VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/slirp/slirp.c@ 57550

Last change on this file since 57550 was 57550, checked in by vboxsync, 9 years ago

NAT: improved error message

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 67.4 KB
Line 
1/* $Id: slirp.c 57550 2015-08-26 14:19:11Z vboxsync $ */
2/** @file
3 * NAT - slirp glue.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*
19 * This code is based on:
20 *
21 * libslirp glue
22 *
23 * Copyright (c) 2004-2008 Fabrice Bellard
24 *
25 * Permission is hereby granted, free of charge, to any person obtaining a copy
26 * of this software and associated documentation files (the "Software"), to deal
27 * in the Software without restriction, including without limitation the rights
28 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
29 * copies of the Software, and to permit persons to whom the Software is
30 * furnished to do so, subject to the following conditions:
31 *
32 * The above copyright notice and this permission notice shall be included in
33 * all copies or substantial portions of the Software.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
36 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
37 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
38 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
39 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
40 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
41 * THE SOFTWARE.
42 */
43
44#include "slirp.h"
45#ifdef RT_OS_OS2
46# include <paths.h>
47#endif
48
49#include <VBox/err.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/pdmdrv.h>
52#include <iprt/assert.h>
53#include <iprt/file.h>
54#ifndef RT_OS_WINDOWS
55# include <sys/ioctl.h>
56# include <poll.h>
57# include <netinet/in.h>
58#else
59# include <Winnls.h>
60# define _WINSOCK2API_
61# include <IPHlpApi.h>
62#endif
63#include <alias.h>
64
65#ifndef RT_OS_WINDOWS
66/**
67 * XXX: It shouldn't be non-Windows specific.
68 * resolv_conf_parser.h client's structure isn't OS specific, it's just need to be generalized a
69 * a bit to replace slirp_state.h DNS server (domain) lists with rcp_state like structure.
70 */
71# include "resolv_conf_parser.h"
72#endif
73
74#ifndef RT_OS_WINDOWS
75# define DO_ENGAGE_EVENT1(so, fdset, label) \
76 do { \
77 if ( so->so_poll_index != -1 \
78 && so->s == polls[so->so_poll_index].fd) \
79 { \
80 polls[so->so_poll_index].events |= N_(fdset ## _poll); \
81 break; \
82 } \
83 AssertRelease(poll_index < (nfds)); \
84 AssertRelease(poll_index >= 0 && poll_index < (nfds)); \
85 polls[poll_index].fd = (so)->s; \
86 (so)->so_poll_index = poll_index; \
87 polls[poll_index].events = N_(fdset ## _poll); \
88 polls[poll_index].revents = 0; \
89 poll_index++; \
90 } while (0)
91
92# define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \
93 do { \
94 if ( so->so_poll_index != -1 \
95 && so->s == polls[so->so_poll_index].fd) \
96 { \
97 polls[so->so_poll_index].events |= \
98 N_(fdset1 ## _poll) | N_(fdset2 ## _poll); \
99 break; \
100 } \
101 AssertRelease(poll_index < (nfds)); \
102 polls[poll_index].fd = (so)->s; \
103 (so)->so_poll_index = poll_index; \
104 polls[poll_index].events = \
105 N_(fdset1 ## _poll) | N_(fdset2 ## _poll); \
106 poll_index++; \
107 } while (0)
108
109# define DO_POLL_EVENTS(rc, error, so, events, label) do {} while (0)
110
111/*
112 * DO_CHECK_FD_SET is used in dumping events on socket, including POLLNVAL.
113 * gcc warns about attempts to log POLLNVAL so construction in a last to lines
114 * used to catch POLLNVAL while logging and return false in case of error while
115 * normal usage.
116 */
117# define DO_CHECK_FD_SET(so, events, fdset) \
118 ( ((so)->so_poll_index != -1) \
119 && ((so)->so_poll_index <= ndfs) \
120 && ((so)->s == polls[so->so_poll_index].fd) \
121 && (polls[(so)->so_poll_index].revents & N_(fdset ## _poll)) \
122 && ( N_(fdset ## _poll) == POLLNVAL \
123 || !(polls[(so)->so_poll_index].revents & POLLNVAL)))
124
125 /* specific for Windows Winsock API */
126# define DO_WIN_CHECK_FD_SET(so, events, fdset) 0
127
128# ifndef RT_OS_LINUX
129# define readfds_poll (POLLRDNORM)
130# define writefds_poll (POLLWRNORM)
131# else
132# define readfds_poll (POLLIN)
133# define writefds_poll (POLLOUT)
134# endif
135# define xfds_poll (POLLPRI)
136# define closefds_poll (POLLHUP)
137# define rderr_poll (POLLERR)
138# if 0 /* unused yet */
139# define rdhup_poll (POLLHUP)
140# define nval_poll (POLLNVAL)
141# endif
142
143# define ICMP_ENGAGE_EVENT(so, fdset) \
144 do { \
145 if (pData->icmp_socket.s != -1) \
146 DO_ENGAGE_EVENT1((so), fdset, ICMP); \
147 } while (0)
148
149#else /* RT_OS_WINDOWS */
150
151/*
152 * On Windows, we will be notified by IcmpSendEcho2() when the response arrives.
153 * So no call to WSAEventSelect necessary.
154 */
155# define ICMP_ENGAGE_EVENT(so, fdset) do {} while (0)
156
157/*
158 * On Windows we use FD_ALL_EVENTS to ensure that we don't miss any event.
159 */
160# define DO_ENGAGE_EVENT1(so, fdset1, label) \
161 do { \
162 rc = WSAEventSelect((so)->s, VBOX_SOCKET_EVENT, FD_ALL_EVENTS); \
163 if (rc == SOCKET_ERROR) \
164 { \
165 /* This should not happen */ \
166 error = WSAGetLastError(); \
167 LogRel(("WSAEventSelect (" #label ") error %d (so=%x, socket=%s, event=%x)\n", \
168 error, (so), (so)->s, VBOX_SOCKET_EVENT)); \
169 } \
170 } while (0); \
171 CONTINUE(label)
172
173# define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \
174 DO_ENGAGE_EVENT1((so), (fdset1), label)
175
176# define DO_POLL_EVENTS(rc, error, so, events, label) \
177 (rc) = WSAEnumNetworkEvents((so)->s, VBOX_SOCKET_EVENT, (events)); \
178 if ((rc) == SOCKET_ERROR) \
179 { \
180 (error) = WSAGetLastError(); \
181 LogRel(("WSAEnumNetworkEvents %R[natsock] " #label " error %d\n", (so), (error))); \
182 LogFunc(("WSAEnumNetworkEvents %R[natsock] " #label " error %d\n", (so), (error))); \
183 CONTINUE(label); \
184 }
185
186# define acceptds_win FD_ACCEPT
187# define acceptds_win_bit FD_ACCEPT_BIT
188# define readfds_win FD_READ
189# define readfds_win_bit FD_READ_BIT
190# define writefds_win FD_WRITE
191# define writefds_win_bit FD_WRITE_BIT
192# define xfds_win FD_OOB
193# define xfds_win_bit FD_OOB_BIT
194# define closefds_win FD_CLOSE
195# define closefds_win_bit FD_CLOSE_BIT
196# define connectfds_win FD_CONNECT
197# define connectfds_win_bit FD_CONNECT_BIT
198
199# define closefds_win FD_CLOSE
200# define closefds_win_bit FD_CLOSE_BIT
201
202# define DO_CHECK_FD_SET(so, events, fdset) \
203 ((events).lNetworkEvents & fdset ## _win)
204
205# define DO_WIN_CHECK_FD_SET(so, events, fdset) DO_CHECK_FD_SET((so), (events), fdset)
206# define DO_UNIX_CHECK_FD_SET(so, events, fdset) 1 /*specific for Unix API */
207
208#endif /* RT_OS_WINDOWS */
209
210#define TCP_ENGAGE_EVENT1(so, fdset) \
211 DO_ENGAGE_EVENT1((so), fdset, tcp)
212
213#define TCP_ENGAGE_EVENT2(so, fdset1, fdset2) \
214 DO_ENGAGE_EVENT2((so), fdset1, fdset2, tcp)
215
216#ifdef RT_OS_WINDOWS
217# define WIN_TCP_ENGAGE_EVENT2(so, fdset, fdset2) TCP_ENGAGE_EVENT2(so, fdset1, fdset2)
218#endif
219
220#define UDP_ENGAGE_EVENT(so, fdset) \
221 DO_ENGAGE_EVENT1((so), fdset, udp)
222
223#define POLL_TCP_EVENTS(rc, error, so, events) \
224 DO_POLL_EVENTS((rc), (error), (so), (events), tcp)
225
226#define POLL_UDP_EVENTS(rc, error, so, events) \
227 DO_POLL_EVENTS((rc), (error), (so), (events), udp)
228
229#define CHECK_FD_SET(so, events, set) \
230 (DO_CHECK_FD_SET((so), (events), set))
231
232#define WIN_CHECK_FD_SET(so, events, set) \
233 (DO_WIN_CHECK_FD_SET((so), (events), set))
234
235/*
236 * Loging macros
237 */
238#if VBOX_WITH_DEBUG_NAT_SOCKETS
239# if defined(RT_OS_WINDOWS)
240# define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \
241 do { \
242 LogRel((" " #proto " %R[natsock] %R[natwinnetevents]\n", (so), (winevent))); \
243 } while (0)
244# else /* !RT_OS_WINDOWS */
245# define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \
246 do { \
247 LogRel((" " #proto " %R[natsock] %s %s %s er: %s, %s, %s\n", (so), \
248 CHECK_FD_SET(so, ign ,r_fdset) ? "READ":"", \
249 CHECK_FD_SET(so, ign, w_fdset) ? "WRITE":"", \
250 CHECK_FD_SET(so, ign, x_fdset) ? "OOB":"", \
251 CHECK_FD_SET(so, ign, rderr) ? "RDERR":"", \
252 CHECK_FD_SET(so, ign, rdhup) ? "RDHUP":"", \
253 CHECK_FD_SET(so, ign, nval) ? "RDNVAL":"")); \
254 } while (0)
255# endif /* !RT_OS_WINDOWS */
256#else /* !VBOX_WITH_DEBUG_NAT_SOCKETS */
257# define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) do {} while (0)
258#endif /* !VBOX_WITH_DEBUG_NAT_SOCKETS */
259
260#define LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \
261 DO_LOG_NAT_SOCK((so), proto, (winevent), r_fdset, w_fdset, x_fdset)
262
263static void activate_port_forwarding(PNATState, const uint8_t *pEther);
264
265static const uint8_t special_ethaddr[6] =
266{
267 0x52, 0x54, 0x00, 0x12, 0x35, 0x00
268};
269
270static const uint8_t broadcast_ethaddr[6] =
271{
272 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
273};
274
275const uint8_t zerro_ethaddr[6] =
276{
277 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
278};
279
280/**
281 * This helper routine do the checks in descriptions to
282 * ''fUnderPolling'' and ''fShouldBeRemoved'' flags
283 * @returns 1 if socket removed and 0 if no changes was made.
284 */
285static int slirpVerifyAndFreeSocket(PNATState pData, struct socket *pSocket)
286{
287 AssertPtrReturn(pData, 0);
288 AssertPtrReturn(pSocket, 0);
289 AssertReturn(pSocket->fUnderPolling, 0);
290 if (pSocket->fShouldBeRemoved)
291 {
292 pSocket->fUnderPolling = 0;
293 sofree(pData, pSocket);
294 /* pSocket is PHANTOM, now */
295 return 1;
296 }
297 return 0;
298}
299
300int slirp_init(PNATState *ppData, uint32_t u32NetAddr, uint32_t u32Netmask,
301 bool fPassDomain, bool fUseHostResolver, int i32AliasMode,
302 int iIcmpCacheLimit, void *pvUser)
303{
304 int rc;
305 PNATState pData;
306 if (u32Netmask & 0x1f)
307 {
308 /* CTL is x.x.x.15, bootp passes up to 16 IPs (15..31) */
309 LogRel(("The last 5 bits of the netmask (%RTnaipv4) need to be unset\n", RT_BE2H_U32(u32Netmask)));
310 return VERR_INVALID_PARAMETER;
311 }
312 pData = RTMemAllocZ(RT_ALIGN_Z(sizeof(NATState), sizeof(uint64_t)));
313 *ppData = pData;
314 if (!pData)
315 return VERR_NO_MEMORY;
316 pData->fPassDomain = !fUseHostResolver ? fPassDomain : false;
317 pData->fUseHostResolver = fUseHostResolver;
318 pData->fUseHostResolverPermanent = fUseHostResolver;
319 pData->pvUser = pvUser;
320 pData->netmask = u32Netmask;
321
322 rc = RTCritSectRwInit(&pData->CsRwHandlerChain);
323 if (RT_FAILURE(rc))
324 return rc;
325
326 /* sockets & TCP defaults */
327 pData->socket_rcv = 64 * _1K;
328 pData->socket_snd = 64 * _1K;
329 tcp_sndspace = 64 * _1K;
330 tcp_rcvspace = 64 * _1K;
331
332 /*
333 * Use the same default here as in DevNAT.cpp (SoMaxConnection CFGM value)
334 * to avoid release log noise.
335 */
336 pData->soMaxConn = 10;
337
338#ifdef RT_OS_WINDOWS
339 {
340 WSADATA Data;
341 RTLDRMOD hLdrMod;
342
343 WSAStartup(MAKEWORD(2, 0), &Data);
344
345 rc = RTLdrLoadSystem("Iphlpapi.dll", /* :fNoUnload */ true, &hLdrMod);
346 if (RT_SUCCESS(rc))
347 {
348 rc = RTLdrGetSymbol(hLdrMod, "GetAdaptersAddresses", (void **)&pData->pfGetAdaptersAddresses);
349 if (RT_FAILURE(rc))
350 LogRel(("NAT: Can't find GetAdapterAddresses in Iphlpapi.dll\n"));
351
352 RTLdrClose(hLdrMod);
353 }
354 }
355 pData->phEvents[VBOX_SOCKET_EVENT_INDEX] = CreateEvent(NULL, FALSE, FALSE, NULL);
356#endif
357
358 rc = bootp_dhcp_init(pData);
359 if (RT_FAILURE(rc))
360 {
361 Log(("NAT: DHCP server initialization failed\n"));
362 RTMemFree(pData);
363 *ppData = NULL;
364 return rc;
365 }
366 debug_init(pData);
367 if_init(pData);
368 ip_init(pData);
369 icmp_init(pData, iIcmpCacheLimit);
370
371 /* Initialise mbufs *after* setting the MTU */
372 mbuf_init(pData);
373
374 pData->special_addr.s_addr = u32NetAddr;
375 pData->slirp_ethaddr = &special_ethaddr[0];
376 alias_addr.s_addr = pData->special_addr.s_addr | RT_H2N_U32_C(CTL_ALIAS);
377 /* @todo: add ability to configure this staff */
378
379 /* set default addresses */
380 inet_aton("127.0.0.1", &loopback_addr);
381
382 rc = slirpTftpInit(pData);
383 AssertRCReturn(rc, VINF_NAT_DNS);
384
385 if (i32AliasMode & ~(PKT_ALIAS_LOG|PKT_ALIAS_SAME_PORTS|PKT_ALIAS_PROXY_ONLY))
386 {
387 Log(("NAT: alias mode %x is ignored\n", i32AliasMode));
388 i32AliasMode = 0;
389 }
390 pData->i32AliasMode = i32AliasMode;
391 getouraddr(pData);
392 {
393 int flags = 0;
394 struct in_addr proxy_addr;
395 pData->proxy_alias = LibAliasInit(pData, NULL);
396 if (pData->proxy_alias == NULL)
397 {
398 Log(("NAT: LibAlias default rule wasn't initialized\n"));
399 AssertMsgFailed(("NAT: LibAlias default rule wasn't initialized\n"));
400 }
401 flags = LibAliasSetMode(pData->proxy_alias, 0, 0);
402#ifndef NO_FW_PUNCH
403 flags |= PKT_ALIAS_PUNCH_FW;
404#endif
405 flags |= pData->i32AliasMode; /* do transparent proxying */
406 flags = LibAliasSetMode(pData->proxy_alias, flags, ~0);
407 proxy_addr.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS);
408 LibAliasSetAddress(pData->proxy_alias, proxy_addr);
409 ftp_alias_load(pData);
410 nbt_alias_load(pData);
411 if (pData->fUseHostResolver)
412 dns_alias_load(pData);
413 }
414#ifdef VBOX_WITH_NAT_SEND2HOME
415 /* @todo: we should know all interfaces available on host. */
416 pData->pInSockAddrHomeAddress = RTMemAllocZ(sizeof(struct sockaddr));
417 pData->cInHomeAddressSize = 1;
418 inet_aton("192.168.1.25", &pData->pInSockAddrHomeAddress[0].sin_addr);
419 pData->pInSockAddrHomeAddress[0].sin_family = AF_INET;
420# ifdef RT_OS_DARWIN
421 pData->pInSockAddrHomeAddress[0].sin_len = sizeof(struct sockaddr_in);
422# endif
423#endif
424
425 slirp_link_up(pData);
426 return VINF_SUCCESS;
427}
428
429/**
430 * Register statistics.
431 */
432void slirp_register_statistics(PNATState pData, PPDMDRVINS pDrvIns)
433{
434#ifdef VBOX_WITH_STATISTICS
435# define PROFILE_COUNTER(name, dsc) REGISTER_COUNTER(name, pData, STAMTYPE_PROFILE, STAMUNIT_TICKS_PER_CALL, dsc)
436# define COUNTING_COUNTER(name, dsc) REGISTER_COUNTER(name, pData, STAMTYPE_COUNTER, STAMUNIT_COUNT, dsc)
437# include "counters.h"
438# undef COUNTER
439/** @todo register statistics for the variables dumped by:
440 * ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData);
441 * mbufstats(pData); sockstats(pData); */
442#else /* VBOX_WITH_STATISTICS */
443 NOREF(pData);
444 NOREF(pDrvIns);
445#endif /* !VBOX_WITH_STATISTICS */
446}
447
448/**
449 * Deregister statistics.
450 */
451void slirp_deregister_statistics(PNATState pData, PPDMDRVINS pDrvIns)
452{
453 if (pData == NULL)
454 return;
455#ifdef VBOX_WITH_STATISTICS
456# define PROFILE_COUNTER(name, dsc) DEREGISTER_COUNTER(name, pData)
457# define COUNTING_COUNTER(name, dsc) DEREGISTER_COUNTER(name, pData)
458# include "counters.h"
459#else /* VBOX_WITH_STATISTICS */
460 NOREF(pData);
461 NOREF(pDrvIns);
462#endif /* !VBOX_WITH_STATISTICS */
463}
464
465/**
466 * Marks the link as up, making it possible to establish new connections.
467 */
468void slirp_link_up(PNATState pData)
469{
470 struct arp_cache_entry *ac;
471
472 if (link_up == 1)
473 return;
474
475 link_up = 1;
476
477 if (!pData->fUseHostResolverPermanent)
478 slirpInitializeDnsSettings(pData);
479
480 if (LIST_EMPTY(&pData->arp_cache))
481 return;
482
483 LIST_FOREACH(ac, &pData->arp_cache, list)
484 {
485 activate_port_forwarding(pData, ac->ether);
486 }
487}
488
489/**
490 * Marks the link as down and cleans up the current connections.
491 */
492void slirp_link_down(PNATState pData)
493{
494 struct port_forward_rule *rule;
495
496 if (link_up == 0)
497 return;
498
499 slirpReleaseDnsSettings(pData);
500
501 /*
502 * Clear the active state of port-forwarding rules to force
503 * re-setup on restoration of communications.
504 */
505 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
506 {
507 rule->activated = 0;
508 }
509 pData->cRedirectionsActive = 0;
510
511 link_up = 0;
512}
513
514/**
515 * Terminates the slirp component.
516 */
517void slirp_term(PNATState pData)
518{
519 struct socket *so;
520
521 if (pData == NULL)
522 return;
523
524 icmp_finit(pData);
525
526 while ((so = tcb.so_next) != &tcb)
527 {
528 /* Don't miss TCB releasing */
529 if ( !sototcpcb(so)
530 && ( so->so_state & SS_NOFDREF
531 || so->s == -1))
532 sofree(pData, so);
533 else
534 tcp_close(pData, sototcpcb(so));
535 }
536
537 while ((so = udb.so_next) != &udb)
538 udp_detach(pData, so);
539
540 slirp_link_down(pData);
541 ftp_alias_unload(pData);
542 nbt_alias_unload(pData);
543 if (pData->fUseHostResolver)
544 {
545 dns_alias_unload(pData);
546#ifdef VBOX_WITH_DNSMAPPING_IN_HOSTRESOLVER
547 while (!LIST_EMPTY(&pData->DNSMapHead))
548 {
549 PDNSMAPPINGENTRY pDnsEntry = LIST_FIRST(&pData->DNSMapHead);
550 LIST_REMOVE(pDnsEntry, MapList);
551 RTStrFree(pDnsEntry->pszCName);
552 RTMemFree(pDnsEntry);
553 }
554#endif
555 }
556 while (!LIST_EMPTY(&instancehead))
557 {
558 struct libalias *la = LIST_FIRST(&instancehead);
559 /* libalias do all clean up */
560 LibAliasUninit(la);
561 }
562 while (!LIST_EMPTY(&pData->arp_cache))
563 {
564 struct arp_cache_entry *ac = LIST_FIRST(&pData->arp_cache);
565 LIST_REMOVE(ac, list);
566 RTMemFree(ac);
567 }
568 slirpTftpTerm(pData);
569 bootp_dhcp_fini(pData);
570 m_fini(pData);
571#ifdef RT_OS_WINDOWS
572 WSACleanup();
573#endif
574#ifdef LOG_ENABLED
575 Log(("\n"
576 "NAT statistics\n"
577 "--------------\n"
578 "\n"));
579 ipstats(pData);
580 tcpstats(pData);
581 udpstats(pData);
582 icmpstats(pData);
583 mbufstats(pData);
584 sockstats(pData);
585 Log(("\n"
586 "\n"
587 "\n"));
588#endif
589 RTCritSectRwDelete(&pData->CsRwHandlerChain);
590 RTMemFree(pData);
591}
592
593
594#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
595#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
596
597/*
598 * curtime kept to an accuracy of 1ms
599 */
600static void updtime(PNATState pData)
601{
602#ifdef RT_OS_WINDOWS
603 struct _timeb tb;
604
605 _ftime(&tb);
606 curtime = (u_int)tb.time * (u_int)1000;
607 curtime += (u_int)tb.millitm;
608#else
609 gettimeofday(&tt, 0);
610
611 curtime = (u_int)tt.tv_sec * (u_int)1000;
612 curtime += (u_int)tt.tv_usec / (u_int)1000;
613
614 if ((tt.tv_usec % 1000) >= 500)
615 curtime++;
616#endif
617}
618
619#ifdef RT_OS_WINDOWS
620void slirp_select_fill(PNATState pData, int *pnfds)
621#else /* RT_OS_WINDOWS */
622void slirp_select_fill(PNATState pData, int *pnfds, struct pollfd *polls)
623#endif /* !RT_OS_WINDOWS */
624{
625 struct socket *so, *so_next;
626 int nfds;
627#if defined(RT_OS_WINDOWS)
628 int rc;
629 int error;
630#else
631 int poll_index = 0;
632#endif
633 int i;
634
635 STAM_PROFILE_START(&pData->StatFill, a);
636
637 nfds = *pnfds;
638
639 /*
640 * First, TCP sockets
641 */
642 do_slowtimo = 0;
643 if (!link_up)
644 goto done;
645
646 /*
647 * *_slowtimo needs calling if there are IP fragments
648 * in the fragment queue, or there are TCP connections active
649 */
650 /* XXX:
651 * triggering of fragment expiration should be the same but use new macroses
652 */
653 do_slowtimo = (tcb.so_next != &tcb);
654 if (!do_slowtimo)
655 {
656 for (i = 0; i < IPREASS_NHASH; i++)
657 {
658 if (!TAILQ_EMPTY(&ipq[i]))
659 {
660 do_slowtimo = 1;
661 break;
662 }
663 }
664 }
665 /* always add the ICMP socket */
666#ifndef RT_OS_WINDOWS
667 pData->icmp_socket.so_poll_index = -1;
668#endif
669 ICMP_ENGAGE_EVENT(&pData->icmp_socket, readfds);
670
671 STAM_COUNTER_RESET(&pData->StatTCP);
672 STAM_COUNTER_RESET(&pData->StatTCPHot);
673
674 QSOCKET_FOREACH(so, so_next, tcp)
675 /* { */
676 Assert(so->so_type == IPPROTO_TCP);
677#if !defined(RT_OS_WINDOWS)
678 so->so_poll_index = -1;
679#endif
680 STAM_COUNTER_INC(&pData->StatTCP);
681#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
682 /* TCP socket can't be cloned */
683 Assert((!so->so_cloneOf));
684#endif
685 /*
686 * See if we need a tcp_fasttimo
687 */
688 if ( time_fasttimo == 0
689 && so->so_tcpcb != NULL
690 && so->so_tcpcb->t_flags & TF_DELACK)
691 {
692 time_fasttimo = curtime; /* Flag when we want a fasttimo */
693 }
694
695 /*
696 * NOFDREF can include still connecting to local-host,
697 * newly socreated() sockets etc. Don't want to select these.
698 */
699 if (so->so_state & SS_NOFDREF || so->s == -1)
700 CONTINUE(tcp);
701
702 /*
703 * Set for reading sockets which are accepting
704 */
705 if (so->so_state & SS_FACCEPTCONN)
706 {
707 STAM_COUNTER_INC(&pData->StatTCPHot);
708 TCP_ENGAGE_EVENT1(so, readfds);
709 CONTINUE(tcp);
710 }
711
712 /*
713 * Set for writing sockets which are connecting
714 */
715 if (so->so_state & SS_ISFCONNECTING)
716 {
717 Log2(("connecting %R[natsock] engaged\n",so));
718 STAM_COUNTER_INC(&pData->StatTCPHot);
719#ifdef RT_OS_WINDOWS
720 WIN_TCP_ENGAGE_EVENT2(so, writefds, connectfds);
721#else
722 TCP_ENGAGE_EVENT1(so, writefds);
723#endif
724 }
725
726 /*
727 * Set for writing if we are connected, can send more, and
728 * we have something to send
729 */
730 if (CONN_CANFSEND(so) && SBUF_LEN(&so->so_rcv))
731 {
732 STAM_COUNTER_INC(&pData->StatTCPHot);
733 TCP_ENGAGE_EVENT1(so, writefds);
734 }
735
736 /*
737 * Set for reading (and urgent data) if we are connected, can
738 * receive more, and we have room for it XXX /2 ?
739 */
740 /* @todo: vvl - check which predicat here will be more useful here in rerm of new sbufs. */
741 if ( CONN_CANFRCV(so)
742 && (SBUF_LEN(&so->so_snd) < (SBUF_SIZE(&so->so_snd)/2))
743#ifdef RT_OS_WINDOWS
744 && !(so->so_state & SS_ISFCONNECTING)
745#endif
746 )
747 {
748 STAM_COUNTER_INC(&pData->StatTCPHot);
749 TCP_ENGAGE_EVENT2(so, readfds, xfds);
750 }
751 LOOP_LABEL(tcp, so, so_next);
752 }
753
754 /*
755 * UDP sockets
756 */
757 STAM_COUNTER_RESET(&pData->StatUDP);
758 STAM_COUNTER_RESET(&pData->StatUDPHot);
759
760 QSOCKET_FOREACH(so, so_next, udp)
761 /* { */
762
763 Assert(so->so_type == IPPROTO_UDP);
764 STAM_COUNTER_INC(&pData->StatUDP);
765#if !defined(RT_OS_WINDOWS)
766 so->so_poll_index = -1;
767#endif
768
769 /*
770 * See if it's timed out
771 */
772 if (so->so_expire)
773 {
774 if (so->so_expire <= curtime)
775 {
776 Log2(("NAT: %R[natsock] expired\n", so));
777 if (so->so_timeout != NULL)
778 {
779 /* so_timeout - might change the so_expire value or
780 * drop so_timeout* from so.
781 */
782 so->so_timeout(pData, so, so->so_timeout_arg);
783 /* on 4.2 so->
784 */
785 if ( so_next->so_prev != so /* so_timeout freed the socket */
786 || so->so_timeout) /* so_timeout just freed so_timeout */
787 CONTINUE_NO_UNLOCK(udp);
788 }
789 UDP_DETACH(pData, so, so_next);
790 CONTINUE_NO_UNLOCK(udp);
791 }
792 }
793#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
794 if (so->so_cloneOf)
795 CONTINUE_NO_UNLOCK(udp);
796#endif
797
798 /*
799 * When UDP packets are received from over the link, they're
800 * sendto()'d straight away, so no need for setting for writing
801 * Limit the number of packets queued by this session to 4.
802 * Note that even though we try and limit this to 4 packets,
803 * the session could have more queued if the packets needed
804 * to be fragmented.
805 *
806 * (XXX <= 4 ?)
807 */
808 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4)
809 {
810 STAM_COUNTER_INC(&pData->StatUDPHot);
811 UDP_ENGAGE_EVENT(so, readfds);
812 }
813 LOOP_LABEL(udp, so, so_next);
814 }
815done:
816
817#if defined(RT_OS_WINDOWS)
818 *pnfds = VBOX_EVENT_COUNT;
819#else /* RT_OS_WINDOWS */
820 AssertRelease(poll_index <= *pnfds);
821 *pnfds = poll_index;
822#endif /* !RT_OS_WINDOWS */
823
824 STAM_PROFILE_STOP(&pData->StatFill, a);
825}
826
827
828/**
829 * This function do Connection or sending tcp sequence to.
830 * @returns if true operation completed
831 * @note: functions call tcp_input that potentially could lead to tcp_drop
832 */
833static bool slirpConnectOrWrite(PNATState pData, struct socket *so, bool fConnectOnly)
834{
835 int ret;
836 LogFlowFunc(("ENTER: so:%R[natsock], fConnectOnly:%RTbool\n", so, fConnectOnly));
837 /*
838 * Check for non-blocking, still-connecting sockets
839 */
840 if (so->so_state & SS_ISFCONNECTING)
841 {
842 Log2(("connecting %R[natsock] catched\n", so));
843 /* Connected */
844 so->so_state &= ~SS_ISFCONNECTING;
845
846 /*
847 * This should be probably guarded by PROBE_CONN too. Anyway,
848 * we disable it on OS/2 because the below send call returns
849 * EFAULT which causes the opened TCP socket to close right
850 * after it has been opened and connected.
851 */
852#ifndef RT_OS_OS2
853 ret = send(so->s, (const char *)&ret, 0, 0);
854 if (ret < 0)
855 {
856 /* XXXXX Must fix, zero bytes is a NOP */
857 if ( soIgnorableErrorCode(errno)
858 || errno == ENOTCONN)
859 {
860 LogFlowFunc(("LEAVE: false\n"));
861 return false;
862 }
863
864 /* else failed */
865 so->so_state = SS_NOFDREF;
866 }
867 /* else so->so_state &= ~SS_ISFCONNECTING; */
868#endif
869
870 /*
871 * Continue tcp_input
872 */
873 TCP_INPUT(pData, (struct mbuf *)NULL, sizeof(struct ip), so);
874 /* continue; */
875 }
876 else if (!fConnectOnly)
877 {
878 SOWRITE(ret, pData, so);
879 if (RT_LIKELY(ret > 0))
880 {
881 /*
882 * Make sure we will send window update to peer. This is
883 * a moral equivalent of calling tcp_output() for PRU_RCVD
884 * in tcp_usrreq() of the real stack.
885 */
886 struct tcpcb *tp = sototcpcb(so);
887 if (RT_LIKELY(tp != NULL))
888 tp->t_flags |= TF_DELACK;
889 }
890 }
891
892 LogFlowFunc(("LEAVE: true\n"));
893 return true;
894}
895
896#if defined(RT_OS_WINDOWS)
897void slirp_select_poll(PNATState pData, int fTimeout)
898#else /* RT_OS_WINDOWS */
899void slirp_select_poll(PNATState pData, struct pollfd *polls, int ndfs)
900#endif /* !RT_OS_WINDOWS */
901{
902 struct socket *so, *so_next;
903 int ret;
904#if defined(RT_OS_WINDOWS)
905 WSANETWORKEVENTS NetworkEvents;
906 int rc;
907 int error;
908#endif
909
910 STAM_PROFILE_START(&pData->StatPoll, a);
911
912 /* Update time */
913 updtime(pData);
914
915 /*
916 * See if anything has timed out
917 */
918 if (link_up)
919 {
920 if (time_fasttimo && ((curtime - time_fasttimo) >= 2))
921 {
922 STAM_PROFILE_START(&pData->StatFastTimer, b);
923 tcp_fasttimo(pData);
924 time_fasttimo = 0;
925 STAM_PROFILE_STOP(&pData->StatFastTimer, b);
926 }
927 if (do_slowtimo && ((curtime - last_slowtimo) >= 499))
928 {
929 STAM_PROFILE_START(&pData->StatSlowTimer, c);
930 ip_slowtimo(pData);
931 tcp_slowtimo(pData);
932 last_slowtimo = curtime;
933 STAM_PROFILE_STOP(&pData->StatSlowTimer, c);
934 }
935 }
936#if defined(RT_OS_WINDOWS)
937 if (fTimeout)
938 return; /* only timer update */
939#endif
940
941 /*
942 * Check sockets
943 */
944 if (!link_up)
945 goto done;
946#if defined(RT_OS_WINDOWS)
947 icmpwin_process(pData);
948#else
949 if ( (pData->icmp_socket.s != -1)
950 && CHECK_FD_SET(&pData->icmp_socket, ignored, readfds))
951 sorecvfrom(pData, &pData->icmp_socket);
952#endif
953 /*
954 * Check TCP sockets
955 */
956 QSOCKET_FOREACH(so, so_next, tcp)
957 /* { */
958 /* TCP socket can't be cloned */
959#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
960 Assert((!so->so_cloneOf));
961#endif
962 Assert(!so->fUnderPolling);
963 so->fUnderPolling = 1;
964 if (slirpVerifyAndFreeSocket(pData, so))
965 CONTINUE(tcp);
966 /*
967 * FD_ISSET is meaningless on these sockets
968 * (and they can crash the program)
969 */
970 if (so->so_state & SS_NOFDREF || so->s == -1)
971 {
972 so->fUnderPolling = 0;
973 CONTINUE(tcp);
974 }
975
976 POLL_TCP_EVENTS(rc, error, so, &NetworkEvents);
977
978 LOG_NAT_SOCK(so, TCP, &NetworkEvents, readfds, writefds, xfds);
979
980 if (so->so_state & SS_ISFCONNECTING)
981 {
982 int sockerr = 0;
983#if !defined(RT_OS_WINDOWS)
984 {
985 int revents = 0;
986
987 /*
988 * Failed connect(2) is reported by poll(2) on
989 * different OSes with different combinations of
990 * POLLERR, POLLHUP, and POLLOUT.
991 */
992 if ( CHECK_FD_SET(so, NetworkEvents, closefds) /* POLLHUP */
993 || CHECK_FD_SET(so, NetworkEvents, rderr)) /* POLLERR */
994 {
995 revents = POLLHUP; /* squash to single "failed" flag */
996 }
997#if defined(RT_OS_SOLARIS) || defined(RT_OS_NETBSD)
998 /* Solaris and NetBSD report plain POLLOUT even on error */
999 else if (CHECK_FD_SET(so, NetworkEvents, writefds)) /* POLLOUT */
1000 {
1001 revents = POLLOUT;
1002 }
1003#endif
1004
1005 if (revents != 0)
1006 {
1007 socklen_t optlen = (socklen_t)sizeof(sockerr);
1008 ret = getsockopt(so->s, SOL_SOCKET, SO_ERROR, &sockerr, &optlen);
1009
1010 if ( RT_UNLIKELY(ret < 0)
1011 || ( (revents & POLLHUP)
1012 && RT_UNLIKELY(sockerr == 0)))
1013 sockerr = ETIMEDOUT;
1014 }
1015 }
1016#else /* RT_OS_WINDOWS */
1017 {
1018 if (NetworkEvents.lNetworkEvents & FD_CONNECT)
1019 sockerr = NetworkEvents.iErrorCode[FD_CONNECT_BIT];
1020 }
1021#endif
1022 if (sockerr != 0)
1023 {
1024 tcp_fconnect_failed(pData, so, sockerr);
1025 ret = slirpVerifyAndFreeSocket(pData, so);
1026 Assert(ret == 1); /* freed */
1027 CONTINUE(tcp);
1028 }
1029
1030 /*
1031 * XXX: For now just fall through to the old code to
1032 * handle successful connect(2).
1033 */
1034 }
1035
1036 /*
1037 * Check for URG data
1038 * This will soread as well, so no need to
1039 * test for readfds below if this succeeds
1040 */
1041
1042 /* out-of-band data */
1043 if ( CHECK_FD_SET(so, NetworkEvents, xfds)
1044#ifdef RT_OS_DARWIN
1045 /* Darwin and probably BSD hosts generates POLLPRI|POLLHUP event on receiving TCP.flags.{ACK|URG|FIN} this
1046 * combination on other Unixs hosts doesn't enter to this branch
1047 */
1048 && !CHECK_FD_SET(so, NetworkEvents, closefds)
1049#endif
1050#ifdef RT_OS_WINDOWS
1051 /**
1052 * In some cases FD_CLOSE comes with FD_OOB, that confuse tcp processing.
1053 */
1054 && !WIN_CHECK_FD_SET(so, NetworkEvents, closefds)
1055#endif
1056 )
1057 {
1058 sorecvoob(pData, so);
1059 if (slirpVerifyAndFreeSocket(pData, so))
1060 CONTINUE(tcp);
1061 }
1062
1063 /*
1064 * Check sockets for reading
1065 */
1066 else if ( CHECK_FD_SET(so, NetworkEvents, readfds)
1067 || WIN_CHECK_FD_SET(so, NetworkEvents, acceptds))
1068 {
1069
1070#ifdef RT_OS_WINDOWS
1071 if (WIN_CHECK_FD_SET(so, NetworkEvents, connectfds))
1072 {
1073 /* Finish connection first */
1074 /* should we ignore return value? */
1075 bool fRet = slirpConnectOrWrite(pData, so, true);
1076 LogFunc(("fRet:%RTbool\n", fRet));
1077 if (slirpVerifyAndFreeSocket(pData, so))
1078 CONTINUE(tcp);
1079 }
1080#endif
1081 /*
1082 * Check for incoming connections
1083 */
1084 if (so->so_state & SS_FACCEPTCONN)
1085 {
1086 TCP_CONNECT(pData, so);
1087 if (slirpVerifyAndFreeSocket(pData, so))
1088 CONTINUE(tcp);
1089 if (!CHECK_FD_SET(so, NetworkEvents, closefds))
1090 {
1091 so->fUnderPolling = 0;
1092 CONTINUE(tcp);
1093 }
1094 }
1095
1096 ret = soread(pData, so);
1097 if (slirpVerifyAndFreeSocket(pData, so))
1098 CONTINUE(tcp);
1099 /* Output it if we read something */
1100 if (RT_LIKELY(ret > 0))
1101 TCP_OUTPUT(pData, sototcpcb(so));
1102
1103 if (slirpVerifyAndFreeSocket(pData, so))
1104 CONTINUE(tcp);
1105 }
1106
1107 /*
1108 * Check for FD_CLOSE events.
1109 * in some cases once FD_CLOSE engaged on socket it could be flashed latter (for some reasons)
1110 */
1111 if ( CHECK_FD_SET(so, NetworkEvents, closefds)
1112 || (so->so_close == 1))
1113 {
1114 /*
1115 * drain the socket
1116 */
1117 for (; so_next->so_prev == so
1118 && !slirpVerifyAndFreeSocket(pData, so);)
1119 {
1120 ret = soread(pData, so);
1121 if (slirpVerifyAndFreeSocket(pData, so))
1122 break;
1123
1124 if (ret > 0)
1125 TCP_OUTPUT(pData, sototcpcb(so));
1126 else if (so_next->so_prev == so)
1127 {
1128 Log2(("%R[natsock] errno %d (%s)\n", so, errno, strerror(errno)));
1129 break;
1130 }
1131 }
1132
1133 /* if socket freed ''so'' is PHANTOM and next socket isn't points on it */
1134 if (so_next->so_prev == so)
1135 {
1136 /* mark the socket for termination _after_ it was drained */
1137 so->so_close = 1;
1138 /* No idea about Windows but on Posix, POLLHUP means that we can't send more.
1139 * Actually in the specific error scenario, POLLERR is set as well. */
1140#ifndef RT_OS_WINDOWS
1141 if (CHECK_FD_SET(so, NetworkEvents, rderr))
1142 sofcantsendmore(so);
1143#endif
1144 }
1145 if (so_next->so_prev == so)
1146 so->fUnderPolling = 0;
1147 CONTINUE(tcp);
1148 }
1149
1150 /*
1151 * Check sockets for writing
1152 */
1153 if ( CHECK_FD_SET(so, NetworkEvents, writefds)
1154#ifdef RT_OS_WINDOWS
1155 || WIN_CHECK_FD_SET(so, NetworkEvents, connectfds)
1156#endif
1157 )
1158 {
1159 int fConnectOrWriteSuccess = slirpConnectOrWrite(pData, so, false);
1160 /* slirpConnectOrWrite could return true even if tcp_input called tcp_drop,
1161 * so we should be ready to such situations.
1162 */
1163 if (slirpVerifyAndFreeSocket(pData, so))
1164 CONTINUE(tcp);
1165 else if (!fConnectOrWriteSuccess)
1166 {
1167 so->fUnderPolling = 0;
1168 CONTINUE(tcp);
1169 }
1170 /* slirpConnectionOrWrite succeeded and socket wasn't dropped */
1171 }
1172
1173 /*
1174 * Probe a still-connecting, non-blocking socket
1175 * to check if it's still alive
1176 */
1177#ifdef PROBE_CONN
1178 if (so->so_state & SS_ISFCONNECTING)
1179 {
1180 ret = recv(so->s, (char *)&ret, 0, 0);
1181
1182 if (ret < 0)
1183 {
1184 /* XXX */
1185 if ( soIgnorableErrorCode(errno)
1186 || errno == ENOTCONN)
1187 {
1188 CONTINUE(tcp); /* Still connecting, continue */
1189 }
1190
1191 /* else failed */
1192 so->so_state = SS_NOFDREF;
1193
1194 /* tcp_input will take care of it */
1195 }
1196 else
1197 {
1198 ret = send(so->s, &ret, 0, 0);
1199 if (ret < 0)
1200 {
1201 /* XXX */
1202 if ( soIgnorableErrorCode(errno)
1203 || errno == ENOTCONN)
1204 {
1205 CONTINUE(tcp);
1206 }
1207 /* else failed */
1208 so->so_state = SS_NOFDREF;
1209 }
1210 else
1211 so->so_state &= ~SS_ISFCONNECTING;
1212
1213 }
1214 TCP_INPUT((struct mbuf *)NULL, sizeof(struct ip),so);
1215 } /* SS_ISFCONNECTING */
1216#endif
1217 if (!slirpVerifyAndFreeSocket(pData, so))
1218 so->fUnderPolling = 0;
1219 LOOP_LABEL(tcp, so, so_next);
1220 }
1221
1222 /*
1223 * Now UDP sockets.
1224 * Incoming packets are sent straight away, they're not buffered.
1225 * Incoming UDP data isn't buffered either.
1226 */
1227 QSOCKET_FOREACH(so, so_next, udp)
1228 /* { */
1229#ifdef VBOX_WITH_NAT_UDP_SOCKET_CLONE
1230 if (so->so_cloneOf)
1231 CONTINUE_NO_UNLOCK(udp);
1232#endif
1233#if 0
1234 so->fUnderPolling = 1;
1235 if(slirpVerifyAndFreeSocket(pData, so));
1236 CONTINUE(udp);
1237 so->fUnderPolling = 0;
1238#endif
1239
1240 POLL_UDP_EVENTS(rc, error, so, &NetworkEvents);
1241
1242 LOG_NAT_SOCK(so, UDP, &NetworkEvents, readfds, writefds, xfds);
1243
1244 if (so->s != -1 && CHECK_FD_SET(so, NetworkEvents, readfds))
1245 {
1246 SORECVFROM(pData, so);
1247 }
1248 LOOP_LABEL(udp, so, so_next);
1249 }
1250
1251done:
1252
1253 STAM_PROFILE_STOP(&pData->StatPoll, a);
1254}
1255
1256
1257struct arphdr
1258{
1259 unsigned short ar_hrd; /* format of hardware address */
1260 unsigned short ar_pro; /* format of protocol address */
1261 unsigned char ar_hln; /* length of hardware address */
1262 unsigned char ar_pln; /* length of protocol address */
1263 unsigned short ar_op; /* ARP opcode (command) */
1264
1265 /*
1266 * Ethernet looks like this : This bit is variable sized however...
1267 */
1268 unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
1269 unsigned char ar_sip[4]; /* sender IP address */
1270 unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
1271 unsigned char ar_tip[4]; /* target IP address */
1272};
1273AssertCompileSize(struct arphdr, 28);
1274
1275static void arp_output(PNATState pData, const uint8_t *pcu8EtherSource, const struct arphdr *pcARPHeaderSource, uint32_t ip4TargetAddress)
1276{
1277 struct ethhdr *pEtherHeaderResponse;
1278 struct arphdr *pARPHeaderResponse;
1279 uint32_t ip4TargetAddressInHostFormat;
1280 struct mbuf *pMbufResponse;
1281
1282 Assert((pcu8EtherSource));
1283 if (!pcu8EtherSource)
1284 return;
1285 ip4TargetAddressInHostFormat = RT_N2H_U32(ip4TargetAddress);
1286
1287 pMbufResponse = m_getcl(pData, M_NOWAIT, MT_HEADER, M_PKTHDR);
1288 if (!pMbufResponse)
1289 return;
1290 pEtherHeaderResponse = mtod(pMbufResponse, struct ethhdr *);
1291 /* @note: if_encap will swap src and dst*/
1292 memcpy(pEtherHeaderResponse->h_source, pcu8EtherSource, ETH_ALEN);
1293 pMbufResponse->m_data += ETH_HLEN;
1294 pARPHeaderResponse = mtod(pMbufResponse, struct arphdr *);
1295 pMbufResponse->m_len = sizeof(struct arphdr);
1296
1297 pARPHeaderResponse->ar_hrd = RT_H2N_U16_C(1);
1298 pARPHeaderResponse->ar_pro = RT_H2N_U16_C(ETH_P_IP);
1299 pARPHeaderResponse->ar_hln = ETH_ALEN;
1300 pARPHeaderResponse->ar_pln = 4;
1301 pARPHeaderResponse->ar_op = RT_H2N_U16_C(ARPOP_REPLY);
1302 memcpy(pARPHeaderResponse->ar_sha, special_ethaddr, ETH_ALEN);
1303
1304 if (!slirpMbufTagService(pData, pMbufResponse, (uint8_t)(ip4TargetAddressInHostFormat & ~pData->netmask)))
1305 {
1306 static bool fTagErrorReported;
1307 if (!fTagErrorReported)
1308 {
1309 LogRel(("NAT: couldn't add the tag(PACKET_SERVICE:%d)\n",
1310 (uint8_t)(ip4TargetAddressInHostFormat & ~pData->netmask)));
1311 fTagErrorReported = true;
1312 }
1313 }
1314 pARPHeaderResponse->ar_sha[5] = (uint8_t)(ip4TargetAddressInHostFormat & ~pData->netmask);
1315
1316 memcpy(pARPHeaderResponse->ar_sip, pcARPHeaderSource->ar_tip, 4);
1317 memcpy(pARPHeaderResponse->ar_tha, pcARPHeaderSource->ar_sha, ETH_ALEN);
1318 memcpy(pARPHeaderResponse->ar_tip, pcARPHeaderSource->ar_sip, 4);
1319 if_encap(pData, ETH_P_ARP, pMbufResponse, ETH_ENCAP_URG);
1320}
1321/**
1322 * @note This function will free m!
1323 */
1324static void arp_input(PNATState pData, struct mbuf *m)
1325{
1326 struct ethhdr *pEtherHeader;
1327 struct arphdr *pARPHeader;
1328 uint32_t ip4TargetAddress;
1329
1330 int ar_op;
1331 pEtherHeader = mtod(m, struct ethhdr *);
1332 pARPHeader = (struct arphdr *)&pEtherHeader[1];
1333
1334 ar_op = RT_N2H_U16(pARPHeader->ar_op);
1335 ip4TargetAddress = *(uint32_t*)pARPHeader->ar_tip;
1336
1337 switch (ar_op)
1338 {
1339 case ARPOP_REQUEST:
1340 if ( CTL_CHECK(ip4TargetAddress, CTL_DNS)
1341 || CTL_CHECK(ip4TargetAddress, CTL_ALIAS)
1342 || CTL_CHECK(ip4TargetAddress, CTL_TFTP))
1343 arp_output(pData, pEtherHeader->h_source, pARPHeader, ip4TargetAddress);
1344
1345 /* Gratuitous ARP */
1346 if ( *(uint32_t *)pARPHeader->ar_sip == *(uint32_t *)pARPHeader->ar_tip
1347 && memcmp(pARPHeader->ar_tha, broadcast_ethaddr, ETH_ALEN) == 0
1348 && memcmp(pEtherHeader->h_dest, broadcast_ethaddr, ETH_ALEN) == 0)
1349 {
1350 /* We've received an announce about address assignment,
1351 * let's do an ARP cache update
1352 */
1353 static bool fGratuitousArpReported;
1354 if (!fGratuitousArpReported)
1355 {
1356 LogRel(("NAT: Gratuitous ARP [IP:%RTnaipv4, ether:%RTmac]\n",
1357 *(uint32_t *)pARPHeader->ar_sip, pARPHeader->ar_sha));
1358 fGratuitousArpReported = true;
1359 }
1360 slirp_arp_cache_update_or_add(pData, *(uint32_t *)pARPHeader->ar_sip, &pARPHeader->ar_sha[0]);
1361 }
1362 break;
1363
1364 case ARPOP_REPLY:
1365 slirp_arp_cache_update_or_add(pData, *(uint32_t *)pARPHeader->ar_sip, &pARPHeader->ar_sha[0]);
1366 break;
1367
1368 default:
1369 break;
1370 }
1371
1372 m_freem(pData, m);
1373}
1374
1375/**
1376 * Feed a packet into the slirp engine.
1377 *
1378 * @param m Data buffer, m_len is not valid.
1379 * @param cbBuf The length of the data in m.
1380 */
1381void slirp_input(PNATState pData, struct mbuf *m, size_t cbBuf)
1382{
1383 int proto;
1384 static bool fWarnedIpv6;
1385 struct ethhdr *eh;
1386 uint8_t au8Ether[ETH_ALEN];
1387
1388 m->m_len = cbBuf;
1389 if (cbBuf < ETH_HLEN)
1390 {
1391 Log(("NAT: packet having size %d has been ignored\n", m->m_len));
1392 m_freem(pData, m);
1393 return;
1394 }
1395 eh = mtod(m, struct ethhdr *);
1396 proto = RT_N2H_U16(eh->h_proto);
1397
1398 memcpy(au8Ether, eh->h_source, ETH_ALEN);
1399
1400 switch(proto)
1401 {
1402 case ETH_P_ARP:
1403 arp_input(pData, m);
1404 break;
1405
1406 case ETH_P_IP:
1407 /* Update time. Important if the network is very quiet, as otherwise
1408 * the first outgoing connection gets an incorrect timestamp. */
1409 updtime(pData);
1410 m_adj(m, ETH_HLEN);
1411 M_ASSERTPKTHDR(m);
1412 m->m_pkthdr.header = mtod(m, void *);
1413 ip_input(pData, m);
1414 break;
1415
1416 case ETH_P_IPV6:
1417 m_freem(pData, m);
1418 if (!fWarnedIpv6)
1419 {
1420 LogRel(("NAT: IPv6 not supported\n"));
1421 fWarnedIpv6 = true;
1422 }
1423 break;
1424
1425 default:
1426 Log(("NAT: Unsupported protocol %x\n", proto));
1427 m_freem(pData, m);
1428 break;
1429 }
1430
1431 if (pData->cRedirectionsActive != pData->cRedirectionsStored)
1432 activate_port_forwarding(pData, au8Ether);
1433}
1434
1435/**
1436 * Output the IP packet to the ethernet device.
1437 *
1438 * @note This function will free m!
1439 */
1440void if_encap(PNATState pData, uint16_t eth_proto, struct mbuf *m, int flags)
1441{
1442 struct ethhdr *eh;
1443 uint8_t *mbuf = NULL;
1444 size_t mlen = 0;
1445 STAM_PROFILE_START(&pData->StatIF_encap, a);
1446 LogFlowFunc(("ENTER: pData:%p, eth_proto:%RX16, m:%p, flags:%d\n",
1447 pData, eth_proto, m, flags));
1448
1449 M_ASSERTPKTHDR(m);
1450
1451 Assert(M_LEADINGSPACE(m) >= ETH_HLEN);
1452 m->m_data -= ETH_HLEN;
1453 m->m_len += ETH_HLEN;
1454 eh = mtod(m, struct ethhdr *);
1455 mlen = m->m_len;
1456
1457 if (memcmp(eh->h_source, special_ethaddr, ETH_ALEN) != 0)
1458 {
1459 struct m_tag *t = m_tag_first(m);
1460 uint8_t u8ServiceId = CTL_ALIAS;
1461 memcpy(eh->h_dest, eh->h_source, ETH_ALEN);
1462 memcpy(eh->h_source, special_ethaddr, ETH_ALEN);
1463 Assert(memcmp(eh->h_dest, special_ethaddr, ETH_ALEN) != 0);
1464 if (memcmp(eh->h_dest, zerro_ethaddr, ETH_ALEN) == 0)
1465 {
1466 /* don't do anything */
1467 m_freem(pData, m);
1468 goto done;
1469 }
1470 if ( t
1471 && (t = m_tag_find(m, PACKET_SERVICE, NULL)))
1472 {
1473 Assert(t);
1474 u8ServiceId = *(uint8_t *)&t[1];
1475 }
1476 eh->h_source[5] = u8ServiceId;
1477 }
1478 /*
1479 * we're processing the chain, that isn't not expected.
1480 */
1481 Assert((!m->m_next));
1482 if (m->m_next)
1483 {
1484 Log(("NAT: if_encap's recived the chain, dropping...\n"));
1485 m_freem(pData, m);
1486 goto done;
1487 }
1488 mbuf = mtod(m, uint8_t *);
1489 eh->h_proto = RT_H2N_U16(eth_proto);
1490 LogFunc(("eh(dst:%RTmac, src:%RTmac)\n", eh->h_dest, eh->h_source));
1491 if (flags & ETH_ENCAP_URG)
1492 slirp_urg_output(pData->pvUser, m, mbuf, mlen);
1493 else
1494 slirp_output(pData->pvUser, m, mbuf, mlen);
1495done:
1496 STAM_PROFILE_STOP(&pData->StatIF_encap, a);
1497 LogFlowFuncLeave();
1498}
1499
1500/**
1501 * Still we're using dhcp server leasing to map ether to IP
1502 * @todo see rt_lookup_in_cache
1503 */
1504static uint32_t find_guest_ip(PNATState pData, const uint8_t *eth_addr)
1505{
1506 uint32_t ip = INADDR_ANY;
1507 int rc;
1508
1509 if (eth_addr == NULL)
1510 return INADDR_ANY;
1511
1512 if ( memcmp(eth_addr, zerro_ethaddr, ETH_ALEN) == 0
1513 || memcmp(eth_addr, broadcast_ethaddr, ETH_ALEN) == 0)
1514 return INADDR_ANY;
1515
1516 rc = slirp_arp_lookup_ip_by_ether(pData, eth_addr, &ip);
1517 if (RT_SUCCESS(rc))
1518 return ip;
1519
1520 bootp_cache_lookup_ip_by_ether(pData, eth_addr, &ip);
1521 /* ignore return code, ip will be set to INADDR_ANY on error */
1522 return ip;
1523}
1524
1525/**
1526 * We need check if we've activated port forwarding
1527 * for specific machine ... that of course relates to
1528 * service mode
1529 * @todo finish this for service case
1530 */
1531static void activate_port_forwarding(PNATState pData, const uint8_t *h_source)
1532{
1533 struct port_forward_rule *rule, *tmp;
1534 const uint8_t *pu8EthSource = h_source;
1535
1536 /* check mac here */
1537 LIST_FOREACH_SAFE(rule, &pData->port_forward_rule_head, list, tmp)
1538 {
1539 struct socket *so;
1540 struct sockaddr sa;
1541 struct sockaddr_in *psin;
1542 socklen_t socketlen;
1543 int rc;
1544 uint32_t guest_addr; /* need to understand if we already give address to guest */
1545
1546 if (rule->activated)
1547 continue;
1548
1549 guest_addr = find_guest_ip(pData, pu8EthSource);
1550 if (guest_addr == INADDR_ANY)
1551 {
1552 /* the address wasn't granted */
1553 return;
1554 }
1555
1556 if ( rule->guest_addr.s_addr != guest_addr
1557 && rule->guest_addr.s_addr != INADDR_ANY)
1558 continue;
1559 if (rule->guest_addr.s_addr == INADDR_ANY)
1560 rule->guest_addr.s_addr = guest_addr;
1561
1562 LogRel(("NAT: set redirect %s host %RTnaipv4:%d => guest %RTnaipv4:%d\n",
1563 rule->proto == IPPROTO_UDP ? "UDP" : "TCP",
1564 rule->bind_ip.s_addr, rule->host_port,
1565 guest_addr, rule->guest_port));
1566
1567 if (rule->proto == IPPROTO_UDP)
1568 so = udp_listen(pData, rule->bind_ip.s_addr, RT_H2N_U16(rule->host_port), guest_addr,
1569 RT_H2N_U16(rule->guest_port), 0);
1570 else
1571 so = solisten(pData, rule->bind_ip.s_addr, RT_H2N_U16(rule->host_port), guest_addr,
1572 RT_H2N_U16(rule->guest_port), 0);
1573
1574 if (so == NULL)
1575 goto remove_port_forwarding;
1576
1577 psin = (struct sockaddr_in *)&sa;
1578 psin->sin_family = AF_INET;
1579 psin->sin_port = 0;
1580 psin->sin_addr.s_addr = INADDR_ANY;
1581 socketlen = sizeof(struct sockaddr);
1582
1583 rc = getsockname(so->s, &sa, &socketlen);
1584 if (rc < 0 || sa.sa_family != AF_INET)
1585 goto remove_port_forwarding;
1586
1587 rule->activated = 1;
1588 rule->so = so;
1589 pData->cRedirectionsActive++;
1590 continue;
1591
1592 remove_port_forwarding:
1593 LogRel(("NAT: failed to redirect %s %RTnaipv4:%d => %RTnaipv4:%d\n",
1594 (rule->proto == IPPROTO_UDP ? "UDP" : "TCP"),
1595 rule->bind_ip.s_addr, rule->host_port,
1596 guest_addr, rule->guest_port));
1597 LIST_REMOVE(rule, list);
1598 pData->cRedirectionsStored--;
1599 RTMemFree(rule);
1600 }
1601}
1602
1603/**
1604 * Changes in 3.1 instead of opening new socket do the following:
1605 * gain more information:
1606 * 1. bind IP
1607 * 2. host port
1608 * 3. guest port
1609 * 4. proto
1610 * 5. guest MAC address
1611 * the guest's MAC address is rather important for service, but we easily
1612 * could get it from VM configuration in DrvNAT or Service, the idea is activating
1613 * corresponding port-forwarding
1614 */
1615int slirp_add_redirect(PNATState pData, int is_udp, struct in_addr host_addr, int host_port,
1616 struct in_addr guest_addr, int guest_port, const uint8_t *ethaddr)
1617{
1618 struct port_forward_rule *rule = NULL;
1619 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
1620 {
1621 if ( rule->proto == (is_udp ? IPPROTO_UDP : IPPROTO_TCP)
1622 && rule->host_port == host_port
1623 && rule->bind_ip.s_addr == host_addr.s_addr
1624 && rule->guest_port == guest_port
1625 && rule->guest_addr.s_addr == guest_addr.s_addr
1626 )
1627 return 0; /* rule has been already registered */
1628 }
1629
1630 rule = RTMemAllocZ(sizeof(struct port_forward_rule));
1631 if (rule == NULL)
1632 return 1;
1633
1634 rule->proto = (is_udp ? IPPROTO_UDP : IPPROTO_TCP);
1635 rule->host_port = host_port;
1636 rule->guest_port = guest_port;
1637 rule->guest_addr.s_addr = guest_addr.s_addr;
1638 rule->bind_ip.s_addr = host_addr.s_addr;
1639 if (ethaddr != NULL)
1640 memcpy(rule->mac_address, ethaddr, ETH_ALEN);
1641 /* @todo add mac address */
1642 LIST_INSERT_HEAD(&pData->port_forward_rule_head, rule, list);
1643 pData->cRedirectionsStored++;
1644 /* activate port-forwarding if guest has already got assigned IP */
1645 if ( ethaddr
1646 && memcmp(ethaddr, zerro_ethaddr, ETH_ALEN))
1647 activate_port_forwarding(pData, ethaddr);
1648 return 0;
1649}
1650
1651int slirp_remove_redirect(PNATState pData, int is_udp, struct in_addr host_addr, int host_port,
1652 struct in_addr guest_addr, int guest_port)
1653{
1654 struct port_forward_rule *rule = NULL;
1655 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
1656 {
1657 if ( rule->proto == (is_udp ? IPPROTO_UDP : IPPROTO_TCP)
1658 && rule->host_port == host_port
1659 && rule->guest_port == guest_port
1660 && rule->bind_ip.s_addr == host_addr.s_addr
1661 && rule->guest_addr.s_addr == guest_addr.s_addr
1662 && rule->activated)
1663 {
1664 LogRel(("NAT: remove redirect %s host %RTnaipv4:%d => guest %RTnaipv4:%d\n",
1665 rule->proto == IPPROTO_UDP ? "UDP" : "TCP",
1666 rule->bind_ip.s_addr, rule->host_port,
1667 guest_addr.s_addr, rule->guest_port));
1668
1669 if (is_udp)
1670 udp_detach(pData, rule->so);
1671 else
1672 tcp_close(pData, sototcpcb(rule->so));
1673 LIST_REMOVE(rule, list);
1674 RTMemFree(rule);
1675 pData->cRedirectionsStored--;
1676 break;
1677 }
1678
1679 }
1680 return 0;
1681}
1682
1683void slirp_set_ethaddr_and_activate_port_forwarding(PNATState pData, const uint8_t *ethaddr, uint32_t GuestIP)
1684{
1685 memcpy(client_ethaddr, ethaddr, ETH_ALEN);
1686 if (GuestIP != INADDR_ANY)
1687 {
1688 slirp_arp_cache_update_or_add(pData, GuestIP, ethaddr);
1689 activate_port_forwarding(pData, ethaddr);
1690 }
1691}
1692
1693#if defined(RT_OS_WINDOWS)
1694HANDLE *slirp_get_events(PNATState pData)
1695{
1696 return pData->phEvents;
1697}
1698void slirp_register_external_event(PNATState pData, HANDLE hEvent, int index)
1699{
1700 pData->phEvents[index] = hEvent;
1701}
1702#endif
1703
1704unsigned int slirp_get_timeout_ms(PNATState pData)
1705{
1706 if (link_up)
1707 {
1708 if (time_fasttimo)
1709 return 2;
1710 if (do_slowtimo)
1711 return 500; /* see PR_SLOWHZ */
1712 }
1713 return 3600*1000; /* one hour */
1714}
1715
1716#ifndef RT_OS_WINDOWS
1717int slirp_get_nsock(PNATState pData)
1718{
1719 return pData->nsock;
1720}
1721#endif
1722
1723/*
1724 * this function called from NAT thread
1725 */
1726void slirp_post_sent(PNATState pData, void *pvArg)
1727{
1728 struct mbuf *m = (struct mbuf *)pvArg;
1729 m_freem(pData, m);
1730}
1731
1732void slirp_set_dhcp_TFTP_prefix(PNATState pData, const char *tftpPrefix)
1733{
1734 Log2(("tftp_prefix: %s\n", tftpPrefix));
1735 tftp_prefix = tftpPrefix;
1736}
1737
1738void slirp_set_dhcp_TFTP_bootfile(PNATState pData, const char *bootFile)
1739{
1740 Log2(("bootFile: %s\n", bootFile));
1741 bootp_filename = bootFile;
1742}
1743
1744void slirp_set_dhcp_next_server(PNATState pData, const char *next_server)
1745{
1746 Log2(("next_server: %s\n", next_server));
1747 if (next_server == NULL)
1748 pData->tftp_server.s_addr = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_TFTP);
1749 else
1750 inet_aton(next_server, &pData->tftp_server);
1751}
1752
1753int slirp_set_binding_address(PNATState pData, char *addr)
1754{
1755 if (addr == NULL || (inet_aton(addr, &pData->bindIP) == 0))
1756 {
1757 pData->bindIP.s_addr = INADDR_ANY;
1758 return 1;
1759 }
1760 return 0;
1761}
1762
1763void slirp_set_dhcp_dns_proxy(PNATState pData, bool fDNSProxy)
1764{
1765 if (!pData->fUseHostResolver)
1766 {
1767 Log2(("NAT: DNS proxy switched %s\n", (fDNSProxy ? "on" : "off")));
1768 pData->fUseDnsProxy = fDNSProxy;
1769 }
1770 else if (fDNSProxy)
1771 LogRel(("NAT: Host Resolver conflicts with DNS proxy, the last one was forcely ignored\n"));
1772}
1773
1774#define CHECK_ARG(name, val, lim_min, lim_max) \
1775 do { \
1776 if ((val) < (lim_min) || (val) > (lim_max)) \
1777 { \
1778 LogRel(("NAT: (" #name ":%d) has been ignored, " \
1779 "because out of range (%d, %d)\n", (val), (lim_min), (lim_max))); \
1780 return; \
1781 } \
1782 else \
1783 LogRel(("NAT: (" #name ":%d)\n", (val))); \
1784 } while (0)
1785
1786void slirp_set_somaxconn(PNATState pData, int iSoMaxConn)
1787{
1788 LogFlowFunc(("iSoMaxConn:%d\n", iSoMaxConn));
1789 /* Conditions */
1790 if (iSoMaxConn > SOMAXCONN)
1791 {
1792 LogRel(("NAT: value of somaxconn(%d) bigger than SOMAXCONN(%d)\n", iSoMaxConn, SOMAXCONN));
1793 iSoMaxConn = SOMAXCONN;
1794 }
1795
1796 if (iSoMaxConn < 1)
1797 {
1798 LogRel(("NAT: proposed value(%d) of somaxconn is invalid, default value is used (%d)\n", iSoMaxConn, pData->soMaxConn));
1799 LogFlowFuncLeave();
1800 return;
1801 }
1802
1803 /* Asignment */
1804 if (pData->soMaxConn != iSoMaxConn)
1805 {
1806 LogRel(("NAT: value of somaxconn has been changed from %d to %d\n",
1807 pData->soMaxConn, iSoMaxConn));
1808 pData->soMaxConn = iSoMaxConn;
1809 }
1810 LogFlowFuncLeave();
1811}
1812/* don't allow user set less 8kB and more than 1M values */
1813#define _8K_1M_CHECK_ARG(name, val) CHECK_ARG(name, (val), 8, 1024)
1814void slirp_set_rcvbuf(PNATState pData, int kilobytes)
1815{
1816 _8K_1M_CHECK_ARG("SOCKET_RCVBUF", kilobytes);
1817 pData->socket_rcv = kilobytes;
1818}
1819void slirp_set_sndbuf(PNATState pData, int kilobytes)
1820{
1821 _8K_1M_CHECK_ARG("SOCKET_SNDBUF", kilobytes);
1822 pData->socket_snd = kilobytes * _1K;
1823}
1824void slirp_set_tcp_rcvspace(PNATState pData, int kilobytes)
1825{
1826 _8K_1M_CHECK_ARG("TCP_RCVSPACE", kilobytes);
1827 tcp_rcvspace = kilobytes * _1K;
1828}
1829void slirp_set_tcp_sndspace(PNATState pData, int kilobytes)
1830{
1831 _8K_1M_CHECK_ARG("TCP_SNDSPACE", kilobytes);
1832 tcp_sndspace = kilobytes * _1K;
1833}
1834
1835/*
1836 * Looking for Ether by ip in ARP-cache
1837 * Note: it´s responsible of caller to allocate buffer for result
1838 * @returns iprt status code
1839 */
1840int slirp_arp_lookup_ether_by_ip(PNATState pData, uint32_t ip, uint8_t *ether)
1841{
1842 struct arp_cache_entry *ac;
1843
1844 if (ether == NULL)
1845 return VERR_INVALID_PARAMETER;
1846
1847 if (LIST_EMPTY(&pData->arp_cache))
1848 return VERR_NOT_FOUND;
1849
1850 LIST_FOREACH(ac, &pData->arp_cache, list)
1851 {
1852 if ( ac->ip == ip
1853 && memcmp(ac->ether, broadcast_ethaddr, ETH_ALEN) != 0)
1854 {
1855 memcpy(ether, ac->ether, ETH_ALEN);
1856 return VINF_SUCCESS;
1857 }
1858 }
1859 return VERR_NOT_FOUND;
1860}
1861
1862/*
1863 * Looking for IP by Ether in ARP-cache
1864 * Note: it´s responsible of caller to allocate buffer for result
1865 * @returns 0 - if found, 1 - otherwise
1866 */
1867int slirp_arp_lookup_ip_by_ether(PNATState pData, const uint8_t *ether, uint32_t *ip)
1868{
1869 struct arp_cache_entry *ac;
1870 *ip = INADDR_ANY;
1871
1872 if (LIST_EMPTY(&pData->arp_cache))
1873 return VERR_NOT_FOUND;
1874
1875 LIST_FOREACH(ac, &pData->arp_cache, list)
1876 {
1877 if (memcmp(ether, ac->ether, ETH_ALEN) == 0)
1878 {
1879 *ip = ac->ip;
1880 return VINF_SUCCESS;
1881 }
1882 }
1883 return VERR_NOT_FOUND;
1884}
1885
1886void slirp_arp_who_has(PNATState pData, uint32_t dst)
1887{
1888 struct mbuf *m;
1889 struct ethhdr *ehdr;
1890 struct arphdr *ahdr;
1891 static bool fWarned = false;
1892 LogFlowFunc(("ENTER: %RTnaipv4\n", dst));
1893
1894 /* ARP request WHO HAS 0.0.0.0 is one of the signals
1895 * that something has been broken at Slirp. Investigating
1896 * pcap dumps it's easy to miss warning ARP requests being
1897 * focused on investigation of other protocols flow.
1898 */
1899#ifdef DEBUG_vvl
1900 Assert((dst != INADDR_ANY));
1901 NOREF(fWarned);
1902#else
1903 if ( dst == INADDR_ANY
1904 && !fWarned)
1905 {
1906 LogRel(("NAT:ARP: \"WHO HAS INADDR_ANY\" request has been detected\n"));
1907 fWarned = true;
1908 }
1909#endif /* !DEBUG_vvl */
1910
1911 m = m_getcl(pData, M_NOWAIT, MT_HEADER, M_PKTHDR);
1912 if (m == NULL)
1913 {
1914 Log(("NAT: Can't alloc mbuf for ARP request\n"));
1915 LogFlowFuncLeave();
1916 return;
1917 }
1918 ehdr = mtod(m, struct ethhdr *);
1919 memset(ehdr->h_source, 0xff, ETH_ALEN);
1920 ahdr = (struct arphdr *)&ehdr[1];
1921 ahdr->ar_hrd = RT_H2N_U16_C(1);
1922 ahdr->ar_pro = RT_H2N_U16_C(ETH_P_IP);
1923 ahdr->ar_hln = ETH_ALEN;
1924 ahdr->ar_pln = 4;
1925 ahdr->ar_op = RT_H2N_U16_C(ARPOP_REQUEST);
1926 memcpy(ahdr->ar_sha, special_ethaddr, ETH_ALEN);
1927 /* we assume that this request come from gw, but not from DNS or TFTP */
1928 ahdr->ar_sha[5] = CTL_ALIAS;
1929 *(uint32_t *)ahdr->ar_sip = RT_H2N_U32(RT_N2H_U32(pData->special_addr.s_addr) | CTL_ALIAS);
1930 memset(ahdr->ar_tha, 0xff, ETH_ALEN); /*broadcast*/
1931 *(uint32_t *)ahdr->ar_tip = dst;
1932 /* warn!!! should falls in mbuf minimal size */
1933 m->m_len = sizeof(struct arphdr) + ETH_HLEN;
1934 m->m_data += ETH_HLEN;
1935 m->m_len -= ETH_HLEN;
1936 if_encap(pData, ETH_P_ARP, m, ETH_ENCAP_URG);
1937 LogFlowFuncLeave();
1938}
1939#ifdef VBOX_WITH_DNSMAPPING_IN_HOSTRESOLVER
1940void slirp_add_host_resolver_mapping(PNATState pData, const char *pszHostName, const char *pszHostNamePattern, uint32_t u32HostIP)
1941{
1942 LogFlowFunc(("ENTER: pszHostName:%s, pszHostNamePattern:%s u32HostIP:%RTnaipv4\n",
1943 pszHostName ? pszHostName : "(null)",
1944 pszHostNamePattern ? pszHostNamePattern : "(null)",
1945 u32HostIP));
1946 if ( ( pszHostName
1947 || pszHostNamePattern)
1948 && u32HostIP != INADDR_ANY
1949 && u32HostIP != INADDR_BROADCAST)
1950 {
1951 PDNSMAPPINGENTRY pDnsMapping = RTMemAllocZ(sizeof(DNSMAPPINGENTRY));
1952 if (!pDnsMapping)
1953 {
1954 LogFunc(("Can't allocate DNSMAPPINGENTRY\n"));
1955 LogFlowFuncLeave();
1956 return;
1957 }
1958 pDnsMapping->u32IpAddress = u32HostIP;
1959 if (pszHostName)
1960 pDnsMapping->pszCName = RTStrDup(pszHostName);
1961 else if (pszHostNamePattern)
1962 pDnsMapping->pszPattern = RTStrDup(pszHostNamePattern);
1963 if ( !pDnsMapping->pszCName
1964 && !pDnsMapping->pszPattern)
1965 {
1966 LogFunc(("Can't allocate enough room for %s\n", pszHostName ? pszHostName : pszHostNamePattern));
1967 RTMemFree(pDnsMapping);
1968 LogFlowFuncLeave();
1969 return;
1970 }
1971 LIST_INSERT_HEAD(&pData->DNSMapHead, pDnsMapping, MapList);
1972 LogRel(("NAT: user-defined mapping %s: %RTnaipv4 is registered\n",
1973 pDnsMapping->pszCName ? pDnsMapping->pszCName : pDnsMapping->pszPattern,
1974 pDnsMapping->u32IpAddress));
1975 }
1976 LogFlowFuncLeave();
1977}
1978#endif
1979
1980/* updates the arp cache
1981 * @note: this is helper function, slirp_arp_cache_update_or_add should be used.
1982 * @returns 0 - if has found and updated
1983 * 1 - if hasn't found.
1984 */
1985static inline int slirp_arp_cache_update(PNATState pData, uint32_t dst, const uint8_t *mac)
1986{
1987 struct arp_cache_entry *ac;
1988 Assert(( memcmp(mac, broadcast_ethaddr, ETH_ALEN)
1989 && memcmp(mac, zerro_ethaddr, ETH_ALEN)));
1990 LIST_FOREACH(ac, &pData->arp_cache, list)
1991 {
1992 if (ac->ip == dst)
1993 {
1994 memcpy(ac->ether, mac, ETH_ALEN);
1995 return 0;
1996 }
1997 }
1998 return 1;
1999}
2000
2001/**
2002 * add entry to the arp cache
2003 * @note: this is helper function, slirp_arp_cache_update_or_add should be used.
2004 */
2005static inline void slirp_arp_cache_add(PNATState pData, uint32_t ip, const uint8_t *ether)
2006{
2007 struct arp_cache_entry *ac = NULL;
2008 Assert(( memcmp(ether, broadcast_ethaddr, ETH_ALEN)
2009 && memcmp(ether, zerro_ethaddr, ETH_ALEN)));
2010 ac = RTMemAllocZ(sizeof(struct arp_cache_entry));
2011 if (ac == NULL)
2012 {
2013 Log(("NAT: Can't allocate arp cache entry\n"));
2014 return;
2015 }
2016 ac->ip = ip;
2017 memcpy(ac->ether, ether, ETH_ALEN);
2018 LIST_INSERT_HEAD(&pData->arp_cache, ac, list);
2019}
2020
2021/* updates or adds entry to the arp cache
2022 * @returns 0 - if has found and updated
2023 * 1 - if hasn't found.
2024 */
2025int slirp_arp_cache_update_or_add(PNATState pData, uint32_t dst, const uint8_t *mac)
2026{
2027 if ( !memcmp(mac, broadcast_ethaddr, ETH_ALEN)
2028 || !memcmp(mac, zerro_ethaddr, ETH_ALEN))
2029 {
2030 static bool fBroadcastEtherAddReported;
2031 if (!fBroadcastEtherAddReported)
2032 {
2033 LogRel(("NAT: Attempt to add pair [%RTmac:%RTnaipv4] in ARP cache was ignored\n",
2034 mac, dst));
2035 fBroadcastEtherAddReported = true;
2036 }
2037 return 1;
2038 }
2039 if (slirp_arp_cache_update(pData, dst, mac))
2040 slirp_arp_cache_add(pData, dst, mac);
2041
2042 return 0;
2043}
2044
2045
2046void slirp_set_mtu(PNATState pData, int mtu)
2047{
2048 if (mtu < 20 || mtu >= 16000)
2049 {
2050 LogRel(("NAT: mtu(%d) is out of range (20;16000] mtu forcely assigned to 1500\n", mtu));
2051 mtu = 1500;
2052 }
2053 /* MTU is maximum transition unit on */
2054 if_mtu =
2055 if_mru = mtu;
2056}
2057
2058/**
2059 * Info handler.
2060 */
2061void slirp_info(PNATState pData, const void *pvArg, const char *pszArgs)
2062{
2063 struct socket *so, *so_next;
2064 struct arp_cache_entry *ac;
2065 struct port_forward_rule *rule;
2066 PCDBGFINFOHLP pHlp = (PCDBGFINFOHLP)pvArg;
2067 NOREF(pszArgs);
2068
2069 pHlp->pfnPrintf(pHlp, "NAT parameters: MTU=%d\n", if_mtu);
2070 pHlp->pfnPrintf(pHlp, "NAT TCP ports:\n");
2071 QSOCKET_FOREACH(so, so_next, tcp)
2072 /* { */
2073 pHlp->pfnPrintf(pHlp, " %R[natsock]\n", so);
2074 }
2075
2076 pHlp->pfnPrintf(pHlp, "NAT UDP ports:\n");
2077 QSOCKET_FOREACH(so, so_next, udp)
2078 /* { */
2079 pHlp->pfnPrintf(pHlp, " %R[natsock]\n", so);
2080 }
2081
2082 pHlp->pfnPrintf(pHlp, "NAT ARP cache:\n");
2083 LIST_FOREACH(ac, &pData->arp_cache, list)
2084 {
2085 pHlp->pfnPrintf(pHlp, " %RTnaipv4 %RTmac\n", ac->ip, &ac->ether);
2086 }
2087
2088 pHlp->pfnPrintf(pHlp, "NAT rules:\n");
2089 LIST_FOREACH(rule, &pData->port_forward_rule_head, list)
2090 {
2091 pHlp->pfnPrintf(pHlp, " %s %d => %RTnaipv4:%d %c\n",
2092 rule->proto == IPPROTO_UDP ? "UDP" : "TCP",
2093 rule->host_port, rule->guest_addr.s_addr, rule->guest_port,
2094 rule->activated ? ' ' : '*');
2095 }
2096}
2097
2098/**
2099 * @note: NATState::fUseHostResolver could be changed in bootp.c::dhcp_decode
2100 * @note: this function is executed on GUI/VirtualBox or main/VBoxHeadless thread.
2101 * @note: this function can potentially race with bootp.c::dhcp_decode (except Darwin)
2102 */
2103int slirp_host_network_configuration_change_strategy_selector(const PNATState pData)
2104{
2105 if (pData->fUseHostResolverPermanent)
2106 return VBOX_NAT_DNS_HOSTRESOLVER;
2107
2108 if (pData->fUseDnsProxy) {
2109#if HAVE_NOTIFICATION_FOR_DNS_UPDATE /* XXX */ && !defined(RT_OS_WINDOWS)
2110 /* We dont conflict with bootp.c::dhcp_decode */
2111 struct rcp_state rcp_state;
2112 int rc;
2113
2114 rcp_state.rcps_flags |= RCPSF_IGNORE_IPV6;
2115 rc = rcp_parse(&rcp_state, RESOLV_CONF_FILE);
2116 LogRelFunc(("NAT: rcp_parse:%Rrc old domain:%s new domain:%s\n",
2117 rc, LIST_EMPTY(&pData->pDomainList)
2118 ? "(null)"
2119 : LIST_FIRST(&pData->pDomainList)->dd_pszDomain,
2120 rcp_state.rcps_domain));
2121 if ( RT_FAILURE(rc)
2122 || LIST_EMPTY(&pData->pDomainList))
2123 return VBOX_NAT_DNS_DNSPROXY;
2124
2125 if ( rcp_state.rcps_domain
2126 && strcmp(rcp_state.rcps_domain, LIST_FIRST(&pData->pDomainList)->dd_pszDomain) == 0)
2127 return VBOX_NAT_DNS_DNSPROXY;
2128 else
2129 return VBOX_NAT_DNS_EXTERNAL;
2130#else
2131 /* copy domain name */
2132 /* domain only compare with coy version */
2133 return VBOX_NAT_DNS_DNSPROXY;
2134#endif
2135 }
2136 return VBOX_NAT_DNS_EXTERNAL;
2137}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette