1 | /*
|
---|
2 | * Copyright (c) 1982, 1986, 1988, 1993
|
---|
3 | * The Regents of the University of California. All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | * 3. All advertising materials mentioning features or use of this software
|
---|
14 | * must display the following acknowledgement:
|
---|
15 | * This product includes software developed by the University of
|
---|
16 | * California, Berkeley and its contributors.
|
---|
17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
18 | * may be used to endorse or promote products derived from this software
|
---|
19 | * without specific prior written permission.
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
31 | * SUCH DAMAGE.
|
---|
32 | *
|
---|
33 | * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
|
---|
34 | * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp
|
---|
35 | */
|
---|
36 |
|
---|
37 | /*
|
---|
38 | * Changes and additions relating to SLiRP are
|
---|
39 | * Copyright (c) 1995 Danny Gasparovski.
|
---|
40 | *
|
---|
41 | * Please read the file COPYRIGHT for the
|
---|
42 | * terms and conditions of the copyright.
|
---|
43 | */
|
---|
44 |
|
---|
45 | #include <slirp.h>
|
---|
46 | #include "ip_icmp.h"
|
---|
47 |
|
---|
48 |
|
---|
49 | /*
|
---|
50 | * IP initialization: fill in IP protocol switch table.
|
---|
51 | * All protocols not implemented in kernel go to raw IP protocol handler.
|
---|
52 | */
|
---|
53 | void
|
---|
54 | ip_init(PNATState pData)
|
---|
55 | {
|
---|
56 | #ifndef VBOX_WITH_BSD_REASS
|
---|
57 | ipq.next = ipq.prev = ptr_to_u32(pData, &ipq);
|
---|
58 | #else /* !VBOX_WITH_BSD_REASS */
|
---|
59 | int i = 0;
|
---|
60 | for (i = 0; i < IPREASS_NHASH; ++i)
|
---|
61 | TAILQ_INIT(&ipq[i]);
|
---|
62 | maxnipq = 100; /* ??? */
|
---|
63 | maxfragsperpacket = 16;
|
---|
64 | nipq = 0;
|
---|
65 | #endif /* VBOX_WITH_BSD_REASS */
|
---|
66 | ip_currid = tt.tv_sec & 0xffff;
|
---|
67 | udp_init(pData);
|
---|
68 | tcp_init(pData);
|
---|
69 | }
|
---|
70 |
|
---|
71 | /*
|
---|
72 | * Ip input routine. Checksum and byte swap header. If fragmented
|
---|
73 | * try to reassemble. Process options. Pass to next level.
|
---|
74 | */
|
---|
75 | void
|
---|
76 | ip_input(PNATState pData, struct mbuf *m)
|
---|
77 | {
|
---|
78 | register struct ip *ip;
|
---|
79 | int hlen;
|
---|
80 |
|
---|
81 | DEBUG_CALL("ip_input");
|
---|
82 | DEBUG_ARG("m = %lx", (long)m);
|
---|
83 | DEBUG_ARG("m_len = %d", m->m_len);
|
---|
84 |
|
---|
85 | ipstat.ips_total++;
|
---|
86 |
|
---|
87 | if (m->m_len < sizeof (struct ip)) {
|
---|
88 | ipstat.ips_toosmall++;
|
---|
89 | return;
|
---|
90 | }
|
---|
91 |
|
---|
92 | ip = mtod(m, struct ip *);
|
---|
93 |
|
---|
94 | if (ip->ip_v != IPVERSION) {
|
---|
95 | ipstat.ips_badvers++;
|
---|
96 | goto bad;
|
---|
97 | }
|
---|
98 |
|
---|
99 | hlen = ip->ip_hl << 2;
|
---|
100 | if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
|
---|
101 | ipstat.ips_badhlen++; /* or packet too short */
|
---|
102 | goto bad;
|
---|
103 | }
|
---|
104 |
|
---|
105 | /* keep ip header intact for ICMP reply
|
---|
106 | * ip->ip_sum = cksum(m, hlen);
|
---|
107 | * if (ip->ip_sum) {
|
---|
108 | */
|
---|
109 | if(cksum(m,hlen)) {
|
---|
110 | ipstat.ips_badsum++;
|
---|
111 | goto bad;
|
---|
112 | }
|
---|
113 |
|
---|
114 | /*
|
---|
115 | * Convert fields to host representation.
|
---|
116 | */
|
---|
117 | NTOHS(ip->ip_len);
|
---|
118 | if (ip->ip_len < hlen) {
|
---|
119 | ipstat.ips_badlen++;
|
---|
120 | goto bad;
|
---|
121 | }
|
---|
122 | NTOHS(ip->ip_id);
|
---|
123 | NTOHS(ip->ip_off);
|
---|
124 |
|
---|
125 | /*
|
---|
126 | * Check that the amount of data in the buffers
|
---|
127 | * is as at least much as the IP header would have us expect.
|
---|
128 | * Trim mbufs if longer than we expect.
|
---|
129 | * Drop packet if shorter than we expect.
|
---|
130 | */
|
---|
131 | if (m->m_len < ip->ip_len) {
|
---|
132 | ipstat.ips_tooshort++;
|
---|
133 | goto bad;
|
---|
134 | }
|
---|
135 | /* Should drop packet if mbuf too long? hmmm... */
|
---|
136 | if (m->m_len > ip->ip_len)
|
---|
137 | m_adj(m, ip->ip_len - m->m_len);
|
---|
138 |
|
---|
139 | /* check ip_ttl for a correct ICMP reply */
|
---|
140 | if(ip->ip_ttl==0 || ip->ip_ttl == 1) {
|
---|
141 | icmp_error(pData, m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
|
---|
142 | goto bad;
|
---|
143 | }
|
---|
144 |
|
---|
145 | #ifdef VBOX_WITH_SLIRP_ICMP
|
---|
146 | ip->ip_ttl--;
|
---|
147 | #endif
|
---|
148 | /*
|
---|
149 | * Process options and, if not destined for us,
|
---|
150 | * ship it on. ip_dooptions returns 1 when an
|
---|
151 | * error was detected (causing an icmp message
|
---|
152 | * to be sent and the original packet to be freed).
|
---|
153 | */
|
---|
154 | /* We do no IP options */
|
---|
155 | /* if (hlen > sizeof (struct ip) && ip_dooptions(m))
|
---|
156 | * goto next;
|
---|
157 | */
|
---|
158 | /*
|
---|
159 | * If offset or IP_MF are set, must reassemble.
|
---|
160 | * Otherwise, nothing need be done.
|
---|
161 | * (We could look in the reassembly queue to see
|
---|
162 | * if the packet was previously fragmented,
|
---|
163 | * but it's not worth the time; just let them time out.)
|
---|
164 | *
|
---|
165 | * XXX This should fail, don't fragment yet
|
---|
166 | */
|
---|
167 | #ifndef VBOX_WITH_BSD_REASS
|
---|
168 | if (ip->ip_off &~ IP_DF) {
|
---|
169 | register struct ipq_t *fp;
|
---|
170 | /*
|
---|
171 | * Look for queue of fragments
|
---|
172 | * of this datagram.
|
---|
173 | */
|
---|
174 | for (fp = u32_to_ptr(pData, ipq.next, struct ipq_t *); fp != &ipq;
|
---|
175 | fp = u32_to_ptr(pData, fp->next, struct ipq_t *))
|
---|
176 | if (ip->ip_id == fp->ipq_id &&
|
---|
177 | ip->ip_src.s_addr == fp->ipq_src.s_addr &&
|
---|
178 | ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
|
---|
179 | ip->ip_p == fp->ipq_p)
|
---|
180 | goto found;
|
---|
181 | fp = 0;
|
---|
182 | found:
|
---|
183 |
|
---|
184 | /*
|
---|
185 | * Adjust ip_len to not reflect header,
|
---|
186 | * set ip_mff if more fragments are expected,
|
---|
187 | * convert offset of this to bytes.
|
---|
188 | */
|
---|
189 | ip->ip_len -= hlen;
|
---|
190 | if (ip->ip_off & IP_MF)
|
---|
191 | ((struct ipasfrag *)ip)->ipf_mff |= 1;
|
---|
192 | else
|
---|
193 | ((struct ipasfrag *)ip)->ipf_mff &= ~1;
|
---|
194 |
|
---|
195 | ip->ip_off <<= 3;
|
---|
196 |
|
---|
197 | /*
|
---|
198 | * If datagram marked as having more fragments
|
---|
199 | * or if this is not the first fragment,
|
---|
200 | * attempt reassembly; if it succeeds, proceed.
|
---|
201 | */
|
---|
202 | if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
|
---|
203 | ipstat.ips_fragments++;
|
---|
204 | ip = ip_reass(pData, (struct ipasfrag *)ip, fp);
|
---|
205 | if (ip == 0)
|
---|
206 | return;
|
---|
207 | ipstat.ips_reassembled++;
|
---|
208 | m = dtom(pData, ip);
|
---|
209 | } else
|
---|
210 | if (fp)
|
---|
211 | ip_freef(pData, fp);
|
---|
212 |
|
---|
213 | } else
|
---|
214 | ip->ip_len -= hlen;
|
---|
215 | #else /* !VBOX_WITH_BSD_REASS */
|
---|
216 | if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
|
---|
217 | m = ip_reass(pData, m);
|
---|
218 | if (m == NULL)
|
---|
219 | return;
|
---|
220 | ip = mtod(m, struct ip *);
|
---|
221 | hlen = ip->ip_len;
|
---|
222 | }
|
---|
223 | else
|
---|
224 | ip->ip_len -= hlen;
|
---|
225 | #endif /* VBOX_WITH_BSD_REASS */
|
---|
226 |
|
---|
227 | /*
|
---|
228 | * Switch out to protocol's input routine.
|
---|
229 | */
|
---|
230 | ipstat.ips_delivered++;
|
---|
231 | switch (ip->ip_p) {
|
---|
232 | case IPPROTO_TCP:
|
---|
233 | tcp_input(pData, m, hlen, (struct socket *)NULL);
|
---|
234 | break;
|
---|
235 | case IPPROTO_UDP:
|
---|
236 | udp_input(pData, m, hlen);
|
---|
237 | break;
|
---|
238 | case IPPROTO_ICMP:
|
---|
239 | icmp_input(pData, m, hlen);
|
---|
240 | break;
|
---|
241 | default:
|
---|
242 | ipstat.ips_noproto++;
|
---|
243 | m_free(pData, m);
|
---|
244 | }
|
---|
245 | return;
|
---|
246 | bad:
|
---|
247 | m_freem(pData, m);
|
---|
248 | return;
|
---|
249 | }
|
---|
250 |
|
---|
251 | #ifndef VBOX_WITH_BSD_REASS
|
---|
252 | /*
|
---|
253 | * Take incoming datagram fragment and try to
|
---|
254 | * reassemble it into whole datagram. If a chain for
|
---|
255 | * reassembly of this datagram already exists, then it
|
---|
256 | * is given as fp; otherwise have to make a chain.
|
---|
257 | */
|
---|
258 | struct ip *
|
---|
259 | ip_reass(PNATState pData, register struct ipasfrag *ip, register struct ipq_t *fp)
|
---|
260 | {
|
---|
261 | register struct mbuf *m = dtom(pData, ip);
|
---|
262 | register struct ipasfrag *q;
|
---|
263 | int hlen = ip->ip_hl << 2;
|
---|
264 | int i, next;
|
---|
265 |
|
---|
266 | DEBUG_CALL("ip_reass");
|
---|
267 | DEBUG_ARG("ip = %lx", (long)ip);
|
---|
268 | DEBUG_ARG("fp = %lx", (long)fp);
|
---|
269 | DEBUG_ARG("m = %lx", (long)m);
|
---|
270 |
|
---|
271 | /*
|
---|
272 | * Presence of header sizes in mbufs
|
---|
273 | * would confuse code below.
|
---|
274 | * Fragment m_data is concatenated.
|
---|
275 | */
|
---|
276 | m->m_data += hlen;
|
---|
277 | m->m_len -= hlen;
|
---|
278 |
|
---|
279 | /*
|
---|
280 | * If first fragment to arrive, create a reassembly queue.
|
---|
281 | */
|
---|
282 | if (fp == 0) {
|
---|
283 | struct mbuf *t;
|
---|
284 | if ((t = m_get(pData)) == NULL) goto dropfrag;
|
---|
285 | fp = mtod(t, struct ipq_t *);
|
---|
286 | insque_32(pData, fp, &ipq);
|
---|
287 | fp->ipq_ttl = IPFRAGTTL;
|
---|
288 | fp->ipq_p = ip->ip_p;
|
---|
289 | fp->ipq_id = ip->ip_id;
|
---|
290 | fp->ipq_next = fp->ipq_prev = ptr_to_u32(pData, (struct ipasfrag *)fp);
|
---|
291 | fp->ipq_src = ((struct ip *)ip)->ip_src;
|
---|
292 | fp->ipq_dst = ((struct ip *)ip)->ip_dst;
|
---|
293 | q = (struct ipasfrag *)fp;
|
---|
294 | goto insert;
|
---|
295 | }
|
---|
296 |
|
---|
297 | /*
|
---|
298 | * Find a segment which begins after this one does.
|
---|
299 | */
|
---|
300 | for (q = u32_to_ptr(pData, fp->ipq_next, struct ipasfrag *); q != (struct ipasfrag *)fp;
|
---|
301 | q = u32_to_ptr(pData, q->ipf_next, struct ipasfrag *))
|
---|
302 | if (q->ip_off > ip->ip_off)
|
---|
303 | break;
|
---|
304 |
|
---|
305 | /*
|
---|
306 | * If there is a preceding segment, it may provide some of
|
---|
307 | * our data already. If so, drop the data from the incoming
|
---|
308 | * segment. If it provides all of our data, drop us.
|
---|
309 | */
|
---|
310 | if (u32_to_ptr(pData, q->ipf_prev, struct ipq_t *) != fp) {
|
---|
311 | i = (u32_to_ptr(pData, q->ipf_prev, struct ipasfrag *))->ip_off +
|
---|
312 | (u32_to_ptr(pData, q->ipf_prev, struct ipasfrag *))->ip_len - ip->ip_off;
|
---|
313 | if (i > 0) {
|
---|
314 | if (i >= ip->ip_len)
|
---|
315 | goto dropfrag;
|
---|
316 | m_adj(dtom(pData, ip), i);
|
---|
317 | ip->ip_off += i;
|
---|
318 | ip->ip_len -= i;
|
---|
319 | }
|
---|
320 | }
|
---|
321 |
|
---|
322 | /*
|
---|
323 | * While we overlap succeeding segments trim them or,
|
---|
324 | * if they are completely covered, dequeue them.
|
---|
325 | */
|
---|
326 | while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
|
---|
327 | i = (ip->ip_off + ip->ip_len) - q->ip_off;
|
---|
328 | if (i < q->ip_len) {
|
---|
329 | q->ip_len -= i;
|
---|
330 | q->ip_off += i;
|
---|
331 | m_adj(dtom(pData, q), i);
|
---|
332 | break;
|
---|
333 | }
|
---|
334 | q = u32_to_ptr(pData, q->ipf_next, struct ipasfrag *);
|
---|
335 | m_freem(pData, dtom(pData, u32_to_ptr(pData, q->ipf_prev, struct ipasfrag *)));
|
---|
336 | ip_deq(pData, u32_to_ptr(pData, q->ipf_prev, struct ipasfrag *));
|
---|
337 | }
|
---|
338 |
|
---|
339 | insert:
|
---|
340 | /*
|
---|
341 | * Stick new segment in its place;
|
---|
342 | * check for complete reassembly.
|
---|
343 | */
|
---|
344 | ip_enq(pData, ip, u32_to_ptr(pData, q->ipf_prev, struct ipasfrag *));
|
---|
345 | next = 0;
|
---|
346 | for (q = u32_to_ptr(pData, fp->ipq_next, struct ipasfrag *); q != (struct ipasfrag *)fp;
|
---|
347 | q = u32_to_ptr(pData, q->ipf_next, struct ipasfrag *)) {
|
---|
348 | if (q->ip_off != next)
|
---|
349 | return (0);
|
---|
350 | next += q->ip_len;
|
---|
351 | }
|
---|
352 | if (u32_to_ptr(pData, q->ipf_prev, struct ipasfrag *)->ipf_mff & 1)
|
---|
353 | return (0);
|
---|
354 |
|
---|
355 | /*
|
---|
356 | * Reassembly is complete; concatenate fragments.
|
---|
357 | */
|
---|
358 | q = u32_to_ptr(pData, fp->ipq_next, struct ipasfrag *);
|
---|
359 | m = dtom(pData, q);
|
---|
360 |
|
---|
361 | q = u32_to_ptr(pData, q->ipf_next, struct ipasfrag *);
|
---|
362 | while (q != (struct ipasfrag *)fp) {
|
---|
363 | struct mbuf *t;
|
---|
364 | t = dtom(pData, q);
|
---|
365 | q = u32_to_ptr(pData, q->ipf_next, struct ipasfrag *);
|
---|
366 | m_cat(pData, m, t);
|
---|
367 | }
|
---|
368 |
|
---|
369 | /*
|
---|
370 | * Create header for new ip packet by
|
---|
371 | * modifying header of first packet;
|
---|
372 | * dequeue and discard fragment reassembly header.
|
---|
373 | * Make header visible.
|
---|
374 | */
|
---|
375 | ip = u32_to_ptr(pData, fp->ipq_next, struct ipasfrag *);
|
---|
376 |
|
---|
377 | /*
|
---|
378 | * If the fragments concatenated to an mbuf that's
|
---|
379 | * bigger than the total size of the fragment, then and
|
---|
380 | * m_ext buffer was alloced. But fp->ipq_next points to
|
---|
381 | * the old buffer (in the mbuf), so we must point ip
|
---|
382 | * into the new buffer.
|
---|
383 | */
|
---|
384 | if (m->m_flags & M_EXT) {
|
---|
385 | int delta;
|
---|
386 | delta = (char *)ip - m->m_dat;
|
---|
387 | ip = (struct ipasfrag *)(m->m_ext + delta);
|
---|
388 | }
|
---|
389 |
|
---|
390 | /* DEBUG_ARG("ip = %lx", (long)ip);
|
---|
391 | * ip=(struct ipasfrag *)m->m_data; */
|
---|
392 |
|
---|
393 | ip->ip_len = next;
|
---|
394 | ip->ipf_mff &= ~1;
|
---|
395 | ((struct ip *)ip)->ip_src = fp->ipq_src;
|
---|
396 | ((struct ip *)ip)->ip_dst = fp->ipq_dst;
|
---|
397 | remque_32(pData, fp);
|
---|
398 | (void) m_free(pData, dtom(pData, fp));
|
---|
399 | m = dtom(pData, ip);
|
---|
400 | m->m_len += (ip->ip_hl << 2);
|
---|
401 | m->m_data -= (ip->ip_hl << 2);
|
---|
402 |
|
---|
403 | return ((struct ip *)ip);
|
---|
404 |
|
---|
405 | dropfrag:
|
---|
406 | ipstat.ips_fragdropped++;
|
---|
407 | m_freem(pData, m);
|
---|
408 | return (0);
|
---|
409 | }
|
---|
410 |
|
---|
411 | /*
|
---|
412 | * Free a fragment reassembly header and all
|
---|
413 | * associated datagrams.
|
---|
414 | */
|
---|
415 | void
|
---|
416 | ip_freef(PNATState pData, struct ipq_t *fp)
|
---|
417 | {
|
---|
418 | register struct ipasfrag *q, *p;
|
---|
419 |
|
---|
420 | for (q = u32_to_ptr(pData, fp->ipq_next, struct ipasfrag *); q != (struct ipasfrag *)fp;
|
---|
421 | q = p) {
|
---|
422 | p = u32_to_ptr(pData, q->ipf_next, struct ipasfrag *);
|
---|
423 | ip_deq(pData, q);
|
---|
424 | m_freem(pData, dtom(pData, q));
|
---|
425 | }
|
---|
426 | remque_32(pData, fp);
|
---|
427 | (void) m_free(pData, dtom(pData, fp));
|
---|
428 | }
|
---|
429 | #else /* !VBOX_WITH_BSD_REASS */
|
---|
430 | struct mbuf *
|
---|
431 | ip_reass(PNATState pData, struct mbuf* m) {
|
---|
432 | struct ip *ip;
|
---|
433 | struct mbuf *p, *q, *nq, *t;
|
---|
434 | struct ipq_t *fp = NULL;
|
---|
435 | struct ipqhead *head;
|
---|
436 | int i, hlen, next;
|
---|
437 | u_short hash;
|
---|
438 |
|
---|
439 | /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
|
---|
440 | if (maxnipq == 0
|
---|
441 | || maxfragsperpacket == 0) {
|
---|
442 | ipstat.ips_fragments++;
|
---|
443 | ipstat.ips_fragdropped++;
|
---|
444 | m_freem(pData, m);
|
---|
445 | return (NULL);
|
---|
446 | }
|
---|
447 |
|
---|
448 | ip = mtod(m, struct ip *);
|
---|
449 | hlen = ip->ip_hl << 2;
|
---|
450 |
|
---|
451 | hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
|
---|
452 | head = &ipq[hash];
|
---|
453 |
|
---|
454 | /*
|
---|
455 | * Look for queue of fragments
|
---|
456 | * of this datagram.
|
---|
457 | */
|
---|
458 | TAILQ_FOREACH(fp, head, ipq_list)
|
---|
459 | if (ip->ip_id == fp->ipq_id &&
|
---|
460 | ip->ip_src.s_addr == fp->ipq_src.s_addr &&
|
---|
461 | ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
|
---|
462 | ip->ip_p == fp->ipq_p)
|
---|
463 | goto found;
|
---|
464 |
|
---|
465 | fp = NULL;
|
---|
466 |
|
---|
467 | /*
|
---|
468 | * Attempt to trim the number of allocated fragment queues if it
|
---|
469 | * exceeds the administrative limit.
|
---|
470 | */
|
---|
471 | if ((nipq > maxnipq) && (maxnipq > 0)) {
|
---|
472 | /*
|
---|
473 | * drop something from the tail of the current queue
|
---|
474 | * before proceeding further
|
---|
475 | */
|
---|
476 | struct ipq_t *q = TAILQ_LAST(head, ipqhead);
|
---|
477 | if (q == NULL) { /* gak */
|
---|
478 | for (i = 0; i < IPREASS_NHASH; i++) {
|
---|
479 | struct ipq_t *r = TAILQ_LAST(&ipq[i], ipqhead);
|
---|
480 | if (r) {
|
---|
481 | ipstat.ips_fragtimeout += r->ipq_nfrags;
|
---|
482 | ip_freef(pData, &ipq[i], r);
|
---|
483 | break;
|
---|
484 | }
|
---|
485 | }
|
---|
486 | } else {
|
---|
487 | ipstat.ips_fragtimeout += q->ipq_nfrags;
|
---|
488 | ip_freef(pData, head, q);
|
---|
489 | }
|
---|
490 | }
|
---|
491 |
|
---|
492 | found:
|
---|
493 | /*
|
---|
494 | * Adjust ip_len to not reflect header,
|
---|
495 | * convert offset of this to bytes.
|
---|
496 | */
|
---|
497 | ip->ip_len -= hlen;
|
---|
498 | if (ip->ip_off & IP_MF) {
|
---|
499 | /*
|
---|
500 | * Make sure that fragments have a data length
|
---|
501 | * that's a non-zero multiple of 8 bytes.
|
---|
502 | */
|
---|
503 | if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
|
---|
504 | ipstat.ips_toosmall++; /* XXX */
|
---|
505 | goto dropfrag;
|
---|
506 | }
|
---|
507 | m->m_flags |= M_FRAG;
|
---|
508 | } else
|
---|
509 | m->m_flags &= ~M_FRAG;
|
---|
510 | ip->ip_off <<= 3;
|
---|
511 |
|
---|
512 |
|
---|
513 | /*
|
---|
514 | * Attempt reassembly; if it succeeds, proceed.
|
---|
515 | * ip_reass() will return a different mbuf.
|
---|
516 | */
|
---|
517 | ipstat.ips_fragments++;
|
---|
518 | m->m_hdr.header = ip;
|
---|
519 |
|
---|
520 | /* Previous ip_reass() started here. */
|
---|
521 | /*
|
---|
522 | * Presence of header sizes in mbufs
|
---|
523 | * would confuse code below.
|
---|
524 | */
|
---|
525 | m->m_data += hlen;
|
---|
526 | m->m_len -= hlen;
|
---|
527 |
|
---|
528 | /*
|
---|
529 | * If first fragment to arrive, create a reassembly queue.
|
---|
530 | */
|
---|
531 | if (fp == NULL) {
|
---|
532 | fp = malloc(sizeof(struct ipq_t));
|
---|
533 | if (fp == NULL)
|
---|
534 | goto dropfrag;
|
---|
535 | TAILQ_INSERT_HEAD(head, fp, ipq_list);
|
---|
536 | nipq++;
|
---|
537 | fp->ipq_nfrags = 1;
|
---|
538 | fp->ipq_ttl = IPFRAGTTL;
|
---|
539 | fp->ipq_p = ip->ip_p;
|
---|
540 | fp->ipq_id = ip->ip_id;
|
---|
541 | fp->ipq_src = ip->ip_src;
|
---|
542 | fp->ipq_dst = ip->ip_dst;
|
---|
543 | fp->ipq_frags = m;
|
---|
544 | m->m_nextpkt = NULL;
|
---|
545 | goto done;
|
---|
546 | } else {
|
---|
547 | fp->ipq_nfrags++;
|
---|
548 | }
|
---|
549 |
|
---|
550 | #define GETIP(m) ((struct ip*)((m)->m_hdr.header))
|
---|
551 |
|
---|
552 |
|
---|
553 | /*
|
---|
554 | * Find a segment which begins after this one does.
|
---|
555 | */
|
---|
556 | for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
|
---|
557 | if (GETIP(q)->ip_off > ip->ip_off)
|
---|
558 | break;
|
---|
559 |
|
---|
560 | /*
|
---|
561 | * If there is a preceding segment, it may provide some of
|
---|
562 | * our data already. If so, drop the data from the incoming
|
---|
563 | * segment. If it provides all of our data, drop us, otherwise
|
---|
564 | * stick new segment in the proper place.
|
---|
565 | *
|
---|
566 | * If some of the data is dropped from the the preceding
|
---|
567 | * segment, then it's checksum is invalidated.
|
---|
568 | */
|
---|
569 | if (p) {
|
---|
570 | i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
|
---|
571 | if (i > 0) {
|
---|
572 | if (i >= ip->ip_len)
|
---|
573 | goto dropfrag;
|
---|
574 | m_adj(m, i);
|
---|
575 | ip->ip_off += i;
|
---|
576 | ip->ip_len -= i;
|
---|
577 | }
|
---|
578 | m->m_nextpkt = p->m_nextpkt;
|
---|
579 | p->m_nextpkt = m;
|
---|
580 | } else {
|
---|
581 | m->m_nextpkt = fp->ipq_frags;
|
---|
582 | fp->ipq_frags = m;
|
---|
583 | }
|
---|
584 |
|
---|
585 | /*
|
---|
586 | * While we overlap succeeding segments trim them or,
|
---|
587 | * if they are completely covered, dequeue them.
|
---|
588 | */
|
---|
589 | for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
|
---|
590 | q = nq) {
|
---|
591 | i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
|
---|
592 | if (i < GETIP(q)->ip_len) {
|
---|
593 | GETIP(q)->ip_len -= i;
|
---|
594 | GETIP(q)->ip_off += i;
|
---|
595 | m_adj(q, i);
|
---|
596 | break;
|
---|
597 | }
|
---|
598 | nq = q->m_nextpkt;
|
---|
599 | m->m_nextpkt = nq;
|
---|
600 | ipstat.ips_fragdropped++;
|
---|
601 | fp->ipq_nfrags--;
|
---|
602 | m_freem(pData, q);
|
---|
603 | }
|
---|
604 |
|
---|
605 | /*
|
---|
606 | * Check for complete reassembly and perform frag per packet
|
---|
607 | * limiting.
|
---|
608 | *
|
---|
609 | * Frag limiting is performed here so that the nth frag has
|
---|
610 | * a chance to complete the packet before we drop the packet.
|
---|
611 | * As a result, n+1 frags are actually allowed per packet, but
|
---|
612 | * only n will ever be stored. (n = maxfragsperpacket.)
|
---|
613 | *
|
---|
614 | */
|
---|
615 | next = 0;
|
---|
616 | for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
|
---|
617 | if (GETIP(q)->ip_off != next) {
|
---|
618 | if (fp->ipq_nfrags > maxfragsperpacket) {
|
---|
619 | ipstat.ips_fragdropped += fp->ipq_nfrags;
|
---|
620 | ip_freef(pData, head, fp);
|
---|
621 | }
|
---|
622 | goto done;
|
---|
623 | }
|
---|
624 | next += GETIP(q)->ip_len;
|
---|
625 | }
|
---|
626 | /* Make sure the last packet didn't have the IP_MF flag */
|
---|
627 | if (p->m_flags & M_FRAG) {
|
---|
628 | if (fp->ipq_nfrags > maxfragsperpacket) {
|
---|
629 | ipstat.ips_fragdropped += fp->ipq_nfrags;
|
---|
630 | ip_freef(pData, head, fp);
|
---|
631 | }
|
---|
632 | goto done;
|
---|
633 | }
|
---|
634 |
|
---|
635 | /*
|
---|
636 | * Reassembly is complete. Make sure the packet is a sane size.
|
---|
637 | */
|
---|
638 | q = fp->ipq_frags;
|
---|
639 | ip = GETIP(q);
|
---|
640 | if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
|
---|
641 | ipstat.ips_fragdropped += fp->ipq_nfrags;
|
---|
642 | ip_freef(pData, head, fp);
|
---|
643 | goto done;
|
---|
644 | }
|
---|
645 |
|
---|
646 | /*
|
---|
647 | * Concatenate fragments.
|
---|
648 | */
|
---|
649 | m = q;
|
---|
650 | #if 0
|
---|
651 | t = m->m_next;
|
---|
652 | m->m_next = NULL;
|
---|
653 | m_cat(pData, m, t);
|
---|
654 | #endif
|
---|
655 | nq = q->m_nextpkt;
|
---|
656 | q->m_nextpkt = NULL;
|
---|
657 | for (q = nq; q != NULL; q = nq) {
|
---|
658 | nq = q->m_nextpkt;
|
---|
659 | q->m_nextpkt = NULL;
|
---|
660 | m_cat(pData, m, q);
|
---|
661 | }
|
---|
662 |
|
---|
663 | /*
|
---|
664 | * Create header for new ip packet by modifying header of first
|
---|
665 | * packet; dequeue and discard fragment reassembly header.
|
---|
666 | * Make header visible.
|
---|
667 | */
|
---|
668 | #if 0
|
---|
669 | ip->ip_len = (ip->ip_hl << 2) + next;
|
---|
670 | #else
|
---|
671 | ip->ip_len = next;
|
---|
672 | #endif
|
---|
673 | ip->ip_src = fp->ipq_src;
|
---|
674 | ip->ip_dst = fp->ipq_dst;
|
---|
675 | TAILQ_REMOVE(head, fp, ipq_list);
|
---|
676 | nipq--;
|
---|
677 | free(fp);
|
---|
678 |
|
---|
679 | m->m_len += (ip->ip_hl << 2);
|
---|
680 | m->m_data -= (ip->ip_hl << 2);
|
---|
681 | /* some debugging cruft by sklower, below, will go away soon */
|
---|
682 | #if 0
|
---|
683 | if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */
|
---|
684 | m_fixhdr(m);
|
---|
685 | #endif
|
---|
686 | ipstat.ips_reassembled++;
|
---|
687 | return (m);
|
---|
688 |
|
---|
689 | dropfrag:
|
---|
690 | ipstat.ips_fragdropped++;
|
---|
691 | if (fp != NULL)
|
---|
692 | fp->ipq_nfrags--;
|
---|
693 | m_freem(pData, m);
|
---|
694 | done:
|
---|
695 | return (NULL);
|
---|
696 |
|
---|
697 | #undef GETIP
|
---|
698 | }
|
---|
699 |
|
---|
700 | void
|
---|
701 | ip_freef(PNATState pData, struct ipqhead *fhp, struct ipq_t *fp) {
|
---|
702 | struct mbuf *q;
|
---|
703 |
|
---|
704 | while (fp->ipq_frags) {
|
---|
705 | q = fp->ipq_frags;
|
---|
706 | fp->ipq_frags = q->m_nextpkt;
|
---|
707 | m_freem(pData, q);
|
---|
708 | }
|
---|
709 | TAILQ_REMOVE(fhp, fp, ipq_list);
|
---|
710 | free(fp);
|
---|
711 | nipq--;
|
---|
712 | }
|
---|
713 | #endif /* VBOX_WITH_BSD_REASS */
|
---|
714 |
|
---|
715 | #ifndef VBOX_WITH_BSD_REASS
|
---|
716 | /*
|
---|
717 | * Put an ip fragment on a reassembly chain.
|
---|
718 | * Like insque, but pointers in middle of structure.
|
---|
719 | */
|
---|
720 | void
|
---|
721 | ip_enq(PNATState pData, register struct ipasfrag *p, register struct ipasfrag *prev)
|
---|
722 | {
|
---|
723 | DEBUG_CALL("ip_enq");
|
---|
724 | DEBUG_ARG("prev = %lx", (long)prev);
|
---|
725 | p->ipf_prev = ptr_to_u32(pData, prev);
|
---|
726 | p->ipf_next = prev->ipf_next;
|
---|
727 | u32_to_ptr(pData, prev->ipf_next, struct ipasfrag *)->ipf_prev = ptr_to_u32(pData, p);
|
---|
728 | prev->ipf_next = ptr_to_u32(pData, p);
|
---|
729 | }
|
---|
730 |
|
---|
731 | /*
|
---|
732 | * To ip_enq as remque is to insque.
|
---|
733 | */
|
---|
734 | void
|
---|
735 | ip_deq(PNATState pData, register struct ipasfrag *p)
|
---|
736 | {
|
---|
737 | struct ipasfrag *prev = u32_to_ptr(pData, p->ipf_prev, struct ipasfrag *);
|
---|
738 | struct ipasfrag *next = u32_to_ptr(pData, p->ipf_next, struct ipasfrag *);
|
---|
739 | u32ptr_done(pData, prev->ipf_next, p);
|
---|
740 | prev->ipf_next = p->ipf_next;
|
---|
741 | next->ipf_prev = p->ipf_prev;
|
---|
742 | }
|
---|
743 | #endif /* !VBOX_WITH_BSD_REASS */
|
---|
744 |
|
---|
745 | /*
|
---|
746 | * IP timer processing;
|
---|
747 | * if a timer expires on a reassembly
|
---|
748 | * queue, discard it.
|
---|
749 | */
|
---|
750 | void
|
---|
751 | ip_slowtimo(PNATState pData)
|
---|
752 | {
|
---|
753 | register struct ipq_t *fp;
|
---|
754 |
|
---|
755 | #ifndef VBOX_WITH_BSD_REASS
|
---|
756 | DEBUG_CALL("ip_slowtimo");
|
---|
757 |
|
---|
758 | fp = u32_to_ptr(pData, ipq.next, struct ipq_t *);
|
---|
759 | if (fp == 0)
|
---|
760 | return;
|
---|
761 |
|
---|
762 | while (fp != &ipq) {
|
---|
763 | --fp->ipq_ttl;
|
---|
764 | fp = u32_to_ptr(pData, fp->next, struct ipq_t *);
|
---|
765 | if (u32_to_ptr(pData, fp->prev, struct ipq_t *)->ipq_ttl == 0) {
|
---|
766 | ipstat.ips_fragtimeout++;
|
---|
767 | ip_freef(pData, u32_to_ptr(pData, fp->prev, struct ipq_t *));
|
---|
768 | }
|
---|
769 | }
|
---|
770 | #else /* !VBOX_WITH_BSD_REASS */
|
---|
771 | /* XXX: the fragment expiration is the same but requier
|
---|
772 | * additional loop see (see ip_input.c in FreeBSD tree)
|
---|
773 | */
|
---|
774 | int i;
|
---|
775 | DEBUG_CALL("ip_slowtimo");
|
---|
776 | for (i = 0; i < IPREASS_NHASH; i++) {
|
---|
777 | for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
|
---|
778 | struct ipq_t *fpp;
|
---|
779 |
|
---|
780 | fpp = fp;
|
---|
781 | fp = TAILQ_NEXT(fp, ipq_list);
|
---|
782 | if(--fpp->ipq_ttl == 0) {
|
---|
783 | ipstat.ips_fragtimeout += fpp->ipq_nfrags;
|
---|
784 | ip_freef(pData, &ipq[i], fpp);
|
---|
785 | }
|
---|
786 | }
|
---|
787 | }
|
---|
788 | /*
|
---|
789 | * If we are over the maximum number of fragments
|
---|
790 | * (due to the limit being lowered), drain off
|
---|
791 | * enough to get down to the new limit.
|
---|
792 | */
|
---|
793 | if (maxnipq >= 0 && nipq > maxnipq) {
|
---|
794 | for (i = 0; i < IPREASS_NHASH; i++) {
|
---|
795 | while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
|
---|
796 | ipstat.ips_fragdropped +=
|
---|
797 | TAILQ_FIRST(&ipq[i])->ipq_nfrags;
|
---|
798 | ip_freef(pData, &ipq[i], TAILQ_FIRST(&ipq[i]));
|
---|
799 | }
|
---|
800 | }
|
---|
801 | }
|
---|
802 | #endif /* VBOX_WITH_BSD_REASS */
|
---|
803 | }
|
---|
804 |
|
---|
805 | /*
|
---|
806 | * Do option processing on a datagram,
|
---|
807 | * possibly discarding it if bad options are encountered,
|
---|
808 | * or forwarding it if source-routed.
|
---|
809 | * Returns 1 if packet has been forwarded/freed,
|
---|
810 | * 0 if the packet should be processed further.
|
---|
811 | */
|
---|
812 |
|
---|
813 | #ifdef notdef
|
---|
814 |
|
---|
815 | int
|
---|
816 | ip_dooptions(m)
|
---|
817 | struct mbuf *m;
|
---|
818 | {
|
---|
819 | register struct ip *ip = mtod(m, struct ip *);
|
---|
820 | register u_char *cp;
|
---|
821 | register struct ip_timestamp *ipt;
|
---|
822 | register struct in_ifaddr *ia;
|
---|
823 | /* int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; */
|
---|
824 | int opt, optlen, cnt, off, code, type, forward = 0;
|
---|
825 | struct in_addr *sin, dst;
|
---|
826 | typedef u_int32_t n_time;
|
---|
827 | n_time ntime;
|
---|
828 |
|
---|
829 | dst = ip->ip_dst;
|
---|
830 | cp = (u_char *)(ip + 1);
|
---|
831 | cnt = (ip->ip_hl << 2) - sizeof (struct ip);
|
---|
832 | for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
---|
833 | opt = cp[IPOPT_OPTVAL];
|
---|
834 | if (opt == IPOPT_EOL)
|
---|
835 | break;
|
---|
836 | if (opt == IPOPT_NOP)
|
---|
837 | optlen = 1;
|
---|
838 | else {
|
---|
839 | optlen = cp[IPOPT_OLEN];
|
---|
840 | if (optlen <= 0 || optlen > cnt) {
|
---|
841 | code = &cp[IPOPT_OLEN] - (u_char *)ip;
|
---|
842 | goto bad;
|
---|
843 | }
|
---|
844 | }
|
---|
845 | switch (opt) {
|
---|
846 |
|
---|
847 | default:
|
---|
848 | break;
|
---|
849 |
|
---|
850 | /*
|
---|
851 | * Source routing with record.
|
---|
852 | * Find interface with current destination address.
|
---|
853 | * If none on this machine then drop if strictly routed,
|
---|
854 | * or do nothing if loosely routed.
|
---|
855 | * Record interface address and bring up next address
|
---|
856 | * component. If strictly routed make sure next
|
---|
857 | * address is on directly accessible net.
|
---|
858 | */
|
---|
859 | case IPOPT_LSRR:
|
---|
860 | case IPOPT_SSRR:
|
---|
861 | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
|
---|
862 | code = &cp[IPOPT_OFFSET] - (u_char *)ip;
|
---|
863 | goto bad;
|
---|
864 | }
|
---|
865 | ipaddr.sin_addr = ip->ip_dst;
|
---|
866 | ia = (struct in_ifaddr *)
|
---|
867 | ifa_ifwithaddr((struct sockaddr *)&ipaddr);
|
---|
868 | if (ia == 0) {
|
---|
869 | if (opt == IPOPT_SSRR) {
|
---|
870 | type = ICMP_UNREACH;
|
---|
871 | code = ICMP_UNREACH_SRCFAIL;
|
---|
872 | goto bad;
|
---|
873 | }
|
---|
874 | /*
|
---|
875 | * Loose routing, and not at next destination
|
---|
876 | * yet; nothing to do except forward.
|
---|
877 | */
|
---|
878 | break;
|
---|
879 | }
|
---|
880 | off--; / * 0 origin * /
|
---|
881 | if (off > optlen - sizeof(struct in_addr)) {
|
---|
882 | /*
|
---|
883 | * End of source route. Should be for us.
|
---|
884 | */
|
---|
885 | save_rte(cp, ip->ip_src);
|
---|
886 | break;
|
---|
887 | }
|
---|
888 | /*
|
---|
889 | * locate outgoing interface
|
---|
890 | */
|
---|
891 | bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
|
---|
892 | sizeof(ipaddr.sin_addr));
|
---|
893 | if (opt == IPOPT_SSRR) {
|
---|
894 | #define INA struct in_ifaddr *
|
---|
895 | #define SA struct sockaddr *
|
---|
896 | if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
|
---|
897 | ia = (INA)ifa_ifwithnet((SA)&ipaddr);
|
---|
898 | } else
|
---|
899 | ia = ip_rtaddr(ipaddr.sin_addr);
|
---|
900 | if (ia == 0) {
|
---|
901 | type = ICMP_UNREACH;
|
---|
902 | code = ICMP_UNREACH_SRCFAIL;
|
---|
903 | goto bad;
|
---|
904 | }
|
---|
905 | ip->ip_dst = ipaddr.sin_addr;
|
---|
906 | bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
|
---|
907 | (caddr_t)(cp + off), sizeof(struct in_addr));
|
---|
908 | cp[IPOPT_OFFSET] += sizeof(struct in_addr);
|
---|
909 | /*
|
---|
910 | * Let ip_intr's mcast routing check handle mcast pkts
|
---|
911 | */
|
---|
912 | forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
|
---|
913 | break;
|
---|
914 |
|
---|
915 | case IPOPT_RR:
|
---|
916 | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
|
---|
917 | code = &cp[IPOPT_OFFSET] - (u_char *)ip;
|
---|
918 | goto bad;
|
---|
919 | }
|
---|
920 | /*
|
---|
921 | * If no space remains, ignore.
|
---|
922 | */
|
---|
923 | off--; * 0 origin *
|
---|
924 | if (off > optlen - sizeof(struct in_addr))
|
---|
925 | break;
|
---|
926 | bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
|
---|
927 | sizeof(ipaddr.sin_addr));
|
---|
928 | /*
|
---|
929 | * locate outgoing interface; if we're the destination,
|
---|
930 | * use the incoming interface (should be same).
|
---|
931 | */
|
---|
932 | if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
|
---|
933 | (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
|
---|
934 | type = ICMP_UNREACH;
|
---|
935 | code = ICMP_UNREACH_HOST;
|
---|
936 | goto bad;
|
---|
937 | }
|
---|
938 | bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
|
---|
939 | (caddr_t)(cp + off), sizeof(struct in_addr));
|
---|
940 | cp[IPOPT_OFFSET] += sizeof(struct in_addr);
|
---|
941 | break;
|
---|
942 |
|
---|
943 | case IPOPT_TS:
|
---|
944 | code = cp - (u_char *)ip;
|
---|
945 | ipt = (struct ip_timestamp *)cp;
|
---|
946 | if (ipt->ipt_len < 5)
|
---|
947 | goto bad;
|
---|
948 | if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
|
---|
949 | if (++ipt->ipt_oflw == 0)
|
---|
950 | goto bad;
|
---|
951 | break;
|
---|
952 | }
|
---|
953 | sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
|
---|
954 | switch (ipt->ipt_flg) {
|
---|
955 |
|
---|
956 | case IPOPT_TS_TSONLY:
|
---|
957 | break;
|
---|
958 |
|
---|
959 | case IPOPT_TS_TSANDADDR:
|
---|
960 | if (ipt->ipt_ptr + sizeof(n_time) +
|
---|
961 | sizeof(struct in_addr) > ipt->ipt_len)
|
---|
962 | goto bad;
|
---|
963 | ipaddr.sin_addr = dst;
|
---|
964 | ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr,
|
---|
965 | m->m_pkthdr.rcvif);
|
---|
966 | if (ia == 0)
|
---|
967 | continue;
|
---|
968 | bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
|
---|
969 | (caddr_t)sin, sizeof(struct in_addr));
|
---|
970 | ipt->ipt_ptr += sizeof(struct in_addr);
|
---|
971 | break;
|
---|
972 |
|
---|
973 | case IPOPT_TS_PRESPEC:
|
---|
974 | if (ipt->ipt_ptr + sizeof(n_time) +
|
---|
975 | sizeof(struct in_addr) > ipt->ipt_len)
|
---|
976 | goto bad;
|
---|
977 | bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
|
---|
978 | sizeof(struct in_addr));
|
---|
979 | if (ifa_ifwithaddr((SA)&ipaddr) == 0)
|
---|
980 | continue;
|
---|
981 | ipt->ipt_ptr += sizeof(struct in_addr);
|
---|
982 | break;
|
---|
983 |
|
---|
984 | default:
|
---|
985 | goto bad;
|
---|
986 | }
|
---|
987 | ntime = iptime();
|
---|
988 | bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
|
---|
989 | sizeof(n_time));
|
---|
990 | ipt->ipt_ptr += sizeof(n_time);
|
---|
991 | }
|
---|
992 | }
|
---|
993 | if (forward) {
|
---|
994 | ip_forward(m, 1);
|
---|
995 | return (1);
|
---|
996 | }
|
---|
997 | }
|
---|
998 | }
|
---|
999 | return (0);
|
---|
1000 | bad:
|
---|
1001 | /* ip->ip_len -= ip->ip_hl << 2; XXX icmp_error adds in hdr length */
|
---|
1002 |
|
---|
1003 | /* Not yet */
|
---|
1004 | icmp_error(m, type, code, 0, 0);
|
---|
1005 |
|
---|
1006 | ipstat.ips_badoptions++;
|
---|
1007 | return (1);
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | #endif /* notdef */
|
---|
1011 |
|
---|
1012 | /*
|
---|
1013 | * Strip out IP options, at higher
|
---|
1014 | * level protocol in the kernel.
|
---|
1015 | * Second argument is buffer to which options
|
---|
1016 | * will be moved, and return value is their length.
|
---|
1017 | * (XXX) should be deleted; last arg currently ignored.
|
---|
1018 | */
|
---|
1019 | void
|
---|
1020 | ip_stripoptions(m, mopt)
|
---|
1021 | register struct mbuf *m;
|
---|
1022 | struct mbuf *mopt;
|
---|
1023 | {
|
---|
1024 | register int i;
|
---|
1025 | struct ip *ip = mtod(m, struct ip *);
|
---|
1026 | register caddr_t opts;
|
---|
1027 | int olen;
|
---|
1028 |
|
---|
1029 | olen = (ip->ip_hl<<2) - sizeof (struct ip);
|
---|
1030 | opts = (caddr_t)(ip + 1);
|
---|
1031 | i = m->m_len - (sizeof (struct ip) + olen);
|
---|
1032 | memcpy(opts, opts + olen, (unsigned)i);
|
---|
1033 | m->m_len -= olen;
|
---|
1034 |
|
---|
1035 | ip->ip_hl = sizeof(struct ip) >> 2;
|
---|
1036 | }
|
---|