; dev->config[0x90] = smb_io_base | 1; /* SMBus base address */ dev->config[0x90] = smb_io_base >> 8; #endif rc = PDMDevHlpPCIRegister(pDevIns, &pThis->dev); if (RT_FAILURE(rc)) return rc; PDMDevHlpPCISetConfigCallbacks(pDevIns, &pThis->dev, acpiR3PciConfigRead, &pThis->pfnAcpiPciConfigRead, acpiR3PciConfigWrite, &pThis->pfnAcpiPciConfigWrite); /* * Register the saved state. */ rc = PDMDevHlpSSMRegister(pDevIns, 6, sizeof(*pThis), acpiR3SaveState, acpiR3LoadState); if (RT_FAILURE(rc)) return rc; /* * Get the corresponding connector interface */ rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThis->IBase, &pThis->pDrvBase, "ACPI Driver Port"); if (RT_SUCCESS(rc)) { pThis->pDrv = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIACPICONNECTOR); if (!pThis->pDrv) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_MISSING_INTERFACE, N_("LUN #0 doesn't have an ACPI connector interface")); } else if (rc == VERR_PDM_NO_ATTACHED_DRIVER) { Log(("acpi: %s/%d: warning: no driver attached to LUN #0!\n", pDevIns->pReg->szName, pDevIns->iInstance)); rc = VINF_SUCCESS; } else return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach LUN #0")); return rc; } /** * The device registration structure. */ const PDMDEVREG g_DeviceACPI = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "acpi", /* szRCMod */ "VBoxDDGC.gc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Advanced Configuration and Power Interface", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_ACPI, /* cMaxInstances */ ~0U, /* cbInstance */ sizeof(ACPIState), /* pfnConstruct */ acpiR3Construct, /* pfnDestruct */ acpiR3Destruct, /* pfnRelocate */ acpiR3Relocate, /* pfnMemSetup */ acpiR3MemSetup, /* pfnPowerOn */ NULL, /* pfnReset */ acpiR3Reset, /* pfnSuspend */ NULL, /* pfnResume */ acpiR3Resume, /* pfnAttach */ acpiR3Attach, /* pfnDetach */ acpiR3Detach, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */