VirtualBox

source: vbox/trunk/src/VBox/Devices/Network/SrvIntNetR0.cpp@ 46921

Last change on this file since 46921 was 46921, checked in by vboxsync, 12 years ago

misspelled @todo.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 227.0 KB
Line 
1/* $Id: SrvIntNetR0.cpp 46921 2013-07-03 09:46:40Z vboxsync $ */
2/** @file
3 * Internal networking - The ring 0 service.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_SRV_INTNET
23#include <VBox/intnet.h>
24#include <VBox/intnetinline.h>
25#include <VBox/vmm/pdmnetinline.h>
26#include <VBox/sup.h>
27#include <VBox/vmm/pdm.h>
28#include <VBox/log.h>
29
30#include <iprt/asm.h>
31#include <iprt/assert.h>
32#include <iprt/handletable.h>
33#include <iprt/mp.h>
34#include <iprt/mem.h>
35#include <iprt/net.h>
36#include <iprt/semaphore.h>
37#include <iprt/spinlock.h>
38#include <iprt/string.h>
39#include <iprt/thread.h>
40#include <iprt/time.h>
41
42
43/*******************************************************************************
44* Defined Constants And Macros *
45*******************************************************************************/
46/** @def INTNET_WITH_DHCP_SNOOPING
47 * Enabled DHCP snooping when in shared-mac-on-the-wire mode. */
48#define INTNET_WITH_DHCP_SNOOPING
49
50/** The maximum number of interface in a network. */
51#define INTNET_MAX_IFS (1023 + 1 + 16)
52
53/** The number of entries to grow the destination tables with. */
54#if 0
55# define INTNET_GROW_DSTTAB_SIZE 16
56#else
57# define INTNET_GROW_DSTTAB_SIZE 1
58#endif
59
60/** The wakeup bit in the INTNETIF::cBusy and INTNETRUNKIF::cBusy counters. */
61#define INTNET_BUSY_WAKEUP_MASK RT_BIT_32(30)
62
63
64/*******************************************************************************
65* Structures and Typedefs *
66*******************************************************************************/
67/**
68 * MAC address lookup table entry.
69 */
70typedef struct INTNETMACTABENTRY
71{
72 /** The MAC address of this entry. */
73 RTMAC MacAddr;
74 /** Is it is effectively promiscuous mode. */
75 bool fPromiscuousEff;
76 /** Is it promiscuous and should it see unrelated trunk traffic. */
77 bool fPromiscuousSeeTrunk;
78 /** Is it active.
79 * We ignore the entry if this is clear and may end up sending packets addressed
80 * to this interface onto the trunk. The reasoning for this is that this could
81 * be the interface of a VM that just has been teleported to a different host. */
82 bool fActive;
83 /** Pointer to the network interface. */
84 struct INTNETIF *pIf;
85} INTNETMACTABENTRY;
86/** Pointer to a MAC address lookup table entry. */
87typedef INTNETMACTABENTRY *PINTNETMACTABENTRY;
88
89/**
90 * MAC address lookup table.
91 *
92 * @todo Having this in a separate structure didn't work out as well as it
93 * should. Consider merging it into INTNETNETWORK.
94 */
95typedef struct INTNETMACTAB
96{
97 /** The current number of entries. */
98 uint32_t cEntries;
99 /** The number of entries we've allocated space for. */
100 uint32_t cEntriesAllocated;
101 /** Table entries. */
102 PINTNETMACTABENTRY paEntries;
103
104 /** The number of interface entries currently in promicuous mode. */
105 uint32_t cPromiscuousEntries;
106 /** The number of interface entries currently in promicuous mode that
107 * shall not see unrelated trunk traffic. */
108 uint32_t cPromiscuousNoTrunkEntries;
109
110 /** The host MAC address (reported). */
111 RTMAC HostMac;
112 /** The effective host promiscuous setting (reported). */
113 bool fHostPromiscuousEff;
114 /** The real host promiscuous setting (reported). */
115 bool fHostPromiscuousReal;
116 /** Whether the host is active. */
117 bool fHostActive;
118
119 /** Whether the wire is promiscuous (config). */
120 bool fWirePromiscuousEff;
121 /** Whether the wire is promiscuous (config).
122 * (Shadows INTNET_OPEN_FLAGS_TRUNK_WIRE_PROMISC_MODE in
123 * INTNETNETWORK::fFlags.) */
124 bool fWirePromiscuousReal;
125 /** Whether the wire is active. */
126 bool fWireActive;
127
128 /** Pointer to the trunk interface. */
129 struct INTNETTRUNKIF *pTrunk;
130} INTNETMACTAB;
131/** Pointer to a MAC address . */
132typedef INTNETMACTAB *PINTNETMACTAB;
133
134/**
135 * Destination table.
136 */
137typedef struct INTNETDSTTAB
138{
139 /** The trunk destinations. */
140 uint32_t fTrunkDst;
141 /** Pointer to the trunk interface (referenced) if fTrunkDst is non-zero. */
142 struct INTNETTRUNKIF *pTrunk;
143 /** The number of destination interfaces. */
144 uint32_t cIfs;
145 /** The interfaces (referenced). Variable sized array. */
146 struct
147 {
148 /** The destination interface. */
149 struct INTNETIF *pIf;
150 /** Whether to replace the destination MAC address.
151 * This is used when sharing MAC address with the host on the wire(less). */
152 bool fReplaceDstMac;
153 } aIfs[1];
154} INTNETDSTTAB;
155/** Pointer to a destination table. */
156typedef INTNETDSTTAB *PINTNETDSTTAB;
157/** Pointer to a const destination table. */
158typedef INTNETDSTTAB const *PCINTNETDSTTAB;
159
160
161/** Network layer address type. */
162typedef enum INTNETADDRTYPE
163{
164 /** The invalid 0 entry. */
165 kIntNetAddrType_Invalid = 0,
166 /** IP version 4. */
167 kIntNetAddrType_IPv4,
168 /** IP version 6. */
169 kIntNetAddrType_IPv6,
170 /** IPX. */
171 kIntNetAddrType_IPX,
172 /** The end of the valid values. */
173 kIntNetAddrType_End,
174 /** The usual 32-bit hack. */
175 kIntNetAddrType_32BitHack = 0x7fffffff
176} INTNETADDRTYPE;
177/** Pointer to a network layer address type. */
178typedef INTNETADDRTYPE *PINTNETADDRTYPE;
179
180
181/**
182 * Address and type.
183 */
184typedef struct INTNETADDR
185{
186 /** The address type. */
187 INTNETADDRTYPE enmType;
188 /** The address. */
189 RTNETADDRU Addr;
190} INTNETADDR;
191/** Pointer to an address. */
192typedef INTNETADDR *PINTNETADDR;
193/** Pointer to a const address. */
194typedef INTNETADDR const *PCINTNETADDR;
195
196
197/**
198 * Address cache for a specific network layer.
199 */
200typedef struct INTNETADDRCACHE
201{
202 /** Pointer to the table of addresses. */
203 uint8_t *pbEntries;
204 /** The number of valid address entries. */
205 uint8_t cEntries;
206 /** The number of allocated address entries. */
207 uint8_t cEntriesAlloc;
208 /** The address size. */
209 uint8_t cbAddress;
210 /** The size of an entry. */
211 uint8_t cbEntry;
212} INTNETADDRCACHE;
213/** Pointer to an address cache. */
214typedef INTNETADDRCACHE *PINTNETADDRCACHE;
215/** Pointer to a const address cache. */
216typedef INTNETADDRCACHE const *PCINTNETADDRCACHE;
217
218
219/**
220 * A network interface.
221 *
222 * Unless explicitly stated, all members are protect by the network semaphore.
223 */
224typedef struct INTNETIF
225{
226 /** The MAC address.
227 * This is shadowed by INTNETMACTABENTRY::MacAddr. */
228 RTMAC MacAddr;
229 /** Set if the INTNET::MacAddr member has been explicitly set. */
230 bool fMacSet;
231 /** Tracks the desired promiscuous setting of the interface. */
232 bool fPromiscuousReal;
233 /** Whether the interface is active or not.
234 * This is shadowed by INTNETMACTABENTRY::fActive. */
235 bool fActive;
236 /** Whether someone is currently in the destructor or has indicated that
237 * the end is nigh by means of IntNetR0IfAbortWait. */
238 bool volatile fDestroying;
239 /** The flags specified when opening this interface. */
240 uint32_t fOpenFlags;
241 /** Number of yields done to try make the interface read pending data.
242 * We will stop yielding when this reaches a threshold assuming that the VM is
243 * paused or that it simply isn't worth all the delay. It is cleared when a
244 * successful send has been done. */
245 uint32_t cYields;
246 /** Pointer to the current exchange buffer (ring-0). */
247 PINTNETBUF pIntBuf;
248 /** Pointer to ring-3 mapping of the current exchange buffer. */
249 R3PTRTYPE(PINTNETBUF) pIntBufR3;
250 /** Pointer to the default exchange buffer for the interface. */
251 PINTNETBUF pIntBufDefault;
252 /** Pointer to ring-3 mapping of the default exchange buffer. */
253 R3PTRTYPE(PINTNETBUF) pIntBufDefaultR3;
254 /** Event semaphore which a receiver/consumer thread will sleep on while
255 * waiting for data to arrive. */
256 RTSEMEVENT volatile hRecvEvent;
257 /** Number of threads sleeping on the event semaphore. */
258 uint32_t cSleepers;
259 /** The interface handle.
260 * When this is INTNET_HANDLE_INVALID a sleeper which is waking up
261 * should return with the appropriate error condition. */
262 INTNETIFHANDLE volatile hIf;
263 /** Pointer to the network this interface is connected to.
264 * This is protected by the INTNET::hMtxCreateOpenDestroy. */
265 struct INTNETNETWORK *pNetwork;
266 /** The session this interface is associated with. */
267 PSUPDRVSESSION pSession;
268 /** The SUPR0 object id. */
269 void *pvObj;
270 /** The network layer address cache. (Indexed by type, 0 entry isn't used.)
271 * This is protected by the address spinlock of the network. */
272 INTNETADDRCACHE aAddrCache[kIntNetAddrType_End];
273 /** Spinlock protecting the input (producer) side of the receive ring. */
274 RTSPINLOCK hRecvInSpinlock;
275 /** Busy count for tracking destination table references and active sends.
276 * Usually incremented while owning the switch table spinlock. The 30th bit
277 * is used to indicate wakeup. */
278 uint32_t volatile cBusy;
279 /** The preallocated destination table.
280 * This is NULL when it's in use as a precaution against unserialized
281 * transmitting. This is grown when new interfaces are added to the network. */
282 PINTNETDSTTAB volatile pDstTab;
283 /** Pointer to the trunk's per interface data. Can be NULL. */
284 void *pvIfData;
285 /** Header buffer for when we're carving GSO frames. */
286 uint8_t abGsoHdrs[256];
287} INTNETIF;
288/** Pointer to an internal network interface. */
289typedef INTNETIF *PINTNETIF;
290
291
292/**
293 * A trunk interface.
294 */
295typedef struct INTNETTRUNKIF
296{
297 /** The port interface we present to the component. */
298 INTNETTRUNKSWPORT SwitchPort;
299 /** The port interface we get from the component. */
300 PINTNETTRUNKIFPORT pIfPort;
301 /** Pointer to the network we're connect to.
302 * This may be NULL if we're orphaned? */
303 struct INTNETNETWORK *pNetwork;
304 /** The current MAC address for the interface. (reported)
305 * Updated while owning the switch table spinlock. */
306 RTMAC MacAddr;
307 /** Whether to supply physical addresses with the outbound SGs. (reported) */
308 bool fPhysSG;
309 /** Explicit alignment. */
310 bool fUnused;
311 /** Busy count for tracking destination table references and active sends.
312 * Usually incremented while owning the switch table spinlock. The 30th bit
313 * is used to indicate wakeup. */
314 uint32_t volatile cBusy;
315 /** Mask of destinations that pfnXmit cope with disabled preemption for. */
316 uint32_t fNoPreemptDsts;
317 /** The GSO capabilities of the wire destination. (reported) */
318 uint32_t fWireGsoCapabilites;
319 /** The GSO capabilities of the host destination. (reported)
320 * This is as bit map where each bit represents the GSO type with the same
321 * number. */
322 uint32_t fHostGsoCapabilites;
323 /** The destination table spinlock, interrupt safe.
324 * Protects apTaskDstTabs and apIntDstTabs. */
325 RTSPINLOCK hDstTabSpinlock;
326 /** The number of entries in apIntDstTabs. */
327 uint32_t cIntDstTabs;
328 /** The task time destination tables.
329 * @remarks intnetR0NetworkEnsureTabSpace and others ASSUMES this immediately
330 * precedes apIntDstTabs so that these two tables can be used as one
331 * contiguous one. */
332 PINTNETDSTTAB apTaskDstTabs[2];
333 /** The interrupt / disabled-preemption time destination tables.
334 * This is a variable sized array. */
335 PINTNETDSTTAB apIntDstTabs[1];
336} INTNETTRUNKIF;
337/** Pointer to a trunk interface. */
338typedef INTNETTRUNKIF *PINTNETTRUNKIF;
339
340/** Converts a pointer to INTNETTRUNKIF::SwitchPort to a PINTNETTRUNKIF. */
341#define INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort) ((PINTNETTRUNKIF)(pSwitchPort))
342
343
344/**
345 * Internal representation of a network.
346 */
347typedef struct INTNETNETWORK
348{
349 /** The Next network in the chain.
350 * This is protected by the INTNET::hMtxCreateOpenDestroy. */
351 struct INTNETNETWORK *pNext;
352
353 /** The spinlock protecting MacTab and INTNETTRUNKIF::aAddrCache.
354 * Interrupt safe. */
355 RTSPINLOCK hAddrSpinlock;
356 /** MAC address table.
357 * This doubles as interface collection. */
358 INTNETMACTAB MacTab;
359
360 /** Wait for an interface to stop being busy so it can be removed or have its
361 * destination table replaced. We have to wait upon this while owning the
362 * network mutex. Will only ever have one waiter because of the big mutex. */
363 RTSEMEVENT hEvtBusyIf;
364 /** Pointer to the instance data. */
365 struct INTNET *pIntNet;
366 /** The SUPR0 object id. */
367 void *pvObj;
368 /** Pointer to the temporary buffer that is used when snooping fragmented packets.
369 * This is allocated after this structure if we're sharing the MAC address with
370 * the host. The buffer is INTNETNETWORK_TMP_SIZE big and aligned on a 64-byte boundary. */
371 uint8_t *pbTmp;
372 /** Network creation flags (INTNET_OPEN_FLAGS_*). */
373 uint32_t fFlags;
374 /** Any restrictive policies required as a minimum by some interface.
375 * (INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES) */
376 uint32_t fMinFlags;
377 /** The number of active interfaces (excluding the trunk). */
378 uint32_t cActiveIFs;
379 /** The length of the network name. */
380 uint8_t cchName;
381 /** The network name. */
382 char szName[INTNET_MAX_NETWORK_NAME];
383 /** The trunk type. */
384 INTNETTRUNKTYPE enmTrunkType;
385 /** The trunk name. */
386 char szTrunk[INTNET_MAX_TRUNK_NAME];
387} INTNETNETWORK;
388/** Pointer to an internal network. */
389typedef INTNETNETWORK *PINTNETNETWORK;
390/** Pointer to a const internal network. */
391typedef const INTNETNETWORK *PCINTNETNETWORK;
392
393/** The size of the buffer INTNETNETWORK::pbTmp points at. */
394#define INTNETNETWORK_TMP_SIZE 2048
395
396
397/**
398 * Internal networking instance.
399 */
400typedef struct INTNET
401{
402 /** Magic number (INTNET_MAGIC). */
403 uint32_t volatile u32Magic;
404 /** Mutex protecting the creation, opening and destruction of both networks and
405 * interfaces. (This means all operations affecting the pNetworks list.) */
406 RTSEMMUTEX hMtxCreateOpenDestroy;
407 /** List of networks. Protected by INTNET::Spinlock. */
408 PINTNETNETWORK volatile pNetworks;
409 /** Handle table for the interfaces. */
410 RTHANDLETABLE hHtIfs;
411} INTNET;
412/** Pointer to an internal network ring-0 instance. */
413typedef struct INTNET *PINTNET;
414
415/** Magic number for the internal network instance data (Hayao Miyazaki). */
416#define INTNET_MAGIC UINT32_C(0x19410105)
417
418
419/*******************************************************************************
420* Global Variables *
421*******************************************************************************/
422/** Pointer to the internal network instance data. */
423static PINTNET volatile g_pIntNet = NULL;
424
425static const struct INTNETOPENNETWORKFLAGS
426{
427 uint32_t fRestrictive; /**< The restrictive flag (deny/disabled). */
428 uint32_t fRelaxed; /**< The relaxed flag (allow/enabled). */
429 uint32_t fFixed; /**< The config-fixed flag. */
430 uint32_t fPair; /**< The pair of restrictive and relaxed flags. */
431}
432/** Open network policy flags relating to the network. */
433g_afIntNetOpenNetworkNetFlags[] =
434{
435 { INTNET_OPEN_FLAGS_ACCESS_RESTRICTED, INTNET_OPEN_FLAGS_ACCESS_PUBLIC, INTNET_OPEN_FLAGS_ACCESS_FIXED, INTNET_OPEN_FLAGS_ACCESS_RESTRICTED | INTNET_OPEN_FLAGS_ACCESS_PUBLIC },
436 { INTNET_OPEN_FLAGS_PROMISC_DENY_CLIENTS, INTNET_OPEN_FLAGS_PROMISC_ALLOW_CLIENTS, INTNET_OPEN_FLAGS_PROMISC_FIXED, INTNET_OPEN_FLAGS_PROMISC_DENY_CLIENTS | INTNET_OPEN_FLAGS_PROMISC_ALLOW_CLIENTS },
437 { INTNET_OPEN_FLAGS_PROMISC_DENY_TRUNK_HOST, INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_HOST, INTNET_OPEN_FLAGS_PROMISC_FIXED, INTNET_OPEN_FLAGS_PROMISC_DENY_TRUNK_HOST | INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_HOST },
438 { INTNET_OPEN_FLAGS_PROMISC_DENY_TRUNK_WIRE, INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_WIRE, INTNET_OPEN_FLAGS_PROMISC_FIXED, INTNET_OPEN_FLAGS_PROMISC_DENY_TRUNK_WIRE | INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_WIRE },
439 { INTNET_OPEN_FLAGS_TRUNK_HOST_DISABLED, INTNET_OPEN_FLAGS_TRUNK_HOST_ENABLED, INTNET_OPEN_FLAGS_TRUNK_FIXED, INTNET_OPEN_FLAGS_TRUNK_HOST_DISABLED | INTNET_OPEN_FLAGS_TRUNK_HOST_ENABLED },
440 { INTNET_OPEN_FLAGS_TRUNK_HOST_CHASTE_MODE, INTNET_OPEN_FLAGS_TRUNK_HOST_PROMISC_MODE, INTNET_OPEN_FLAGS_TRUNK_FIXED, INTNET_OPEN_FLAGS_TRUNK_HOST_CHASTE_MODE | INTNET_OPEN_FLAGS_TRUNK_HOST_PROMISC_MODE },
441 { INTNET_OPEN_FLAGS_TRUNK_WIRE_DISABLED, INTNET_OPEN_FLAGS_TRUNK_WIRE_ENABLED, INTNET_OPEN_FLAGS_TRUNK_FIXED, INTNET_OPEN_FLAGS_TRUNK_WIRE_DISABLED | INTNET_OPEN_FLAGS_TRUNK_WIRE_ENABLED },
442 { INTNET_OPEN_FLAGS_TRUNK_WIRE_CHASTE_MODE, INTNET_OPEN_FLAGS_TRUNK_WIRE_PROMISC_MODE, INTNET_OPEN_FLAGS_TRUNK_FIXED, INTNET_OPEN_FLAGS_TRUNK_WIRE_CHASTE_MODE | INTNET_OPEN_FLAGS_TRUNK_WIRE_PROMISC_MODE },
443},
444/** Open network policy flags relating to the new interface. */
445g_afIntNetOpenNetworkIfFlags[] =
446{
447 { INTNET_OPEN_FLAGS_IF_PROMISC_DENY, INTNET_OPEN_FLAGS_IF_PROMISC_ALLOW, INTNET_OPEN_FLAGS_IF_FIXED, INTNET_OPEN_FLAGS_IF_PROMISC_DENY | INTNET_OPEN_FLAGS_IF_PROMISC_ALLOW },
448 { INTNET_OPEN_FLAGS_IF_PROMISC_NO_TRUNK, INTNET_OPEN_FLAGS_IF_PROMISC_SEE_TRUNK, INTNET_OPEN_FLAGS_IF_FIXED, INTNET_OPEN_FLAGS_IF_PROMISC_NO_TRUNK | INTNET_OPEN_FLAGS_IF_PROMISC_SEE_TRUNK },
449};
450
451
452
453/**
454 * Worker for intnetR0SgWritePart that deals with the case where the
455 * request doesn't fit into the first segment.
456 *
457 * @returns true, unless the request or SG invalid.
458 * @param pSG The SG list to write to.
459 * @param off Where to start writing (offset into the SG).
460 * @param cb How much to write.
461 * @param pvBuf The buffer to containing the bits to write.
462 */
463static bool intnetR0SgWritePartSlow(PCINTNETSG pSG, uint32_t off, uint32_t cb, void const *pvBuf)
464{
465 if (RT_UNLIKELY(off + cb > pSG->cbTotal))
466 return false;
467
468 /*
469 * Skip ahead to the segment where off starts.
470 */
471 unsigned const cSegs = pSG->cSegsUsed; Assert(cSegs == pSG->cSegsUsed);
472 unsigned iSeg = 0;
473 while (off > pSG->aSegs[iSeg].cb)
474 {
475 off -= pSG->aSegs[iSeg++].cb;
476 AssertReturn(iSeg < cSegs, false);
477 }
478
479 /*
480 * Copy the data, hoping that it's all from one segment...
481 */
482 uint32_t cbCanCopy = pSG->aSegs[iSeg].cb - off;
483 if (cbCanCopy >= cb)
484 memcpy((uint8_t *)pSG->aSegs[iSeg].pv + off, pvBuf, cb);
485 else
486 {
487 /* copy the portion in the current segment. */
488 memcpy((uint8_t *)pSG->aSegs[iSeg].pv + off, pvBuf, cbCanCopy);
489 cb -= cbCanCopy;
490
491 /* copy the portions in the other segments. */
492 do
493 {
494 pvBuf = (uint8_t const *)pvBuf + cbCanCopy;
495 iSeg++;
496 AssertReturn(iSeg < cSegs, false);
497
498 cbCanCopy = RT_MIN(cb, pSG->aSegs[iSeg].cb);
499 memcpy(pSG->aSegs[iSeg].pv, pvBuf, cbCanCopy);
500
501 cb -= cbCanCopy;
502 } while (cb > 0);
503 }
504
505 return true;
506}
507
508
509/**
510 * Writes to a part of an SG.
511 *
512 * @returns true on success, false on failure (out of bounds).
513 * @param pSG The SG list to write to.
514 * @param off Where to start writing (offset into the SG).
515 * @param cb How much to write.
516 * @param pvBuf The buffer to containing the bits to write.
517 */
518DECLINLINE(bool) intnetR0SgWritePart(PCINTNETSG pSG, uint32_t off, uint32_t cb, void const *pvBuf)
519{
520 Assert(off + cb > off);
521
522 /* The optimized case. */
523 if (RT_LIKELY( pSG->cSegsUsed == 1
524 || pSG->aSegs[0].cb >= off + cb))
525 {
526 Assert(pSG->cbTotal == pSG->aSegs[0].cb);
527 memcpy((uint8_t *)pSG->aSegs[0].pv + off, pvBuf, cb);
528 return true;
529 }
530 return intnetR0SgWritePartSlow(pSG, off, cb, pvBuf);
531}
532
533
534/**
535 * Reads a byte from a SG list.
536 *
537 * @returns The byte on success. 0xff on failure.
538 * @param pSG The SG list to read.
539 * @param off The offset (into the SG) off the byte.
540 */
541DECLINLINE(uint8_t) intnetR0SgReadByte(PCINTNETSG pSG, uint32_t off)
542{
543 if (RT_LIKELY(pSG->aSegs[0].cb > off))
544 return ((uint8_t const *)pSG->aSegs[0].pv)[off];
545
546 off -= pSG->aSegs[0].cb;
547 unsigned const cSegs = pSG->cSegsUsed; Assert(cSegs == pSG->cSegsUsed);
548 for (unsigned iSeg = 1; iSeg < cSegs; iSeg++)
549 {
550 if (pSG->aSegs[iSeg].cb > off)
551 return ((uint8_t const *)pSG->aSegs[iSeg].pv)[off];
552 off -= pSG->aSegs[iSeg].cb;
553 }
554 return false;
555}
556
557
558/**
559 * Worker for intnetR0SgReadPart that deals with the case where the
560 * requested data isn't in the first segment.
561 *
562 * @returns true, unless the SG is invalid.
563 * @param pSG The SG list to read.
564 * @param off Where to start reading (offset into the SG).
565 * @param cb How much to read.
566 * @param pvBuf The buffer to read into.
567 */
568static bool intnetR0SgReadPartSlow(PCINTNETSG pSG, uint32_t off, uint32_t cb, void *pvBuf)
569{
570 if (RT_UNLIKELY(off + cb > pSG->cbTotal))
571 return false;
572
573 /*
574 * Skip ahead to the segment where off starts.
575 */
576 unsigned const cSegs = pSG->cSegsUsed; Assert(cSegs == pSG->cSegsUsed);
577 unsigned iSeg = 0;
578 while (off > pSG->aSegs[iSeg].cb)
579 {
580 off -= pSG->aSegs[iSeg++].cb;
581 AssertReturn(iSeg < cSegs, false);
582 }
583
584 /*
585 * Copy the data, hoping that it's all from one segment...
586 */
587 uint32_t cbCanCopy = pSG->aSegs[iSeg].cb - off;
588 if (cbCanCopy >= cb)
589 memcpy(pvBuf, (uint8_t const *)pSG->aSegs[iSeg].pv + off, cb);
590 else
591 {
592 /* copy the portion in the current segment. */
593 memcpy(pvBuf, (uint8_t const *)pSG->aSegs[iSeg].pv + off, cbCanCopy);
594 cb -= cbCanCopy;
595
596 /* copy the portions in the other segments. */
597 do
598 {
599 pvBuf = (uint8_t *)pvBuf + cbCanCopy;
600 iSeg++;
601 AssertReturn(iSeg < cSegs, false);
602
603 cbCanCopy = RT_MIN(cb, pSG->aSegs[iSeg].cb);
604 memcpy(pvBuf, (uint8_t const *)pSG->aSegs[iSeg].pv, cbCanCopy);
605
606 cb -= cbCanCopy;
607 } while (cb > 0);
608 }
609
610 return true;
611}
612
613
614/**
615 * Reads a part of an SG into a buffer.
616 *
617 * @returns true on success, false on failure (out of bounds).
618 * @param pSG The SG list to read.
619 * @param off Where to start reading (offset into the SG).
620 * @param cb How much to read.
621 * @param pvBuf The buffer to read into.
622 */
623DECLINLINE(bool) intnetR0SgReadPart(PCINTNETSG pSG, uint32_t off, uint32_t cb, void *pvBuf)
624{
625 Assert(off + cb > off);
626
627 /* The optimized case. */
628 if (RT_LIKELY( pSG->cSegsUsed == 1
629 || pSG->aSegs[0].cb >= off + cb))
630 {
631 Assert(pSG->cbTotal == pSG->aSegs[0].cb);
632 memcpy(pvBuf, (uint8_t const *)pSG->aSegs[0].pv + off, cb);
633 return true;
634 }
635 return intnetR0SgReadPartSlow(pSG, off, cb, pvBuf);
636}
637
638
639/**
640 * Wait for a busy counter to reach zero.
641 *
642 * @param pNetwork The network.
643 * @param pcBusy The busy counter.
644 */
645static void intnetR0BusyWait(PINTNETNETWORK pNetwork, uint32_t volatile *pcBusy)
646{
647 if (ASMAtomicReadU32(pcBusy) == 0)
648 return;
649
650 /*
651 * We have to be a bit cautious here so we don't destroy the network or the
652 * semaphore before intnetR0BusyDec has signalled us.
653 */
654
655 /* Reset the semaphore and flip the wakeup bit. */
656 RTSemEventWait(pNetwork->hEvtBusyIf, 0); /* clear it */
657 uint32_t cCurBusy = ASMAtomicReadU32(pcBusy);
658 do
659 {
660 if (cCurBusy == 0)
661 return;
662 AssertMsg(!(cCurBusy & INTNET_BUSY_WAKEUP_MASK), ("%#x\n", cCurBusy));
663 AssertMsg((cCurBusy & ~INTNET_BUSY_WAKEUP_MASK) < INTNET_MAX_IFS * 3, ("%#x\n", cCurBusy));
664 } while (!ASMAtomicCmpXchgExU32(pcBusy, cCurBusy | INTNET_BUSY_WAKEUP_MASK, cCurBusy, &cCurBusy));
665
666 /* Wait for the count to reach zero. */
667 do
668 {
669 int rc2 = RTSemEventWait(pNetwork->hEvtBusyIf, 30000); NOREF(rc2);
670 //AssertMsg(RT_SUCCESS(rc2), ("rc=%Rrc *pcBusy=%#x (%#x)\n", rc2, ASMAtomicReadU32(pcBusy), cCurBusy ));
671 cCurBusy = ASMAtomicReadU32(pcBusy);
672 AssertMsg((cCurBusy & INTNET_BUSY_WAKEUP_MASK), ("%#x\n", cCurBusy));
673 AssertMsg((cCurBusy & ~INTNET_BUSY_WAKEUP_MASK) < INTNET_MAX_IFS * 3, ("%#x\n", cCurBusy));
674 } while ( cCurBusy != INTNET_BUSY_WAKEUP_MASK
675 || !ASMAtomicCmpXchgU32(pcBusy, 0, INTNET_BUSY_WAKEUP_MASK));
676}
677
678
679/**
680 * Decrements the busy counter and maybe wakes up any threads waiting for it to
681 * reach zero.
682 *
683 * @param pNetwork The network.
684 * @param pcBusy The busy counter.
685 */
686DECLINLINE(void) intnetR0BusyDec(PINTNETNETWORK pNetwork, uint32_t volatile *pcBusy)
687{
688 uint32_t cNewBusy = ASMAtomicDecU32(pcBusy);
689 if (RT_UNLIKELY( cNewBusy == INTNET_BUSY_WAKEUP_MASK
690 && pNetwork))
691 RTSemEventSignal(pNetwork->hEvtBusyIf);
692 AssertMsg((cNewBusy & ~INTNET_BUSY_WAKEUP_MASK) < INTNET_MAX_IFS * 3, ("%#x\n", cNewBusy));
693}
694
695
696/**
697 * Increments the busy count of the specified interface.
698 *
699 * The caller must own the MAC address table spinlock.
700 *
701 * @param pIf The interface.
702 */
703DECLINLINE(void) intnetR0BusyDecIf(PINTNETIF pIf)
704{
705 intnetR0BusyDec(pIf->pNetwork, &pIf->cBusy);
706}
707
708
709/**
710 * Increments the busy count of the specified interface.
711 *
712 * The caller must own the MAC address table spinlock or an explicity reference.
713 *
714 * @param pTrunk The trunk.
715 */
716DECLINLINE(void) intnetR0BusyDecTrunk(PINTNETTRUNKIF pTrunk)
717{
718 intnetR0BusyDec(pTrunk->pNetwork, &pTrunk->cBusy);
719}
720
721
722/**
723 * Increments the busy count of the specified interface.
724 *
725 * The caller must own the MAC address table spinlock or an explicity reference.
726 *
727 * @param pIf The interface.
728 */
729DECLINLINE(void) intnetR0BusyIncIf(PINTNETIF pIf)
730{
731 uint32_t cNewBusy = ASMAtomicIncU32(&pIf->cBusy);
732 AssertMsg((cNewBusy & ~INTNET_BUSY_WAKEUP_MASK) < INTNET_MAX_IFS * 3, ("%#x\n", cNewBusy));
733 NOREF(cNewBusy);
734}
735
736
737/**
738 * Increments the busy count of the specified interface.
739 *
740 * The caller must own the MAC address table spinlock or an explicity reference.
741 *
742 * @param pTrunk The trunk.
743 */
744DECLINLINE(void) intnetR0BusyIncTrunk(PINTNETTRUNKIF pTrunk)
745{
746 uint32_t cNewBusy = ASMAtomicIncU32(&pTrunk->cBusy);
747 AssertMsg((cNewBusy & ~INTNET_BUSY_WAKEUP_MASK) < INTNET_MAX_IFS * 3, ("%#x\n", cNewBusy));
748 NOREF(cNewBusy);
749}
750
751
752/**
753 * Retain an interface.
754 *
755 * @returns VBox status code, can assume success in most situations.
756 * @param pIf The interface instance.
757 * @param pSession The current session.
758 */
759DECLINLINE(int) intnetR0IfRetain(PINTNETIF pIf, PSUPDRVSESSION pSession)
760{
761 int rc = SUPR0ObjAddRefEx(pIf->pvObj, pSession, true /* fNoBlocking */);
762 AssertRCReturn(rc, rc);
763 return VINF_SUCCESS;
764}
765
766
767/**
768 * Release an interface previously retained by intnetR0IfRetain or
769 * by handle lookup/freeing.
770 *
771 * @returns true if destroyed, false if not.
772 * @param pIf The interface instance.
773 * @param pSession The current session.
774 */
775DECLINLINE(bool) intnetR0IfRelease(PINTNETIF pIf, PSUPDRVSESSION pSession)
776{
777 int rc = SUPR0ObjRelease(pIf->pvObj, pSession);
778 AssertRC(rc);
779 return rc == VINF_OBJECT_DESTROYED;
780}
781
782
783/**
784 * RTHandleCreateEx callback that retains an object in the
785 * handle table before returning it.
786 *
787 * (Avoids racing the freeing of the handle.)
788 *
789 * @returns VBox status code.
790 * @param hHandleTable The handle table (ignored).
791 * @param pvObj The object (INTNETIF).
792 * @param pvCtx The context (SUPDRVSESSION).
793 * @param pvUser The user context (ignored).
794 */
795static DECLCALLBACK(int) intnetR0IfRetainHandle(RTHANDLETABLE hHandleTable, void *pvObj, void *pvCtx, void *pvUser)
796{
797 NOREF(pvUser);
798 NOREF(hHandleTable);
799 PINTNETIF pIf = (PINTNETIF)pvObj;
800 if (pIf->hIf != INTNET_HANDLE_INVALID) /* Don't try retain it if called from intnetR0IfDestruct. */
801 return intnetR0IfRetain(pIf, (PSUPDRVSESSION)pvCtx);
802 return VINF_SUCCESS;
803}
804
805
806
807/**
808 * Checks if the interface has a usable MAC address or not.
809 *
810 * @returns true if MacAddr is usable, false if not.
811 * @param pIf The interface.
812 */
813DECL_FORCE_INLINE(bool) intnetR0IfHasMacAddr(PINTNETIF pIf)
814{
815 return pIf->fMacSet || !(pIf->MacAddr.au8[0] & 1);
816}
817
818
819/**
820 * Locates the MAC address table entry for the given interface.
821 *
822 * The caller holds the MAC address table spinlock, obviously.
823 *
824 * @returns Pointer to the entry on if found, NULL if not.
825 * @param pNetwork The network.
826 * @param pIf The interface.
827 */
828DECLINLINE(PINTNETMACTABENTRY) intnetR0NetworkFindMacAddrEntry(PINTNETNETWORK pNetwork, PINTNETIF pIf)
829{
830 uint32_t iIf = pNetwork->MacTab.cEntries;
831 while (iIf-- > 0)
832 {
833 if (pNetwork->MacTab.paEntries[iIf].pIf == pIf)
834 return &pNetwork->MacTab.paEntries[iIf];
835 }
836 return NULL;
837}
838
839
840/**
841 * Checks if the IPv6 address is a good interface address.
842 * @returns true/false.
843 * @param addr The address, network endian.
844 */
845DECLINLINE(bool) intnetR0IPv6AddrIsGood(RTNETADDRIPV6 addr)
846{
847 return !( ( addr.QWords.qw0 == 0 && addr.QWords.qw1 == 0) /* :: */
848 || ( (addr.Words.w0 & RT_H2BE_U16(0xff00)) == RT_H2BE_U16(0xff00)) /* multicast */
849 || ( addr.Words.w0 == 0 && addr.Words.w1 == 0
850 && addr.Words.w2 == 0 && addr.Words.w3 == 0
851 && addr.Words.w4 == 0 && addr.Words.w5 == 0
852 && addr.Words.w6 == 0 && addr.Words.w7 == RT_H2BE_U16(0x0001))); /* ::1 */
853}
854
855
856/**
857 * Checks if the IPv4 address is a broadcast address.
858 * @returns true/false.
859 * @param Addr The address, network endian.
860 */
861DECLINLINE(bool) intnetR0IPv4AddrIsBroadcast(RTNETADDRIPV4 Addr)
862{
863 /* Just check for 255.255.255.255 atm. */
864 return Addr.u == UINT32_MAX;
865}
866
867
868/**
869 * Checks if the IPv4 address is a good interface address.
870 * @returns true/false.
871 * @param Addr The address, network endian.
872 */
873DECLINLINE(bool) intnetR0IPv4AddrIsGood(RTNETADDRIPV4 Addr)
874{
875 /* Usual suspects. */
876 if ( Addr.u == UINT32_MAX /* 255.255.255.255 - broadcast. */
877 || Addr.au8[0] == 0) /* Current network, can be used as source address. */
878 return false;
879
880 /* Unusual suspects. */
881 if (RT_UNLIKELY( Addr.au8[0] == 127 /* Loopback */
882 || (Addr.au8[0] & 0xf0) == 224 /* Multicast */
883 ))
884 return false;
885 return true;
886}
887
888
889/**
890 * Gets the address size of a network layer type.
891 *
892 * @returns size in bytes.
893 * @param enmType The type.
894 */
895DECLINLINE(uint8_t) intnetR0AddrSize(INTNETADDRTYPE enmType)
896{
897 switch (enmType)
898 {
899 case kIntNetAddrType_IPv4: return 4;
900 case kIntNetAddrType_IPv6: return 16;
901 case kIntNetAddrType_IPX: return 4 + 6;
902 default: AssertFailedReturn(0);
903 }
904}
905
906
907/**
908 * Compares two address to see if they are equal, assuming naturally align structures.
909 *
910 * @returns true if equal, false if not.
911 * @param pAddr1 The first address.
912 * @param pAddr2 The second address.
913 * @param cbAddr The address size.
914 */
915DECLINLINE(bool) intnetR0AddrUIsEqualEx(PCRTNETADDRU pAddr1, PCRTNETADDRU pAddr2, uint8_t const cbAddr)
916{
917 switch (cbAddr)
918 {
919 case 4: /* IPv4 */
920 return pAddr1->au32[0] == pAddr2->au32[0];
921 case 16: /* IPv6 */
922 return pAddr1->au64[0] == pAddr2->au64[0]
923 && pAddr1->au64[1] == pAddr2->au64[1];
924 case 10: /* IPX */
925 return pAddr1->au64[0] == pAddr2->au64[0]
926 && pAddr1->au16[4] == pAddr2->au16[4];
927 default:
928 AssertFailedReturn(false);
929 }
930}
931
932
933/**
934 * Worker for intnetR0IfAddrCacheLookup that performs the lookup
935 * in the remaining cache entries after the caller has check the
936 * most likely ones.
937 *
938 * @returns -1 if not found, the index of the cache entry if found.
939 * @param pCache The cache.
940 * @param pAddr The address.
941 * @param cbAddr The address size (optimization).
942 */
943static int intnetR0IfAddrCacheLookupSlow(PCINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr)
944{
945 unsigned i = pCache->cEntries - 2;
946 uint8_t const *pbEntry = pCache->pbEntries + pCache->cbEntry * i;
947 while (i >= 1)
948 {
949 if (intnetR0AddrUIsEqualEx((PCRTNETADDRU)pbEntry, pAddr, cbAddr))
950 return i;
951 pbEntry -= pCache->cbEntry;
952 i--;
953 }
954
955 return -1;
956}
957
958/**
959 * Lookup an address in a cache without any expectations.
960 *
961 * @returns -1 if not found, the index of the cache entry if found.
962 * @param pCache The cache.
963 * @param pAddr The address.
964 * @param cbAddr The address size (optimization).
965 */
966DECLINLINE(int) intnetR0IfAddrCacheLookup(PCINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr)
967{
968 Assert(pCache->cbAddress == cbAddr);
969
970 /*
971 * The optimized case is when there is one cache entry and
972 * it doesn't match.
973 */
974 unsigned i = pCache->cEntries;
975 if ( i > 0
976 && intnetR0AddrUIsEqualEx((PCRTNETADDRU)pCache->pbEntries, pAddr, cbAddr))
977 return 0;
978 if (i <= 1)
979 return -1;
980
981 /*
982 * Check the last entry.
983 */
984 i--;
985 if (intnetR0AddrUIsEqualEx((PCRTNETADDRU)(pCache->pbEntries + pCache->cbEntry * i), pAddr, cbAddr))
986 return i;
987 if (i <= 1)
988 return -1;
989
990 return intnetR0IfAddrCacheLookupSlow(pCache, pAddr, cbAddr);
991}
992
993
994/** Same as intnetR0IfAddrCacheLookup except we expect the address to be present already. */
995DECLINLINE(int) intnetR0IfAddrCacheLookupLikely(PCINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr)
996{
997 /** @todo implement this. */
998 return intnetR0IfAddrCacheLookup(pCache, pAddr, cbAddr);
999}
1000
1001
1002/**
1003 * Worker for intnetR0IfAddrCacheLookupUnlikely that performs
1004 * the lookup in the remaining cache entries after the caller
1005 * has check the most likely ones.
1006 *
1007 * The routine is expecting not to find the address.
1008 *
1009 * @returns -1 if not found, the index of the cache entry if found.
1010 * @param pCache The cache.
1011 * @param pAddr The address.
1012 * @param cbAddr The address size (optimization).
1013 */
1014static int intnetR0IfAddrCacheInCacheUnlikelySlow(PCINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr)
1015{
1016 /*
1017 * Perform a full table lookup.
1018 */
1019 unsigned i = pCache->cEntries - 2;
1020 uint8_t const *pbEntry = pCache->pbEntries + pCache->cbEntry * i;
1021 while (i >= 1)
1022 {
1023 if (RT_UNLIKELY(intnetR0AddrUIsEqualEx((PCRTNETADDRU)pbEntry, pAddr, cbAddr)))
1024 return i;
1025 pbEntry -= pCache->cbEntry;
1026 i--;
1027 }
1028
1029 return -1;
1030}
1031
1032
1033/**
1034 * Lookup an address in a cache expecting not to find it.
1035 *
1036 * @returns -1 if not found, the index of the cache entry if found.
1037 * @param pCache The cache.
1038 * @param pAddr The address.
1039 * @param cbAddr The address size (optimization).
1040 */
1041DECLINLINE(int) intnetR0IfAddrCacheLookupUnlikely(PCINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr)
1042{
1043 Assert(pCache->cbAddress == cbAddr);
1044
1045 /*
1046 * The optimized case is when there is one cache entry and
1047 * it doesn't match.
1048 */
1049 unsigned i = pCache->cEntries;
1050 if (RT_UNLIKELY( i > 0
1051 && intnetR0AddrUIsEqualEx((PCRTNETADDRU)pCache->pbEntries, pAddr, cbAddr)))
1052 return 0;
1053 if (RT_LIKELY(i <= 1))
1054 return -1;
1055
1056 /*
1057 * Then check the last entry and return if there are just two cache entries.
1058 */
1059 i--;
1060 if (RT_UNLIKELY(intnetR0AddrUIsEqualEx((PCRTNETADDRU)(pCache->pbEntries + pCache->cbEntry * i), pAddr, cbAddr)))
1061 return i;
1062 if (i <= 1)
1063 return -1;
1064
1065 return intnetR0IfAddrCacheInCacheUnlikelySlow(pCache, pAddr, cbAddr);
1066}
1067
1068
1069/**
1070 * Deletes a specific cache entry.
1071 *
1072 * Worker for intnetR0NetworkAddrCacheDelete and intnetR0NetworkAddrCacheDeleteMinusIf.
1073 *
1074 * @param pIf The interface (for logging).
1075 * @param pCache The cache.
1076 * @param iEntry The entry to delete.
1077 * @param pszMsg Log message.
1078 */
1079static void intnetR0IfAddrCacheDeleteIt(PINTNETIF pIf, PINTNETADDRCACHE pCache, int iEntry, const char *pszMsg)
1080{
1081 AssertReturnVoid(iEntry < pCache->cEntries);
1082 AssertReturnVoid(iEntry >= 0);
1083#ifdef LOG_ENABLED
1084 INTNETADDRTYPE enmAddrType = (INTNETADDRTYPE)(uintptr_t)(pCache - &pIf->aAddrCache[0]);
1085 PCRTNETADDRU pAddr = (PCRTNETADDRU)(pCache->pbEntries + iEntry * pCache->cbEntry);
1086 switch (enmAddrType)
1087 {
1088 case kIntNetAddrType_IPv4:
1089 Log(("intnetR0IfAddrCacheDeleteIt: hIf=%#x MAC=%.6Rhxs IPv4 deleted #%d %RTnaipv4 %s\n",
1090 pIf->hIf, &pIf->MacAddr, iEntry, pAddr->IPv4, pszMsg));
1091 break;
1092 case kIntNetAddrType_IPv6:
1093 Log(("intnetR0IfAddrCacheDeleteIt: hIf=%#x MAC=%.6Rhxs IPv6 deleted #%d %RTnaipv6 %s\n",
1094 pIf->hIf, &pIf->MacAddr, iEntry, pAddr->IPv6, pszMsg));
1095 break;
1096 default:
1097 Log(("intnetR0IfAddrCacheDeleteIt: hIf=%RX32 MAC=%.6Rhxs type=%d #%d %.*Rhxs %s\n",
1098 pIf->hIf, &pIf->MacAddr, enmAddrType, iEntry, pCache->cbAddress, pAddr, pszMsg));
1099 break;
1100 }
1101#endif
1102
1103 pCache->cEntries--;
1104 if (iEntry < pCache->cEntries)
1105 memmove(pCache->pbEntries + iEntry * pCache->cbEntry,
1106 pCache->pbEntries + (iEntry + 1) * pCache->cbEntry,
1107 (pCache->cEntries - iEntry) * pCache->cbEntry);
1108}
1109
1110
1111/**
1112 * Deletes an address from the cache, assuming it isn't actually in the cache.
1113 *
1114 * May or may not own the spinlock when calling this.
1115 *
1116 * @param pIf The interface (for logging).
1117 * @param pCache The cache.
1118 * @param pAddr The address.
1119 * @param cbAddr The address size (optimization).
1120 */
1121DECLINLINE(void) intnetR0IfAddrCacheDelete(PINTNETIF pIf, PINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr, const char *pszMsg)
1122{
1123 int i = intnetR0IfAddrCacheLookup(pCache, pAddr, cbAddr);
1124 if (RT_UNLIKELY(i >= 0))
1125 intnetR0IfAddrCacheDeleteIt(pIf, pCache, i, pszMsg);
1126}
1127
1128
1129/**
1130 * Deletes the address from all the interface caches.
1131 *
1132 * This is used to remove stale entries that has been reassigned to
1133 * other machines on the network.
1134 *
1135 * @param pNetwork The network.
1136 * @param pAddr The address.
1137 * @param enmType The address type.
1138 * @param cbAddr The address size (optimization).
1139 * @param pszMsg Log message.
1140 */
1141DECLINLINE(void) intnetR0NetworkAddrCacheDelete(PINTNETNETWORK pNetwork, PCRTNETADDRU pAddr, INTNETADDRTYPE const enmType,
1142 uint8_t const cbAddr, const char *pszMsg)
1143{
1144 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1145
1146 uint32_t iIf = pNetwork->MacTab.cEntries;
1147 while (iIf--)
1148 {
1149 PINTNETIF pIf = pNetwork->MacTab.paEntries[iIf].pIf;
1150 int i = intnetR0IfAddrCacheLookup(&pIf->aAddrCache[enmType], pAddr, cbAddr);
1151 if (RT_UNLIKELY(i >= 0))
1152 intnetR0IfAddrCacheDeleteIt(pIf, &pIf->aAddrCache[enmType], i, pszMsg);
1153 }
1154
1155 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1156}
1157
1158
1159/**
1160 * Deletes the address from all the interface caches except the specified one.
1161 *
1162 * This is used to remove stale entries that has been reassigned to
1163 * other machines on the network.
1164 *
1165 * @param pNetwork The network.
1166 * @param pAddr The address.
1167 * @param enmType The address type.
1168 * @param cbAddr The address size (optimization).
1169 * @param pszMsg Log message.
1170 */
1171DECLINLINE(void) intnetR0NetworkAddrCacheDeleteMinusIf(PINTNETNETWORK pNetwork, PINTNETIF pIfSender, PCRTNETADDRU pAddr,
1172 INTNETADDRTYPE const enmType, uint8_t const cbAddr, const char *pszMsg)
1173{
1174 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1175
1176 uint32_t iIf = pNetwork->MacTab.cEntries;
1177 while (iIf--)
1178 {
1179 PINTNETIF pIf = pNetwork->MacTab.paEntries[iIf].pIf;
1180 if (pIf != pIfSender)
1181 {
1182 int i = intnetR0IfAddrCacheLookup(&pIf->aAddrCache[enmType], pAddr, cbAddr);
1183 if (RT_UNLIKELY(i >= 0))
1184 intnetR0IfAddrCacheDeleteIt(pIf, &pIf->aAddrCache[enmType], i, pszMsg);
1185 }
1186 }
1187
1188 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1189}
1190
1191
1192/**
1193 * Lookup an address on the network, returning the (first) interface having it
1194 * in its address cache.
1195 *
1196 * @returns Pointer to the interface on success, NULL if not found. The caller
1197 * must release the interface by calling intnetR0BusyDecIf.
1198 * @param pNetwork The network.
1199 * @param pAddr The address to lookup.
1200 * @param enmType The address type.
1201 * @param cbAddr The size of the address.
1202 */
1203DECLINLINE(PINTNETIF) intnetR0NetworkAddrCacheLookupIf(PINTNETNETWORK pNetwork, PCRTNETADDRU pAddr, INTNETADDRTYPE const enmType, uint8_t const cbAddr)
1204{
1205 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1206
1207 uint32_t iIf = pNetwork->MacTab.cEntries;
1208 while (iIf--)
1209 {
1210 PINTNETIF pIf = pNetwork->MacTab.paEntries[iIf].pIf;
1211 int i = intnetR0IfAddrCacheLookup(&pIf->aAddrCache[enmType], pAddr, cbAddr);
1212 if (i >= 0)
1213 {
1214 intnetR0BusyIncIf(pIf);
1215 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1216 return pIf;
1217 }
1218 }
1219
1220 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1221 return NULL;
1222}
1223
1224
1225/**
1226 * Adds an address to the cache, the caller is responsible for making sure it's
1227 * not already in the cache.
1228 *
1229 * The caller must not
1230 *
1231 * @param pIf The interface (for logging).
1232 * @param pCache The address cache.
1233 * @param pAddr The address.
1234 * @param pszMsg log message.
1235 */
1236static void intnetR0IfAddrCacheAddIt(PINTNETIF pIf, PINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, const char *pszMsg)
1237{
1238 PINTNETNETWORK pNetwork = pIf->pNetwork;
1239 AssertReturnVoid(pNetwork);
1240 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1241
1242 if (RT_UNLIKELY(!pCache->cEntriesAlloc))
1243 {
1244 /* This shouldn't happen*/
1245 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1246 return;
1247 }
1248
1249 /* When the table is full, drop the older entry (FIFO). Do proper ageing? */
1250 if (pCache->cEntries >= pCache->cEntriesAlloc)
1251 {
1252 Log(("intnetR0IfAddrCacheAddIt: type=%d replacing %.*Rhxs\n",
1253 (int)(uintptr_t)(pCache - &pIf->aAddrCache[0]), pCache->cbAddress, pCache->pbEntries));
1254 memmove(pCache->pbEntries, pCache->pbEntries + pCache->cbEntry, pCache->cbEntry * (pCache->cEntries - 1));
1255 pCache->cEntries--;
1256 Assert(pCache->cEntries < pCache->cEntriesAlloc);
1257 }
1258
1259 /*
1260 * Add the new entry to the end of the array.
1261 */
1262 uint8_t *pbEntry = pCache->pbEntries + pCache->cEntries * pCache->cbEntry;
1263 memcpy(pbEntry, pAddr, pCache->cbAddress);
1264 memset(pbEntry + pCache->cbAddress, '\0', pCache->cbEntry - pCache->cbAddress);
1265#ifdef LOG_ENABLED
1266 INTNETADDRTYPE enmAddrType = (INTNETADDRTYPE)(uintptr_t)(pCache - &pIf->aAddrCache[0]);
1267 switch (enmAddrType)
1268 {
1269 case kIntNetAddrType_IPv4:
1270 Log(("intnetR0IfAddrCacheAddIt: hIf=%#x MAC=%.6Rhxs IPv4 added #%d %RTnaipv4 %s\n",
1271 pIf->hIf, &pIf->MacAddr, pCache->cEntries, pAddr->IPv4, pszMsg));
1272 break;
1273 case kIntNetAddrType_IPv6:
1274 Log(("intnetR0IfAddrCacheAddIt: hIf=%#x MAC=%.6Rhxs IPv6 added #%d %RTnaipv6 %s\n",
1275 pIf->hIf, &pIf->MacAddr, pCache->cEntries, pAddr->IPv6, pszMsg));
1276 break;
1277 default:
1278 Log(("intnetR0IfAddrCacheAddIt: hIf=%#x MAC=%.6Rhxs type=%d added #%d %.*Rhxs %s\n",
1279 pIf->hIf, &pIf->MacAddr, enmAddrType, pCache->cEntries, pCache->cbAddress, pAddr, pszMsg));
1280 break;
1281 }
1282#endif
1283 pCache->cEntries++;
1284 Assert(pCache->cEntries <= pCache->cEntriesAlloc);
1285
1286 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1287}
1288
1289
1290/**
1291 * A intnetR0IfAddrCacheAdd worker that performs the rest of the lookup.
1292 *
1293 * @param pIf The interface (for logging).
1294 * @param pCache The address cache.
1295 * @param pAddr The address.
1296 * @param cbAddr The size of the address (optimization).
1297 * @param pszMsg Log message.
1298 */
1299static void intnetR0IfAddrCacheAddSlow(PINTNETIF pIf, PINTNETADDRCACHE pCache, PCRTNETADDRU pAddr, uint8_t const cbAddr, const char *pszMsg)
1300{
1301 /*
1302 * Check all but the first and last entries, the caller
1303 * has already checked those.
1304 */
1305 int i = pCache->cEntries - 2;
1306 uint8_t const *pbEntry = pCache->pbEntries + pCache->cbEntry;
1307 while (i >= 1)
1308 {
1309 if (RT_LIKELY(intnetR0AddrUIsEqualEx((PCRTNETADDRU)pbEntry, pAddr, cbAddr)))
1310 return;
1311 pbEntry += pCache->cbEntry;
1312 i--;
1313 }
1314
1315 /*
1316 * Not found, add it.
1317 */
1318 intnetR0IfAddrCacheAddIt(pIf, pCache, pAddr, pszMsg);
1319}
1320
1321
1322/**
1323 * Adds an address to the cache if it's not already there.
1324 *
1325 * Must not own any spinlocks when calling this function.
1326 *
1327 * @param pIf The interface (for logging).
1328 * @param pCache The address cache.
1329 * @param pAddr The address.
1330 * @param cbAddr The size of the address (optimization).
1331 * @param pszMsg Log message.
1332 */
1333DECLINLINE(void) intnetR0IfAddrCacheAdd(PINTNETIF pIf, PINTNETADDRCACHE pCache, PCRTNETADDRU pAddr,
1334 uint8_t const cbAddr, const char *pszMsg)
1335{
1336 Assert(pCache->cbAddress == cbAddr);
1337
1338 /*
1339 * The optimized case is when the address the first or last cache entry.
1340 */
1341 unsigned i = pCache->cEntries;
1342 if (RT_LIKELY( i > 0
1343 && ( intnetR0AddrUIsEqualEx((PCRTNETADDRU)pCache->pbEntries, pAddr, cbAddr)
1344 || (i > 1
1345 && intnetR0AddrUIsEqualEx((PCRTNETADDRU)(pCache->pbEntries + pCache->cbEntry * i), pAddr, cbAddr))) ))
1346 return;
1347 intnetR0IfAddrCacheAddSlow(pIf, pCache, pAddr, cbAddr, pszMsg);
1348}
1349
1350
1351/**
1352 * Destroys the specified address cache.
1353 * @param pCache The address cache.
1354 */
1355static void intnetR0IfAddrCacheDestroy(PINTNETADDRCACHE pCache)
1356{
1357 void *pvFree = pCache->pbEntries;
1358 pCache->pbEntries = NULL;
1359 pCache->cEntries = 0;
1360 pCache->cEntriesAlloc = 0;
1361 RTMemFree(pvFree);
1362}
1363
1364
1365/**
1366 * Initialize the address cache for the specified address type.
1367 *
1368 * The cache storage is preallocated and fixed size so that we can handle
1369 * inserts from problematic contexts.
1370 *
1371 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
1372 * @param pCache The cache to initialize.
1373 * @param enmAddrType The address type.
1374 * @param fEnabled Whether the address cache is enabled or not.
1375 */
1376static int intnetR0IfAddrCacheInit(PINTNETADDRCACHE pCache, INTNETADDRTYPE enmAddrType, bool fEnabled)
1377{
1378 pCache->cEntries = 0;
1379 pCache->cbAddress = intnetR0AddrSize(enmAddrType);
1380 pCache->cbEntry = RT_ALIGN(pCache->cbAddress, 4);
1381 if (fEnabled)
1382 {
1383 pCache->cEntriesAlloc = 32;
1384 pCache->pbEntries = (uint8_t *)RTMemAllocZ(pCache->cEntriesAlloc * pCache->cbEntry);
1385 if (!pCache->pbEntries)
1386 return VERR_NO_MEMORY;
1387 }
1388 else
1389 {
1390 pCache->cEntriesAlloc = 0;
1391 pCache->pbEntries = NULL;
1392 }
1393 return VINF_SUCCESS;
1394}
1395
1396
1397/**
1398 * Is it a multicast or broadcast MAC address?
1399 *
1400 * @returns true if multicast, false if not.
1401 * @param pMacAddr The address to inspect.
1402 */
1403DECL_FORCE_INLINE(bool) intnetR0IsMacAddrMulticast(PCRTMAC pMacAddr)
1404{
1405 return !!(pMacAddr->au8[0] & 0x01);
1406}
1407
1408
1409/**
1410 * Is it a dummy MAC address?
1411 *
1412 * We use dummy MAC addresses for interfaces which we don't know the MAC
1413 * address of because they haven't sent anything (learning) or explicitly set
1414 * it.
1415 *
1416 * @returns true if dummy, false if not.
1417 * @param pMacAddr The address to inspect.
1418 */
1419DECL_FORCE_INLINE(bool) intnetR0IsMacAddrDummy(PCRTMAC pMacAddr)
1420{
1421 /* The dummy address are broadcast addresses, don't bother check it all. */
1422 return pMacAddr->au16[0] == 0xffff;
1423}
1424
1425
1426/**
1427 * Compares two MAC addresses.
1428 *
1429 * @returns true if equal, false if not.
1430 * @param pDstAddr1 Address 1.
1431 * @param pDstAddr2 Address 2.
1432 */
1433DECL_FORCE_INLINE(bool) intnetR0AreMacAddrsEqual(PCRTMAC pDstAddr1, PCRTMAC pDstAddr2)
1434{
1435 return pDstAddr1->au16[2] == pDstAddr2->au16[2]
1436 && pDstAddr1->au16[1] == pDstAddr2->au16[1]
1437 && pDstAddr1->au16[0] == pDstAddr2->au16[0];
1438}
1439
1440
1441/**
1442 * Switch a unicast frame based on the network layer address (OSI level 3) and
1443 * return a destination table.
1444 *
1445 * @returns INTNETSWDECISION_DROP, INTNETSWDECISION_TRUNK,
1446 * INTNETSWDECISION_INTNET or INTNETSWDECISION_BROADCAST (misnomer).
1447 * @param pNetwork The network to switch on.
1448 * @param pDstMacAddr The destination MAC address.
1449 * @param enmL3AddrType The level-3 destination address type.
1450 * @param pL3Addr The level-3 destination address.
1451 * @param cbL3Addr The size of the level-3 destination address.
1452 * @param fSrc The frame source (INTNETTRUNKDIR_WIRE).
1453 * @param pDstTab The destination output table.
1454 */
1455static INTNETSWDECISION intnetR0NetworkSwitchLevel3(PINTNETNETWORK pNetwork, PCRTMAC pDstMacAddr,
1456 INTNETADDRTYPE enmL3AddrType, PCRTNETADDRU pL3Addr, uint8_t cbL3Addr,
1457 uint32_t fSrc, PINTNETDSTTAB pDstTab)
1458{
1459 Assert(fSrc == INTNETTRUNKDIR_WIRE);
1460
1461 /*
1462 * Grab the spinlock first and do the switching.
1463 */
1464 PINTNETMACTAB pTab = &pNetwork->MacTab;
1465 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1466
1467 pDstTab->fTrunkDst = 0;
1468 pDstTab->pTrunk = 0;
1469 pDstTab->cIfs = 0;
1470
1471 /* Find exactly matching or promiscuous interfaces. */
1472 uint32_t cExactHits = 0;
1473 uint32_t iIfMac = pTab->cEntries;
1474 while (iIfMac-- > 0)
1475 {
1476 if (pTab->paEntries[iIfMac].fActive)
1477 {
1478 PINTNETIF pIf = pTab->paEntries[iIfMac].pIf; AssertPtr(pIf); Assert(pIf->pNetwork == pNetwork);
1479 bool fExact = intnetR0IfAddrCacheLookup(&pIf->aAddrCache[enmL3AddrType], pL3Addr, cbL3Addr) >= 0;
1480 if (fExact || pTab->paEntries[iIfMac].fPromiscuousSeeTrunk)
1481 {
1482 cExactHits += fExact;
1483
1484 uint32_t iIfDst = pDstTab->cIfs++;
1485 pDstTab->aIfs[iIfDst].pIf = pIf;
1486 pDstTab->aIfs[iIfDst].fReplaceDstMac = fExact;
1487 intnetR0BusyIncIf(pIf);
1488
1489 if (fExact)
1490 pDstMacAddr = &pIf->MacAddr; /* Avoids duplicates being sent to the host. */
1491 }
1492 }
1493 }
1494
1495 /* Network only promicuous mode ifs should see related trunk traffic. */
1496 if ( cExactHits
1497 && fSrc
1498 && pNetwork->MacTab.cPromiscuousNoTrunkEntries)
1499 {
1500 iIfMac = pTab->cEntries;
1501 while (iIfMac-- > 0)
1502 {
1503 if ( pTab->paEntries[iIfMac].fActive
1504 && pTab->paEntries[iIfMac].fPromiscuousEff
1505 && !pTab->paEntries[iIfMac].fPromiscuousSeeTrunk)
1506 {
1507 PINTNETIF pIf = pTab->paEntries[iIfMac].pIf; AssertPtr(pIf); Assert(pIf->pNetwork == pNetwork);
1508 if (intnetR0IfAddrCacheLookup(&pIf->aAddrCache[enmL3AddrType], pL3Addr, cbL3Addr) < 0)
1509 {
1510 uint32_t iIfDst = pDstTab->cIfs++;
1511 pDstTab->aIfs[iIfDst].pIf = pIf;
1512 pDstTab->aIfs[iIfDst].fReplaceDstMac = false;
1513 intnetR0BusyIncIf(pIf);
1514 }
1515 }
1516 }
1517 }
1518
1519 /* Does it match the host, or is the host promiscuous? */
1520 if (pTab->fHostActive)
1521 {
1522 bool fExact = intnetR0AreMacAddrsEqual(&pTab->HostMac, pDstMacAddr);
1523 if ( fExact
1524 || intnetR0IsMacAddrDummy(&pTab->HostMac)
1525 || pTab->fHostPromiscuousEff)
1526 {
1527 cExactHits += fExact;
1528 pDstTab->fTrunkDst |= INTNETTRUNKDIR_HOST;
1529 }
1530 }
1531
1532 /* Hit the wire if there are no exact matches or if it's in promiscuous mode. */
1533 if (pTab->fWireActive && (!cExactHits || pTab->fWirePromiscuousEff))
1534 pDstTab->fTrunkDst |= INTNETTRUNKDIR_WIRE;
1535 pDstTab->fTrunkDst &= ~fSrc;
1536 if (pDstTab->fTrunkDst)
1537 {
1538 PINTNETTRUNKIF pTrunk = pTab->pTrunk;
1539 pDstTab->pTrunk = pTrunk;
1540 intnetR0BusyIncTrunk(pTrunk);
1541 }
1542
1543 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1544 return pDstTab->cIfs
1545 ? (!pDstTab->fTrunkDst ? INTNETSWDECISION_INTNET : INTNETSWDECISION_BROADCAST)
1546 : (!pDstTab->fTrunkDst ? INTNETSWDECISION_DROP : INTNETSWDECISION_TRUNK);
1547}
1548
1549
1550/**
1551 * Pre-switch a unicast MAC address.
1552 *
1553 * @returns INTNETSWDECISION_DROP, INTNETSWDECISION_TRUNK,
1554 * INTNETSWDECISION_INTNET or INTNETSWDECISION_BROADCAST (misnomer).
1555 * @param pNetwork The network to switch on.
1556 * @param fSrc The frame source.
1557 * @param pSrcAddr The source address of the frame.
1558 * @param pDstAddr The destination address of the frame.
1559 */
1560static INTNETSWDECISION intnetR0NetworkPreSwitchUnicast(PINTNETNETWORK pNetwork, uint32_t fSrc, PCRTMAC pSrcAddr,
1561 PCRTMAC pDstAddr)
1562{
1563 Assert(!intnetR0IsMacAddrMulticast(pDstAddr));
1564 Assert(fSrc);
1565
1566 /*
1567 * Grab the spinlock first and do the switching.
1568 */
1569 INTNETSWDECISION enmSwDecision = INTNETSWDECISION_BROADCAST;
1570 PINTNETMACTAB pTab = &pNetwork->MacTab;
1571 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1572
1573 /* Iterate the internal network interfaces and look for matching source and
1574 destination addresses. */
1575 uint32_t iIfMac = pTab->cEntries;
1576 while (iIfMac-- > 0)
1577 {
1578 if (pTab->paEntries[iIfMac].fActive)
1579 {
1580 /* Unknown interface address? */
1581 if (intnetR0IsMacAddrDummy(&pTab->paEntries[iIfMac].MacAddr))
1582 break;
1583
1584 /* Promiscuous mode? */
1585 if (pTab->paEntries[iIfMac].fPromiscuousSeeTrunk)
1586 break;
1587
1588 /* Paranoia - this shouldn't happen, right? */
1589 if ( pSrcAddr
1590 && intnetR0AreMacAddrsEqual(&pTab->paEntries[iIfMac].MacAddr, pSrcAddr))
1591 break;
1592
1593 /* Exact match? */
1594 if (intnetR0AreMacAddrsEqual(&pTab->paEntries[iIfMac].MacAddr, pDstAddr))
1595 {
1596 enmSwDecision = pTab->fHostPromiscuousEff && fSrc == INTNETTRUNKDIR_WIRE
1597 ? INTNETSWDECISION_BROADCAST
1598 : INTNETSWDECISION_INTNET;
1599 break;
1600 }
1601 }
1602 }
1603
1604 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1605 return enmSwDecision;
1606}
1607
1608
1609/**
1610 * Switch a unicast MAC address and return a destination table.
1611 *
1612 * @returns INTNETSWDECISION_DROP, INTNETSWDECISION_TRUNK,
1613 * INTNETSWDECISION_INTNET or INTNETSWDECISION_BROADCAST (misnomer).
1614 * @param pNetwork The network to switch on.
1615 * @param fSrc The frame source.
1616 * @param pIfSender The sender interface, NULL if trunk. Used to
1617 * prevent sending an echo to the sender.
1618 * @param pDstAddr The destination address of the frame.
1619 * @param pDstTab The destination output table.
1620 */
1621static INTNETSWDECISION intnetR0NetworkSwitchUnicast(PINTNETNETWORK pNetwork, uint32_t fSrc, PINTNETIF pIfSender,
1622 PCRTMAC pDstAddr, PINTNETDSTTAB pDstTab)
1623{
1624 AssertPtr(pDstTab);
1625 Assert(!intnetR0IsMacAddrMulticast(pDstAddr));
1626
1627 /*
1628 * Grab the spinlock first and do the switching.
1629 */
1630 PINTNETMACTAB pTab = &pNetwork->MacTab;
1631 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1632
1633 pDstTab->fTrunkDst = 0;
1634 pDstTab->pTrunk = 0;
1635 pDstTab->cIfs = 0;
1636
1637 /* Find exactly matching or promiscuous interfaces. */
1638 uint32_t cExactHits = 0;
1639 uint32_t iIfMac = pTab->cEntries;
1640 while (iIfMac-- > 0)
1641 {
1642 if (pTab->paEntries[iIfMac].fActive)
1643 {
1644 bool fExact = intnetR0AreMacAddrsEqual(&pTab->paEntries[iIfMac].MacAddr, pDstAddr);
1645 if ( fExact
1646 || intnetR0IsMacAddrDummy(&pTab->paEntries[iIfMac].MacAddr)
1647 || ( pTab->paEntries[iIfMac].fPromiscuousSeeTrunk
1648 || (!fSrc && pTab->paEntries[iIfMac].fPromiscuousEff) )
1649 )
1650 {
1651 cExactHits += fExact;
1652
1653 PINTNETIF pIf = pTab->paEntries[iIfMac].pIf; AssertPtr(pIf); Assert(pIf->pNetwork == pNetwork);
1654 if (RT_LIKELY(pIf != pIfSender)) /* paranoia */
1655 {
1656 uint32_t iIfDst = pDstTab->cIfs++;
1657 pDstTab->aIfs[iIfDst].pIf = pIf;
1658 pDstTab->aIfs[iIfDst].fReplaceDstMac = false;
1659 intnetR0BusyIncIf(pIf);
1660 }
1661 }
1662 }
1663 }
1664
1665 /* Network only promicuous mode ifs should see related trunk traffic. */
1666 if ( cExactHits
1667 && fSrc
1668 && pNetwork->MacTab.cPromiscuousNoTrunkEntries)
1669 {
1670 iIfMac = pTab->cEntries;
1671 while (iIfMac-- > 0)
1672 {
1673 if ( pTab->paEntries[iIfMac].fPromiscuousEff
1674 && !pTab->paEntries[iIfMac].fPromiscuousSeeTrunk
1675 && pTab->paEntries[iIfMac].fActive
1676 && !intnetR0AreMacAddrsEqual(&pTab->paEntries[iIfMac].MacAddr, pDstAddr)
1677 && !intnetR0IsMacAddrDummy(&pTab->paEntries[iIfMac].MacAddr) )
1678 {
1679 PINTNETIF pIf = pTab->paEntries[iIfMac].pIf; AssertPtr(pIf); Assert(pIf->pNetwork == pNetwork);
1680 uint32_t iIfDst = pDstTab->cIfs++;
1681 pDstTab->aIfs[iIfDst].pIf = pIf;
1682 pDstTab->aIfs[iIfDst].fReplaceDstMac = false;
1683 intnetR0BusyIncIf(pIf);
1684 }
1685 }
1686 }
1687
1688 /* Does it match the host, or is the host promiscuous? */
1689 if ( fSrc != INTNETTRUNKDIR_HOST
1690 && pTab->fHostActive)
1691 {
1692 bool fExact = intnetR0AreMacAddrsEqual(&pTab->HostMac, pDstAddr);
1693 if ( fExact
1694 || intnetR0IsMacAddrDummy(&pTab->HostMac)
1695 || pTab->fHostPromiscuousEff)
1696 {
1697 cExactHits += fExact;
1698 pDstTab->fTrunkDst |= INTNETTRUNKDIR_HOST;
1699 }
1700 }
1701
1702 /* Hit the wire if there are no exact matches or if it's in promiscuous mode. */
1703 if ( fSrc != INTNETTRUNKDIR_WIRE
1704 && pTab->fWireActive
1705 && (!cExactHits || pTab->fWirePromiscuousEff)
1706 )
1707 pDstTab->fTrunkDst |= INTNETTRUNKDIR_WIRE;
1708
1709 /* Grab the trunk if we're sending to it. */
1710 if (pDstTab->fTrunkDst)
1711 {
1712 PINTNETTRUNKIF pTrunk = pTab->pTrunk;
1713 pDstTab->pTrunk = pTrunk;
1714 intnetR0BusyIncTrunk(pTrunk);
1715 }
1716
1717 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1718 return pDstTab->cIfs
1719 ? (!pDstTab->fTrunkDst ? INTNETSWDECISION_INTNET : INTNETSWDECISION_BROADCAST)
1720 : (!pDstTab->fTrunkDst ? INTNETSWDECISION_DROP : INTNETSWDECISION_TRUNK);
1721}
1722
1723
1724/**
1725 * Create a destination table for a broadcast frame.
1726 *
1727 * @returns INTNETSWDECISION_BROADCAST.
1728 * @param pNetwork The network to switch on.
1729 * @param fSrc The frame source.
1730 * @param pIfSender The sender interface, NULL if trunk. Used to
1731 * prevent sending an echo to the sender.
1732 * @param pDstTab The destination output table.
1733 */
1734static INTNETSWDECISION intnetR0NetworkSwitchBroadcast(PINTNETNETWORK pNetwork, uint32_t fSrc, PINTNETIF pIfSender,
1735 PINTNETDSTTAB pDstTab)
1736{
1737 AssertPtr(pDstTab);
1738
1739 /*
1740 * Grab the spinlock first and record all active interfaces.
1741 */
1742 PINTNETMACTAB pTab = &pNetwork->MacTab;
1743 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1744
1745 pDstTab->fTrunkDst = 0;
1746 pDstTab->pTrunk = 0;
1747 pDstTab->cIfs = 0;
1748
1749 /* Regular interfaces. */
1750 uint32_t iIfMac = pTab->cEntries;
1751 while (iIfMac-- > 0)
1752 {
1753 if (pTab->paEntries[iIfMac].fActive)
1754 {
1755 PINTNETIF pIf = pTab->paEntries[iIfMac].pIf; AssertPtr(pIf); Assert(pIf->pNetwork == pNetwork);
1756 if (pIf != pIfSender)
1757 {
1758 uint32_t iIfDst = pDstTab->cIfs++;
1759 pDstTab->aIfs[iIfDst].pIf = pIf;
1760 pDstTab->aIfs[iIfDst].fReplaceDstMac = false;
1761 intnetR0BusyIncIf(pIf);
1762 }
1763 }
1764 }
1765
1766 /* The trunk interface. */
1767 if (pTab->fHostActive)
1768 pDstTab->fTrunkDst |= INTNETTRUNKDIR_HOST;
1769 if (pTab->fWireActive)
1770 pDstTab->fTrunkDst |= INTNETTRUNKDIR_WIRE;
1771 pDstTab->fTrunkDst &= ~fSrc;
1772 if (pDstTab->fTrunkDst)
1773 {
1774 PINTNETTRUNKIF pTrunk = pTab->pTrunk;
1775 pDstTab->pTrunk = pTrunk;
1776 intnetR0BusyIncTrunk(pTrunk);
1777 }
1778
1779 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1780 return INTNETSWDECISION_BROADCAST;
1781}
1782
1783
1784/**
1785 * Create a destination table with the trunk and any promiscuous interfaces.
1786 *
1787 * This is only used in a fallback case of the level-3 switching, so we can
1788 * assume the wire as source and skip the sender interface filtering.
1789 *
1790 * @returns INTNETSWDECISION_DROP, INTNETSWDECISION_TRUNK,
1791 * INTNETSWDECISION_INTNET or INTNETSWDECISION_BROADCAST (misnomer).
1792 * @param pNetwork The network to switch on.
1793 * @param fSrc The frame source.
1794 * @param pDstTab The destination output table.
1795 */
1796static INTNETSWDECISION intnetR0NetworkSwitchTrunkAndPromisc(PINTNETNETWORK pNetwork, uint32_t fSrc, PINTNETDSTTAB pDstTab)
1797{
1798 Assert(fSrc == INTNETTRUNKDIR_WIRE);
1799
1800 /*
1801 * Grab the spinlock first and do the switching.
1802 */
1803 PINTNETMACTAB pTab = &pNetwork->MacTab;
1804 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1805
1806 pDstTab->fTrunkDst = 0;
1807 pDstTab->pTrunk = 0;
1808 pDstTab->cIfs = 0;
1809
1810 /* Find promiscuous interfaces. */
1811 uint32_t iIfMac = pTab->cEntries;
1812 while (iIfMac-- > 0)
1813 {
1814 if ( pTab->paEntries[iIfMac].fActive
1815 && ( pTab->paEntries[iIfMac].fPromiscuousSeeTrunk
1816 || (!fSrc && pTab->paEntries[iIfMac].fPromiscuousEff) )
1817 )
1818 {
1819 PINTNETIF pIf = pTab->paEntries[iIfMac].pIf; AssertPtr(pIf); Assert(pIf->pNetwork == pNetwork);
1820 uint32_t iIfDst = pDstTab->cIfs++;
1821 pDstTab->aIfs[iIfDst].pIf = pIf;
1822 pDstTab->aIfs[iIfDst].fReplaceDstMac = false;
1823 intnetR0BusyIncIf(pIf);
1824 }
1825 }
1826
1827 /* The trunk interface. */
1828 if (pTab->fHostActive)
1829 pDstTab->fTrunkDst |= INTNETTRUNKDIR_HOST;
1830 if (pTab->fWireActive)
1831 pDstTab->fTrunkDst |= INTNETTRUNKDIR_WIRE;
1832 pDstTab->fTrunkDst &= ~fSrc;
1833 if (pDstTab->fTrunkDst)
1834 {
1835 PINTNETTRUNKIF pTrunk = pTab->pTrunk;
1836 pDstTab->pTrunk = pTrunk;
1837 intnetR0BusyIncTrunk(pTrunk);
1838 }
1839
1840 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1841 return !pDstTab->cIfs
1842 ? (!pDstTab->fTrunkDst ? INTNETSWDECISION_DROP : INTNETSWDECISION_TRUNK)
1843 : (!pDstTab->fTrunkDst ? INTNETSWDECISION_INTNET : INTNETSWDECISION_BROADCAST);
1844}
1845
1846
1847/**
1848 * Create a destination table for a trunk frame.
1849 *
1850 * @returns INTNETSWDECISION_BROADCAST.
1851 * @param pNetwork The network to switch on.
1852 * @param fSrc The frame source.
1853 * @param pDstTab The destination output table.
1854 */
1855static INTNETSWDECISION intnetR0NetworkSwitchTrunk(PINTNETNETWORK pNetwork, uint32_t fSrc, PINTNETDSTTAB pDstTab)
1856{
1857 AssertPtr(pDstTab);
1858
1859 /*
1860 * Grab the spinlock first and record all active interfaces.
1861 */
1862 PINTNETMACTAB pTab= &pNetwork->MacTab;
1863 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1864
1865 pDstTab->fTrunkDst = 0;
1866 pDstTab->pTrunk = 0;
1867 pDstTab->cIfs = 0;
1868
1869 /* The trunk interface. */
1870 if (pTab->fHostActive)
1871 pDstTab->fTrunkDst |= INTNETTRUNKDIR_HOST;
1872 if (pTab->fWireActive)
1873 pDstTab->fTrunkDst |= INTNETTRUNKDIR_WIRE;
1874 pDstTab->fTrunkDst &= ~fSrc;
1875 if (pDstTab->fTrunkDst)
1876 {
1877 PINTNETTRUNKIF pTrunk = pTab->pTrunk;
1878 pDstTab->pTrunk = pTrunk;
1879 intnetR0BusyIncTrunk(pTrunk);
1880 }
1881
1882 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
1883 return pDstTab->fTrunkDst ? INTNETSWDECISION_TRUNK : INTNETSWDECISION_DROP;
1884}
1885
1886
1887/**
1888 * Wrapper around RTMemAlloc for allocating a destination table.
1889 *
1890 * @returns VINF_SUCCESS or VERR_NO_MEMORY.
1891 * @param cEntries The size given as an entry count.
1892 * @param ppDstTab Where to store the pointer (always).
1893 */
1894DECLINLINE(int) intnetR0AllocDstTab(uint32_t cEntries, PINTNETDSTTAB *ppDstTab)
1895{
1896 PINTNETDSTTAB pDstTab;
1897 *ppDstTab = pDstTab = (PINTNETDSTTAB)RTMemAlloc(RT_OFFSETOF(INTNETDSTTAB, aIfs[cEntries]));
1898 if (RT_UNLIKELY(!pDstTab))
1899 return VERR_NO_MEMORY;
1900 return VINF_SUCCESS;
1901}
1902
1903
1904/**
1905 * Ensures that there is space for another interface in the MAC address lookup
1906 * table as well as all the destination tables.
1907 *
1908 * The caller must own the create/open/destroy mutex.
1909 *
1910 * @returns VINF_SUCCESS, VERR_NO_MEMORY or VERR_OUT_OF_RANGE.
1911 * @param pNetwork The network to operate on.
1912 */
1913static int intnetR0NetworkEnsureTabSpace(PINTNETNETWORK pNetwork)
1914{
1915 /*
1916 * The cEntries and cEntriesAllocated members are only updated while
1917 * owning the big mutex, so we only need the spinlock when doing the
1918 * actual table replacing.
1919 */
1920 PINTNETMACTAB pTab = &pNetwork->MacTab;
1921 int rc = VINF_SUCCESS;
1922 AssertReturn(pTab->cEntries <= pTab->cEntriesAllocated, VERR_INTERNAL_ERROR_2);
1923 if (pTab->cEntries + 1 > pTab->cEntriesAllocated)
1924 {
1925 uint32_t const cAllocated = pTab->cEntriesAllocated + INTNET_GROW_DSTTAB_SIZE;
1926 if (cAllocated <= INTNET_MAX_IFS)
1927 {
1928 /*
1929 * Resize the destination tables first, this can be kind of tedious.
1930 */
1931 for (uint32_t i = 0; i < pTab->cEntries; i++)
1932 {
1933 PINTNETIF pIf = pTab->paEntries[i].pIf; AssertPtr(pIf);
1934 PINTNETDSTTAB pNew;
1935 rc = intnetR0AllocDstTab(cAllocated, &pNew);
1936 if (RT_FAILURE(rc))
1937 break;
1938
1939 for (;;)
1940 {
1941 PINTNETDSTTAB pOld = pIf->pDstTab;
1942 if ( pOld
1943 && ASMAtomicCmpXchgPtr(&pIf->pDstTab, pNew, pOld))
1944 {
1945 RTMemFree(pOld);
1946 break;
1947 }
1948 intnetR0BusyWait(pNetwork, &pIf->cBusy);
1949 }
1950 }
1951
1952 /*
1953 * The trunk.
1954 */
1955 if ( RT_SUCCESS(rc)
1956 && pNetwork->MacTab.pTrunk)
1957 {
1958 AssertCompileAdjacentMembers(INTNETTRUNKIF, apTaskDstTabs, apIntDstTabs);
1959 PINTNETTRUNKIF pTrunk = pNetwork->MacTab.pTrunk;
1960 PINTNETDSTTAB * const ppEndDstTab = &pTrunk->apIntDstTabs[pTrunk->cIntDstTabs];
1961 for (PINTNETDSTTAB *ppDstTab = &pTrunk->apTaskDstTabs[0];
1962 ppDstTab != ppEndDstTab && RT_SUCCESS(rc);
1963 ppDstTab++)
1964 {
1965 PINTNETDSTTAB pNew;
1966 rc = intnetR0AllocDstTab(cAllocated, &pNew);
1967 if (RT_FAILURE(rc))
1968 break;
1969
1970 for (;;)
1971 {
1972 RTSpinlockAcquire(pTrunk->hDstTabSpinlock);
1973 void *pvOld = *ppDstTab;
1974 if (pvOld)
1975 *ppDstTab = pNew;
1976 RTSpinlockReleaseNoInts(pTrunk->hDstTabSpinlock);
1977 if (pvOld)
1978 {
1979 RTMemFree(pvOld);
1980 break;
1981 }
1982 intnetR0BusyWait(pNetwork, &pTrunk->cBusy);
1983 }
1984 }
1985 }
1986
1987 /*
1988 * The MAC Address table itself.
1989 */
1990 if (RT_SUCCESS(rc))
1991 {
1992 PINTNETMACTABENTRY paNew = (PINTNETMACTABENTRY)RTMemAlloc(sizeof(INTNETMACTABENTRY) * cAllocated);
1993 if (paNew)
1994 {
1995 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
1996
1997 PINTNETMACTABENTRY paOld = pTab->paEntries;
1998 uint32_t i = pTab->cEntries;
1999 while (i-- > 0)
2000 {
2001 paNew[i] = paOld[i];
2002
2003 paOld[i].fActive = false;
2004 paOld[i].pIf = NULL;
2005 }
2006
2007 pTab->paEntries = paNew;
2008 pTab->cEntriesAllocated = cAllocated;
2009
2010 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
2011
2012 RTMemFree(paOld);
2013 }
2014 else
2015 rc = VERR_NO_MEMORY;
2016 }
2017 }
2018 else
2019 rc = VERR_OUT_OF_RANGE;
2020 }
2021 return rc;
2022}
2023
2024
2025
2026
2027#ifdef INTNET_WITH_DHCP_SNOOPING
2028
2029/**
2030 * Snoops IP assignments and releases from the DHCPv4 traffic.
2031 *
2032 * The caller is responsible for making sure this traffic between the
2033 * BOOTPS and BOOTPC ports and validate the IP header. The UDP packet
2034 * need not be validated beyond the ports.
2035 *
2036 * @param pNetwork The network this frame was seen on.
2037 * @param pIpHdr Pointer to a valid IP header. This is for pseudo
2038 * header validation, so only the minimum header size
2039 * needs to be available and valid here.
2040 * @param pUdpHdr Pointer to the UDP header in the frame.
2041 * @param cbUdpPkt What's left of the frame when starting at the UDP header.
2042 * @param fGso Set if this is a GSO frame, clear if regular.
2043 */
2044static void intnetR0NetworkSnoopDhcp(PINTNETNETWORK pNetwork, PCRTNETIPV4 pIpHdr, PCRTNETUDP pUdpHdr, uint32_t cbUdpPkt)
2045{
2046 /*
2047 * Check if the DHCP message is valid and get the type.
2048 */
2049 if (!RTNetIPv4IsUDPValid(pIpHdr, pUdpHdr, pUdpHdr + 1, cbUdpPkt, true /*fCheckSum*/))
2050 {
2051 Log6(("Bad UDP packet\n"));
2052 return;
2053 }
2054 PCRTNETBOOTP pDhcp = (PCRTNETBOOTP)(pUdpHdr + 1);
2055 uint8_t MsgType;
2056 if (!RTNetIPv4IsDHCPValid(pUdpHdr, pDhcp, cbUdpPkt - sizeof(*pUdpHdr), &MsgType))
2057 {
2058 Log6(("Bad DHCP packet\n"));
2059 return;
2060 }
2061
2062#ifdef LOG_ENABLED
2063 /*
2064 * Log it.
2065 */
2066 const char *pszType = "unknown";
2067 switch (MsgType)
2068 {
2069 case RTNET_DHCP_MT_DISCOVER: pszType = "discover"; break;
2070 case RTNET_DHCP_MT_OFFER: pszType = "offer"; break;
2071 case RTNET_DHCP_MT_REQUEST: pszType = "request"; break;
2072 case RTNET_DHCP_MT_DECLINE: pszType = "decline"; break;
2073 case RTNET_DHCP_MT_ACK: pszType = "ack"; break;
2074 case RTNET_DHCP_MT_NAC: pszType = "nac"; break;
2075 case RTNET_DHCP_MT_RELEASE: pszType = "release"; break;
2076 case RTNET_DHCP_MT_INFORM: pszType = "inform"; break;
2077 }
2078 Log6(("DHCP msg: %d (%s) client %.6Rhxs ciaddr=%d.%d.%d.%d yiaddr=%d.%d.%d.%d\n", MsgType, pszType, &pDhcp->bp_chaddr,
2079 pDhcp->bp_ciaddr.au8[0], pDhcp->bp_ciaddr.au8[1], pDhcp->bp_ciaddr.au8[2], pDhcp->bp_ciaddr.au8[3],
2080 pDhcp->bp_yiaddr.au8[0], pDhcp->bp_yiaddr.au8[1], pDhcp->bp_yiaddr.au8[2], pDhcp->bp_yiaddr.au8[3]));
2081#endif /* LOG_EANBLED */
2082
2083 /*
2084 * Act upon the message.
2085 */
2086 switch (MsgType)
2087 {
2088#if 0
2089 case RTNET_DHCP_MT_REQUEST:
2090 /** @todo Check for valid non-broadcast requests w/ IP for any of the MACs we
2091 * know, and add the IP to the cache. */
2092 break;
2093#endif
2094
2095
2096 /*
2097 * Lookup the interface by its MAC address and insert the IPv4 address into the cache.
2098 * Delete the old client address first, just in case it changed in a renewal.
2099 */
2100 case RTNET_DHCP_MT_ACK:
2101 if (intnetR0IPv4AddrIsGood(pDhcp->bp_yiaddr))
2102 {
2103 PINTNETIF pMatchingIf = NULL;
2104 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
2105
2106 uint32_t iIf = pNetwork->MacTab.cEntries;
2107 while (iIf-- > 0)
2108 {
2109 PINTNETIF pCur = pNetwork->MacTab.paEntries[iIf].pIf;
2110 if ( intnetR0IfHasMacAddr(pCur)
2111 && !memcmp(&pCur->MacAddr, &pDhcp->bp_chaddr, sizeof(RTMAC)))
2112 {
2113 intnetR0IfAddrCacheDelete(pCur, &pCur->aAddrCache[kIntNetAddrType_IPv4],
2114 (PCRTNETADDRU)&pDhcp->bp_ciaddr, sizeof(RTNETADDRIPV4), "DHCP_MT_ACK");
2115 if (!pMatchingIf)
2116 {
2117 pMatchingIf = pCur;
2118 intnetR0BusyIncIf(pMatchingIf);
2119 }
2120 }
2121 }
2122
2123 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
2124
2125 if (pMatchingIf)
2126 {
2127 intnetR0IfAddrCacheAdd(pMatchingIf, &pMatchingIf->aAddrCache[kIntNetAddrType_IPv4],
2128 (PCRTNETADDRU)&pDhcp->bp_yiaddr, sizeof(RTNETADDRIPV4), "DHCP_MT_ACK");
2129 intnetR0BusyDecIf(pMatchingIf);
2130 }
2131 }
2132 return;
2133
2134
2135 /*
2136 * Lookup the interface by its MAC address and remove the IPv4 address(es) from the cache.
2137 */
2138 case RTNET_DHCP_MT_RELEASE:
2139 {
2140 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
2141
2142 uint32_t iIf = pNetwork->MacTab.cEntries;
2143 while (iIf-- > 0)
2144 {
2145 PINTNETIF pCur = pNetwork->MacTab.paEntries[iIf].pIf;
2146 if ( intnetR0IfHasMacAddr(pCur)
2147 && !memcmp(&pCur->MacAddr, &pDhcp->bp_chaddr, sizeof(RTMAC)))
2148 {
2149 intnetR0IfAddrCacheDelete(pCur, &pCur->aAddrCache[kIntNetAddrType_IPv4],
2150 (PCRTNETADDRU)&pDhcp->bp_ciaddr, sizeof(RTNETADDRIPV4), "DHCP_MT_RELEASE");
2151 intnetR0IfAddrCacheDelete(pCur, &pCur->aAddrCache[kIntNetAddrType_IPv4],
2152 (PCRTNETADDRU)&pDhcp->bp_yiaddr, sizeof(RTNETADDRIPV4), "DHCP_MT_RELEASE");
2153 }
2154 }
2155
2156 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
2157 break;
2158 }
2159 }
2160
2161}
2162
2163
2164/**
2165 * Worker for intnetR0TrunkIfSnoopAddr that takes care of what
2166 * is likely to be a DHCP message.
2167 *
2168 * The caller has already check that the UDP source and destination ports
2169 * are BOOTPS or BOOTPC.
2170 *
2171 * @param pNetwork The network this frame was seen on.
2172 * @param pSG The gather list for the frame.
2173 */
2174static void intnetR0TrunkIfSnoopDhcp(PINTNETNETWORK pNetwork, PCINTNETSG pSG)
2175{
2176 /*
2177 * Get a pointer to a linear copy of the full packet, using the
2178 * temporary buffer if necessary.
2179 */
2180 PCRTNETIPV4 pIpHdr = (PCRTNETIPV4)((PCRTNETETHERHDR)pSG->aSegs[0].pv + 1);
2181 uint32_t cbPacket = pSG->cbTotal - sizeof(RTNETETHERHDR);
2182 if (pSG->cSegsUsed > 1)
2183 {
2184 cbPacket = RT_MIN(cbPacket, INTNETNETWORK_TMP_SIZE);
2185 Log6(("intnetR0TrunkIfSnoopDhcp: Copying IPv4/UDP/DHCP pkt %u\n", cbPacket));
2186 if (!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR), cbPacket, pNetwork->pbTmp))
2187 return;
2188 //pSG->fFlags |= INTNETSG_FLAGS_PKT_CP_IN_TMP;
2189 pIpHdr = (PCRTNETIPV4)pNetwork->pbTmp;
2190 }
2191
2192 /*
2193 * Validate the IP header and find the UDP packet.
2194 */
2195 if (!RTNetIPv4IsHdrValid(pIpHdr, cbPacket, pSG->cbTotal - sizeof(RTNETETHERHDR), true /*fChecksum*/))
2196 {
2197 Log(("intnetR0TrunkIfSnoopDhcp: bad ip header\n"));
2198 return;
2199 }
2200 uint32_t cbIpHdr = pIpHdr->ip_hl * 4;
2201
2202 /*
2203 * Hand it over to the common DHCP snooper.
2204 */
2205 intnetR0NetworkSnoopDhcp(pNetwork, pIpHdr, (PCRTNETUDP)((uintptr_t)pIpHdr + cbIpHdr), cbPacket - cbIpHdr);
2206}
2207
2208#endif /* INTNET_WITH_DHCP_SNOOPING */
2209
2210
2211/**
2212 * Snoops up source addresses from ARP requests and purge these from the address
2213 * caches.
2214 *
2215 * The purpose of this purging is to get rid of stale addresses.
2216 *
2217 * @param pNetwork The network this frame was seen on.
2218 * @param pSG The gather list for the frame.
2219 */
2220static void intnetR0TrunkIfSnoopArp(PINTNETNETWORK pNetwork, PCINTNETSG pSG)
2221{
2222 /*
2223 * Check the minimum size first.
2224 */
2225 if (RT_UNLIKELY(pSG->cbTotal < sizeof(RTNETETHERHDR) + sizeof(RTNETARPIPV4)))
2226 return;
2227
2228 /*
2229 * Copy to temporary buffer if necessary.
2230 */
2231 uint32_t cbPacket = RT_MIN(pSG->cbTotal, sizeof(RTNETARPIPV4));
2232 PCRTNETARPIPV4 pArpIPv4 = (PCRTNETARPIPV4)((uintptr_t)pSG->aSegs[0].pv + sizeof(RTNETETHERHDR));
2233 if ( pSG->cSegsUsed != 1
2234 && pSG->aSegs[0].cb < cbPacket)
2235 {
2236 if ( (pSG->fFlags & (INTNETSG_FLAGS_ARP_IPV4 | INTNETSG_FLAGS_PKT_CP_IN_TMP))
2237 != (INTNETSG_FLAGS_ARP_IPV4 | INTNETSG_FLAGS_PKT_CP_IN_TMP)
2238 && !intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR), cbPacket, pNetwork->pbTmp))
2239 return;
2240 pArpIPv4 = (PCRTNETARPIPV4)pNetwork->pbTmp;
2241 }
2242
2243 /*
2244 * Ignore packets which doesn't interest us or we perceive as malformed.
2245 */
2246 if (RT_UNLIKELY( pArpIPv4->Hdr.ar_hlen != sizeof(RTMAC)
2247 || pArpIPv4->Hdr.ar_plen != sizeof(RTNETADDRIPV4)
2248 || pArpIPv4->Hdr.ar_htype != RT_H2BE_U16(RTNET_ARP_ETHER)
2249 || pArpIPv4->Hdr.ar_ptype != RT_H2BE_U16(RTNET_ETHERTYPE_IPV4)))
2250 return;
2251 uint16_t ar_oper = RT_H2BE_U16(pArpIPv4->Hdr.ar_oper);
2252 if (RT_UNLIKELY( ar_oper != RTNET_ARPOP_REQUEST
2253 && ar_oper != RTNET_ARPOP_REPLY))
2254 {
2255 Log6(("ts-ar: op=%#x\n", ar_oper));
2256 return;
2257 }
2258
2259 /*
2260 * Delete the source address if it's OK.
2261 */
2262 if ( !intnetR0IsMacAddrMulticast(&pArpIPv4->ar_sha)
2263 && ( pArpIPv4->ar_sha.au16[0]
2264 || pArpIPv4->ar_sha.au16[1]
2265 || pArpIPv4->ar_sha.au16[2])
2266 && intnetR0IPv4AddrIsGood(pArpIPv4->ar_spa))
2267 {
2268 Log6(("ts-ar: %d.%d.%d.%d / %.6Rhxs\n", pArpIPv4->ar_spa.au8[0], pArpIPv4->ar_spa.au8[1],
2269 pArpIPv4->ar_spa.au8[2], pArpIPv4->ar_spa.au8[3], &pArpIPv4->ar_sha));
2270 intnetR0NetworkAddrCacheDelete(pNetwork, (PCRTNETADDRU)&pArpIPv4->ar_spa,
2271 kIntNetAddrType_IPv4, sizeof(pArpIPv4->ar_spa), "tif/arp");
2272 }
2273}
2274
2275
2276#ifdef INTNET_WITH_DHCP_SNOOPING
2277/**
2278 * Snoop up addresses from ARP and DHCP traffic from frames coming
2279 * over the trunk connection.
2280 *
2281 * The caller is responsible for do some basic filtering before calling
2282 * this function.
2283 * For IPv4 this means checking against the minimum DHCPv4 frame size.
2284 *
2285 * @param pNetwork The network.
2286 * @param pSG The SG list for the frame.
2287 * @param EtherType The Ethertype of the frame.
2288 */
2289static void intnetR0TrunkIfSnoopAddr(PINTNETNETWORK pNetwork, PCINTNETSG pSG, uint16_t EtherType)
2290{
2291 switch (EtherType)
2292 {
2293 case RTNET_ETHERTYPE_IPV4:
2294 {
2295 uint32_t cbIpHdr;
2296 uint8_t b;
2297
2298 Assert(pSG->cbTotal >= sizeof(RTNETETHERHDR) + RTNETIPV4_MIN_LEN + RTNETUDP_MIN_LEN + RTNETBOOTP_DHCP_MIN_LEN);
2299 if (pSG->aSegs[0].cb >= sizeof(RTNETETHERHDR) + RTNETIPV4_MIN_LEN)
2300 {
2301 /* check if the protocol is UDP */
2302 PCRTNETIPV4 pIpHdr = (PCRTNETIPV4)((uint8_t const *)pSG->aSegs[0].pv + sizeof(RTNETETHERHDR));
2303 if (pIpHdr->ip_p != RTNETIPV4_PROT_UDP)
2304 return;
2305
2306 /* get the TCP header length */
2307 cbIpHdr = pIpHdr->ip_hl * 4;
2308 }
2309 else
2310 {
2311 /* check if the protocol is UDP */
2312 if ( intnetR0SgReadByte(pSG, sizeof(RTNETETHERHDR) + RT_OFFSETOF(RTNETIPV4, ip_p))
2313 != RTNETIPV4_PROT_UDP)
2314 return;
2315
2316 /* get the TCP header length */
2317 b = intnetR0SgReadByte(pSG, sizeof(RTNETETHERHDR) + 0); /* (IPv4 first byte, a bitfield) */
2318 cbIpHdr = (b & 0x0f) * 4;
2319 }
2320 if (cbIpHdr < RTNETIPV4_MIN_LEN)
2321 return;
2322
2323 /* compare the ports. */
2324 if (pSG->aSegs[0].cb >= sizeof(RTNETETHERHDR) + cbIpHdr + RTNETUDP_MIN_LEN)
2325 {
2326 PCRTNETUDP pUdpHdr = (PCRTNETUDP)((uint8_t const *)pSG->aSegs[0].pv + sizeof(RTNETETHERHDR) + cbIpHdr);
2327 if ( ( RT_BE2H_U16(pUdpHdr->uh_sport) != RTNETIPV4_PORT_BOOTPS
2328 && RT_BE2H_U16(pUdpHdr->uh_dport) != RTNETIPV4_PORT_BOOTPS)
2329 || ( RT_BE2H_U16(pUdpHdr->uh_dport) != RTNETIPV4_PORT_BOOTPC
2330 && RT_BE2H_U16(pUdpHdr->uh_sport) != RTNETIPV4_PORT_BOOTPC))
2331 return;
2332 }
2333 else
2334 {
2335 /* get the lower byte of the UDP source port number. */
2336 b = intnetR0SgReadByte(pSG, sizeof(RTNETETHERHDR) + cbIpHdr + RT_OFFSETOF(RTNETUDP, uh_sport) + 1);
2337 if ( b != RTNETIPV4_PORT_BOOTPS
2338 && b != RTNETIPV4_PORT_BOOTPC)
2339 return;
2340 uint8_t SrcPort = b;
2341 b = intnetR0SgReadByte(pSG, sizeof(RTNETETHERHDR) + cbIpHdr + RT_OFFSETOF(RTNETUDP, uh_sport));
2342 if (b)
2343 return;
2344
2345 /* get the lower byte of the UDP destination port number. */
2346 b = intnetR0SgReadByte(pSG, sizeof(RTNETETHERHDR) + cbIpHdr + RT_OFFSETOF(RTNETUDP, uh_dport) + 1);
2347 if ( b != RTNETIPV4_PORT_BOOTPS
2348 && b != RTNETIPV4_PORT_BOOTPC)
2349 return;
2350 if (b == SrcPort)
2351 return;
2352 b = intnetR0SgReadByte(pSG, sizeof(RTNETETHERHDR) + cbIpHdr + RT_OFFSETOF(RTNETUDP, uh_dport));
2353 if (b)
2354 return;
2355 }
2356 intnetR0TrunkIfSnoopDhcp(pNetwork, pSG);
2357 break;
2358 }
2359
2360 case RTNET_ETHERTYPE_ARP:
2361 intnetR0TrunkIfSnoopArp(pNetwork, pSG);
2362 break;
2363 }
2364}
2365#endif /* INTNET_WITH_DHCP_SNOOPING */
2366
2367/**
2368 * Deals with an IPv6 packet.
2369 *
2370 * This will fish out the source IP address and add it to the cache.
2371 * Then it will look for DHCPRELEASE requests (?) and anything else
2372 * that we might find useful later.
2373 *
2374 * @param pIf The interface that's sending the frame.
2375 * @param pIpHdr Pointer to the IPv4 header in the frame.
2376 * @param cbPacket The size of the packet, or more correctly the
2377 * size of the frame without the ethernet header.
2378 * @param fGso Set if this is a GSO frame, clear if regular.
2379 */
2380static void intnetR0IfSnoopIPv6SourceAddr(PINTNETIF pIf, PCRTNETIPV6 pIpHdr, uint32_t cbPacket, bool fGso)
2381{
2382 /*
2383 * Check the header size first to prevent access invalid data.
2384 */
2385 if (cbPacket < RTNETIPV6_MIN_LEN)
2386 return;
2387
2388 /*
2389 * If the source address is good (not multicast) and
2390 * not already in the address cache of the sender, add it.
2391 */
2392 RTNETADDRU Addr;
2393 Addr.IPv6 = pIpHdr->ip6_src;
2394
2395 if ( intnetR0IPv6AddrIsGood(Addr.IPv6) && (pIpHdr->ip6_hlim == 0xff)
2396 && intnetR0IfAddrCacheLookupLikely(&pIf->aAddrCache[kIntNetAddrType_IPv6], &Addr, sizeof(Addr.IPv6)) < 0)
2397 {
2398 intnetR0IfAddrCacheAddIt(pIf, &pIf->aAddrCache[kIntNetAddrType_IPv6], &Addr, "if/ipv6");
2399 }
2400}
2401
2402
2403/**
2404 * Deals with an IPv4 packet.
2405 *
2406 * This will fish out the source IP address and add it to the cache.
2407 * Then it will look for DHCPRELEASE requests (?) and anything else
2408 * that we might find useful later.
2409 *
2410 * @param pIf The interface that's sending the frame.
2411 * @param pIpHdr Pointer to the IPv4 header in the frame.
2412 * @param cbPacket The size of the packet, or more correctly the
2413 * size of the frame without the ethernet header.
2414 * @param fGso Set if this is a GSO frame, clear if regular.
2415 */
2416static void intnetR0IfSnoopIPv4SourceAddr(PINTNETIF pIf, PCRTNETIPV4 pIpHdr, uint32_t cbPacket, bool fGso)
2417{
2418 /*
2419 * Check the header size first to prevent access invalid data.
2420 */
2421 if (cbPacket < RTNETIPV4_MIN_LEN)
2422 return;
2423 uint32_t cbHdr = (uint32_t)pIpHdr->ip_hl * 4;
2424 if ( cbHdr < RTNETIPV4_MIN_LEN
2425 || cbPacket < cbHdr)
2426 return;
2427
2428 /*
2429 * If the source address is good (not broadcast or my network) and
2430 * not already in the address cache of the sender, add it. Validate
2431 * the IP header before adding it.
2432 */
2433 bool fValidatedIpHdr = false;
2434 RTNETADDRU Addr;
2435 Addr.IPv4 = pIpHdr->ip_src;
2436 if ( intnetR0IPv4AddrIsGood(Addr.IPv4)
2437 && intnetR0IfAddrCacheLookupLikely(&pIf->aAddrCache[kIntNetAddrType_IPv4], &Addr, sizeof(Addr.IPv4)) < 0)
2438 {
2439 if (!RTNetIPv4IsHdrValid(pIpHdr, cbPacket, cbPacket, !fGso /*fChecksum*/))
2440 {
2441 Log(("intnetR0IfSnoopIPv4SourceAddr: bad ip header\n"));
2442 return;
2443 }
2444 intnetR0IfAddrCacheAddIt(pIf, &pIf->aAddrCache[kIntNetAddrType_IPv4], &Addr, "if/ipv4");
2445 fValidatedIpHdr = true;
2446 }
2447
2448#ifdef INTNET_WITH_DHCP_SNOOPING
2449 /*
2450 * Check for potential DHCP packets.
2451 */
2452 if ( pIpHdr->ip_p == RTNETIPV4_PROT_UDP /* DHCP is UDP. */
2453 && cbPacket >= cbHdr + RTNETUDP_MIN_LEN + RTNETBOOTP_DHCP_MIN_LEN /* Min DHCP packet len. */
2454 && !fGso) /* GSO is not applicable to DHCP traffic. */
2455 {
2456 PCRTNETUDP pUdpHdr = (PCRTNETUDP)((uint8_t const *)pIpHdr + cbHdr);
2457 if ( ( RT_BE2H_U16(pUdpHdr->uh_dport) == RTNETIPV4_PORT_BOOTPS
2458 || RT_BE2H_U16(pUdpHdr->uh_sport) == RTNETIPV4_PORT_BOOTPS)
2459 && ( RT_BE2H_U16(pUdpHdr->uh_sport) == RTNETIPV4_PORT_BOOTPC
2460 || RT_BE2H_U16(pUdpHdr->uh_dport) == RTNETIPV4_PORT_BOOTPC))
2461 {
2462 if ( fValidatedIpHdr
2463 || RTNetIPv4IsHdrValid(pIpHdr, cbPacket, cbPacket, !fGso /*fChecksum*/))
2464 intnetR0NetworkSnoopDhcp(pIf->pNetwork, pIpHdr, pUdpHdr, cbPacket - cbHdr);
2465 else
2466 Log(("intnetR0IfSnoopIPv4SourceAddr: bad ip header (dhcp)\n"));
2467 }
2468 }
2469#endif /* INTNET_WITH_DHCP_SNOOPING */
2470}
2471
2472
2473/**
2474 * Snoop up source addresses from an ARP request or reply.
2475 *
2476 * @param pIf The interface that's sending the frame.
2477 * @param pHdr The ARP header.
2478 * @param cbPacket The size of the packet (might be larger than the ARP
2479 * request 'cause of min ethernet frame size).
2480 * @param pfSgFlags Pointer to the SG flags. This is used to tag the packet so we
2481 * don't have to repeat the frame parsing in intnetR0TrunkIfSend.
2482 */
2483static void intnetR0IfSnoopArpAddr(PINTNETIF pIf, PCRTNETARPIPV4 pArpIPv4, uint32_t cbPacket, uint16_t *pfSgFlags)
2484{
2485 /*
2486 * Ignore packets which doesn't interest us or we perceive as malformed.
2487 */
2488 if (RT_UNLIKELY(cbPacket < sizeof(RTNETARPIPV4)))
2489 return;
2490 if (RT_UNLIKELY( pArpIPv4->Hdr.ar_hlen != sizeof(RTMAC)
2491 || pArpIPv4->Hdr.ar_plen != sizeof(RTNETADDRIPV4)
2492 || pArpIPv4->Hdr.ar_htype != RT_H2BE_U16(RTNET_ARP_ETHER)
2493 || pArpIPv4->Hdr.ar_ptype != RT_H2BE_U16(RTNET_ETHERTYPE_IPV4)))
2494 return;
2495 uint16_t ar_oper = RT_H2BE_U16(pArpIPv4->Hdr.ar_oper);
2496 if (RT_UNLIKELY( ar_oper != RTNET_ARPOP_REQUEST
2497 && ar_oper != RTNET_ARPOP_REPLY))
2498 {
2499 Log6(("ar_oper=%#x\n", ar_oper));
2500 return;
2501 }
2502
2503 /*
2504 * Tag the SG as ARP IPv4 for later editing, then check for addresses
2505 * which can be removed or added to the address cache of the sender.
2506 */
2507 *pfSgFlags |= INTNETSG_FLAGS_ARP_IPV4;
2508
2509 if ( ar_oper == RTNET_ARPOP_REPLY
2510 && !intnetR0IsMacAddrMulticast(&pArpIPv4->ar_tha)
2511 && ( pArpIPv4->ar_tha.au16[0]
2512 || pArpIPv4->ar_tha.au16[1]
2513 || pArpIPv4->ar_tha.au16[2])
2514 && intnetR0IPv4AddrIsGood(pArpIPv4->ar_tpa))
2515 intnetR0IfAddrCacheDelete(pIf, &pIf->aAddrCache[kIntNetAddrType_IPv4],
2516 (PCRTNETADDRU)&pArpIPv4->ar_tpa, sizeof(RTNETADDRIPV4), "if/arp");
2517
2518 if ( !memcmp(&pArpIPv4->ar_sha, &pIf->MacAddr, sizeof(RTMAC))
2519 && intnetR0IPv4AddrIsGood(pArpIPv4->ar_spa))
2520 intnetR0IfAddrCacheAdd(pIf, &pIf->aAddrCache[kIntNetAddrType_IPv4],
2521 (PCRTNETADDRU)&pArpIPv4->ar_spa, sizeof(RTNETADDRIPV4), "if/arp");
2522}
2523
2524
2525
2526/**
2527 * Checks packets send by a normal interface for new network
2528 * layer addresses.
2529 *
2530 * @param pIf The interface that's sending the frame.
2531 * @param pbFrame The frame.
2532 * @param cbFrame The size of the frame.
2533 * @param fGso Set if this is a GSO frame, clear if regular.
2534 * @param pfSgFlags Pointer to the SG flags. This is used to tag the packet so we
2535 * don't have to repeat the frame parsing in intnetR0TrunkIfSend.
2536 */
2537static void intnetR0IfSnoopAddr(PINTNETIF pIf, uint8_t const *pbFrame, uint32_t cbFrame, bool fGso, uint16_t *pfSgFlags)
2538{
2539 /*
2540 * Fish out the ethertype and look for stuff we can handle.
2541 */
2542 if (cbFrame <= sizeof(RTNETETHERHDR))
2543 return;
2544 cbFrame -= sizeof(RTNETETHERHDR);
2545
2546 uint16_t EtherType = RT_H2BE_U16(((PCRTNETETHERHDR)pbFrame)->EtherType);
2547 switch (EtherType)
2548 {
2549 case RTNET_ETHERTYPE_IPV4:
2550 intnetR0IfSnoopIPv4SourceAddr(pIf, (PCRTNETIPV4)((PCRTNETETHERHDR)pbFrame + 1), cbFrame, fGso);
2551 break;
2552
2553 case RTNET_ETHERTYPE_IPV6:
2554 intnetR0IfSnoopIPv6SourceAddr(pIf, (PCRTNETIPV6)((PCRTNETETHERHDR)pbFrame + 1), cbFrame, fGso);
2555 break;
2556
2557#if 0 /** @todo IntNet: implement IPX for wireless MAC sharing? */
2558 case RTNET_ETHERTYPE_IPX_1:
2559 case RTNET_ETHERTYPE_IPX_2:
2560 case RTNET_ETHERTYPE_IPX_3:
2561 intnetR0IfSnoopIpxSourceAddr(pIf, (PCINTNETIPX)((PCRTNETETHERHDR)pbFrame + 1), cbFrame, pfSgFlags);
2562 break;
2563#endif
2564 case RTNET_ETHERTYPE_ARP:
2565 intnetR0IfSnoopArpAddr(pIf, (PCRTNETARPIPV4)((PCRTNETETHERHDR)pbFrame + 1), cbFrame, pfSgFlags);
2566 break;
2567 }
2568}
2569
2570
2571/**
2572 * Writes a frame packet to the ring buffer.
2573 *
2574 * @returns VBox status code.
2575 * @param pBuf The buffer.
2576 * @param pRingBuf The ring buffer to read from.
2577 * @param pSG The gather list.
2578 * @param pNewDstMac Set the destination MAC address to the address if specified.
2579 */
2580static int intnetR0RingWriteFrame(PINTNETRINGBUF pRingBuf, PCINTNETSG pSG, PCRTMAC pNewDstMac)
2581{
2582 PINTNETHDR pHdr = NULL; /* shut up gcc*/
2583 void *pvDst = NULL; /* ditto */
2584 int rc;
2585 if (pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID)
2586 rc = IntNetRingAllocateFrame(pRingBuf, pSG->cbTotal, &pHdr, &pvDst);
2587 else
2588 rc = IntNetRingAllocateGsoFrame(pRingBuf, pSG->cbTotal, &pSG->GsoCtx, &pHdr, &pvDst);
2589 if (RT_SUCCESS(rc))
2590 {
2591 IntNetSgRead(pSG, pvDst);
2592 if (pNewDstMac)
2593 ((PRTNETETHERHDR)pvDst)->DstMac = *pNewDstMac;
2594
2595 IntNetRingCommitFrame(pRingBuf, pHdr);
2596 return VINF_SUCCESS;
2597 }
2598 return rc;
2599}
2600
2601
2602/**
2603 * Sends a frame to a specific interface.
2604 *
2605 * @param pIf The interface.
2606 * @param pIfSender The interface sending the frame. This is NULL if it's the trunk.
2607 * @param pSG The gather buffer which data is being sent to the interface.
2608 * @param pNewDstMac Set the destination MAC address to the address if specified.
2609 */
2610static void intnetR0IfSend(PINTNETIF pIf, PINTNETIF pIfSender, PINTNETSG pSG, PCRTMAC pNewDstMac)
2611{
2612 /*
2613 * Grab the receive/producer lock and copy over the frame.
2614 */
2615 RTSpinlockAcquire(pIf->hRecvInSpinlock);
2616 int rc = intnetR0RingWriteFrame(&pIf->pIntBuf->Recv, pSG, pNewDstMac);
2617 RTSpinlockReleaseNoInts(pIf->hRecvInSpinlock);
2618 if (RT_SUCCESS(rc))
2619 {
2620 pIf->cYields = 0;
2621 RTSemEventSignal(pIf->hRecvEvent);
2622 return;
2623 }
2624
2625 Log(("intnetR0IfSend: overflow cb=%d hIf=%RX32\n", pSG->cbTotal, pIf->hIf));
2626
2627 /*
2628 * Scheduling hack, for unicore machines primarily.
2629 */
2630 if ( pIf->fActive
2631 && pIf->cYields < 4 /* just twice */
2632 && pIfSender /* but not if it's from the trunk */
2633 && RTThreadPreemptIsEnabled(NIL_RTTHREAD)
2634 )
2635 {
2636 unsigned cYields = 2;
2637 while (--cYields > 0)
2638 {
2639 RTSemEventSignal(pIf->hRecvEvent);
2640 RTThreadYield();
2641
2642 RTSpinlockAcquire(pIf->hRecvInSpinlock);
2643 rc = intnetR0RingWriteFrame(&pIf->pIntBuf->Recv, pSG, pNewDstMac);
2644 RTSpinlockReleaseNoInts(pIf->hRecvInSpinlock);
2645 if (RT_SUCCESS(rc))
2646 {
2647 STAM_REL_COUNTER_INC(&pIf->pIntBuf->cStatYieldsOk);
2648 RTSemEventSignal(pIf->hRecvEvent);
2649 return;
2650 }
2651 pIf->cYields++;
2652 }
2653 STAM_REL_COUNTER_INC(&pIf->pIntBuf->cStatYieldsNok);
2654 }
2655
2656 /* ok, the frame is lost. */
2657 STAM_REL_COUNTER_INC(&pIf->pIntBuf->cStatLost);
2658 RTSemEventSignal(pIf->hRecvEvent);
2659}
2660
2661
2662/**
2663 * Fallback path that does the GSO segmenting before passing the frame on to the
2664 * trunk interface.
2665 *
2666 * The caller holds the trunk lock.
2667 *
2668 * @param pThis The trunk.
2669 * @param pIfSender The IF sending the frame.
2670 * @param pSG Pointer to the gather list.
2671 * @param fDst The destination flags.
2672 */
2673static int intnetR0TrunkIfSendGsoFallback(PINTNETTRUNKIF pThis, PINTNETIF pIfSender, PINTNETSG pSG, uint32_t fDst)
2674{
2675 /*
2676 * Since we're only using this for GSO frame coming from the internal
2677 * network interfaces and never the trunk, we can assume there is only
2678 * one segment. This simplifies the code quite a bit.
2679 */
2680 Assert(PDMNetGsoIsValid(&pSG->GsoCtx, sizeof(pSG->GsoCtx), pSG->cbTotal));
2681 AssertReturn(pSG->cSegsUsed == 1, VERR_INTERNAL_ERROR_4);
2682
2683 union
2684 {
2685 uint8_t abBuf[sizeof(INTNETSG) + sizeof(INTNETSEG)];
2686 INTNETSG SG;
2687 } u;
2688
2689 /** @todo We have to adjust MSS so it does not exceed the value configured for
2690 * the host's interface.
2691 */
2692
2693 /*
2694 * Carve out the frame segments with the header and frame in different
2695 * scatter / gather segments.
2696 */
2697 uint32_t const cSegs = PDMNetGsoCalcSegmentCount(&pSG->GsoCtx, pSG->cbTotal);
2698 for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++)
2699 {
2700 uint32_t cbSegPayload, cbSegHdrs;
2701 uint32_t offSegPayload = PDMNetGsoCarveSegment(&pSG->GsoCtx, (uint8_t *)pSG->aSegs[0].pv, pSG->cbTotal, iSeg, cSegs,
2702 pIfSender->abGsoHdrs, &cbSegHdrs, &cbSegPayload);
2703
2704 IntNetSgInitTempSegs(&u.SG, cbSegHdrs + cbSegPayload, 2, 2);
2705 u.SG.aSegs[0].Phys = NIL_RTHCPHYS;
2706 u.SG.aSegs[0].pv = pIfSender->abGsoHdrs;
2707 u.SG.aSegs[0].cb = cbSegHdrs;
2708 u.SG.aSegs[1].Phys = NIL_RTHCPHYS;
2709 u.SG.aSegs[1].pv = (uint8_t *)pSG->aSegs[0].pv + offSegPayload;
2710 u.SG.aSegs[1].cb = (uint32_t)cbSegPayload;
2711
2712 int rc = pThis->pIfPort->pfnXmit(pThis->pIfPort, pIfSender->pvIfData, &u.SG, fDst);
2713 if (RT_FAILURE(rc))
2714 return rc;
2715 }
2716 return VINF_SUCCESS;
2717}
2718
2719
2720/**
2721 * Checks if any of the given trunk destinations can handle this kind of GSO SG.
2722 *
2723 * @returns true if it can, false if it cannot.
2724 * @param pThis The trunk.
2725 * @param pSG The scatter / gather buffer.
2726 * @param fDst The destination mask.
2727 */
2728DECLINLINE(bool) intnetR0TrunkIfCanHandleGsoFrame(PINTNETTRUNKIF pThis, PINTNETSG pSG, uint32_t fDst)
2729{
2730 uint8_t u8Type = pSG->GsoCtx.u8Type;
2731 AssertReturn(u8Type < 32, false); /* paranoia */
2732 uint32_t fMask = RT_BIT_32(u8Type);
2733
2734 if (fDst == INTNETTRUNKDIR_HOST)
2735 return !!(pThis->fHostGsoCapabilites & fMask);
2736 if (fDst == INTNETTRUNKDIR_WIRE)
2737 return !!(pThis->fWireGsoCapabilites & fMask);
2738 Assert(fDst == (INTNETTRUNKDIR_WIRE | INTNETTRUNKDIR_HOST));
2739 return !!(pThis->fHostGsoCapabilites & pThis->fWireGsoCapabilites & fMask);
2740}
2741
2742
2743/**
2744 * Calculates the checksum of a full ipv6 frame.
2745 *
2746 * @returns 16-bit hecksum value.
2747 * @param pIpHdr The IPv6 header (network endian (big)).
2748 * @param bProtocol The protocol number. This can be the same as the
2749 * ip6_nxt field, but doesn't need to be.
2750 * @param cbPkt The packet size (host endian of course). This can
2751 * be the same as the ip6_plen field, but as with @a
2752 * bProtocol it won't be when extension headers are
2753 * present. For UDP this will be uh_ulen converted to
2754 * host endian.
2755 */
2756static uint16_t computeIPv6FullChecksum(PCRTNETIPV6 pIpHdr)
2757{
2758 uint16_t const *data;
2759 int len = RT_BE2H_U16(pIpHdr->ip6_plen);
2760 uint32_t sum = RTNetIPv6PseudoChecksum(pIpHdr);
2761
2762 /* add the payload */
2763 data = (uint16_t *) (pIpHdr + 1);
2764 while(len > 1)
2765 {
2766 sum += *(data);
2767 data++;
2768 len -= 2;
2769 }
2770
2771 if(len > 0)
2772 sum += *((uint8_t *) data);
2773
2774 while(sum >> 16)
2775 sum = (sum & 0xffff) + (sum >> 16);
2776
2777 return (uint16_t) ~sum;
2778}
2779
2780/**
2781 * Sends a frame down the trunk.
2782 *
2783 * @param pThis The trunk.
2784 * @param pNetwork The network the frame is being sent to.
2785 * @param pIfSender The IF sending the frame. Used for MAC address
2786 * checks in shared MAC mode.
2787 * @param fDst The destination flags.
2788 * @param pSG Pointer to the gather list.
2789 */
2790static void intnetR0TrunkIfSend(PINTNETTRUNKIF pThis, PINTNETNETWORK pNetwork, PINTNETIF pIfSender,
2791 uint32_t fDst, PINTNETSG pSG)
2792{
2793 /*
2794 * Quick sanity check.
2795 */
2796 AssertPtr(pThis);
2797 AssertPtr(pNetwork);
2798 AssertPtr(pIfSender);
2799 AssertPtr(pSG);
2800 Assert(fDst);
2801 AssertReturnVoid(pThis->pIfPort);
2802
2803 /*
2804 * Edit the frame if we're sharing the MAC address with the host on the wire.
2805 *
2806 * If the frame is headed for both the host and the wire, we'll have to send
2807 * it to the host before making any modifications, and force the OS specific
2808 * backend to copy it. We do this by marking it as TEMP (which is always the
2809 * case right now).
2810 */
2811 if ( (pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
2812 && (fDst & INTNETTRUNKDIR_WIRE))
2813 {
2814 /*
2815 * Dispatch it to the host before making changes.
2816 */
2817 if (fDst & INTNETTRUNKDIR_HOST)
2818 {
2819 Assert(pSG->fFlags & INTNETSG_FLAGS_TEMP); /* make sure copy is forced */
2820 intnetR0TrunkIfSend(pThis, pNetwork, pIfSender, INTNETTRUNKDIR_HOST, pSG);
2821 fDst &= ~INTNETTRUNKDIR_HOST;
2822 }
2823
2824 /*
2825 * Edit the source address so that it it's the same as the host.
2826 */
2827 /* ASSUME frame from IntNetR0IfSend! */
2828 AssertReturnVoid(pSG->cSegsUsed == 1);
2829 AssertReturnVoid(pSG->cbTotal >= sizeof(RTNETETHERHDR));
2830 AssertReturnVoid(pIfSender);
2831 PRTNETETHERHDR pEthHdr = (PRTNETETHERHDR)pSG->aSegs[0].pv;
2832
2833 pEthHdr->SrcMac = pThis->MacAddr;
2834
2835 /*
2836 * Deal with tags from the snooping phase.
2837 */
2838 if (pSG->fFlags & INTNETSG_FLAGS_ARP_IPV4)
2839 {
2840 /*
2841 * APR IPv4: replace hardware (MAC) addresses because these end up
2842 * in ARP caches. So, if we don't the other machines will
2843 * send the packets to the MAC address of the guest
2844 * instead of the one of the host, which won't work on
2845 * wireless of course...
2846 */
2847 PRTNETARPIPV4 pArp = (PRTNETARPIPV4)(pEthHdr + 1);
2848 if (!memcmp(&pArp->ar_sha, &pIfSender->MacAddr, sizeof(RTMAC)))
2849 {
2850 Log6(("tw: ar_sha %.6Rhxs -> %.6Rhxs\n", &pArp->ar_sha, &pThis->MacAddr));
2851 pArp->ar_sha = pThis->MacAddr;
2852 }
2853 if (!memcmp(&pArp->ar_tha, &pIfSender->MacAddr, sizeof(RTMAC))) /* just in case... */
2854 {
2855 Log6(("tw: ar_tha %.6Rhxs -> %.6Rhxs\n", &pArp->ar_tha, &pThis->MacAddr));
2856 pArp->ar_tha = pThis->MacAddr;
2857 }
2858 }
2859 else if (pEthHdr->EtherType == RT_H2BE_U16(RTNET_ETHERTYPE_IPV6))
2860 {
2861 /*
2862 * IPV6 ICMP Neighbor Discovery : replace
2863 * 1) the advertised source mac address in outgoing neighbor sollicitations
2864 * with the HW MAC address of the trunk interface,
2865 * 2) the advertised target mac address in outgoing neighbor advertisements
2866 * with the HW mac address of the trunk interface.
2867 *
2868 * Note that this only applies to traffic going out on the trunk. Incoming
2869 * NS/NA will never advertise any VM mac address, so we do not need to touch
2870 * them. Other VMs on this bridge as well as the host will see and use the VM's
2871 * actual mac addresses.
2872 *
2873 */
2874
2875 PRTNETIPV6 pIPv6 = (PRTNETIPV6)(pEthHdr + 1);
2876 PRTNETNDP pNd = (PRTNETNDP)(pIPv6 + 1);
2877 PRTNETNDP_SLLA_OPT pLLAOpt = (PRTNETNDP_SLLA_OPT)(pNd + 1);
2878
2879 /* make sure we have enough bytes to work with */
2880 if(pSG->cbTotal >= (RTNETIPV6_MIN_LEN + RTNETIPV6_ICMPV6_ND_WITH_LLA_OPT_MIN_LEN) &&
2881 /* ensure the packet came from our LAN (not gone through any router) */
2882 pIPv6->ip6_hlim == 0xff &&
2883 /* protocol has to be icmpv6 */
2884 pIPv6->ip6_nxt == RTNETIPV6_PROT_ICMPV6 &&
2885 /* we either have a sollicitation with source link layer addr. opt, or */
2886 ((pNd->icmp6_type == RTNETIPV6_ICMP_NS_TYPE &&
2887 pNd->icmp6_code == RTNETIPV6_ICMPV6_CODE_0 &&
2888 pLLAOpt->type == RTNETIPV6_ICMP_ND_SLLA_OPT) ||
2889 /* an advertisement with target link layer addr. option */
2890 ((pNd->icmp6_type == RTNETIPV6_ICMP_NA_TYPE &&
2891 pNd->icmp6_code == RTNETIPV6_ICMPV6_CODE_0 &&
2892 pLLAOpt->type == RTNETIPV6_ICMP_ND_TLLA_OPT)) ) &&
2893 pLLAOpt->len == RTNETIPV6_ICMP_ND_LLA_LEN)
2894 {
2895 /* swap the advertised VM MAC address with the trunk's */
2896 pLLAOpt->slla = pThis->MacAddr;
2897
2898 /* recompute the checksum since we changed the packet */
2899 pNd->icmp6_cksum = 0;
2900 pNd->icmp6_cksum = computeIPv6FullChecksum(pIPv6);
2901 }
2902
2903 }
2904 }
2905
2906 /*
2907 * Send the frame, handling the GSO fallback .
2908 * .
2909 * Note! The trunk implementation will re-check that the trunk is active .
2910 * before sending, so we don't have to duplicate that effort here.
2911 */
2912 STAM_REL_PROFILE_START(&pIfSender->pIntBuf->StatSend2, a);
2913 int rc;
2914 if ( pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID
2915 || intnetR0TrunkIfCanHandleGsoFrame(pThis, pSG, fDst) )
2916 rc = pThis->pIfPort->pfnXmit(pThis->pIfPort, pIfSender->pvIfData, pSG, fDst);
2917 else
2918 rc = intnetR0TrunkIfSendGsoFallback(pThis, pIfSender, pSG, fDst);
2919 STAM_REL_PROFILE_STOP(&pIfSender->pIntBuf->StatSend2, a);
2920
2921 /** @todo failure statistics? */
2922 Log2(("intnetR0TrunkIfSend: %Rrc fDst=%d\n", rc, fDst)); NOREF(rc);
2923}
2924
2925
2926/**
2927 * Work around the issue with WiFi routers that replace IPv6 multicast
2928 * Ethernet addresses with unicast ones. We check IPv6 destination address
2929 * to determine if the packet originally had a multicast address, and if so
2930 * we restore the original address and treat the modified packet as being a
2931 * broadcast.
2932 *
2933 * @param pNetwork The network the frame is being sent to.
2934 * @param pSG Pointer to the gather list for the frame.
2935 * @param pEthHdr Pointer to the ethernet header.
2936 */
2937static bool intnetR0NetworkDetectAndFixNdBroadcast(PINTNETNETWORK pNetwork, PINTNETSG pSG, PRTNETETHERHDR pEthHdr)
2938{
2939 if (RT_BE2H_U16(pEthHdr->EtherType) != RTNET_ETHERTYPE_IPV6)
2940 return false;
2941 /*
2942 * Check the minimum size and get a linear copy of the thing to work on,
2943 * using the temporary buffer if necessary.
2944 */
2945 if (RT_UNLIKELY(pSG->cbTotal < sizeof(RTNETETHERHDR) + sizeof(RTNETIPV6) +
2946 sizeof(RTNETNDP)))
2947 return false;
2948 uint8_t bTmp[sizeof(RTNETIPV6) + sizeof(RTNETNDP)];
2949 PRTNETIPV6 pIPv6 = (PRTNETIPV6)((uint8_t *)pSG->aSegs[0].pv + sizeof(RTNETETHERHDR));
2950 if ( pSG->cSegsUsed != 1
2951 && pSG->aSegs[0].cb < sizeof(RTNETETHERHDR) + sizeof(RTNETIPV6) +
2952 sizeof(RTNETNDP))
2953 {
2954 Log6(("fw: Copying IPv6 pkt %u\n", sizeof(RTNETIPV6)));
2955 if (!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR), sizeof(RTNETIPV6)
2956 + sizeof(RTNETNDP), bTmp))
2957 return false;
2958 pIPv6 = (PRTNETIPV6)bTmp;
2959 }
2960
2961 PCRTNETNDP pNd = (PCRTNETNDP) (pIPv6 + 1);
2962
2963 /* Check IPv6 destination address if it is a multicast address. */
2964 static uint8_t auSolicitedNodeMulticastPrefix[] =
2965 {
2966 0xFF, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2967 0x00, 0x00, 0x00, 0x01, 0xff
2968 };
2969 if (memcmp(pIPv6->ip6_dst.au8, auSolicitedNodeMulticastPrefix,
2970 sizeof(auSolicitedNodeMulticastPrefix)) == 0)
2971 {
2972 /*
2973 * The original must have been composed of 0x3333 followed by the last
2974 * four bytes of the solicited-node multicast address.
2975 */
2976 if (pSG->aSegs[0].cb < sizeof(RTNETETHERHDR))
2977 {
2978 RTMAC DstMac;
2979 DstMac.au16[0] = 0x3333;
2980 DstMac.au16[1] = pIPv6->ip6_dst.au16[6];
2981 DstMac.au16[2] = pIPv6->ip6_dst.au16[7];
2982 return intnetR0SgWritePart(pSG, RT_OFFSETOF(RTNETETHERHDR, DstMac), sizeof(RTMAC), &DstMac);
2983 }
2984 pEthHdr = (PRTNETETHERHDR)pSG->aSegs[0].pv;
2985 pEthHdr->DstMac.au16[0] = 0x3333;
2986 pEthHdr->DstMac.au16[1] = pIPv6->ip6_dst.au16[6];
2987 pEthHdr->DstMac.au16[2] = pIPv6->ip6_dst.au16[7];
2988 return true;
2989 }
2990
2991 return false;
2992}
2993
2994
2995/**
2996 * Snoops a multicast ICMPv6 ND DAD from the wire via the trunk connection.
2997 *
2998 * @param pNetwork The network the frame is being sent to.
2999 * @param pSG Pointer to the gather list for the frame.
3000 * @param pEthHdr Pointer to the ethernet header.
3001 */
3002static void intnetR0NetworkSnoopNAFromWire(PINTNETNETWORK pNetwork, PINTNETSG pSG, PRTNETETHERHDR pEthHdr)
3003{
3004 /*
3005 * Check the minimum size and get a linear copy of the thing to work on,
3006 * using the temporary buffer if necessary.
3007 */
3008 if (RT_UNLIKELY(pSG->cbTotal < sizeof(RTNETETHERHDR) + sizeof(RTNETIPV6) +
3009 sizeof(RTNETNDP)))
3010 return;
3011 PRTNETIPV6 pIPv6 = (PRTNETIPV6)((uint8_t *)pSG->aSegs[0].pv + sizeof(RTNETETHERHDR));
3012 if ( pSG->cSegsUsed != 1
3013 && pSG->aSegs[0].cb < sizeof(RTNETETHERHDR) + sizeof(RTNETIPV6) +
3014 sizeof(RTNETNDP))
3015 {
3016 Log6(("fw: Copying IPv6 pkt %u\n", sizeof(RTNETIPV6)));
3017 if (!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR), sizeof(RTNETIPV6)
3018 + sizeof(RTNETNDP), pNetwork->pbTmp))
3019 return;
3020 pSG->fFlags |= INTNETSG_FLAGS_PKT_CP_IN_TMP;
3021 pIPv6 = (PRTNETIPV6)pNetwork->pbTmp;
3022 }
3023
3024 PCRTNETNDP pNd = (PCRTNETNDP) (pIPv6 + 1);
3025
3026 /*
3027 * a multicast NS with :: as source address means a DAD packet.
3028 * if it comes from the wire and we have the DAD'd address in our cache,
3029 * flush the entry as the address is being acquired by someone else on
3030 * the network.
3031 */
3032 if ( pIPv6->ip6_hlim == 0xff
3033 && pIPv6->ip6_nxt == RTNETIPV6_PROT_ICMPV6
3034 && pNd->icmp6_type == RTNETIPV6_ICMP_NS_TYPE
3035 && pNd->icmp6_code == RTNETIPV6_ICMPV6_CODE_0
3036 && pIPv6->ip6_src.QWords.qw0 == 0
3037 && pIPv6->ip6_src.QWords.qw1 == 0)
3038 {
3039
3040 intnetR0NetworkAddrCacheDelete(pNetwork, (PCRTNETADDRU) &pNd->target_address,
3041 kIntNetAddrType_IPv6, sizeof(RTNETADDRIPV6), "tif/ip6");
3042 }
3043}
3044/**
3045 * Edits an ARP packet arriving from the wire via the trunk connection.
3046 *
3047 * @param pNetwork The network the frame is being sent to.
3048 * @param pSG Pointer to the gather list for the frame.
3049 * The flags and data content may be updated.
3050 * @param pEthHdr Pointer to the ethernet header. This may also be
3051 * updated if it's a unicast...
3052 */
3053static void intnetR0NetworkEditArpFromWire(PINTNETNETWORK pNetwork, PINTNETSG pSG, PRTNETETHERHDR pEthHdr)
3054{
3055 /*
3056 * Check the minimum size and get a linear copy of the thing to work on,
3057 * using the temporary buffer if necessary.
3058 */
3059 if (RT_UNLIKELY(pSG->cbTotal < sizeof(RTNETETHERHDR) + sizeof(RTNETARPIPV4)))
3060 return;
3061 PRTNETARPIPV4 pArpIPv4 = (PRTNETARPIPV4)((uint8_t *)pSG->aSegs[0].pv + sizeof(RTNETETHERHDR));
3062 if ( pSG->cSegsUsed != 1
3063 && pSG->aSegs[0].cb < sizeof(RTNETETHERHDR) + sizeof(RTNETARPIPV4))
3064 {
3065 Log6(("fw: Copying ARP pkt %u\n", sizeof(RTNETARPIPV4)));
3066 if (!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR), sizeof(RTNETARPIPV4), pNetwork->pbTmp))
3067 return;
3068 pSG->fFlags |= INTNETSG_FLAGS_PKT_CP_IN_TMP;
3069 pArpIPv4 = (PRTNETARPIPV4)pNetwork->pbTmp;
3070 }
3071
3072 /*
3073 * Ignore packets which doesn't interest us or we perceive as malformed.
3074 */
3075 if (RT_UNLIKELY( pArpIPv4->Hdr.ar_hlen != sizeof(RTMAC)
3076 || pArpIPv4->Hdr.ar_plen != sizeof(RTNETADDRIPV4)
3077 || pArpIPv4->Hdr.ar_htype != RT_H2BE_U16(RTNET_ARP_ETHER)
3078 || pArpIPv4->Hdr.ar_ptype != RT_H2BE_U16(RTNET_ETHERTYPE_IPV4)))
3079 return;
3080 uint16_t ar_oper = RT_H2BE_U16(pArpIPv4->Hdr.ar_oper);
3081 if (RT_UNLIKELY( ar_oper != RTNET_ARPOP_REQUEST
3082 && ar_oper != RTNET_ARPOP_REPLY))
3083 {
3084 Log6(("ar_oper=%#x\n", ar_oper));
3085 return;
3086 }
3087
3088 /* Tag it as ARP IPv4. */
3089 pSG->fFlags |= INTNETSG_FLAGS_ARP_IPV4;
3090
3091 /*
3092 * The thing we're interested in here is a reply to a query made by a guest
3093 * since we modified the MAC in the initial request the guest made.
3094 */
3095 if ( ar_oper == RTNET_ARPOP_REPLY
3096 && !memcmp(&pArpIPv4->ar_tha, &pNetwork->MacTab.pTrunk->MacAddr, sizeof(RTMAC)))
3097 {
3098 PINTNETIF pIf = intnetR0NetworkAddrCacheLookupIf(pNetwork, (PCRTNETADDRU)&pArpIPv4->ar_tpa,
3099 kIntNetAddrType_IPv4, sizeof(pArpIPv4->ar_tpa));
3100 if (pIf)
3101 {
3102 Log6(("fw: ar_tha %.6Rhxs -> %.6Rhxs\n", &pArpIPv4->ar_tha, &pIf->MacAddr));
3103 pArpIPv4->ar_tha = pIf->MacAddr;
3104 if (!memcmp(&pEthHdr->DstMac, &pNetwork->MacTab.pTrunk->MacAddr, sizeof(RTMAC)))
3105 {
3106 Log6(("fw: DstMac %.6Rhxs -> %.6Rhxs\n", &pEthHdr->DstMac, &pIf->MacAddr));
3107 pEthHdr->DstMac = pIf->MacAddr;
3108 if ((void *)pEthHdr != pSG->aSegs[0].pv)
3109 intnetR0SgWritePart(pSG, RT_OFFSETOF(RTNETETHERHDR, DstMac), sizeof(RTMAC), &pIf->MacAddr);
3110 }
3111 intnetR0BusyDecIf(pIf);
3112
3113 /* Write back the packet if we've been making changes to a buffered copy. */
3114 if (pSG->fFlags & INTNETSG_FLAGS_PKT_CP_IN_TMP)
3115 intnetR0SgWritePart(pSG, sizeof(RTNETETHERHDR), sizeof(PRTNETARPIPV4), pArpIPv4);
3116 }
3117 }
3118}
3119
3120
3121/**
3122 * Detects and edits an DHCP packet arriving from the internal net.
3123 *
3124 * @param pNetwork The network the frame is being sent to.
3125 * @param pSG Pointer to the gather list for the frame.
3126 * The flags and data content may be updated.
3127 * @param pEthHdr Pointer to the ethernet header. This may also be
3128 * updated if it's a unicast...
3129 */
3130static void intnetR0NetworkEditDhcpFromIntNet(PINTNETNETWORK pNetwork, PINTNETSG pSG, PRTNETETHERHDR pEthHdr)
3131{
3132 NOREF(pEthHdr);
3133
3134 /*
3135 * Check the minimum size and get a linear copy of the thing to work on,
3136 * using the temporary buffer if necessary.
3137 */
3138 if (RT_UNLIKELY(pSG->cbTotal < sizeof(RTNETETHERHDR) + RTNETIPV4_MIN_LEN + RTNETUDP_MIN_LEN + RTNETBOOTP_DHCP_MIN_LEN))
3139 return;
3140 /*
3141 * Get a pointer to a linear copy of the full packet, using the
3142 * temporary buffer if necessary.
3143 */
3144 PCRTNETIPV4 pIpHdr = (PCRTNETIPV4)((PCRTNETETHERHDR)pSG->aSegs[0].pv + 1);
3145 uint32_t cbPacket = pSG->cbTotal - sizeof(RTNETETHERHDR);
3146 if (pSG->cSegsUsed > 1)
3147 {
3148 cbPacket = RT_MIN(cbPacket, INTNETNETWORK_TMP_SIZE);
3149 Log6(("intnetR0NetworkEditDhcpFromIntNet: Copying IPv4/UDP/DHCP pkt %u\n", cbPacket));
3150 if (!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR), cbPacket, pNetwork->pbTmp))
3151 return;
3152 //pSG->fFlags |= INTNETSG_FLAGS_PKT_CP_IN_TMP;
3153 pIpHdr = (PCRTNETIPV4)pNetwork->pbTmp;
3154 }
3155
3156 /*
3157 * Validate the IP header and find the UDP packet.
3158 */
3159 if (!RTNetIPv4IsHdrValid(pIpHdr, cbPacket, pSG->cbTotal - sizeof(RTNETETHERHDR), true /*fCheckSum*/))
3160 {
3161 Log6(("intnetR0NetworkEditDhcpFromIntNet: bad ip header\n"));
3162 return;
3163 }
3164 size_t cbIpHdr = pIpHdr->ip_hl * 4;
3165 if ( pIpHdr->ip_p != RTNETIPV4_PROT_UDP /* DHCP is UDP. */
3166 || cbPacket < cbIpHdr + RTNETUDP_MIN_LEN + RTNETBOOTP_DHCP_MIN_LEN) /* Min DHCP packet len */
3167 return;
3168
3169 size_t cbUdpPkt = cbPacket - cbIpHdr;
3170 PCRTNETUDP pUdpHdr = (PCRTNETUDP)((uintptr_t)pIpHdr + cbIpHdr);
3171 /* We are only interested in DHCP packets coming from client to server. */
3172 if ( RT_BE2H_U16(pUdpHdr->uh_dport) != RTNETIPV4_PORT_BOOTPS
3173 || RT_BE2H_U16(pUdpHdr->uh_sport) != RTNETIPV4_PORT_BOOTPC)
3174 return;
3175
3176 /*
3177 * Check if the DHCP message is valid and get the type.
3178 */
3179 if (!RTNetIPv4IsUDPValid(pIpHdr, pUdpHdr, pUdpHdr + 1, cbUdpPkt, true /*fCheckSum*/))
3180 {
3181 Log6(("intnetR0NetworkEditDhcpFromIntNet: Bad UDP packet\n"));
3182 return;
3183 }
3184 PCRTNETBOOTP pDhcp = (PCRTNETBOOTP)(pUdpHdr + 1);
3185 uint8_t bMsgType;
3186 if (!RTNetIPv4IsDHCPValid(pUdpHdr, pDhcp, cbUdpPkt - sizeof(*pUdpHdr), &bMsgType))
3187 {
3188 Log6(("intnetR0NetworkEditDhcpFromIntNet: Bad DHCP packet\n"));
3189 return;
3190 }
3191
3192 switch (bMsgType)
3193 {
3194 case RTNET_DHCP_MT_DISCOVER:
3195 case RTNET_DHCP_MT_REQUEST:
3196 /*
3197 * Must set the broadcast flag or we won't catch the respons.
3198 */
3199 if (!(pDhcp->bp_flags & RT_H2BE_U16_C(RTNET_DHCP_FLAG_BROADCAST)))
3200 {
3201 Log6(("intnetR0NetworkEditDhcpFromIntNet: Setting broadcast flag in DHCP %#x, previously %x\n",
3202 bMsgType, pDhcp->bp_flags));
3203
3204 /* Patch flags */
3205 uint16_t uFlags = pDhcp->bp_flags | RT_H2BE_U16_C(RTNET_DHCP_FLAG_BROADCAST);
3206 intnetR0SgWritePart(pSG, (uintptr_t)&pDhcp->bp_flags - (uintptr_t)pIpHdr + sizeof(RTNETETHERHDR), sizeof(uFlags), &uFlags);
3207
3208 /* Patch UDP checksum */
3209 uint32_t uChecksum = (uint32_t)~pUdpHdr->uh_sum + RT_H2BE_U16_C(RTNET_DHCP_FLAG_BROADCAST);
3210 while (uChecksum >> 16)
3211 uChecksum = (uChecksum >> 16) + (uChecksum & 0xFFFF);
3212 uChecksum = ~uChecksum;
3213 intnetR0SgWritePart(pSG, (uintptr_t)&pUdpHdr->uh_sum - (uintptr_t)pIpHdr + sizeof(RTNETETHERHDR), sizeof(pUdpHdr->uh_sum), &uChecksum);
3214 }
3215
3216#ifdef RT_OS_DARWIN
3217 /*
3218 * Work around little endian checksum issue in mac os x 10.7.0 GM.
3219 */
3220 if ( pIpHdr->ip_tos
3221 && (pNetwork->fFlags & INTNET_OPEN_FLAGS_WORKAROUND_1))
3222 {
3223 /* Patch it. */
3224 uint8_t uTos = pIpHdr->ip_tos;
3225 uint8_t uZero = 0;
3226 intnetR0SgWritePart(pSG, sizeof(RTNETETHERHDR) + 1, sizeof(uZero), &uZero);
3227
3228 /* Patch the IP header checksum. */
3229 uint32_t uChecksum = (uint32_t)~pIpHdr->ip_sum - (uTos << 8);
3230 while (uChecksum >> 16)
3231 uChecksum = (uChecksum >> 16) + (uChecksum & 0xFFFF);
3232 uChecksum = ~uChecksum;
3233
3234 Log(("intnetR0NetworkEditDhcpFromIntNet: cleared ip_tos (was %#04x); ip_sum=%#06x -> %#06x\n",
3235 uTos, RT_BE2H_U16(pIpHdr->ip_sum), RT_BE2H_U16(uChecksum) ));
3236 intnetR0SgWritePart(pSG, sizeof(RTNETETHERHDR) + RT_OFFSETOF(RTNETIPV4, ip_sum),
3237 sizeof(pIpHdr->ip_sum), &uChecksum);
3238 }
3239#endif
3240 break;
3241 }
3242}
3243
3244
3245/**
3246 * Checks if the callers context is okay for sending to the specified
3247 * destinations.
3248 *
3249 * @returns true if it's okay, false if it isn't.
3250 * @param pNetwork The network.
3251 * @param pIfSender The interface sending or NULL if it's the trunk.
3252 * @param pDstTab The destination table.
3253 */
3254DECLINLINE(bool) intnetR0NetworkIsContextOk(PINTNETNETWORK pNetwork, PINTNETIF pIfSender, PCINTNETDSTTAB pDstTab)
3255{
3256 NOREF(pNetwork);
3257
3258 /* Sending to the trunk is the problematic path. If the trunk is the
3259 sender we won't be sending to it, so no problem..
3260 Note! fTrunkDst may be set event if if the trunk is the sender. */
3261 if (!pIfSender)
3262 return true;
3263
3264 uint32_t const fTrunkDst = pDstTab->fTrunkDst;
3265 if (!fTrunkDst)
3266 return true;
3267
3268 /* ASSUMES: that the trunk won't change its report while we're checking. */
3269 PINTNETTRUNKIF pTrunk = pDstTab->pTrunk;
3270 if ((fTrunkDst & pTrunk->fNoPreemptDsts) == fTrunkDst)
3271 return true;
3272
3273 /* ASSUMES: That a preemption test detects HM contexts. (Will work on
3274 non-preemptive systems as well.) */
3275 if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
3276 return true;
3277 return false;
3278}
3279
3280
3281/**
3282 * Checks if the callers context is okay for doing a broadcast given the
3283 * specified source.
3284 *
3285 * @returns true if it's okay, false if it isn't.
3286 * @param pNetwork The network.
3287 * @param fSrc The source of the packet. (0 (intnet),
3288 * INTNETTRUNKDIR_HOST or INTNETTRUNKDIR_WIRE).
3289 */
3290DECLINLINE(bool) intnetR0NetworkIsContextOkForBroadcast(PINTNETNETWORK pNetwork, uint32_t fSrc)
3291{
3292 /* Sending to the trunk is the problematic path. If the trunk is the
3293 sender we won't be sending to it, so no problem. */
3294 if (fSrc)
3295 return true;
3296
3297 /* ASSUMES: That a preemption test detects HM contexts. (Will work on
3298 non-preemptive systems as well.) */
3299 if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
3300 return true;
3301
3302 /* PARANOIA: Grab the spinlock to make sure the trunk structure cannot be
3303 freed while we're touching it. */
3304 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
3305 PINTNETTRUNKIF pTrunk = pNetwork->MacTab.pTrunk;
3306
3307 bool fRc = !pTrunk
3308 || pTrunk->fNoPreemptDsts == (INTNETTRUNKDIR_HOST | INTNETTRUNKDIR_WIRE)
3309 || ( (!pNetwork->MacTab.fHostActive || (pTrunk->fNoPreemptDsts & INTNETTRUNKDIR_HOST) )
3310 && (!pNetwork->MacTab.fWireActive || (pTrunk->fNoPreemptDsts & INTNETTRUNKDIR_WIRE) ) );
3311
3312 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
3313
3314 return fRc;
3315}
3316
3317
3318/**
3319 * Check context, edit, snoop and switch a broadcast frame when sharing MAC
3320 * address on the wire.
3321 *
3322 * The caller must hold at least one interface on the network busy to prevent it
3323 * from destructing beath us.
3324 *
3325 * @param pNetwork The network the frame is being sent to.
3326 * @param fSrc The source of the packet. (0 (intnet),
3327 * INTNETTRUNKDIR_HOST or INTNETTRUNKDIR_WIRE).
3328 * @param pIfSender The sender interface, NULL if trunk. Used to
3329 * prevent sending an echo to the sender.
3330 * @param pSG Pointer to the gather list.
3331 * @param pEthHdr Pointer to the ethernet header.
3332 * @param pDstTab The destination output table.
3333 */
3334static INTNETSWDECISION intnetR0NetworkSharedMacFixAndSwitchBroadcast(PINTNETNETWORK pNetwork,
3335 uint32_t fSrc, PINTNETIF pIfSender,
3336 PINTNETSG pSG, PRTNETETHERHDR pEthHdr,
3337 PINTNETDSTTAB pDstTab)
3338{
3339 /*
3340 * Before doing any work here, we need to figure out if we can handle it
3341 * in the current context. The restrictions are solely on the trunk.
3342 *
3343 * Note! Since at least one interface is busy, there won't be any changes
3344 * to the parameters here (unless the trunk changes its capability
3345 * report, which it shouldn't).
3346 */
3347 if (!intnetR0NetworkIsContextOkForBroadcast(pNetwork, fSrc))
3348 return INTNETSWDECISION_BAD_CONTEXT;
3349
3350 /*
3351 * Check for ICMPv6 Neighbor Advertisements coming from the trunk.
3352 * If we see an advertisement for an IP in our cache, we can safely remove
3353 * it as the IP has probably moved.
3354 */
3355 if ( (fSrc & INTNETTRUNKDIR_WIRE)
3356 && RT_BE2H_U16(pEthHdr->EtherType) == RTNET_ETHERTYPE_IPV6
3357 && pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID)
3358 intnetR0NetworkSnoopNAFromWire(pNetwork, pSG, pEthHdr);
3359
3360
3361 /*
3362 * Check for ARP packets from the wire since we'll have to make
3363 * modification to them if we're sharing the MAC address with the host.
3364 */
3365 if ( (fSrc & INTNETTRUNKDIR_WIRE)
3366 && RT_BE2H_U16(pEthHdr->EtherType) == RTNET_ETHERTYPE_ARP
3367 && pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID)
3368 intnetR0NetworkEditArpFromWire(pNetwork, pSG, pEthHdr);
3369
3370 /*
3371 * Check for DHCP packets from the internal net since we'll have to set
3372 * broadcast flag in DHCP requests if we're sharing the MAC address with
3373 * the host. GSO is not applicable to DHCP traffic.
3374 */
3375 if ( !fSrc
3376 && RT_BE2H_U16(pEthHdr->EtherType) == RTNET_ETHERTYPE_IPV4
3377 && pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID)
3378 intnetR0NetworkEditDhcpFromIntNet(pNetwork, pSG, pEthHdr);
3379
3380 /*
3381 * Snoop address info from packet originating from the trunk connection.
3382 */
3383 if (fSrc)
3384 {
3385#ifdef INTNET_WITH_DHCP_SNOOPING
3386 uint16_t EtherType = RT_BE2H_U16(pEthHdr->EtherType);
3387 if ( ( EtherType == RTNET_ETHERTYPE_IPV4 /* for DHCP */
3388 && pSG->cbTotal >= sizeof(RTNETETHERHDR) + RTNETIPV4_MIN_LEN + RTNETUDP_MIN_LEN + RTNETBOOTP_DHCP_MIN_LEN
3389 && pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID )
3390 || (pSG->fFlags & INTNETSG_FLAGS_ARP_IPV4) )
3391 intnetR0TrunkIfSnoopAddr(pNetwork, pSG, EtherType);
3392#else
3393 if (pSG->fFlags & INTNETSG_FLAGS_ARP_IPV4)
3394 intnetR0TrunkIfSnoopArp(pNetwork, pSG);
3395#endif
3396 }
3397
3398 /*
3399 * Create the broadcast destination table.
3400 */
3401 return intnetR0NetworkSwitchBroadcast(pNetwork, fSrc, pIfSender, pDstTab);
3402}
3403
3404
3405/**
3406 * Check context, snoop and switch a unicast frame using the network layer
3407 * address of the link layer one (when sharing MAC address on the wire).
3408 *
3409 * This function is only used for frames coming from the wire (trunk).
3410 *
3411 * @returns true if it's addressed to someone on the network, otherwise false.
3412 * @param pNetwork The network the frame is being sent to.
3413 * @param pSG Pointer to the gather list.
3414 * @param pEthHdr Pointer to the ethernet header.
3415 * @param pDstTab The destination output table.
3416 */
3417static INTNETSWDECISION intnetR0NetworkSharedMacFixAndSwitchUnicast(PINTNETNETWORK pNetwork, PINTNETSG pSG,
3418 PRTNETETHERHDR pEthHdr, PINTNETDSTTAB pDstTab)
3419{
3420 /*
3421 * Extract the network address from the packet.
3422 */
3423 RTNETADDRU Addr;
3424 INTNETADDRTYPE enmAddrType;
3425 uint8_t cbAddr;
3426 switch (RT_BE2H_U16(pEthHdr->EtherType))
3427 {
3428 case RTNET_ETHERTYPE_IPV4:
3429 if (RT_UNLIKELY(!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR) + RT_OFFSETOF(RTNETIPV4, ip_dst), sizeof(Addr.IPv4), &Addr)))
3430 {
3431 Log(("intnetshareduni: failed to read ip_dst! cbTotal=%#x\n", pSG->cbTotal));
3432 return intnetR0NetworkSwitchTrunk(pNetwork, INTNETTRUNKDIR_WIRE, pDstTab);
3433 }
3434 enmAddrType = kIntNetAddrType_IPv4;
3435 cbAddr = sizeof(Addr.IPv4);
3436 Log6(("intnetshareduni: IPv4 %d.%d.%d.%d\n", Addr.au8[0], Addr.au8[1], Addr.au8[2], Addr.au8[3]));
3437 break;
3438
3439 case RTNET_ETHERTYPE_IPV6:
3440 if (RT_UNLIKELY(!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR) + RT_OFFSETOF(RTNETIPV6, ip6_dst), sizeof(Addr.IPv6), &Addr)))
3441 {
3442 Log(("intnetshareduni: failed to read ip6_dst! cbTotal=%#x\n", pSG->cbTotal));
3443 return intnetR0NetworkSwitchTrunk(pNetwork, INTNETTRUNKDIR_WIRE, pDstTab);
3444 }
3445 enmAddrType = kIntNetAddrType_IPv6;
3446 cbAddr = sizeof(Addr.IPv6);
3447 break;
3448#if 0 /** @todo IntNet: implement IPX for wireless MAC sharing? */
3449 case RTNET_ETHERTYPE_IPX_1:
3450 case RTNET_ETHERTYPE_IPX_2:
3451 case RTNET_ETHERTYPE_IPX_3:
3452 if (RT_UNLIKELY(!intnetR0SgReadPart(pSG, sizeof(RTNETETHERHDR) + RT_OFFSETOF(RTNETIPX, ipx_dstnet), sizeof(Addr.IPX), &Addr)))
3453 {
3454 Log(("intnetshareduni: failed to read ipx_dstnet! cbTotal=%#x\n", pSG->cbTotal));
3455 return intnetR0NetworkSwitchTrunk(pNetwork, INTNETTRUNKDIR_WIRE, pDstTab);
3456 }
3457 enmAddrType = kIntNetAddrType_IPX;
3458 cbAddr = sizeof(Addr.IPX);
3459 break;
3460#endif
3461
3462 /*
3463 * Treat ARP as broadcast (it shouldn't end up here normally,
3464 * so it goes last in the switch).
3465 */
3466 case RTNET_ETHERTYPE_ARP:
3467 Log6(("intnetshareduni: ARP\n"));
3468 /** @todo revisit this broadcasting of unicast ARP frames! */
3469 return intnetR0NetworkSharedMacFixAndSwitchBroadcast(pNetwork, INTNETTRUNKDIR_WIRE, NULL, pSG, pEthHdr, pDstTab);
3470
3471 /*
3472 * Unknown packets are sent to the trunk and any promiscuous interfaces.
3473 */
3474 default:
3475 {
3476 Log6(("intnetshareduni: unknown ethertype=%#x\n", RT_BE2H_U16(pEthHdr->EtherType)));
3477 return intnetR0NetworkSwitchTrunkAndPromisc(pNetwork, INTNETTRUNKDIR_WIRE, pDstTab);
3478 }
3479 }
3480
3481 /*
3482 * Do level-3 switching.
3483 */
3484 INTNETSWDECISION enmSwDecision = intnetR0NetworkSwitchLevel3(pNetwork, &pEthHdr->DstMac,
3485 enmAddrType, &Addr, cbAddr,
3486 INTNETTRUNKDIR_WIRE, pDstTab);
3487
3488#ifdef INTNET_WITH_DHCP_SNOOPING
3489 /*
3490 * Perform DHCP snooping. GSO is not applicable to DHCP traffic
3491 */
3492 if ( enmAddrType == kIntNetAddrType_IPv4
3493 && pSG->cbTotal >= sizeof(RTNETETHERHDR) + RTNETIPV4_MIN_LEN + RTNETUDP_MIN_LEN + RTNETBOOTP_DHCP_MIN_LEN
3494 && pSG->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID)
3495 intnetR0TrunkIfSnoopAddr(pNetwork, pSG, RT_BE2H_U16(pEthHdr->EtherType));
3496#endif /* INTNET_WITH_DHCP_SNOOPING */
3497
3498 return enmSwDecision;
3499}
3500
3501
3502/**
3503 * Release all the interfaces in the destination table when we realize that
3504 * we're in a context where we cannot get the job done.
3505 *
3506 * @param pNetwork The network.
3507 * @param pDstTab The destination table.
3508 */
3509static void intnetR0NetworkReleaseDstTab(PINTNETNETWORK pNetwork, PINTNETDSTTAB pDstTab)
3510{
3511 /* The trunk interface. */
3512 if (pDstTab->fTrunkDst)
3513 {
3514 PINTNETTRUNKIF pTrunk = pDstTab->pTrunk;
3515 intnetR0BusyDec(pNetwork, &pTrunk->cBusy);
3516 pDstTab->pTrunk = NULL;
3517 pDstTab->fTrunkDst = 0;
3518 }
3519
3520 /* Regular interfaces. */
3521 uint32_t iIf = pDstTab->cIfs;
3522 while (iIf-- > 0)
3523 {
3524 PINTNETIF pIf = pDstTab->aIfs[iIf].pIf;
3525 intnetR0BusyDecIf(pIf);
3526 pDstTab->aIfs[iIf].pIf = NULL;
3527 }
3528 pDstTab->cIfs = 0;
3529}
3530
3531
3532/**
3533 * Deliver the frame to the interfaces specified in the destination table.
3534 *
3535 * @param pNetwork The network.
3536 * @param pDstTab The destination table.
3537 * @param pSG The frame to send.
3538 * @param pIfSender The sender interface. NULL if it originated via
3539 * the trunk.
3540 */
3541static void intnetR0NetworkDeliver(PINTNETNETWORK pNetwork, PINTNETDSTTAB pDstTab, PINTNETSG pSG, PINTNETIF pIfSender)
3542{
3543 /*
3544 * Do the interfaces first before sending it to the wire and risk having to
3545 * modify it.
3546 */
3547 uint32_t iIf = pDstTab->cIfs;
3548 while (iIf-- > 0)
3549 {
3550 PINTNETIF pIf = pDstTab->aIfs[iIf].pIf;
3551 intnetR0IfSend(pIf, pIfSender, pSG,
3552 pDstTab->aIfs[iIf].fReplaceDstMac ? &pIf->MacAddr: NULL);
3553 intnetR0BusyDecIf(pIf);
3554 pDstTab->aIfs[iIf].pIf = NULL;
3555 }
3556 pDstTab->cIfs = 0;
3557
3558 /*
3559 * Send to the trunk.
3560 *
3561 * Note! The switching functions will include the trunk even when the frame
3562 * source is the trunk. This is because we need it to figure out
3563 * whether the other half of the trunk should see the frame or not
3564 * and let the caller know.
3565 *
3566 * So, we'll ignore trunk sends here if the frame origin is
3567 * INTNETTRUNKSWPORT::pfnRecv.
3568 */
3569 if (pDstTab->fTrunkDst)
3570 {
3571 PINTNETTRUNKIF pTrunk = pDstTab->pTrunk;
3572 if (pIfSender)
3573 intnetR0TrunkIfSend(pTrunk, pNetwork, pIfSender, pDstTab->fTrunkDst, pSG);
3574 intnetR0BusyDec(pNetwork, &pTrunk->cBusy);
3575 pDstTab->pTrunk = NULL;
3576 pDstTab->fTrunkDst = 0;
3577 }
3578}
3579
3580
3581/**
3582 * Sends a frame.
3583 *
3584 * This function will distribute the frame to the interfaces it is addressed to.
3585 * It will also update the MAC address of the sender.
3586 *
3587 * The caller must own the network mutex.
3588 *
3589 * @returns The switching decision.
3590 * @param pNetwork The network the frame is being sent to.
3591 * @param pIfSender The interface sending the frame. This is NULL if it's the trunk.
3592 * @param fSrc The source flags. This 0 if it's not from the trunk.
3593 * @param pSG Pointer to the gather list.
3594 * @param pDstTab The destination table to use.
3595 */
3596static INTNETSWDECISION intnetR0NetworkSend(PINTNETNETWORK pNetwork, PINTNETIF pIfSender, uint32_t fSrc,
3597 PINTNETSG pSG, PINTNETDSTTAB pDstTab)
3598{
3599 /*
3600 * Assert reality.
3601 */
3602 AssertPtr(pNetwork);
3603 AssertPtrNull(pIfSender);
3604 Assert(pIfSender ? fSrc == 0 : fSrc != 0);
3605 Assert(!pIfSender || pNetwork == pIfSender->pNetwork);
3606 AssertPtr(pSG);
3607 Assert(pSG->cSegsUsed >= 1);
3608 Assert(pSG->cSegsUsed <= pSG->cSegsAlloc);
3609 if (pSG->cbTotal < sizeof(RTNETETHERHDR))
3610 return INTNETSWDECISION_INVALID;
3611
3612 /*
3613 * Get the ethernet header (might theoretically involve multiple segments).
3614 */
3615 RTNETETHERHDR EthHdr;
3616 if (pSG->aSegs[0].cb >= sizeof(EthHdr))
3617 EthHdr = *(PCRTNETETHERHDR)pSG->aSegs[0].pv;
3618 else if (!intnetR0SgReadPart(pSG, 0, sizeof(EthHdr), &EthHdr))
3619 return INTNETSWDECISION_INVALID;
3620 if ( (EthHdr.DstMac.au8[0] == 0x08 && EthHdr.DstMac.au8[1] == 0x00 && EthHdr.DstMac.au8[2] == 0x27)
3621 || (EthHdr.SrcMac.au8[0] == 0x08 && EthHdr.SrcMac.au8[1] == 0x00 && EthHdr.SrcMac.au8[2] == 0x27)
3622 || (EthHdr.DstMac.au8[0] == 0x00 && EthHdr.DstMac.au8[1] == 0x16 && EthHdr.DstMac.au8[2] == 0xcb)
3623 || (EthHdr.SrcMac.au8[0] == 0x00 && EthHdr.SrcMac.au8[1] == 0x16 && EthHdr.SrcMac.au8[2] == 0xcb)
3624 || EthHdr.DstMac.au8[0] == 0xff
3625 || EthHdr.SrcMac.au8[0] == 0xff)
3626 Log2(("D=%.6Rhxs S=%.6Rhxs T=%04x f=%x z=%x\n",
3627 &EthHdr.DstMac, &EthHdr.SrcMac, RT_BE2H_U16(EthHdr.EtherType), fSrc, pSG->cbTotal));
3628
3629 /*
3630 * Learn the MAC address of the sender. No re-learning as the interface
3631 * user will normally tell us the right MAC address.
3632 *
3633 * Note! We don't notify the trunk about these mainly because of the
3634 * problematic contexts we might be called in.
3635 */
3636 if (RT_UNLIKELY( pIfSender
3637 && !pIfSender->fMacSet
3638 && memcmp(&EthHdr.SrcMac, &pIfSender->MacAddr, sizeof(pIfSender->MacAddr))
3639 && !intnetR0IsMacAddrMulticast(&EthHdr.SrcMac)
3640 ))
3641 {
3642 Log2(("IF MAC: %.6Rhxs -> %.6Rhxs\n", &pIfSender->MacAddr, &EthHdr.SrcMac));
3643 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
3644
3645 PINTNETMACTABENTRY pIfEntry = intnetR0NetworkFindMacAddrEntry(pNetwork, pIfSender);
3646 if (pIfEntry)
3647 pIfEntry->MacAddr = EthHdr.SrcMac;
3648 pIfSender->MacAddr = EthHdr.SrcMac;
3649
3650 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
3651 }
3652
3653 /*
3654 * Deal with MAC address sharing as that may required editing of the
3655 * packets before we dispatch them anywhere.
3656 */
3657 INTNETSWDECISION enmSwDecision;
3658 if (pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
3659 {
3660 if (intnetR0IsMacAddrMulticast(&EthHdr.DstMac))
3661 enmSwDecision = intnetR0NetworkSharedMacFixAndSwitchBroadcast(pNetwork, fSrc, pIfSender, pSG, &EthHdr, pDstTab);
3662 else if (fSrc & INTNETTRUNKDIR_WIRE)
3663 {
3664 if (intnetR0NetworkDetectAndFixNdBroadcast(pNetwork, pSG, &EthHdr))
3665 enmSwDecision = intnetR0NetworkSharedMacFixAndSwitchBroadcast(pNetwork, fSrc, pIfSender, pSG, &EthHdr, pDstTab);
3666 else
3667 enmSwDecision = intnetR0NetworkSharedMacFixAndSwitchUnicast(pNetwork, pSG, &EthHdr, pDstTab);
3668 }
3669 else
3670 enmSwDecision = intnetR0NetworkSwitchUnicast(pNetwork, fSrc, pIfSender, &EthHdr.DstMac, pDstTab);
3671 }
3672 else if (intnetR0IsMacAddrMulticast(&EthHdr.DstMac))
3673 enmSwDecision = intnetR0NetworkSwitchBroadcast(pNetwork, fSrc, pIfSender, pDstTab);
3674 else
3675 enmSwDecision = intnetR0NetworkSwitchUnicast(pNetwork, fSrc, pIfSender, &EthHdr.DstMac, pDstTab);
3676
3677 /*
3678 * Deliver to the destinations if we can.
3679 */
3680 if (enmSwDecision != INTNETSWDECISION_BAD_CONTEXT)
3681 {
3682 if (intnetR0NetworkIsContextOk(pNetwork, pIfSender, pDstTab))
3683 intnetR0NetworkDeliver(pNetwork, pDstTab, pSG, pIfSender);
3684 else
3685 {
3686 intnetR0NetworkReleaseDstTab(pNetwork, pDstTab);
3687 enmSwDecision = INTNETSWDECISION_BAD_CONTEXT;
3688 }
3689 }
3690
3691 return enmSwDecision;
3692}
3693
3694
3695/**
3696 * Sends one or more frames.
3697 *
3698 * The function will first the frame which is passed as the optional arguments
3699 * pvFrame and cbFrame. These are optional since it also possible to chain
3700 * together one or more frames in the send buffer which the function will
3701 * process after considering it's arguments.
3702 *
3703 * The caller is responsible for making sure that there are no concurrent calls
3704 * to this method (with the same handle).
3705 *
3706 * @returns VBox status code.
3707 * @param hIf The interface handle.
3708 * @param pSession The caller's session.
3709 */
3710INTNETR0DECL(int) IntNetR0IfSend(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession)
3711{
3712 Log5(("IntNetR0IfSend: hIf=%RX32\n", hIf));
3713
3714 /*
3715 * Validate input and translate the handle.
3716 */
3717 PINTNET pIntNet = g_pIntNet;
3718 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
3719 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
3720
3721 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
3722 if (!pIf)
3723 return VERR_INVALID_HANDLE;
3724 STAM_REL_PROFILE_START(&pIf->pIntBuf->StatSend1, a);
3725
3726 /*
3727 * Make sure we've got a network.
3728 */
3729 int rc = VINF_SUCCESS;
3730 intnetR0BusyIncIf(pIf);
3731 PINTNETNETWORK pNetwork = pIf->pNetwork;
3732 if (RT_LIKELY(pNetwork))
3733 {
3734 /*
3735 * Grab the destination table.
3736 */
3737 PINTNETDSTTAB pDstTab = ASMAtomicXchgPtrT(&pIf->pDstTab, NULL, PINTNETDSTTAB);
3738 if (RT_LIKELY(pDstTab))
3739 {
3740 /*
3741 * Process the send buffer.
3742 */
3743 INTNETSWDECISION enmSwDecision = INTNETSWDECISION_BROADCAST;
3744 INTNETSG Sg; /** @todo this will have to be changed if we're going to use async sending
3745 * with buffer sharing for some OS or service. Darwin copies everything so
3746 * I won't bother allocating and managing SGs right now. Sorry. */
3747 PINTNETHDR pHdr;
3748 while ((pHdr = IntNetRingGetNextFrameToRead(&pIf->pIntBuf->Send)) != NULL)
3749 {
3750 uint8_t const u8Type = pHdr->u8Type;
3751 if (u8Type == INTNETHDR_TYPE_FRAME)
3752 {
3753 /* Send regular frame. */
3754 void *pvCurFrame = IntNetHdrGetFramePtr(pHdr, pIf->pIntBuf);
3755 IntNetSgInitTemp(&Sg, pvCurFrame, pHdr->cbFrame);
3756 if (pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
3757 intnetR0IfSnoopAddr(pIf, (uint8_t *)pvCurFrame, pHdr->cbFrame, false /*fGso*/, (uint16_t *)&Sg.fFlags);
3758 enmSwDecision = intnetR0NetworkSend(pNetwork, pIf, 0 /*fSrc*/, &Sg, pDstTab);
3759 }
3760 else if (u8Type == INTNETHDR_TYPE_GSO)
3761 {
3762 /* Send GSO frame if sane. */
3763 PPDMNETWORKGSO pGso = IntNetHdrGetGsoContext(pHdr, pIf->pIntBuf);
3764 uint32_t cbFrame = pHdr->cbFrame - sizeof(*pGso);
3765 if (RT_LIKELY(PDMNetGsoIsValid(pGso, pHdr->cbFrame, cbFrame)))
3766 {
3767 void *pvCurFrame = pGso + 1;
3768 IntNetSgInitTempGso(&Sg, pvCurFrame, cbFrame, pGso);
3769 if (pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
3770 intnetR0IfSnoopAddr(pIf, (uint8_t *)pvCurFrame, cbFrame, true /*fGso*/, (uint16_t *)&Sg.fFlags);
3771 enmSwDecision = intnetR0NetworkSend(pNetwork, pIf, 0 /*fSrc*/, &Sg, pDstTab);
3772 }
3773 else
3774 {
3775 STAM_REL_COUNTER_INC(&pIf->pIntBuf->cStatBadFrames); /* ignore */
3776 enmSwDecision = INTNETSWDECISION_DROP;
3777 }
3778 }
3779 /* Unless it's a padding frame, we're getting babble from the producer. */
3780 else
3781 {
3782 if (u8Type != INTNETHDR_TYPE_PADDING)
3783 STAM_REL_COUNTER_INC(&pIf->pIntBuf->cStatBadFrames); /* ignore */
3784 enmSwDecision = INTNETSWDECISION_DROP;
3785 }
3786 if (enmSwDecision == INTNETSWDECISION_BAD_CONTEXT)
3787 {
3788 rc = VERR_TRY_AGAIN;
3789 break;
3790 }
3791
3792 /* Skip to the next frame. */
3793 IntNetRingSkipFrame(&pIf->pIntBuf->Send);
3794 }
3795
3796 /*
3797 * Put back the destination table.
3798 */
3799 Assert(!pIf->pDstTab);
3800 ASMAtomicWritePtr(&pIf->pDstTab, pDstTab);
3801 }
3802 else
3803 rc = VERR_INTERNAL_ERROR_4;
3804 }
3805 else
3806 rc = VERR_INTERNAL_ERROR_3;
3807
3808 /*
3809 * Release the interface.
3810 */
3811 intnetR0BusyDecIf(pIf);
3812 STAM_REL_PROFILE_STOP(&pIf->pIntBuf->StatSend1, a);
3813 intnetR0IfRelease(pIf, pSession);
3814 return rc;
3815}
3816
3817
3818/**
3819 * VMMR0 request wrapper for IntNetR0IfSend.
3820 *
3821 * @returns see IntNetR0IfSend.
3822 * @param pSession The caller's session.
3823 * @param pReq The request packet.
3824 */
3825INTNETR0DECL(int) IntNetR0IfSendReq(PSUPDRVSESSION pSession, PINTNETIFSENDREQ pReq)
3826{
3827 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
3828 return VERR_INVALID_PARAMETER;
3829 return IntNetR0IfSend(pReq->hIf, pSession);
3830}
3831
3832
3833/**
3834 * Maps the default buffer into ring 3.
3835 *
3836 * @returns VBox status code.
3837 * @param hIf The interface handle.
3838 * @param pSession The caller's session.
3839 * @param ppRing3Buf Where to store the address of the ring-3 mapping
3840 * (optional).
3841 * @param ppRing0Buf Where to store the address of the ring-0 mapping
3842 * (optional).
3843 */
3844INTNETR0DECL(int) IntNetR0IfGetBufferPtrs(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession,
3845 R3PTRTYPE(PINTNETBUF) *ppRing3Buf, R0PTRTYPE(PINTNETBUF) *ppRing0Buf)
3846{
3847 LogFlow(("IntNetR0IfGetBufferPtrs: hIf=%RX32 ppRing3Buf=%p ppRing0Buf=%p\n", hIf, ppRing3Buf, ppRing0Buf));
3848
3849 /*
3850 * Validate input.
3851 */
3852 PINTNET pIntNet = g_pIntNet;
3853 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
3854 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
3855
3856 AssertPtrNullReturn(ppRing3Buf, VERR_INVALID_PARAMETER);
3857 AssertPtrNullReturn(ppRing0Buf, VERR_INVALID_PARAMETER);
3858 if (ppRing3Buf)
3859 *ppRing3Buf = 0;
3860 if (ppRing0Buf)
3861 *ppRing0Buf = 0;
3862
3863 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
3864 if (!pIf)
3865 return VERR_INVALID_HANDLE;
3866
3867 /*
3868 * ASSUMES that only the process that created an interface can use it.
3869 * ASSUMES that we created the ring-3 mapping when selecting or
3870 * allocating the buffer.
3871 */
3872 int rc = RTSemMutexRequest(pIntNet->hMtxCreateOpenDestroy, RT_INDEFINITE_WAIT);
3873 if (RT_SUCCESS(rc))
3874 {
3875 if (ppRing3Buf)
3876 *ppRing3Buf = pIf->pIntBufR3;
3877 if (ppRing0Buf)
3878 *ppRing0Buf = (R0PTRTYPE(PINTNETBUF))pIf->pIntBuf; /* tstIntNetR0 mess */
3879
3880 rc = RTSemMutexRelease(pIntNet->hMtxCreateOpenDestroy);
3881 }
3882
3883 intnetR0IfRelease(pIf, pSession);
3884 LogFlow(("IntNetR0IfGetBufferPtrs: returns %Rrc *ppRing3Buf=%p *ppRing0Buf=%p\n",
3885 rc, ppRing3Buf ? *ppRing3Buf : NIL_RTR3PTR, ppRing0Buf ? *ppRing0Buf : NIL_RTR0PTR));
3886 return rc;
3887}
3888
3889
3890/**
3891 * VMMR0 request wrapper for IntNetR0IfGetBufferPtrs.
3892 *
3893 * @returns see IntNetR0IfGetRing3Buffer.
3894 * @param pSession The caller's session.
3895 * @param pReq The request packet.
3896 */
3897INTNETR0DECL(int) IntNetR0IfGetBufferPtrsReq(PSUPDRVSESSION pSession, PINTNETIFGETBUFFERPTRSREQ pReq)
3898{
3899 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
3900 return VERR_INVALID_PARAMETER;
3901 return IntNetR0IfGetBufferPtrs(pReq->hIf, pSession, &pReq->pRing3Buf, &pReq->pRing0Buf);
3902}
3903
3904
3905#if 0
3906/**
3907 * Gets the physical addresses of the default interface buffer.
3908 *
3909 * @returns VBox status code.
3910 * @param hIF The interface handle.
3911 * @param paPages Where to store the addresses. (The reserved fields will be set to zero.)
3912 * @param cPages
3913 */
3914INTNETR0DECL(int) IntNetR0IfGetPhysBuffer(INTNETIFHANDLE hIf, PSUPPAGE paPages, unsigned cPages)
3915{
3916 /*
3917 * Validate input.
3918 */
3919 PINTNET pIntNet = g_pIntNet;
3920 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
3921 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
3922
3923 AssertPtrReturn(paPages, VERR_INVALID_PARAMETER);
3924 AssertPtrReturn((uint8_t *)&paPages[cPages] - 1, VERR_INVALID_PARAMETER);
3925 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
3926 if (!pIf)
3927 return VERR_INVALID_HANDLE;
3928
3929 /*
3930 * Grab the lock and get the data.
3931 * ASSUMES that the handle isn't closed while we're here.
3932 */
3933 int rc = RTSemFastMutexRequest(pIf->pNetwork->FastMutex);
3934 if (RT_SUCCESS(rc))
3935 {
3936 /** @todo make a SUPR0 api for obtaining the array. SUPR0/IPRT is keeping track of everything, there
3937 * is no need for any extra bookkeeping here.. */
3938
3939 rc = RTSemFastMutexRelease(pIf->pNetwork->FastMutex);
3940 }
3941 intnetR0IfRelease(pIf, pSession);
3942 return VERR_NOT_IMPLEMENTED;
3943}
3944#endif
3945
3946
3947/**
3948 * Sets the promiscuous mode property of an interface.
3949 *
3950 * @returns VBox status code.
3951 * @param hIf The interface handle.
3952 * @param pSession The caller's session.
3953 * @param fPromiscuous Set if the interface should be in promiscuous mode, clear if not.
3954 */
3955INTNETR0DECL(int) IntNetR0IfSetPromiscuousMode(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession, bool fPromiscuous)
3956{
3957 LogFlow(("IntNetR0IfSetPromiscuousMode: hIf=%RX32 fPromiscuous=%d\n", hIf, fPromiscuous));
3958
3959 /*
3960 * Validate & translate input.
3961 */
3962 PINTNET pIntNet = g_pIntNet;
3963 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
3964 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
3965
3966 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
3967 if (!pIf)
3968 {
3969 Log(("IntNetR0IfSetPromiscuousMode: returns VERR_INVALID_HANDLE\n"));
3970 return VERR_INVALID_HANDLE;
3971 }
3972
3973 /*
3974 * Get the network, take the address spinlock, and make the change.
3975 * Paranoia^2: Mark ourselves busy to prevent anything from being destroyed.
3976 */
3977 int rc = VINF_SUCCESS;
3978 intnetR0BusyIncIf(pIf);
3979 PINTNETNETWORK pNetwork = pIf->pNetwork;
3980 if (pNetwork)
3981 {
3982 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
3983
3984 if (pIf->fPromiscuousReal != fPromiscuous)
3985 {
3986 const bool fPromiscuousEff = fPromiscuous
3987 && (pIf->fOpenFlags & INTNET_OPEN_FLAGS_IF_PROMISC_ALLOW)
3988 && (pNetwork->fFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_CLIENTS);
3989 Log(("IntNetR0IfSetPromiscuousMode: hIf=%RX32: Changed from %d -> %d (%d)\n",
3990 hIf, !fPromiscuous, !!fPromiscuous, fPromiscuousEff));
3991
3992 pIf->fPromiscuousReal = fPromiscuous;
3993
3994 PINTNETMACTABENTRY pEntry = intnetR0NetworkFindMacAddrEntry(pNetwork, pIf); Assert(pEntry);
3995 if (RT_LIKELY(pEntry))
3996 {
3997 if (pEntry->fPromiscuousEff)
3998 {
3999 pNetwork->MacTab.cPromiscuousEntries--;
4000 if (!pEntry->fPromiscuousSeeTrunk)
4001 pNetwork->MacTab.cPromiscuousNoTrunkEntries--;
4002 Assert(pNetwork->MacTab.cPromiscuousEntries < pNetwork->MacTab.cEntries);
4003 Assert(pNetwork->MacTab.cPromiscuousNoTrunkEntries < pNetwork->MacTab.cEntries);
4004 }
4005
4006 pEntry->fPromiscuousEff = fPromiscuousEff;
4007 pEntry->fPromiscuousSeeTrunk = fPromiscuousEff
4008 && (pIf->fOpenFlags & INTNET_OPEN_FLAGS_IF_PROMISC_SEE_TRUNK);
4009
4010 if (pEntry->fPromiscuousEff)
4011 {
4012 pNetwork->MacTab.cPromiscuousEntries++;
4013 if (!pEntry->fPromiscuousSeeTrunk)
4014 pNetwork->MacTab.cPromiscuousNoTrunkEntries++;
4015 }
4016 Assert(pNetwork->MacTab.cPromiscuousEntries <= pNetwork->MacTab.cEntries);
4017 Assert(pNetwork->MacTab.cPromiscuousNoTrunkEntries <= pNetwork->MacTab.cEntries);
4018 }
4019 }
4020
4021 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4022 }
4023 else
4024 rc = VERR_WRONG_ORDER;
4025
4026 intnetR0BusyDecIf(pIf);
4027 intnetR0IfRelease(pIf, pSession);
4028 return rc;
4029}
4030
4031
4032/**
4033 * VMMR0 request wrapper for IntNetR0IfSetPromiscuousMode.
4034 *
4035 * @returns see IntNetR0IfSetPromiscuousMode.
4036 * @param pSession The caller's session.
4037 * @param pReq The request packet.
4038 */
4039INTNETR0DECL(int) IntNetR0IfSetPromiscuousModeReq(PSUPDRVSESSION pSession, PINTNETIFSETPROMISCUOUSMODEREQ pReq)
4040{
4041 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
4042 return VERR_INVALID_PARAMETER;
4043 return IntNetR0IfSetPromiscuousMode(pReq->hIf, pSession, pReq->fPromiscuous);
4044}
4045
4046
4047/**
4048 * Sets the MAC address of an interface.
4049 *
4050 * @returns VBox status code.
4051 * @param hIf The interface handle.
4052 * @param pSession The caller's session.
4053 * @param pMAC The new MAC address.
4054 */
4055INTNETR0DECL(int) IntNetR0IfSetMacAddress(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession, PCRTMAC pMac)
4056{
4057 LogFlow(("IntNetR0IfSetMacAddress: hIf=%RX32 pMac=%p:{%.6Rhxs}\n", hIf, pMac, pMac));
4058
4059 /*
4060 * Validate & translate input.
4061 */
4062 PINTNET pIntNet = g_pIntNet;
4063 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
4064 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
4065
4066 AssertPtrReturn(pMac, VERR_INVALID_PARAMETER);
4067 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
4068 if (!pIf)
4069 {
4070 Log(("IntNetR0IfSetMacAddress: returns VERR_INVALID_HANDLE\n"));
4071 return VERR_INVALID_HANDLE;
4072 }
4073
4074 /*
4075 * Get the network, take the address spinlock, and make the change.
4076 * Paranoia^2: Mark ourselves busy to prevent anything from being destroyed.
4077 */
4078 int rc = VINF_SUCCESS;
4079 intnetR0BusyIncIf(pIf);
4080 PINTNETNETWORK pNetwork = pIf->pNetwork;
4081 if (pNetwork)
4082 {
4083 PINTNETTRUNKIF pTrunk = NULL;
4084
4085 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4086
4087 if (memcmp(&pIf->MacAddr, pMac, sizeof(pIf->MacAddr)))
4088 {
4089 Log(("IntNetR0IfSetMacAddress: hIf=%RX32: Changed from %.6Rhxs -> %.6Rhxs\n",
4090 hIf, &pIf->MacAddr, pMac));
4091
4092 /* Update the two copies. */
4093 PINTNETMACTABENTRY pEntry = intnetR0NetworkFindMacAddrEntry(pNetwork, pIf); Assert(pEntry);
4094 if (RT_LIKELY(pEntry))
4095 pEntry->MacAddr = *pMac;
4096 pIf->MacAddr = *pMac;
4097 pIf->fMacSet = true;
4098
4099 /* Grab a busy reference to the trunk so we release the lock before notifying it. */
4100 pTrunk = pNetwork->MacTab.pTrunk;
4101 if (pTrunk)
4102 intnetR0BusyIncTrunk(pTrunk);
4103 }
4104
4105 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4106
4107 if (pTrunk)
4108 {
4109 Log(("IntNetR0IfSetMacAddress: pfnNotifyMacAddress hIf=%RX32\n", hIf));
4110 PINTNETTRUNKIFPORT pIfPort = pTrunk->pIfPort;
4111 if (pIfPort)
4112 pIfPort->pfnNotifyMacAddress(pIfPort, pIf->pvIfData, pMac);
4113 intnetR0BusyDecTrunk(pTrunk);
4114 }
4115 }
4116 else
4117 rc = VERR_WRONG_ORDER;
4118
4119 intnetR0BusyDecIf(pIf);
4120 intnetR0IfRelease(pIf, pSession);
4121 return rc;
4122}
4123
4124
4125/**
4126 * VMMR0 request wrapper for IntNetR0IfSetMacAddress.
4127 *
4128 * @returns see IntNetR0IfSetMacAddress.
4129 * @param pSession The caller's session.
4130 * @param pReq The request packet.
4131 */
4132INTNETR0DECL(int) IntNetR0IfSetMacAddressReq(PSUPDRVSESSION pSession, PINTNETIFSETMACADDRESSREQ pReq)
4133{
4134 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
4135 return VERR_INVALID_PARAMETER;
4136 return IntNetR0IfSetMacAddress(pReq->hIf, pSession, &pReq->Mac);
4137}
4138
4139
4140/**
4141 * Worker for intnetR0IfSetActive and intnetR0IfDestruct.
4142 *
4143 * This function will update the active interface count on the network and
4144 * activate or deactivate the trunk connection if necessary.
4145 *
4146 * The call must own the giant lock (we cannot take it here).
4147 *
4148 * @returns VBox status code.
4149 * @param pNetwork The network.
4150 * @param fIf The interface.
4151 * @param fActive What to do.
4152 */
4153static int intnetR0NetworkSetIfActive(PINTNETNETWORK pNetwork, PINTNETIF pIf, bool fActive)
4154{
4155 /* quick sanity check */
4156 AssertPtr(pNetwork);
4157 AssertPtr(pIf);
4158
4159 /*
4160 * The address spinlock of the network protects the variables, while the
4161 * big lock protects the calling of pfnSetState. Grab both lock at once
4162 * to save us the extra hassle.
4163 */
4164 PINTNETTRUNKIF pTrunk = NULL;
4165 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4166
4167 /*
4168 * Do the update.
4169 */
4170 if (pIf->fActive != fActive)
4171 {
4172 PINTNETMACTABENTRY pEntry = intnetR0NetworkFindMacAddrEntry(pNetwork, pIf); Assert(pEntry);
4173 if (RT_LIKELY(pEntry))
4174 {
4175 pEntry->fActive = fActive;
4176 pIf->fActive = fActive;
4177
4178 if (fActive)
4179 {
4180 pNetwork->cActiveIFs++;
4181 if (pNetwork->cActiveIFs == 1)
4182 {
4183 pTrunk = pNetwork->MacTab.pTrunk;
4184 if (pTrunk)
4185 {
4186 pNetwork->MacTab.fHostActive = RT_BOOL(pNetwork->fFlags & INTNET_OPEN_FLAGS_TRUNK_HOST_ENABLED);
4187 pNetwork->MacTab.fWireActive = RT_BOOL(pNetwork->fFlags & INTNET_OPEN_FLAGS_TRUNK_WIRE_ENABLED);
4188 }
4189 }
4190 }
4191 else
4192 {
4193 pNetwork->cActiveIFs--;
4194 if (pNetwork->cActiveIFs == 0)
4195 {
4196 pTrunk = pNetwork->MacTab.pTrunk;
4197 pNetwork->MacTab.fHostActive = false;
4198 pNetwork->MacTab.fWireActive = false;
4199 }
4200 }
4201 }
4202 }
4203
4204 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4205
4206 /*
4207 * Tell the trunk if necessary.
4208 * The wait for !busy is for the Solaris streams trunk driver (mostly).
4209 */
4210 if (pTrunk && pTrunk->pIfPort)
4211 {
4212 if (!fActive)
4213 intnetR0BusyWait(pNetwork, &pTrunk->cBusy);
4214
4215 pTrunk->pIfPort->pfnSetState(pTrunk->pIfPort, fActive ? INTNETTRUNKIFSTATE_ACTIVE : INTNETTRUNKIFSTATE_INACTIVE);
4216 }
4217
4218 return VINF_SUCCESS;
4219}
4220
4221
4222/**
4223 * Sets the active property of an interface.
4224 *
4225 * @returns VBox status code.
4226 * @param hIf The interface handle.
4227 * @param pSession The caller's session.
4228 * @param fActive The new state.
4229 */
4230INTNETR0DECL(int) IntNetR0IfSetActive(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession, bool fActive)
4231{
4232 LogFlow(("IntNetR0IfSetActive: hIf=%RX32 fActive=%RTbool\n", hIf, fActive));
4233
4234 /*
4235 * Validate & translate input.
4236 */
4237 PINTNET pIntNet = g_pIntNet;
4238 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
4239 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
4240
4241 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
4242 if (!pIf)
4243 {
4244 Log(("IntNetR0IfSetActive: returns VERR_INVALID_HANDLE\n"));
4245 return VERR_INVALID_HANDLE;
4246 }
4247
4248 /*
4249 * Hand it to the network since it might involve the trunk and things are
4250 * tricky there wrt to locking order.
4251 *
4252 * 1. We take the giant lock here. This makes sure nobody is re-enabling
4253 * the network while we're pausing it and vice versa. This also enables
4254 * us to wait for the network to become idle before telling the trunk.
4255 * (Important on Solaris.)
4256 *
4257 * 2. For paranoid reasons, we grab a busy reference to the calling
4258 * interface. This is totally unnecessary but should hurt (when done
4259 * after grabbing the giant lock).
4260 */
4261 int rc = RTSemMutexRequest(pIntNet->hMtxCreateOpenDestroy, RT_INDEFINITE_WAIT);
4262 if (RT_SUCCESS(rc))
4263 {
4264 intnetR0BusyIncIf(pIf);
4265
4266 PINTNETNETWORK pNetwork = pIf->pNetwork;
4267 if (pNetwork)
4268 rc = intnetR0NetworkSetIfActive(pNetwork, pIf, fActive);
4269 else
4270 rc = VERR_WRONG_ORDER;
4271
4272 intnetR0BusyDecIf(pIf);
4273 RTSemMutexRelease(pIntNet->hMtxCreateOpenDestroy);
4274 }
4275
4276 intnetR0IfRelease(pIf, pSession);
4277 LogFlow(("IntNetR0IfSetActive: returns %Rrc\n", rc));
4278 return rc;
4279}
4280
4281
4282/**
4283 * VMMR0 request wrapper for IntNetR0IfSetActive.
4284 *
4285 * @returns see IntNetR0IfSetActive.
4286 * @param pIntNet The internal networking instance.
4287 * @param pSession The caller's session.
4288 * @param pReq The request packet.
4289 */
4290INTNETR0DECL(int) IntNetR0IfSetActiveReq(PSUPDRVSESSION pSession, PINTNETIFSETACTIVEREQ pReq)
4291{
4292 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
4293 return VERR_INVALID_PARAMETER;
4294 return IntNetR0IfSetActive(pReq->hIf, pSession, pReq->fActive);
4295}
4296
4297
4298/**
4299 * Wait for the interface to get signaled.
4300 * The interface will be signaled when is put into the receive buffer.
4301 *
4302 * @returns VBox status code.
4303 * @param hIf The interface handle.
4304 * @param pSession The caller's session.
4305 * @param cMillies Number of milliseconds to wait. RT_INDEFINITE_WAIT should be
4306 * used if indefinite wait is desired.
4307 */
4308INTNETR0DECL(int) IntNetR0IfWait(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession, uint32_t cMillies)
4309{
4310 Log4(("IntNetR0IfWait: hIf=%RX32 cMillies=%u\n", hIf, cMillies));
4311
4312 /*
4313 * Get and validate essential handles.
4314 */
4315 PINTNET pIntNet = g_pIntNet;
4316 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
4317 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
4318
4319 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
4320 if (!pIf)
4321 {
4322 Log(("IntNetR0IfWait: returns VERR_INVALID_HANDLE\n"));
4323 return VERR_INVALID_HANDLE;
4324 }
4325
4326 const INTNETIFHANDLE hIfSelf = pIf->hIf;
4327 const RTSEMEVENT hRecvEvent = pIf->hRecvEvent;
4328 const bool fDestroying = ASMAtomicReadBool(&pIf->fDestroying);
4329 if ( hIfSelf != hIf /* paranoia */
4330 || hRecvEvent == NIL_RTSEMEVENT
4331 || fDestroying
4332 )
4333 {
4334 Log(("IntNetR0IfWait: returns VERR_SEM_DESTROYED\n"));
4335 return VERR_SEM_DESTROYED;
4336 }
4337
4338 /*
4339 * It is tempting to check if there is data to be read here,
4340 * but the problem with such an approach is that it will cause
4341 * one unnecessary supervisor->user->supervisor trip. There is
4342 * already a slight risk for such, so no need to increase it.
4343 */
4344
4345 /*
4346 * Increment the number of waiters before starting the wait.
4347 * Upon wakeup we must assert reality, checking that we're not
4348 * already destroyed or in the process of being destroyed. This
4349 * code must be aligned with the waiting code in intnetR0IfDestruct.
4350 */
4351 ASMAtomicIncU32(&pIf->cSleepers);
4352 int rc = RTSemEventWaitNoResume(hRecvEvent, cMillies);
4353 if (pIf->hRecvEvent == hRecvEvent)
4354 {
4355 ASMAtomicDecU32(&pIf->cSleepers);
4356 if (!pIf->fDestroying)
4357 {
4358 if (intnetR0IfRelease(pIf, pSession))
4359 rc = VERR_SEM_DESTROYED;
4360 }
4361 else
4362 rc = VERR_SEM_DESTROYED;
4363 }
4364 else
4365 rc = VERR_SEM_DESTROYED;
4366 Log4(("IntNetR0IfWait: returns %Rrc\n", rc));
4367 return rc;
4368}
4369
4370
4371/**
4372 * VMMR0 request wrapper for IntNetR0IfWait.
4373 *
4374 * @returns see IntNetR0IfWait.
4375 * @param pSession The caller's session.
4376 * @param pReq The request packet.
4377 */
4378INTNETR0DECL(int) IntNetR0IfWaitReq(PSUPDRVSESSION pSession, PINTNETIFWAITREQ pReq)
4379{
4380 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
4381 return VERR_INVALID_PARAMETER;
4382 return IntNetR0IfWait(pReq->hIf, pSession, pReq->cMillies);
4383}
4384
4385
4386/**
4387 * Wake up any threads waiting on the interface.
4388 *
4389 * @returns VBox status code.
4390 * @param hIf The interface handle.
4391 * @param pSession The caller's session.
4392 * @param fNoMoreWaits When set, no more waits are permitted.
4393 */
4394INTNETR0DECL(int) IntNetR0IfAbortWait(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession, bool fNoMoreWaits)
4395{
4396 Log4(("IntNetR0IfAbortWait: hIf=%RX32 fNoMoreWaits=%RTbool\n", hIf, fNoMoreWaits));
4397
4398 /*
4399 * Get and validate essential handles.
4400 */
4401 PINTNET pIntNet = g_pIntNet;
4402 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
4403 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
4404
4405 PINTNETIF pIf = (PINTNETIF)RTHandleTableLookupWithCtx(pIntNet->hHtIfs, hIf, pSession);
4406 if (!pIf)
4407 {
4408 Log(("IntNetR0IfAbortWait: returns VERR_INVALID_HANDLE\n"));
4409 return VERR_INVALID_HANDLE;
4410 }
4411
4412 const INTNETIFHANDLE hIfSelf = pIf->hIf;
4413 const RTSEMEVENT hRecvEvent = pIf->hRecvEvent;
4414 const bool fDestroying = ASMAtomicReadBool(&pIf->fDestroying);
4415 if ( hIfSelf != hIf /* paranoia */
4416 || hRecvEvent == NIL_RTSEMEVENT
4417 || fDestroying
4418 )
4419 {
4420 Log(("IntNetR0IfAbortWait: returns VERR_SEM_DESTROYED\n"));
4421 return VERR_SEM_DESTROYED;
4422 }
4423
4424 /*
4425 * Set fDestroying if requested to do so and then wake up all the sleeping
4426 * threads (usually just one). We leave the semaphore in the signalled
4427 * state so the next caller will return immediately.
4428 */
4429 if (fNoMoreWaits)
4430 ASMAtomicWriteBool(&pIf->fDestroying, true);
4431
4432 uint32_t cSleepers = ASMAtomicReadU32(&pIf->cSleepers) + 1;
4433 while (cSleepers-- > 0)
4434 {
4435 int rc = RTSemEventSignal(pIf->hRecvEvent);
4436 AssertRC(rc);
4437 }
4438
4439 Log4(("IntNetR0IfWait: returns %Rrc\n", VINF_SUCCESS));
4440 return VINF_SUCCESS;
4441}
4442
4443
4444/**
4445 * VMMR0 request wrapper for IntNetR0IfAbortWait.
4446 *
4447 * @returns see IntNetR0IfWait.
4448 * @param pSession The caller's session.
4449 * @param pReq The request packet.
4450 */
4451INTNETR0DECL(int) IntNetR0IfAbortWaitReq(PSUPDRVSESSION pSession, PINTNETIFABORTWAITREQ pReq)
4452{
4453 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
4454 return VERR_INVALID_PARAMETER;
4455 return IntNetR0IfAbortWait(pReq->hIf, pSession, pReq->fNoMoreWaits);
4456}
4457
4458
4459/**
4460 * Close an interface.
4461 *
4462 * @returns VBox status code.
4463 * @param pIntNet The instance handle.
4464 * @param hIf The interface handle.
4465 * @param pSession The caller's session.
4466 */
4467INTNETR0DECL(int) IntNetR0IfClose(INTNETIFHANDLE hIf, PSUPDRVSESSION pSession)
4468{
4469 LogFlow(("IntNetR0IfClose: hIf=%RX32\n", hIf));
4470
4471 /*
4472 * Validate and free the handle.
4473 */
4474 PINTNET pIntNet = g_pIntNet;
4475 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
4476 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
4477
4478 PINTNETIF pIf = (PINTNETIF)RTHandleTableFreeWithCtx(pIntNet->hHtIfs, hIf, pSession);
4479 if (!pIf)
4480 return VERR_INVALID_HANDLE;
4481
4482 /* Mark the handle as freed so intnetR0IfDestruct won't free it again. */
4483 ASMAtomicWriteU32(&pIf->hIf, INTNET_HANDLE_INVALID);
4484
4485 /*
4486 * Signal the event semaphore to wake up any threads in IntNetR0IfWait
4487 * and give them a moment to get out and release the interface.
4488 */
4489 uint32_t i = pIf->cSleepers;
4490 while (i-- > 0)
4491 {
4492 RTSemEventSignal(pIf->hRecvEvent);
4493 RTThreadYield();
4494 }
4495 RTSemEventSignal(pIf->hRecvEvent);
4496
4497 /*
4498 * Release the references to the interface object (handle + free lookup).
4499 */
4500 void *pvObj = pIf->pvObj;
4501 intnetR0IfRelease(pIf, pSession); /* (RTHandleTableFreeWithCtx) */
4502
4503 int rc = SUPR0ObjRelease(pvObj, pSession);
4504 LogFlow(("IntNetR0IfClose: returns %Rrc\n", rc));
4505 return rc;
4506}
4507
4508
4509/**
4510 * VMMR0 request wrapper for IntNetR0IfCloseReq.
4511 *
4512 * @returns see IntNetR0IfClose.
4513 * @param pSession The caller's session.
4514 * @param pReq The request packet.
4515 */
4516INTNETR0DECL(int) IntNetR0IfCloseReq(PSUPDRVSESSION pSession, PINTNETIFCLOSEREQ pReq)
4517{
4518 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
4519 return VERR_INVALID_PARAMETER;
4520 return IntNetR0IfClose(pReq->hIf, pSession);
4521}
4522
4523
4524/**
4525 * Interface destructor callback.
4526 * This is called for reference counted objectes when the count reaches 0.
4527 *
4528 * @param pvObj The object pointer.
4529 * @param pvUser1 Pointer to the interface.
4530 * @param pvUser2 Pointer to the INTNET instance data.
4531 */
4532static DECLCALLBACK(void) intnetR0IfDestruct(void *pvObj, void *pvUser1, void *pvUser2)
4533{
4534 PINTNETIF pIf = (PINTNETIF)pvUser1;
4535 PINTNET pIntNet = (PINTNET)pvUser2;
4536 Log(("intnetR0IfDestruct: pvObj=%p pIf=%p pIntNet=%p hIf=%RX32\n", pvObj, pIf, pIntNet, pIf->hIf));
4537
4538 /*
4539 * We grab the INTNET create/open/destroy semaphore to make sure nobody is
4540 * adding or removing interface while we're in here. For paranoid reasons
4541 * we also mark the interface as destroyed here so any waiting threads can
4542 * take evasive action (theoretical case).
4543 */
4544 RTSemMutexRequest(pIntNet->hMtxCreateOpenDestroy, RT_INDEFINITE_WAIT);
4545 ASMAtomicWriteBool(&pIf->fDestroying, true);
4546
4547 /*
4548 * Delete the interface handle so the object no longer can be used.
4549 * (Can happen if the client didn't close its session.)
4550 */
4551 INTNETIFHANDLE hIf = ASMAtomicXchgU32(&pIf->hIf, INTNET_HANDLE_INVALID);
4552 if (hIf != INTNET_HANDLE_INVALID)
4553 {
4554 void *pvObj2 = RTHandleTableFreeWithCtx(pIntNet->hHtIfs, hIf, pIf->pSession); NOREF(pvObj2);
4555 AssertMsg(pvObj2 == pIf, ("%p, %p, hIf=%RX32 pSession=%p\n", pvObj2, pIf, hIf, pIf->pSession));
4556 }
4557
4558 /*
4559 * If we've got a network deactivate and detach ourselves from it. Because
4560 * of cleanup order we might have been orphaned by the network destructor.
4561 */
4562 PINTNETNETWORK pNetwork = pIf->pNetwork;
4563 if (pNetwork)
4564 {
4565 /* set inactive. */
4566 intnetR0NetworkSetIfActive(pNetwork, pIf, false /*fActive*/);
4567
4568 /* remove ourselves from the switch table. */
4569 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4570
4571 uint32_t iIf = pNetwork->MacTab.cEntries;
4572 while (iIf-- > 0)
4573 if (pNetwork->MacTab.paEntries[iIf].pIf == pIf)
4574 {
4575 if (pNetwork->MacTab.paEntries[iIf].fPromiscuousEff)
4576 {
4577 pNetwork->MacTab.cPromiscuousEntries--;
4578 if (!pNetwork->MacTab.paEntries[iIf].fPromiscuousSeeTrunk)
4579 pNetwork->MacTab.cPromiscuousNoTrunkEntries--;
4580 }
4581 Assert(pNetwork->MacTab.cPromiscuousEntries < pNetwork->MacTab.cEntries);
4582 Assert(pNetwork->MacTab.cPromiscuousNoTrunkEntries < pNetwork->MacTab.cEntries);
4583
4584 if (iIf + 1 < pNetwork->MacTab.cEntries)
4585 memmove(&pNetwork->MacTab.paEntries[iIf],
4586 &pNetwork->MacTab.paEntries[iIf + 1],
4587 (pNetwork->MacTab.cEntries - iIf - 1) * sizeof(pNetwork->MacTab.paEntries[0]));
4588 pNetwork->MacTab.cEntries--;
4589 break;
4590 }
4591
4592 /* recalc the min flags. */
4593 if (pIf->fOpenFlags & INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES)
4594 {
4595 uint32_t fMinFlags = 0;
4596 iIf = pNetwork->MacTab.cEntries;
4597 while (iIf-- > 0)
4598 {
4599 PINTNETIF pIf2 = pNetwork->MacTab.paEntries[iIf].pIf;
4600 if ( pIf2 /* paranoia */
4601 && (pIf2->fOpenFlags & INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES))
4602 fMinFlags |= pIf2->fOpenFlags & INTNET_OPEN_FLAGS_STRICT_MASK;
4603 }
4604 pNetwork->fMinFlags = fMinFlags;
4605 }
4606
4607 PINTNETTRUNKIF pTrunk = pNetwork->MacTab.pTrunk;
4608
4609 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4610
4611 /* Notify the trunk about the interface being destroyed. */
4612 if (pTrunk && pTrunk->pIfPort)
4613 pTrunk->pIfPort->pfnDisconnectInterface(pTrunk->pIfPort, pIf->pvIfData);
4614
4615 /* Wait for the interface to quiesce while we still can. */
4616 intnetR0BusyWait(pNetwork, &pIf->cBusy);
4617
4618 /* Release our reference to the network. */
4619 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4620 pIf->pNetwork = NULL;
4621 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4622
4623 SUPR0ObjRelease(pNetwork->pvObj, pIf->pSession);
4624 }
4625
4626 RTSemMutexRelease(pIntNet->hMtxCreateOpenDestroy);
4627
4628 /*
4629 * Wakeup anyone waiting on this interface.
4630 *
4631 * We *must* make sure they have woken up properly and realized
4632 * that the interface is no longer valid.
4633 */
4634 if (pIf->hRecvEvent != NIL_RTSEMEVENT)
4635 {
4636 RTSEMEVENT hRecvEvent = pIf->hRecvEvent;
4637 unsigned cMaxWait = 0x1000;
4638 while (pIf->cSleepers && cMaxWait-- > 0)
4639 {
4640 RTSemEventSignal(hRecvEvent);
4641 RTThreadYield();
4642 }
4643 if (pIf->cSleepers)
4644 {
4645 RTThreadSleep(1);
4646
4647 cMaxWait = pIf->cSleepers;
4648 while (pIf->cSleepers && cMaxWait-- > 0)
4649 {
4650 RTSemEventSignal(hRecvEvent);
4651 RTThreadSleep(10);
4652 }
4653 }
4654
4655 RTSemEventDestroy(hRecvEvent);
4656 pIf->hRecvEvent = NIL_RTSEMEVENT;
4657 }
4658
4659 /*
4660 * Unmap user buffer.
4661 */
4662 if (pIf->pIntBuf != pIf->pIntBufDefault)
4663 {
4664 /** @todo user buffer */
4665 }
4666
4667 /*
4668 * Unmap and Free the default buffer.
4669 */
4670 if (pIf->pIntBufDefault)
4671 {
4672 SUPR0MemFree(pIf->pSession, (RTHCUINTPTR)pIf->pIntBufDefault);
4673 pIf->pIntBufDefault = NULL;
4674 pIf->pIntBufDefaultR3 = 0;
4675 pIf->pIntBuf = NULL;
4676 pIf->pIntBufR3 = 0;
4677 }
4678
4679 /*
4680 * Free remaining resources
4681 */
4682 RTSpinlockDestroy(pIf->hRecvInSpinlock);
4683 pIf->hRecvInSpinlock = NIL_RTSPINLOCK;
4684
4685 RTMemFree(pIf->pDstTab);
4686 pIf->pDstTab = NULL;
4687
4688 for (int i = kIntNetAddrType_Invalid + 1; i < kIntNetAddrType_End; i++)
4689 intnetR0IfAddrCacheDestroy(&pIf->aAddrCache[i]);
4690
4691 pIf->pvObj = NULL;
4692 RTMemFree(pIf);
4693}
4694
4695
4696/**
4697 * Creates a new network interface.
4698 *
4699 * The call must have opened the network for the new interface and is
4700 * responsible for closing it on failure. On success it must leave the network
4701 * opened so the interface destructor can close it.
4702 *
4703 * @returns VBox status code.
4704 * @param pNetwork The network, referenced. The reference is consumed on
4705 * success.
4706 * @param pSession The session handle.
4707 * @param cbSend The size of the send buffer.
4708 * @param cbRecv The size of the receive buffer.
4709 * @param fFlags The open network flags.
4710 * @param phIf Where to store the interface handle.
4711 */
4712static int intnetR0NetworkCreateIf(PINTNETNETWORK pNetwork, PSUPDRVSESSION pSession,
4713 unsigned cbSend, unsigned cbRecv, uint32_t fFlags,
4714 PINTNETIFHANDLE phIf)
4715{
4716 LogFlow(("intnetR0NetworkCreateIf: pNetwork=%p pSession=%p cbSend=%u cbRecv=%u fFlags=%#x phIf=%p\n",
4717 pNetwork, pSession, cbSend, cbRecv, fFlags, phIf));
4718
4719 /*
4720 * Assert input.
4721 */
4722 AssertPtr(pNetwork);
4723 AssertPtr(phIf);
4724
4725 /*
4726 * Adjust the flags with defaults for the interface policies.
4727 * Note: Main restricts promiscuous mode per interface.
4728 */
4729 uint32_t const fDefFlags = INTNET_OPEN_FLAGS_IF_PROMISC_ALLOW
4730 | INTNET_OPEN_FLAGS_IF_PROMISC_SEE_TRUNK;
4731 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkIfFlags); i++)
4732 if (!(fFlags & g_afIntNetOpenNetworkIfFlags[i].fPair))
4733 fFlags |= g_afIntNetOpenNetworkIfFlags[i].fPair & fDefFlags;
4734
4735 /*
4736 * Make sure that all destination tables as well as the have space of
4737 */
4738 int rc = intnetR0NetworkEnsureTabSpace(pNetwork);
4739 if (RT_FAILURE(rc))
4740 return rc;
4741
4742 /*
4743 * Allocate the interface and initialize it.
4744 */
4745 PINTNETIF pIf = (PINTNETIF)RTMemAllocZ(sizeof(*pIf));
4746 if (!pIf)
4747 return VERR_NO_MEMORY;
4748
4749 memset(&pIf->MacAddr, 0xff, sizeof(pIf->MacAddr)); /* broadcast */
4750 //pIf->fMacSet = false;
4751 //pIf->fPromiscuousReal = false;
4752 //pIf->fActive = false;
4753 //pIf->fDestroying = false;
4754 pIf->fOpenFlags = fFlags;
4755 //pIf->cYields = 0;
4756 //pIf->pIntBuf = 0;
4757 //pIf->pIntBufR3 = NIL_RTR3PTR;
4758 //pIf->pIntBufDefault = 0;
4759 //pIf->pIntBufDefaultR3 = NIL_RTR3PTR;
4760 pIf->hRecvEvent = NIL_RTSEMEVENT;
4761 //pIf->cSleepers = 0;
4762 pIf->hIf = INTNET_HANDLE_INVALID;
4763 pIf->pNetwork = pNetwork;
4764 pIf->pSession = pSession;
4765 //pIf->pvObj = NULL;
4766 //pIf->aAddrCache = {0};
4767 pIf->hRecvInSpinlock = NIL_RTSPINLOCK;
4768 pIf->cBusy = 0;
4769 //pIf->pDstTab = NULL;
4770 //pIf->pvIfData = NULL;
4771
4772 for (int i = kIntNetAddrType_Invalid + 1; i < kIntNetAddrType_End && RT_SUCCESS(rc); i++)
4773 rc = intnetR0IfAddrCacheInit(&pIf->aAddrCache[i], (INTNETADDRTYPE)i,
4774 !!(pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE));
4775 if (RT_SUCCESS(rc))
4776 rc = intnetR0AllocDstTab(pNetwork->MacTab.cEntriesAllocated, (PINTNETDSTTAB *)&pIf->pDstTab);
4777 if (RT_SUCCESS(rc))
4778 rc = RTSemEventCreate((PRTSEMEVENT)&pIf->hRecvEvent);
4779 if (RT_SUCCESS(rc))
4780 rc = RTSpinlockCreate(&pIf->hRecvInSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "hRecvInSpinlock");
4781 if (RT_SUCCESS(rc))
4782 {
4783 /*
4784 * Create the default buffer.
4785 */
4786 /** @todo adjust with minimums and apply defaults here. */
4787 cbRecv = RT_ALIGN(RT_MAX(cbRecv, sizeof(INTNETHDR) * 4), INTNETRINGBUF_ALIGNMENT);
4788 cbSend = RT_ALIGN(RT_MAX(cbSend, sizeof(INTNETHDR) * 4), INTNETRINGBUF_ALIGNMENT);
4789 const unsigned cbBuf = RT_ALIGN(sizeof(*pIf->pIntBuf), INTNETRINGBUF_ALIGNMENT) + cbRecv + cbSend;
4790 rc = SUPR0MemAlloc(pIf->pSession, cbBuf, (PRTR0PTR)&pIf->pIntBufDefault, (PRTR3PTR)&pIf->pIntBufDefaultR3);
4791 if (RT_SUCCESS(rc))
4792 {
4793 ASMMemZero32(pIf->pIntBufDefault, cbBuf); /** @todo I thought I specified these buggers as clearing the memory... */
4794
4795 pIf->pIntBuf = pIf->pIntBufDefault;
4796 pIf->pIntBufR3 = pIf->pIntBufDefaultR3;
4797 IntNetBufInit(pIf->pIntBuf, cbBuf, cbRecv, cbSend);
4798
4799 /*
4800 * Register the interface with the session and create a handle for it.
4801 */
4802 pIf->pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_INTERNAL_NETWORK_INTERFACE,
4803 intnetR0IfDestruct, pIf, pNetwork->pIntNet);
4804 if (pIf->pvObj)
4805 {
4806 rc = RTHandleTableAllocWithCtx(pNetwork->pIntNet->hHtIfs, pIf, pSession, (uint32_t *)&pIf->hIf);
4807 if (RT_SUCCESS(rc))
4808 {
4809 /*
4810 * Finally add the interface to the network, consuming the
4811 * network reference of the caller.
4812 */
4813 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4814
4815 uint32_t iIf = pNetwork->MacTab.cEntries;
4816 Assert(iIf + 1 <= pNetwork->MacTab.cEntriesAllocated);
4817
4818 pNetwork->MacTab.paEntries[iIf].MacAddr = pIf->MacAddr;
4819 pNetwork->MacTab.paEntries[iIf].fActive = false;
4820 pNetwork->MacTab.paEntries[iIf].fPromiscuousEff = false;
4821 pNetwork->MacTab.paEntries[iIf].fPromiscuousSeeTrunk = false;
4822 pNetwork->MacTab.paEntries[iIf].pIf = pIf;
4823
4824 pNetwork->MacTab.cEntries = iIf + 1;
4825 pIf->pNetwork = pNetwork;
4826
4827 /*
4828 * Grab a busy reference (paranoia) to the trunk before releasing
4829 * the spinlock and then notify it about the new interface.
4830 */
4831 PINTNETTRUNKIF pTrunk = pNetwork->MacTab.pTrunk;
4832 if (pTrunk)
4833 intnetR0BusyIncTrunk(pTrunk);
4834
4835 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4836
4837 if (pTrunk)
4838 {
4839 Log(("intnetR0NetworkCreateIf: pfnConnectInterface hIf=%RX32\n", pIf->hIf));
4840 if (pTrunk->pIfPort)
4841 rc = pTrunk->pIfPort->pfnConnectInterface(pTrunk->pIfPort, pIf, &pIf->pvIfData);
4842 intnetR0BusyDecTrunk(pTrunk);
4843 }
4844 if (RT_SUCCESS(rc))
4845 {
4846 /*
4847 * We're good!
4848 */
4849 *phIf = pIf->hIf;
4850 Log(("intnetR0NetworkCreateIf: returns VINF_SUCCESS *phIf=%RX32 cbSend=%u cbRecv=%u cbBuf=%u\n",
4851 *phIf, pIf->pIntBufDefault->cbSend, pIf->pIntBufDefault->cbRecv, pIf->pIntBufDefault->cbBuf));
4852 return VINF_SUCCESS;
4853 }
4854 }
4855
4856 SUPR0ObjRelease(pIf->pvObj, pSession);
4857 LogFlow(("intnetR0NetworkCreateIf: returns %Rrc\n", rc));
4858 return rc;
4859 }
4860
4861 /* clean up */
4862 SUPR0MemFree(pIf->pSession, (RTHCUINTPTR)pIf->pIntBufDefault);
4863 pIf->pIntBufDefault = NULL;
4864 pIf->pIntBuf = NULL;
4865 }
4866 }
4867
4868 RTSpinlockDestroy(pIf->hRecvInSpinlock);
4869 pIf->hRecvInSpinlock = NIL_RTSPINLOCK;
4870 RTSemEventDestroy(pIf->hRecvEvent);
4871 pIf->hRecvEvent = NIL_RTSEMEVENT;
4872 RTMemFree(pIf->pDstTab);
4873 for (int i = kIntNetAddrType_Invalid + 1; i < kIntNetAddrType_End; i++)
4874 intnetR0IfAddrCacheDestroy(&pIf->aAddrCache[i]);
4875 RTMemFree(pIf);
4876 LogFlow(("intnetR0NetworkCreateIf: returns %Rrc\n", rc));
4877 return rc;
4878}
4879
4880
4881/** @copydoc INTNETTRUNKSWPORT::pfnSetSGPhys */
4882static DECLCALLBACK(bool) intnetR0TrunkIfPortSetSGPhys(PINTNETTRUNKSWPORT pSwitchPort, bool fEnable)
4883{
4884 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
4885 AssertMsgFailed(("Not implemented because it wasn't required on Darwin\n"));
4886 return ASMAtomicXchgBool(&pThis->fPhysSG, fEnable);
4887}
4888
4889
4890/** @copydoc INTNETTRUNKSWPORT::pfnReportMacAddress */
4891static DECLCALLBACK(void) intnetR0TrunkIfPortReportMacAddress(PINTNETTRUNKSWPORT pSwitchPort, PCRTMAC pMacAddr)
4892{
4893 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
4894
4895 /*
4896 * Get the network instance and grab the address spinlock before making
4897 * any changes.
4898 */
4899 intnetR0BusyIncTrunk(pThis);
4900 PINTNETNETWORK pNetwork = pThis->pNetwork;
4901 if (pNetwork)
4902 {
4903 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4904
4905 pNetwork->MacTab.HostMac = *pMacAddr;
4906 pThis->MacAddr = *pMacAddr;
4907
4908 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4909 }
4910 else
4911 pThis->MacAddr = *pMacAddr;
4912 intnetR0BusyDecTrunk(pThis);
4913}
4914
4915
4916/** @copydoc INTNETTRUNKSWPORT::pfnReportPromiscuousMode */
4917static DECLCALLBACK(void) intnetR0TrunkIfPortReportPromiscuousMode(PINTNETTRUNKSWPORT pSwitchPort, bool fPromiscuous)
4918{
4919 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
4920
4921 /*
4922 * Get the network instance and grab the address spinlock before making
4923 * any changes.
4924 */
4925 intnetR0BusyIncTrunk(pThis);
4926 PINTNETNETWORK pNetwork = pThis->pNetwork;
4927 if (pNetwork)
4928 {
4929 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
4930
4931 pNetwork->MacTab.fHostPromiscuousReal = fPromiscuous
4932 || (pNetwork->fFlags & INTNET_OPEN_FLAGS_TRUNK_HOST_PROMISC_MODE);
4933 pNetwork->MacTab.fHostPromiscuousEff = pNetwork->MacTab.fHostPromiscuousReal
4934 && (pNetwork->fFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_HOST);
4935
4936 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
4937 }
4938 intnetR0BusyDecTrunk(pThis);
4939}
4940
4941
4942/** @copydoc INTNETTRUNKSWPORT::pfnReportGsoCapabilities */
4943static DECLCALLBACK(void) intnetR0TrunkIfPortReportGsoCapabilities(PINTNETTRUNKSWPORT pSwitchPort,
4944 uint32_t fGsoCapabilities, uint32_t fDst)
4945{
4946 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
4947
4948 for (unsigned iBit = PDMNETWORKGSOTYPE_END; iBit < 32; iBit++)
4949 Assert(!(fGsoCapabilities & RT_BIT_32(iBit)));
4950 Assert(!(fDst & ~INTNETTRUNKDIR_VALID_MASK));
4951 Assert(fDst);
4952
4953 if (fDst & INTNETTRUNKDIR_HOST)
4954 pThis->fHostGsoCapabilites = fGsoCapabilities;
4955
4956 if (fDst & INTNETTRUNKDIR_WIRE)
4957 pThis->fWireGsoCapabilites = fGsoCapabilities;
4958}
4959
4960
4961/** @copydoc INTNETTRUNKSWPORT::pfnReportNoPreemptDsts */
4962static DECLCALLBACK(void) intnetR0TrunkIfPortReportNoPreemptDsts(PINTNETTRUNKSWPORT pSwitchPort, uint32_t fNoPreemptDsts)
4963{
4964 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
4965 Assert(!(fNoPreemptDsts & ~INTNETTRUNKDIR_VALID_MASK));
4966
4967 pThis->fNoPreemptDsts = fNoPreemptDsts;
4968}
4969
4970
4971/** @copydoc INTNETTRUNKSWPORT::pfnPreRecv */
4972static DECLCALLBACK(INTNETSWDECISION) intnetR0TrunkIfPortPreRecv(PINTNETTRUNKSWPORT pSwitchPort,
4973 void const *pvSrc, size_t cbSrc, uint32_t fSrc)
4974{
4975 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
4976
4977 /* assert some sanity */
4978 AssertPtr(pvSrc);
4979 AssertReturn(cbSrc >= 6, INTNETSWDECISION_BROADCAST);
4980 Assert(fSrc);
4981
4982 /*
4983 * Mark the trunk as busy, make sure we've got a network and that there are
4984 * some active interfaces around.
4985 */
4986 INTNETSWDECISION enmSwDecision = INTNETSWDECISION_TRUNK;
4987 intnetR0BusyIncTrunk(pThis);
4988 PINTNETNETWORK pNetwork = pThis->pNetwork;
4989 if (RT_LIKELY( pNetwork
4990 && pNetwork->cActiveIFs > 0 ))
4991 {
4992 /*
4993 * Lazy bird! No pre-switching of multicast and shared-MAC-on-wire.
4994 */
4995 PCRTNETETHERHDR pEthHdr = (PCRTNETETHERHDR)pvSrc;
4996 if (intnetR0IsMacAddrMulticast(&pEthHdr->DstMac))
4997 enmSwDecision = INTNETSWDECISION_BROADCAST;
4998 else if (pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
4999 enmSwDecision = INTNETSWDECISION_BROADCAST;
5000 else
5001 enmSwDecision = intnetR0NetworkPreSwitchUnicast(pNetwork,
5002 fSrc,
5003 cbSrc >= 12 ? &pEthHdr->SrcMac : NULL,
5004 &pEthHdr->DstMac);
5005 }
5006
5007 intnetR0BusyDecTrunk(pThis);
5008 return enmSwDecision;
5009}
5010
5011
5012/** @copydoc INTNETTRUNKSWPORT::pfnRecv */
5013static DECLCALLBACK(bool) intnetR0TrunkIfPortRecv(PINTNETTRUNKSWPORT pSwitchPort, void *pvIf, PINTNETSG pSG, uint32_t fSrc)
5014{
5015 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
5016
5017 /* assert some sanity */
5018 AssertPtr(pSG);
5019 Assert(fSrc);
5020 NOREF(pvIf); /* later */
5021
5022 /*
5023 * Mark the trunk as busy, make sure we've got a network and that there are
5024 * some active interfaces around.
5025 */
5026 bool fRc = false /* don't drop it */;
5027 intnetR0BusyIncTrunk(pThis);
5028 PINTNETNETWORK pNetwork = pThis->pNetwork;
5029 if (RT_LIKELY( pNetwork
5030 && pNetwork->cActiveIFs > 0 ))
5031 {
5032 /*
5033 * Grab or allocate a destination table.
5034 */
5035 bool const fIntCtx = RTThreadPreemptIsEnabled(NIL_RTTHREAD) || RTThreadIsInInterrupt(NIL_RTTHREAD);
5036 unsigned iDstTab = 0;
5037 PINTNETDSTTAB pDstTab = NULL;
5038 RTSpinlockAcquire(pThis->hDstTabSpinlock);
5039 if (fIntCtx)
5040 {
5041 /* Interrupt or restricted context. */
5042 iDstTab = RTMpCpuIdToSetIndex(RTMpCpuId());
5043 iDstTab %= pThis->cIntDstTabs;
5044 pDstTab = pThis->apIntDstTabs[iDstTab];
5045 if (RT_LIKELY(pDstTab))
5046 pThis->apIntDstTabs[iDstTab] = NULL;
5047 else
5048 {
5049 iDstTab = pThis->cIntDstTabs;
5050 while (iDstTab-- > 0)
5051 {
5052 pDstTab = pThis->apIntDstTabs[iDstTab];
5053 if (pDstTab)
5054 {
5055 pThis->apIntDstTabs[iDstTab] = NULL;
5056 break;
5057 }
5058 }
5059 }
5060 RTSpinlockReleaseNoInts(pThis->hDstTabSpinlock);
5061 Assert(!pDstTab || iDstTab < pThis->cIntDstTabs);
5062 }
5063 else
5064 {
5065 /* Task context, fallback is to allocate a table. */
5066 AssertCompile(RT_ELEMENTS(pThis->apTaskDstTabs) == 2); /* for loop rollout */
5067 pDstTab = pThis->apIntDstTabs[iDstTab = 0];
5068 if (!pDstTab)
5069 pDstTab = pThis->apIntDstTabs[iDstTab = 1];
5070 if (pDstTab)
5071 {
5072 pThis->apIntDstTabs[iDstTab] = NULL;
5073 RTSpinlockReleaseNoInts(pThis->hDstTabSpinlock);
5074 Assert(iDstTab < RT_ELEMENTS(pThis->apTaskDstTabs));
5075 }
5076 else
5077 {
5078 RTSpinlockReleaseNoInts(pThis->hDstTabSpinlock);
5079 intnetR0AllocDstTab(pNetwork->MacTab.cEntriesAllocated, &pDstTab);
5080 iDstTab = 65535;
5081 }
5082 }
5083 if (RT_LIKELY(pDstTab))
5084 {
5085 /*
5086 * Finally, get down to business of sending the frame.
5087 */
5088 INTNETSWDECISION enmSwDecision = intnetR0NetworkSend(pNetwork, NULL, fSrc, pSG, pDstTab);
5089 AssertMsg(enmSwDecision != INTNETSWDECISION_BAD_CONTEXT, ("fSrc=%#x fTrunkDst=%#x hdr=%.14Rhxs\n", fSrc, pDstTab->fTrunkDst, pSG->aSegs[0].pv));
5090 if (enmSwDecision == INTNETSWDECISION_INTNET)
5091 fRc = true; /* drop it */
5092
5093 /*
5094 * Free the destination table.
5095 */
5096 if (iDstTab == 65535)
5097 RTMemFree(pDstTab);
5098 else
5099 {
5100 RTSpinlockAcquire(pThis->hDstTabSpinlock);
5101 if (fIntCtx && !pThis->apIntDstTabs[iDstTab])
5102 pThis->apIntDstTabs[iDstTab] = pDstTab;
5103 else if (!fIntCtx && !pThis->apTaskDstTabs[iDstTab])
5104 pThis->apTaskDstTabs[iDstTab] = pDstTab;
5105 else
5106 {
5107 /* this shouldn't happen! */
5108 PINTNETDSTTAB *papDstTabs = fIntCtx ? &pThis->apIntDstTabs[0] : &pThis->apTaskDstTabs[0];
5109 iDstTab = fIntCtx ? pThis->cIntDstTabs : RT_ELEMENTS(pThis->apTaskDstTabs);
5110 while (iDstTab-- > 0)
5111 if (!papDstTabs[iDstTab])
5112 {
5113 papDstTabs[iDstTab] = pDstTab;
5114 break;
5115 }
5116 }
5117 RTSpinlockReleaseNoInts(pThis->hDstTabSpinlock);
5118 Assert(iDstTab < RT_MAX(RT_ELEMENTS(pThis->apTaskDstTabs), pThis->cIntDstTabs));
5119 }
5120 }
5121 }
5122
5123 intnetR0BusyDecTrunk(pThis);
5124 return fRc;
5125}
5126
5127
5128/** @copydoc INTNETTRUNKSWPORT::pfnSGRetain */
5129static DECLCALLBACK(void) intnetR0TrunkIfPortSGRetain(PINTNETTRUNKSWPORT pSwitchPort, PINTNETSG pSG)
5130{
5131 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
5132 PINTNETNETWORK pNetwork = pThis->pNetwork;
5133
5134 /* assert some sanity */
5135 AssertPtrReturnVoid(pNetwork);
5136 AssertReturnVoid(pNetwork->hEvtBusyIf != NIL_RTSEMEVENT);
5137 AssertPtr(pSG);
5138 Assert(pSG->cUsers > 0 && pSG->cUsers < 256);
5139
5140 /* do it. */
5141 ++pSG->cUsers;
5142}
5143
5144
5145/** @copydoc INTNETTRUNKSWPORT::pfnSGRelease */
5146static DECLCALLBACK(void) intnetR0TrunkIfPortSGRelease(PINTNETTRUNKSWPORT pSwitchPort, PINTNETSG pSG)
5147{
5148 PINTNETTRUNKIF pThis = INTNET_SWITCHPORT_2_TRUNKIF(pSwitchPort);
5149 PINTNETNETWORK pNetwork = pThis->pNetwork;
5150
5151 /* assert some sanity */
5152 AssertPtrReturnVoid(pNetwork);
5153 AssertReturnVoid(pNetwork->hEvtBusyIf != NIL_RTSEMEVENT);
5154 AssertPtr(pSG);
5155 Assert(pSG->cUsers > 0);
5156
5157 /*
5158 * Free it?
5159 */
5160 if (!--pSG->cUsers)
5161 {
5162 /** @todo later */
5163 }
5164}
5165
5166
5167/**
5168 * Shutdown the trunk interface.
5169 *
5170 * @param pThis The trunk.
5171 * @param pNetworks The network.
5172 *
5173 * @remarks The caller must hold the global lock.
5174 */
5175static void intnetR0TrunkIfDestroy(PINTNETTRUNKIF pThis, PINTNETNETWORK pNetwork)
5176{
5177 /* assert sanity */
5178 if (!pThis)
5179 return;
5180 AssertPtr(pThis);
5181 Assert(pThis->pNetwork == pNetwork);
5182 AssertPtrNull(pThis->pIfPort);
5183
5184 /*
5185 * The interface has already been deactivated, we just to wait for
5186 * it to become idle before we can disconnect and release it.
5187 */
5188 PINTNETTRUNKIFPORT pIfPort = pThis->pIfPort;
5189 if (pIfPort)
5190 {
5191 /* unset it */
5192 pThis->pIfPort = NULL;
5193
5194 /* wait in portions so we can complain ever now an then. */
5195 uint64_t StartTS = RTTimeSystemNanoTS();
5196 int rc = pIfPort->pfnWaitForIdle(pIfPort, 10*1000);
5197 if (RT_FAILURE(rc))
5198 {
5199 LogRel(("intnet: '%s' didn't become idle in %RU64 ns (%Rrc).\n",
5200 pNetwork->szName, RTTimeSystemNanoTS() - StartTS, rc));
5201 Assert(rc == VERR_TIMEOUT);
5202 while ( RT_FAILURE(rc)
5203 && RTTimeSystemNanoTS() - StartTS < UINT64_C(30000000000)) /* 30 sec */
5204 rc = pIfPort->pfnWaitForIdle(pIfPort, 10*1000);
5205 if (rc == VERR_TIMEOUT)
5206 {
5207 LogRel(("intnet: '%s' didn't become idle in %RU64 ns (%Rrc).\n",
5208 pNetwork->szName, RTTimeSystemNanoTS() - StartTS, rc));
5209 while ( rc == VERR_TIMEOUT
5210 && RTTimeSystemNanoTS() - StartTS < UINT64_C(360000000000)) /* 360 sec */
5211 rc = pIfPort->pfnWaitForIdle(pIfPort, 30*1000);
5212 if (RT_FAILURE(rc))
5213 {
5214 LogRel(("intnet: '%s' didn't become idle in %RU64 ns (%Rrc), giving up.\n",
5215 pNetwork->szName, RTTimeSystemNanoTS() - StartTS, rc));
5216 AssertRC(rc);
5217 }
5218 }
5219 }
5220
5221 /* disconnect & release it. */
5222 pIfPort->pfnDisconnectAndRelease(pIfPort);
5223 }
5224
5225 /*
5226 * Free up the resources.
5227 */
5228 pThis->pNetwork = NULL;
5229 RTSpinlockDestroy(pThis->hDstTabSpinlock);
5230 for (unsigned i = 0; i < RT_ELEMENTS(pThis->apTaskDstTabs); i++)
5231 {
5232 Assert(pThis->apTaskDstTabs[i]);
5233 RTMemFree(pThis->apTaskDstTabs[i]);
5234 pThis->apTaskDstTabs[i] = NULL;
5235 }
5236 for (unsigned i = 0; i < pThis->cIntDstTabs; i++)
5237 {
5238 Assert(pThis->apIntDstTabs[i]);
5239 RTMemFree(pThis->apIntDstTabs[i]);
5240 pThis->apIntDstTabs[i] = NULL;
5241 }
5242 RTMemFree(pThis);
5243}
5244
5245
5246/**
5247 * Creates the trunk connection (if any).
5248 *
5249 * @returns VBox status code.
5250 *
5251 * @param pNetwork The newly created network.
5252 * @param pSession The session handle.
5253 */
5254static int intnetR0NetworkCreateTrunkIf(PINTNETNETWORK pNetwork, PSUPDRVSESSION pSession)
5255{
5256 const char *pszName;
5257 switch (pNetwork->enmTrunkType)
5258 {
5259 /*
5260 * The 'None' case, simple.
5261 */
5262 case kIntNetTrunkType_None:
5263 case kIntNetTrunkType_WhateverNone:
5264#ifdef VBOX_WITH_NAT_SERVICE
5265 /*
5266 * Well, here we don't want load anything special,
5267 * just communicate between processes via internal network.
5268 */
5269 case kIntNetTrunkType_SrvNat:
5270#endif
5271 return VINF_SUCCESS;
5272
5273 /* Can't happen, but makes GCC happy. */
5274 default:
5275 return VERR_NOT_IMPLEMENTED;
5276
5277 /*
5278 * Translate enum to component factory name.
5279 */
5280 case kIntNetTrunkType_NetFlt:
5281 pszName = "VBoxNetFlt";
5282 break;
5283 case kIntNetTrunkType_NetAdp:
5284#if defined(RT_OS_DARWIN) && !defined(VBOXNETADP_DO_NOT_USE_NETFLT)
5285 pszName = "VBoxNetFlt";
5286#else /* VBOXNETADP_DO_NOT_USE_NETFLT */
5287 pszName = "VBoxNetAdp";
5288#endif /* VBOXNETADP_DO_NOT_USE_NETFLT */
5289 break;
5290#ifndef VBOX_WITH_NAT_SERVICE
5291 case kIntNetTrunkType_SrvNat:
5292 pszName = "VBoxSrvNat";
5293 break;
5294#endif
5295 }
5296
5297 /*
5298 * Allocate the trunk interface and associated destination tables.
5299 *
5300 * We take a very optimistic view on the parallelism of the host
5301 * network stack and NIC driver. So, we allocate one table for each
5302 * possible CPU to deal with interrupt time requests and one for task
5303 * time calls.
5304 */
5305 RTCPUID cCpus = RTMpGetCount(); Assert(cCpus > 0);
5306 PINTNETTRUNKIF pTrunk = (PINTNETTRUNKIF)RTMemAllocZ(RT_OFFSETOF(INTNETTRUNKIF, apIntDstTabs[cCpus]));
5307 if (!pTrunk)
5308 return VERR_NO_MEMORY;
5309
5310 Assert(pNetwork->MacTab.cEntriesAllocated > 0);
5311 int rc = VINF_SUCCESS;
5312 pTrunk->cIntDstTabs = cCpus;
5313 for (unsigned i = 0; i < cCpus && RT_SUCCESS(rc); i++)
5314 rc = intnetR0AllocDstTab(pNetwork->MacTab.cEntriesAllocated, &pTrunk->apIntDstTabs[i]);
5315 for (unsigned i = 0; i < RT_ELEMENTS(pTrunk->apTaskDstTabs) && RT_SUCCESS(rc); i++)
5316 rc = intnetR0AllocDstTab(pNetwork->MacTab.cEntriesAllocated, &pTrunk->apTaskDstTabs[i]);
5317
5318 if (RT_SUCCESS(rc))
5319 {
5320 pTrunk->SwitchPort.u32Version = INTNETTRUNKSWPORT_VERSION;
5321 pTrunk->SwitchPort.pfnPreRecv = intnetR0TrunkIfPortPreRecv;
5322 pTrunk->SwitchPort.pfnRecv = intnetR0TrunkIfPortRecv;
5323 pTrunk->SwitchPort.pfnSGRetain = intnetR0TrunkIfPortSGRetain;
5324 pTrunk->SwitchPort.pfnSGRelease = intnetR0TrunkIfPortSGRelease;
5325 pTrunk->SwitchPort.pfnSetSGPhys = intnetR0TrunkIfPortSetSGPhys;
5326 pTrunk->SwitchPort.pfnReportMacAddress = intnetR0TrunkIfPortReportMacAddress;
5327 pTrunk->SwitchPort.pfnReportPromiscuousMode = intnetR0TrunkIfPortReportPromiscuousMode;
5328 pTrunk->SwitchPort.pfnReportGsoCapabilities = intnetR0TrunkIfPortReportGsoCapabilities;
5329 pTrunk->SwitchPort.pfnReportNoPreemptDsts = intnetR0TrunkIfPortReportNoPreemptDsts;
5330 pTrunk->SwitchPort.u32VersionEnd = INTNETTRUNKSWPORT_VERSION;
5331 //pTrunk->pIfPort = NULL;
5332 pTrunk->pNetwork = pNetwork;
5333 pTrunk->MacAddr.au8[0] = 0xff;
5334 pTrunk->MacAddr.au8[1] = 0xff;
5335 pTrunk->MacAddr.au8[2] = 0xff;
5336 pTrunk->MacAddr.au8[3] = 0xff;
5337 pTrunk->MacAddr.au8[4] = 0xff;
5338 pTrunk->MacAddr.au8[5] = 0xff;
5339 //pTrunk->fPhysSG = false;
5340 //pTrunk->fUnused = false;
5341 //pTrunk->cBusy = 0;
5342 //pTrunk->fNoPreemptDsts = 0;
5343 //pTrunk->fWireGsoCapabilites = 0;
5344 //pTrunk->fHostGsoCapabilites = 0;
5345 //pTrunk->abGsoHdrs = {0};
5346 pTrunk->hDstTabSpinlock = NIL_RTSPINLOCK;
5347 //pTrunk->apTaskDstTabs = above;
5348 //pTrunk->cIntDstTabs = above;
5349 //pTrunk->apIntDstTabs = above;
5350
5351 /*
5352 * Create the lock (we've NIL'ed the members above to simplify cleanup).
5353 */
5354 rc = RTSpinlockCreate(&pTrunk->hDstTabSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "hDstTabSpinlock");
5355 if (RT_SUCCESS(rc))
5356 {
5357 /*
5358 * There are a couple of bits in MacTab as well pertaining to the
5359 * trunk. We have to set this before it's reported.
5360 *
5361 * Note! We don't need to lock the MacTab here - creation time.
5362 */
5363 pNetwork->MacTab.pTrunk = pTrunk;
5364 pNetwork->MacTab.HostMac = pTrunk->MacAddr;
5365 pNetwork->MacTab.fHostPromiscuousReal = false;
5366 pNetwork->MacTab.fHostPromiscuousEff = (pNetwork->fFlags & INTNET_OPEN_FLAGS_TRUNK_HOST_PROMISC_MODE)
5367 && (pNetwork->fFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_HOST);
5368 pNetwork->MacTab.fHostActive = false;
5369 pNetwork->MacTab.fWirePromiscuousReal = RT_BOOL(pNetwork->fFlags & INTNET_OPEN_FLAGS_TRUNK_WIRE_PROMISC_MODE);
5370 pNetwork->MacTab.fWirePromiscuousEff = pNetwork->MacTab.fWirePromiscuousReal
5371 && (pNetwork->fFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_WIRE);
5372 pNetwork->MacTab.fWireActive = false;
5373
5374#ifdef IN_RING0 /* (testcase is ring-3) */
5375 /*
5376 * Query the factory we want, then use it create and connect the trunk.
5377 */
5378 PINTNETTRUNKFACTORY pTrunkFactory = NULL;
5379 rc = SUPR0ComponentQueryFactory(pSession, pszName, INTNETTRUNKFACTORY_UUID_STR, (void **)&pTrunkFactory);
5380 if (RT_SUCCESS(rc))
5381 {
5382 rc = pTrunkFactory->pfnCreateAndConnect(pTrunkFactory,
5383 pNetwork->szTrunk,
5384 &pTrunk->SwitchPort,
5385 pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE
5386 ? INTNETTRUNKFACTORY_FLAG_NO_PROMISC
5387 : 0,
5388 &pTrunk->pIfPort);
5389 pTrunkFactory->pfnRelease(pTrunkFactory);
5390 if (RT_SUCCESS(rc))
5391 {
5392 Assert(pTrunk->pIfPort);
5393
5394 Log(("intnetR0NetworkCreateTrunkIf: VINF_SUCCESS - pszName=%s szTrunk=%s%s Network=%s\n",
5395 pszName, pNetwork->szTrunk, pNetwork->fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE ? " shared-mac" : "", pNetwork->szName));
5396 return VINF_SUCCESS;
5397 }
5398 }
5399#else /* IN_RING3 */
5400 NOREF(pSession);
5401 rc = VERR_NOT_SUPPORTED;
5402#endif /* IN_RING3 */
5403
5404 pNetwork->MacTab.pTrunk = NULL;
5405 }
5406
5407 /* bail out and clean up. */
5408 RTSpinlockDestroy(pTrunk->hDstTabSpinlock);
5409 }
5410
5411 for (unsigned i = 0; i < RT_ELEMENTS(pTrunk->apTaskDstTabs); i++)
5412 RTMemFree(pTrunk->apTaskDstTabs[i]);
5413 for (unsigned i = 0; i < pTrunk->cIntDstTabs; i++)
5414 RTMemFree(pTrunk->apIntDstTabs[i]);
5415 RTMemFree(pTrunk);
5416
5417 LogFlow(("intnetR0NetworkCreateTrunkIf: %Rrc - pszName=%s szTrunk=%s Network=%s\n",
5418 rc, pszName, pNetwork->szTrunk, pNetwork->szName));
5419 return rc;
5420}
5421
5422
5423
5424/**
5425 * Object destructor callback.
5426 * This is called for reference counted objectes when the count reaches 0.
5427 *
5428 * @param pvObj The object pointer.
5429 * @param pvUser1 Pointer to the network.
5430 * @param pvUser2 Pointer to the INTNET instance data.
5431 */
5432static DECLCALLBACK(void) intnetR0NetworkDestruct(void *pvObj, void *pvUser1, void *pvUser2)
5433{
5434 PINTNETNETWORK pNetwork = (PINTNETNETWORK)pvUser1;
5435 PINTNET pIntNet = (PINTNET)pvUser2;
5436 Log(("intnetR0NetworkDestruct: pvObj=%p pNetwork=%p pIntNet=%p %s\n", pvObj, pNetwork, pIntNet, pNetwork->szName));
5437 Assert(pNetwork->pIntNet == pIntNet);
5438
5439 /* Take the big create/open/destroy sem. */
5440 RTSemMutexRequest(pIntNet->hMtxCreateOpenDestroy, RT_INDEFINITE_WAIT);
5441
5442 /*
5443 * Tell the trunk, if present, that we're about to disconnect it and wish
5444 * no further calls from it.
5445 */
5446 PINTNETTRUNKIF pTrunk = pNetwork->MacTab.pTrunk;
5447 if (pTrunk)
5448 pTrunk->pIfPort->pfnSetState(pTrunk->pIfPort, INTNETTRUNKIFSTATE_DISCONNECTING);
5449
5450 /*
5451 * Deactivate and orphan any remaining interfaces and wait for them to idle.
5452 *
5453 * Note! Normally there are no more interfaces at this point, however, when
5454 * supdrvCloseSession / supdrvCleanupSession release the objects the
5455 * order is undefined. So, it's quite possible that the network will
5456 * be dereference and destroyed before the interfaces.
5457 */
5458 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
5459
5460 uint32_t iIf = pNetwork->MacTab.cEntries;
5461 while (iIf-- > 0)
5462 {
5463 pNetwork->MacTab.paEntries[iIf].fActive = false;
5464 pNetwork->MacTab.paEntries[iIf].pIf->fActive = false;
5465 }
5466
5467 pNetwork->MacTab.fHostActive = false;
5468 pNetwork->MacTab.fWireActive = false;
5469
5470 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
5471
5472 /* Wait for all the interfaces to quiesce. (Interfaces cannot be
5473 removed / added since we're holding the big lock.) */
5474 if (pTrunk)
5475 intnetR0BusyWait(pNetwork, &pTrunk->cBusy);
5476
5477 iIf = pNetwork->MacTab.cEntries;
5478 while (iIf-- > 0)
5479 intnetR0BusyWait(pNetwork, &pNetwork->MacTab.paEntries[iIf].pIf->cBusy);
5480
5481 /* Orphan the interfaces (not trunk). Don't bother with calling
5482 pfnDisconnectInterface here since the networking is going away. */
5483 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
5484 while ((iIf = pNetwork->MacTab.cEntries) > 0)
5485 {
5486 PINTNETIF pIf = pNetwork->MacTab.paEntries[iIf - 1].pIf;
5487 RTSpinlockRelease(pNetwork->hAddrSpinlock);
5488
5489 intnetR0BusyWait(pNetwork, &pIf->cBusy);
5490
5491 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
5492 if ( iIf == pNetwork->MacTab.cEntries /* paranoia */
5493 && pIf->cBusy)
5494 {
5495 pIf->pNetwork = NULL;
5496 pNetwork->MacTab.cEntries--;
5497 }
5498 }
5499
5500 /*
5501 * Zap the trunk pointer while we still own the spinlock, destroy the
5502 * trunk after we've left it. Note that this might take a while...
5503 */
5504 pNetwork->MacTab.pTrunk = NULL;
5505
5506 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
5507
5508 if (pTrunk)
5509 intnetR0TrunkIfDestroy(pTrunk, pNetwork);
5510
5511 /*
5512 * Unlink the network.
5513 * Note that it needn't be in the list if we failed during creation.
5514 */
5515 PINTNETNETWORK pPrev = pIntNet->pNetworks;
5516 if (pPrev == pNetwork)
5517 pIntNet->pNetworks = pNetwork->pNext;
5518 else
5519 {
5520 for (; pPrev; pPrev = pPrev->pNext)
5521 if (pPrev->pNext == pNetwork)
5522 {
5523 pPrev->pNext = pNetwork->pNext;
5524 break;
5525 }
5526 }
5527 pNetwork->pNext = NULL;
5528 pNetwork->pvObj = NULL;
5529
5530 /*
5531 * Free resources.
5532 */
5533 RTSemEventDestroy(pNetwork->hEvtBusyIf);
5534 pNetwork->hEvtBusyIf = NIL_RTSEMEVENT;
5535 RTSpinlockDestroy(pNetwork->hAddrSpinlock);
5536 pNetwork->hAddrSpinlock = NIL_RTSPINLOCK;
5537 RTMemFree(pNetwork->MacTab.paEntries);
5538 pNetwork->MacTab.paEntries = NULL;
5539 RTMemFree(pNetwork);
5540
5541 /* Release the create/destroy sem. */
5542 RTSemMutexRelease(pIntNet->hMtxCreateOpenDestroy);
5543}
5544
5545
5546/**
5547 * Checks if the open network flags are compatible.
5548 *
5549 * @returns VBox status code.
5550 * @param pNetwork The network.
5551 * @param fFlags The open network flags.
5552 */
5553static int intnetR0CheckOpenNetworkFlags(PINTNETNETWORK pNetwork, uint32_t fFlags)
5554{
5555 uint32_t const fNetFlags = pNetwork->fFlags;
5556
5557 if ( (fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
5558 ^ (fNetFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE))
5559 return VERR_INTNET_INCOMPATIBLE_FLAGS;
5560
5561 if (fFlags & INTNET_OPEN_FLAGS_REQUIRE_EXACT)
5562 {
5563 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkNetFlags); i++)
5564 if ( (fFlags & g_afIntNetOpenNetworkNetFlags[i].fPair)
5565 && (fFlags & g_afIntNetOpenNetworkNetFlags[i].fPair)
5566 != (fNetFlags & g_afIntNetOpenNetworkNetFlags[i].fPair) )
5567 return VERR_INTNET_INCOMPATIBLE_FLAGS;
5568 }
5569
5570 if (fFlags & INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES)
5571 {
5572 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkNetFlags); i++)
5573 if ( (fFlags & g_afIntNetOpenNetworkNetFlags[i].fRestrictive)
5574 && !(fNetFlags & g_afIntNetOpenNetworkNetFlags[i].fRestrictive)
5575 && (fNetFlags & g_afIntNetOpenNetworkNetFlags[i].fFixed) )
5576 return VERR_INTNET_INCOMPATIBLE_FLAGS;
5577 }
5578
5579 return VINF_SUCCESS;
5580}
5581
5582
5583/**
5584 * Adapts flag changes on network opening.
5585 *
5586 * @returns VBox status code.
5587 * @param pNetwork The network.
5588 * @param fFlags The open network flags.
5589 */
5590static int intnetR0AdaptOpenNetworkFlags(PINTNETNETWORK pNetwork, uint32_t fFlags)
5591{
5592 /*
5593 * Upgrade the minimum policy flags.
5594 */
5595 uint32_t fNetMinFlags = pNetwork->fMinFlags;
5596 Assert(!(fNetMinFlags & INTNET_OPEN_FLAGS_RELAXED_MASK));
5597 if (fFlags & INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES)
5598 {
5599 fNetMinFlags |= fFlags & INTNET_OPEN_FLAGS_STRICT_MASK;
5600 if (fNetMinFlags != pNetwork->fMinFlags)
5601 {
5602 LogRel(("INTNET: %s - min flags changed %#x -> %#x\n", pNetwork->szName, pNetwork->fMinFlags, fNetMinFlags));
5603 pNetwork->fMinFlags = fNetMinFlags;
5604 }
5605 }
5606
5607 /*
5608 * Calculate the new network flags.
5609 * (Depends on fNetMinFlags being recalculated first.)
5610 */
5611 uint32_t fNetFlags = pNetwork->fFlags;
5612
5613 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkNetFlags); i++)
5614 {
5615 Assert(fNetFlags & g_afIntNetOpenNetworkNetFlags[i].fPair);
5616 Assert(!(fNetMinFlags & g_afIntNetOpenNetworkNetFlags[i].fRelaxed));
5617
5618 if (!(fFlags & g_afIntNetOpenNetworkNetFlags[i].fPair))
5619 continue;
5620 if (fNetFlags & g_afIntNetOpenNetworkNetFlags[i].fFixed)
5621 continue;
5622
5623 if ( (fNetMinFlags & g_afIntNetOpenNetworkNetFlags[i].fRestrictive)
5624 || (fFlags & g_afIntNetOpenNetworkNetFlags[i].fRestrictive) )
5625 {
5626 fNetFlags &= ~g_afIntNetOpenNetworkNetFlags[i].fPair;
5627 fNetFlags |= g_afIntNetOpenNetworkNetFlags[i].fRestrictive;
5628 }
5629 else if (!(fFlags & INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES))
5630 {
5631 fNetFlags &= ~g_afIntNetOpenNetworkNetFlags[i].fPair;
5632 fNetFlags |= g_afIntNetOpenNetworkNetFlags[i].fRelaxed;
5633 }
5634 }
5635
5636 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkNetFlags); i++)
5637 {
5638 Assert(fNetFlags & g_afIntNetOpenNetworkNetFlags[i].fPair);
5639 fNetFlags |= fFlags & g_afIntNetOpenNetworkNetFlags[i].fFixed;
5640 }
5641
5642 /*
5643 * Apply the flags if they changed.
5644 */
5645 uint32_t const fOldNetFlags = pNetwork->fFlags;
5646 if (fOldNetFlags != fNetFlags)
5647 {
5648 LogRel(("INTNET: %s - flags changed %#x -> %#x\n", pNetwork->szName, fOldNetFlags, fNetFlags));
5649
5650 RTSpinlockAcquire(pNetwork->hAddrSpinlock);
5651
5652 pNetwork->fFlags = fNetFlags;
5653
5654 /* Recalculate some derived switcher variables. */
5655 bool fActiveTrunk = pNetwork->MacTab.pTrunk
5656 && pNetwork->cActiveIFs > 0;
5657 pNetwork->MacTab.fHostActive = fActiveTrunk
5658 && (fNetFlags & INTNET_OPEN_FLAGS_TRUNK_HOST_ENABLED);
5659 pNetwork->MacTab.fHostPromiscuousEff = ( pNetwork->MacTab.fHostPromiscuousReal
5660 || (fNetFlags & INTNET_OPEN_FLAGS_TRUNK_HOST_PROMISC_MODE))
5661 && (fNetFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_HOST);
5662
5663 pNetwork->MacTab.fWireActive = fActiveTrunk
5664 && (fNetFlags & INTNET_OPEN_FLAGS_TRUNK_HOST_ENABLED);
5665 pNetwork->MacTab.fWirePromiscuousReal= RT_BOOL(fNetFlags & INTNET_OPEN_FLAGS_TRUNK_WIRE_PROMISC_MODE);
5666 pNetwork->MacTab.fWirePromiscuousEff = pNetwork->MacTab.fWirePromiscuousReal
5667 && (fNetFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_WIRE);
5668
5669 if ((fOldNetFlags ^ fNetFlags) & INTNET_OPEN_FLAGS_PROMISC_ALLOW_CLIENTS)
5670 {
5671 pNetwork->MacTab.cPromiscuousEntries = 0;
5672 pNetwork->MacTab.cPromiscuousNoTrunkEntries = 0;
5673
5674 uint32_t iIf = pNetwork->MacTab.cEntries;
5675 while (iIf-- > 0)
5676 {
5677 PINTNETMACTABENTRY pEntry = &pNetwork->MacTab.paEntries[iIf];
5678 PINTNETIF pIf2 = pEntry->pIf;
5679 if ( pIf2 /* paranoia */
5680 && pIf2->fPromiscuousReal)
5681 {
5682 bool fPromiscuousEff = (fNetFlags & INTNET_OPEN_FLAGS_PROMISC_ALLOW_CLIENTS)
5683 && (pIf2->fOpenFlags & INTNET_OPEN_FLAGS_IF_PROMISC_ALLOW);
5684 pEntry->fPromiscuousEff = fPromiscuousEff;
5685 pEntry->fPromiscuousSeeTrunk = fPromiscuousEff
5686 && (pIf2->fOpenFlags & INTNET_OPEN_FLAGS_IF_PROMISC_SEE_TRUNK);
5687
5688 if (pEntry->fPromiscuousEff)
5689 {
5690 pNetwork->MacTab.cPromiscuousEntries++;
5691 if (!pEntry->fPromiscuousSeeTrunk)
5692 pNetwork->MacTab.cPromiscuousNoTrunkEntries++;
5693 }
5694 }
5695 }
5696 }
5697
5698 RTSpinlockReleaseNoInts(pNetwork->hAddrSpinlock);
5699 }
5700
5701 return VINF_SUCCESS;
5702}
5703
5704
5705/**
5706 * Opens an existing network.
5707 *
5708 * The call must own the INTNET::hMtxCreateOpenDestroy.
5709 *
5710 * @returns VBox status code.
5711 * @param pIntNet The instance data.
5712 * @param pSession The current session.
5713 * @param pszNetwork The network name. This has a valid length.
5714 * @param enmTrunkType The trunk type.
5715 * @param pszTrunk The trunk name. Its meaning is specific to the type.
5716 * @param fFlags Flags, see INTNET_OPEN_FLAGS_*.
5717 * @param ppNetwork Where to store the pointer to the network on success.
5718 */
5719static int intnetR0OpenNetwork(PINTNET pIntNet, PSUPDRVSESSION pSession, const char *pszNetwork, INTNETTRUNKTYPE enmTrunkType,
5720 const char *pszTrunk, uint32_t fFlags, PINTNETNETWORK *ppNetwork)
5721{
5722 LogFlow(("intnetR0OpenNetwork: pIntNet=%p pSession=%p pszNetwork=%p:{%s} enmTrunkType=%d pszTrunk=%p:{%s} fFlags=%#x ppNetwork=%p\n",
5723 pIntNet, pSession, pszNetwork, pszNetwork, enmTrunkType, pszTrunk, pszTrunk, fFlags, ppNetwork));
5724
5725 /* just pro forma validation, the caller is internal. */
5726 AssertPtr(pIntNet);
5727 AssertPtr(pSession);
5728 AssertPtr(pszNetwork);
5729 Assert(enmTrunkType > kIntNetTrunkType_Invalid && enmTrunkType < kIntNetTrunkType_End);
5730 AssertPtr(pszTrunk);
5731 Assert(!(fFlags & ~INTNET_OPEN_FLAGS_MASK));
5732 AssertPtr(ppNetwork);
5733 *ppNetwork = NULL;
5734
5735 /*
5736 * Search networks by name.
5737 */
5738 PINTNETNETWORK pCur;
5739 uint8_t cchName = (uint8_t)strlen(pszNetwork);
5740 Assert(cchName && cchName < sizeof(pCur->szName)); /* caller ensures this */
5741
5742 pCur = pIntNet->pNetworks;
5743 while (pCur)
5744 {
5745 if ( pCur->cchName == cchName
5746 && !memcmp(pCur->szName, pszNetwork, cchName))
5747 {
5748 /*
5749 * Found the network, now check that we have the same ideas
5750 * about the trunk setup and security.
5751 */
5752 int rc;
5753 if ( enmTrunkType == kIntNetTrunkType_WhateverNone
5754#ifdef VBOX_WITH_NAT_SERVICE
5755 || enmTrunkType == kIntNetTrunkType_SrvNat /* @todo: what does it mean */
5756#endif
5757 || ( pCur->enmTrunkType == enmTrunkType
5758 && !strcmp(pCur->szTrunk, pszTrunk)))
5759 {
5760 rc = intnetR0CheckOpenNetworkFlags(pCur, fFlags);
5761 if (RT_SUCCESS(rc))
5762 {
5763 /*
5764 * Increment the reference and check that the session
5765 * can access this network.
5766 */
5767 rc = SUPR0ObjAddRef(pCur->pvObj, pSession);
5768 if (RT_SUCCESS(rc))
5769 {
5770 if (pCur->fFlags & INTNET_OPEN_FLAGS_ACCESS_RESTRICTED)
5771 rc = SUPR0ObjVerifyAccess(pCur->pvObj, pSession, pCur->szName);
5772 if (RT_SUCCESS(rc))
5773 *ppNetwork = pCur;
5774 else
5775 SUPR0ObjRelease(pCur->pvObj, pSession);
5776 }
5777 else if (rc == VERR_WRONG_ORDER)
5778 rc = VERR_NOT_FOUND; /* destruction race, pretend the other isn't there. */
5779 }
5780 }
5781 else
5782 {
5783 rc = VERR_INTNET_INCOMPATIBLE_TRUNK;
5784 LogRel(("intnetR0OpenNetwork failed. rc=%Rrc pCur->szTrunk=%s pszTrunk=%s pCur->enmTrunkType=%d enmTrunkType=%d\n",
5785 rc, pCur->szTrunk, pszTrunk, pCur->enmTrunkType, enmTrunkType));
5786 }
5787
5788 LogFlow(("intnetR0OpenNetwork: returns %Rrc *ppNetwork=%p\n", rc, *ppNetwork));
5789 return rc;
5790 }
5791
5792 pCur = pCur->pNext;
5793 }
5794
5795 LogFlow(("intnetR0OpenNetwork: returns VERR_NOT_FOUND\n"));
5796 return VERR_NOT_FOUND;
5797}
5798
5799
5800/**
5801 * Creates a new network.
5802 *
5803 * The call must own the INTNET::hMtxCreateOpenDestroy and has already attempted
5804 * opening the network and found it to be non-existing.
5805 *
5806 * @returns VBox status code.
5807 * @param pIntNet The instance data.
5808 * @param pSession The session handle.
5809 * @param pszNetwork The name of the network. This must be at least one character long and no longer
5810 * than the INTNETNETWORK::szName.
5811 * @param enmTrunkType The trunk type.
5812 * @param pszTrunk The trunk name. Its meaning is specific to the type.
5813 * @param fFlags Flags, see INTNET_OPEN_FLAGS_*.
5814 * @param ppNetwork Where to store the network. In the case of failure
5815 * whatever is returned here should be dereferenced
5816 * outside the INTNET::hMtxCreateOpenDestroy.
5817 */
5818static int intnetR0CreateNetwork(PINTNET pIntNet, PSUPDRVSESSION pSession, const char *pszNetwork, INTNETTRUNKTYPE enmTrunkType,
5819 const char *pszTrunk, uint32_t fFlags, PINTNETNETWORK *ppNetwork)
5820{
5821 LogFlow(("intnetR0CreateNetwork: pIntNet=%p pSession=%p pszNetwork=%p:{%s} enmTrunkType=%d pszTrunk=%p:{%s} fFlags=%#x ppNetwork=%p\n",
5822 pIntNet, pSession, pszNetwork, pszNetwork, enmTrunkType, pszTrunk, pszTrunk, fFlags, ppNetwork));
5823
5824 /* just pro forma validation, the caller is internal. */
5825 AssertPtr(pIntNet);
5826 AssertPtr(pSession);
5827 AssertPtr(pszNetwork);
5828 Assert(enmTrunkType > kIntNetTrunkType_Invalid && enmTrunkType < kIntNetTrunkType_End);
5829 AssertPtr(pszTrunk);
5830 Assert(!(fFlags & ~INTNET_OPEN_FLAGS_MASK));
5831 AssertPtr(ppNetwork);
5832
5833 *ppNetwork = NULL;
5834
5835 /*
5836 * Adjust the flags with defaults for the network policies.
5837 * Note: Main restricts promiscuous mode on the per interface level.
5838 */
5839 fFlags &= ~( INTNET_OPEN_FLAGS_IF_FIXED
5840 | INTNET_OPEN_FLAGS_IF_PROMISC_ALLOW
5841 | INTNET_OPEN_FLAGS_IF_PROMISC_DENY
5842 | INTNET_OPEN_FLAGS_IF_PROMISC_SEE_TRUNK
5843 | INTNET_OPEN_FLAGS_IF_PROMISC_NO_TRUNK
5844 | INTNET_OPEN_FLAGS_REQUIRE_AS_RESTRICTIVE_POLICIES
5845 | INTNET_OPEN_FLAGS_REQUIRE_EXACT);
5846 uint32_t fDefFlags = INTNET_OPEN_FLAGS_PROMISC_ALLOW_CLIENTS
5847 | INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_HOST
5848 | INTNET_OPEN_FLAGS_PROMISC_ALLOW_TRUNK_WIRE
5849 | INTNET_OPEN_FLAGS_TRUNK_HOST_ENABLED
5850 | INTNET_OPEN_FLAGS_TRUNK_HOST_CHASTE_MODE
5851 | INTNET_OPEN_FLAGS_TRUNK_WIRE_ENABLED
5852 | INTNET_OPEN_FLAGS_TRUNK_WIRE_CHASTE_MODE;
5853 if ( enmTrunkType == kIntNetTrunkType_WhateverNone
5854#ifdef VBOX_WITH_NAT_SERVICE
5855 || enmTrunkType == kIntNetTrunkType_SrvNat /* simialar security */
5856#endif
5857 || enmTrunkType == kIntNetTrunkType_None)
5858 fDefFlags |= INTNET_OPEN_FLAGS_ACCESS_RESTRICTED;
5859 else
5860 fDefFlags |= INTNET_OPEN_FLAGS_ACCESS_PUBLIC;
5861 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkNetFlags); i++)
5862 if (!(fFlags & g_afIntNetOpenNetworkNetFlags[i].fPair))
5863 fFlags |= g_afIntNetOpenNetworkNetFlags[i].fPair & fDefFlags;
5864
5865 /*
5866 * Allocate and initialize.
5867 */
5868 size_t cb = sizeof(INTNETNETWORK);
5869 if (fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
5870 cb += INTNETNETWORK_TMP_SIZE + 64;
5871 PINTNETNETWORK pNetwork = (PINTNETNETWORK)RTMemAllocZ(cb);
5872 if (!pNetwork)
5873 return VERR_NO_MEMORY;
5874 //pNetwork->pNext = NULL;
5875 //pNetwork->pIfs = NULL;
5876 pNetwork->hAddrSpinlock = NIL_RTSPINLOCK;
5877 pNetwork->MacTab.cEntries = 0;
5878 pNetwork->MacTab.cEntriesAllocated = INTNET_GROW_DSTTAB_SIZE;
5879 //pNetwork->MacTab.cPromiscuousEntries = 0;
5880 //pNetwork->MacTab.cPromiscuousNoTrunkEntries = 0;
5881 pNetwork->MacTab.paEntries = NULL;
5882 pNetwork->MacTab.fHostPromiscuousReal = false;
5883 pNetwork->MacTab.fHostPromiscuousEff = false;
5884 pNetwork->MacTab.fHostActive = false;
5885 pNetwork->MacTab.fWirePromiscuousReal = false;
5886 pNetwork->MacTab.fWirePromiscuousEff = false;
5887 pNetwork->MacTab.fWireActive = false;
5888 pNetwork->MacTab.pTrunk = NULL;
5889 pNetwork->hEvtBusyIf = NIL_RTSEMEVENT;
5890 pNetwork->pIntNet = pIntNet;
5891 //pNetwork->pvObj = NULL;
5892 if (fFlags & INTNET_OPEN_FLAGS_SHARED_MAC_ON_WIRE)
5893 pNetwork->pbTmp = RT_ALIGN_PT(pNetwork + 1, 64, uint8_t *);
5894 //else
5895 // pNetwork->pbTmp = NULL;
5896 pNetwork->fFlags = fFlags;
5897 //pNetwork->fMinFlags = 0;
5898 //pNetwork->cActiveIFs = 0;
5899 size_t cchName = strlen(pszNetwork);
5900 pNetwork->cchName = (uint8_t)cchName;
5901 Assert(cchName && cchName < sizeof(pNetwork->szName)); /* caller's responsibility. */
5902 memcpy(pNetwork->szName, pszNetwork, cchName); /* '\0' at courtesy of alloc. */
5903 pNetwork->enmTrunkType = enmTrunkType;
5904 Assert(strlen(pszTrunk) < sizeof(pNetwork->szTrunk)); /* caller's responsibility. */
5905 strcpy(pNetwork->szTrunk, pszTrunk);
5906
5907 /*
5908 * Create the semaphore, spinlock and allocate the interface table.
5909 */
5910 int rc = RTSemEventCreate(&pNetwork->hEvtBusyIf);
5911 if (RT_SUCCESS(rc))
5912 rc = RTSpinlockCreate(&pNetwork->hAddrSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "hAddrSpinlock");
5913 if (RT_SUCCESS(rc))
5914 {
5915 pNetwork->MacTab.paEntries = (PINTNETMACTABENTRY)RTMemAlloc(sizeof(INTNETMACTABENTRY) * pNetwork->MacTab.cEntriesAllocated);
5916 if (!pNetwork->MacTab.paEntries)
5917 rc = VERR_NO_MEMORY;
5918 }
5919 if (RT_SUCCESS(rc))
5920 {
5921 /*
5922 * Register the object in the current session and link it into the network list.
5923 */
5924 pNetwork->pvObj = SUPR0ObjRegister(pSession, SUPDRVOBJTYPE_INTERNAL_NETWORK, intnetR0NetworkDestruct, pNetwork, pIntNet);
5925 if (pNetwork->pvObj)
5926 {
5927 pNetwork->pNext = pIntNet->pNetworks;
5928 pIntNet->pNetworks = pNetwork;
5929
5930 /*
5931 * Check if the current session is actually allowed to create and
5932 * open the network. It is possible to implement network name
5933 * based policies and these must be checked now. SUPR0ObjRegister
5934 * does no such checks.
5935 */
5936 rc = SUPR0ObjVerifyAccess(pNetwork->pvObj, pSession, pNetwork->szName);
5937 if (RT_SUCCESS(rc))
5938 {
5939 /*
5940 * Connect the trunk.
5941 */
5942 rc = intnetR0NetworkCreateTrunkIf(pNetwork, pSession);
5943 if (RT_SUCCESS(rc))
5944 {
5945 *ppNetwork = pNetwork;
5946 LogFlow(("intnetR0CreateNetwork: returns VINF_SUCCESS *ppNetwork=%p\n", pNetwork));
5947 return VINF_SUCCESS;
5948 }
5949 }
5950
5951 SUPR0ObjRelease(pNetwork->pvObj, pSession);
5952 LogFlow(("intnetR0CreateNetwork: returns %Rrc\n", rc));
5953 return rc;
5954 }
5955
5956 /* cleanup */
5957 rc = VERR_NO_MEMORY;
5958 }
5959
5960 RTSemEventDestroy(pNetwork->hEvtBusyIf);
5961 pNetwork->hEvtBusyIf = NIL_RTSEMEVENT;
5962 RTSpinlockDestroy(pNetwork->hAddrSpinlock);
5963 pNetwork->hAddrSpinlock = NIL_RTSPINLOCK;
5964 RTMemFree(pNetwork->MacTab.paEntries);
5965 pNetwork->MacTab.paEntries = NULL;
5966 RTMemFree(pNetwork);
5967
5968 LogFlow(("intnetR0CreateNetwork: returns %Rrc\n", rc));
5969 return rc;
5970}
5971
5972
5973/**
5974 * Opens a network interface and connects it to the specified network.
5975 *
5976 * @returns VBox status code.
5977 * @param pSession The session handle.
5978 * @param pszNetwork The network name.
5979 * @param enmTrunkType The trunk type.
5980 * @param pszTrunk The trunk name. Its meaning is specific to the type.
5981 * @param fFlags Flags, see INTNET_OPEN_FLAGS_*.
5982 * @param fRestrictAccess Whether new participants should be subjected to access check or not.
5983 * @param cbSend The send buffer size.
5984 * @param cbRecv The receive buffer size.
5985 * @param phIf Where to store the handle to the network interface.
5986 */
5987INTNETR0DECL(int) IntNetR0Open(PSUPDRVSESSION pSession, const char *pszNetwork,
5988 INTNETTRUNKTYPE enmTrunkType, const char *pszTrunk, uint32_t fFlags,
5989 uint32_t cbSend, uint32_t cbRecv, PINTNETIFHANDLE phIf)
5990{
5991 LogFlow(("IntNetR0Open: pSession=%p pszNetwork=%p:{%s} enmTrunkType=%d pszTrunk=%p:{%s} fFlags=%#x cbSend=%u cbRecv=%u phIf=%p\n",
5992 pSession, pszNetwork, pszNetwork, enmTrunkType, pszTrunk, pszTrunk, fFlags, cbSend, cbRecv, phIf));
5993
5994 /*
5995 * Validate input.
5996 */
5997 PINTNET pIntNet = g_pIntNet;
5998 AssertPtrReturn(pIntNet, VERR_INVALID_PARAMETER);
5999 AssertReturn(pIntNet->u32Magic, VERR_INVALID_MAGIC);
6000
6001 AssertPtrReturn(pszNetwork, VERR_INVALID_PARAMETER);
6002 const char *pszNetworkEnd = RTStrEnd(pszNetwork, INTNET_MAX_NETWORK_NAME);
6003 AssertReturn(pszNetworkEnd, VERR_INVALID_PARAMETER);
6004 size_t cchNetwork = pszNetworkEnd - pszNetwork;
6005 AssertReturn(cchNetwork, VERR_INVALID_PARAMETER);
6006
6007 if (pszTrunk)
6008 {
6009 AssertPtrReturn(pszTrunk, VERR_INVALID_PARAMETER);
6010 const char *pszTrunkEnd = RTStrEnd(pszTrunk, INTNET_MAX_TRUNK_NAME);
6011 AssertReturn(pszTrunkEnd, VERR_INVALID_PARAMETER);
6012 }
6013 else
6014 pszTrunk = "";
6015
6016 AssertMsgReturn(enmTrunkType > kIntNetTrunkType_Invalid && enmTrunkType < kIntNetTrunkType_End,
6017 ("%d\n", enmTrunkType), VERR_INVALID_PARAMETER);
6018 switch (enmTrunkType)
6019 {
6020 case kIntNetTrunkType_None:
6021 case kIntNetTrunkType_WhateverNone:
6022#ifdef VBOX_WITH_NAT_SERVICE
6023 case kIntNetTrunkType_SrvNat:
6024#endif
6025 if (*pszTrunk)
6026 return VERR_INVALID_PARAMETER;
6027 break;
6028
6029 case kIntNetTrunkType_NetFlt:
6030 case kIntNetTrunkType_NetAdp:
6031 if (!*pszTrunk)
6032 return VERR_INVALID_PARAMETER;
6033 break;
6034
6035 default:
6036 return VERR_NOT_IMPLEMENTED;
6037 }
6038
6039 AssertMsgReturn(!(fFlags & ~INTNET_OPEN_FLAGS_MASK), ("%#x\n", fFlags), VERR_INVALID_PARAMETER);
6040 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkNetFlags); i++)
6041 AssertMsgReturn((fFlags & g_afIntNetOpenNetworkNetFlags[i].fPair) != g_afIntNetOpenNetworkNetFlags[i].fPair,
6042 ("%#x (%#x)\n", fFlags, g_afIntNetOpenNetworkNetFlags[i].fPair), VERR_INVALID_PARAMETER);
6043 for (uint32_t i = 0; i < RT_ELEMENTS(g_afIntNetOpenNetworkIfFlags); i++)
6044 AssertMsgReturn((fFlags & g_afIntNetOpenNetworkIfFlags[i].fPair) != g_afIntNetOpenNetworkIfFlags[i].fPair,
6045 ("%#x (%#x)\n", fFlags, g_afIntNetOpenNetworkIfFlags[i].fPair), VERR_INVALID_PARAMETER);
6046 AssertPtrReturn(phIf, VERR_INVALID_PARAMETER);
6047
6048 /*
6049 * Acquire the mutex to serialize open/create/close.
6050 */
6051 int rc = RTSemMutexRequest(pIntNet->hMtxCreateOpenDestroy, RT_INDEFINITE_WAIT);
6052 if (RT_FAILURE(rc))
6053 return rc;
6054
6055 /*
6056 * Try open / create the network and create an interface on it for the
6057 * caller to use.
6058 */
6059 PINTNETNETWORK pNetwork = NULL;
6060 rc = intnetR0OpenNetwork(pIntNet, pSession, pszNetwork, enmTrunkType, pszTrunk, fFlags, &pNetwork);
6061 if (RT_SUCCESS(rc))
6062 {
6063 rc = intnetR0NetworkCreateIf(pNetwork, pSession, cbSend, cbRecv, fFlags, phIf);
6064 if (RT_SUCCESS(rc))
6065 {
6066 intnetR0AdaptOpenNetworkFlags(pNetwork, fFlags);
6067 rc = VINF_ALREADY_INITIALIZED;
6068 }
6069 else
6070 SUPR0ObjRelease(pNetwork->pvObj, pSession);
6071 }
6072 else if (rc == VERR_NOT_FOUND)
6073 {
6074 rc = intnetR0CreateNetwork(pIntNet, pSession, pszNetwork, enmTrunkType, pszTrunk, fFlags, &pNetwork);
6075 if (RT_SUCCESS(rc))
6076 {
6077 rc = intnetR0NetworkCreateIf(pNetwork, pSession, cbSend, cbRecv, fFlags, phIf);
6078 if (RT_FAILURE(rc))
6079 SUPR0ObjRelease(pNetwork->pvObj, pSession);
6080 }
6081 }
6082
6083 RTSemMutexRelease(pIntNet->hMtxCreateOpenDestroy);
6084 LogFlow(("IntNetR0Open: return %Rrc *phIf=%RX32\n", rc, *phIf));
6085 return rc;
6086}
6087
6088
6089/**
6090 * VMMR0 request wrapper for IntNetR0Open.
6091 *
6092 * @returns see GMMR0MapUnmapChunk.
6093 * @param pSession The caller's session.
6094 * @param pReq The request packet.
6095 */
6096INTNETR0DECL(int) IntNetR0OpenReq(PSUPDRVSESSION pSession, PINTNETOPENREQ pReq)
6097{
6098 if (RT_UNLIKELY(pReq->Hdr.cbReq != sizeof(*pReq)))
6099 return VERR_INVALID_PARAMETER;
6100 return IntNetR0Open(pSession, &pReq->szNetwork[0], pReq->enmTrunkType, pReq->szTrunk,
6101 pReq->fFlags, pReq->cbSend, pReq->cbRecv, &pReq->hIf);
6102}
6103
6104
6105/**
6106 * Count the internal networks.
6107 *
6108 * This is mainly for providing the testcase with some introspection to validate
6109 * behavior when closing interfaces.
6110 *
6111 * @returns The number of networks.
6112 */
6113INTNETR0DECL(uint32_t) IntNetR0GetNetworkCount(void)
6114{
6115 /*
6116 * Grab the instance.
6117 */
6118 PINTNET pIntNet = g_pIntNet;
6119 if (!pIntNet)
6120 return 0;
6121 AssertPtrReturn(pIntNet, 0);
6122 AssertReturn(pIntNet->u32Magic == INTNET_MAGIC, 0);
6123
6124 /*
6125 * Grab the mutex and count the networks.
6126 */
6127 int rc = RTSemMutexRequest(pIntNet->hMtxCreateOpenDestroy, RT_INDEFINITE_WAIT);
6128 if (RT_FAILURE(rc))
6129 return 0;
6130
6131 uint32_t cNetworks = 0;
6132 for (PINTNETNETWORK pCur = pIntNet->pNetworks; pCur; pCur = pCur->pNext)
6133 cNetworks++;
6134
6135 RTSemMutexRelease(pIntNet->hMtxCreateOpenDestroy);
6136
6137 return cNetworks;
6138}
6139
6140
6141
6142/**
6143 * Destroys an instance of the Ring-0 internal networking service.
6144 */
6145INTNETR0DECL(void) IntNetR0Term(void)
6146{
6147 LogFlow(("IntNetR0Term:\n"));
6148
6149 /*
6150 * Zap the global pointer and validate it.
6151 */
6152 PINTNET pIntNet = g_pIntNet;
6153 g_pIntNet = NULL;
6154 if (!pIntNet)
6155 return;
6156 AssertPtrReturnVoid(pIntNet);
6157 AssertReturnVoid(pIntNet->u32Magic == INTNET_MAGIC);
6158
6159 /*
6160 * There is not supposed to be any networks hanging around at this time.
6161 */
6162 AssertReturnVoid(ASMAtomicCmpXchgU32(&pIntNet->u32Magic, ~INTNET_MAGIC, INTNET_MAGIC));
6163 Assert(pIntNet->pNetworks == NULL);
6164 if (pIntNet->hMtxCreateOpenDestroy != NIL_RTSEMMUTEX)
6165 {
6166 RTSemMutexDestroy(pIntNet->hMtxCreateOpenDestroy);
6167 pIntNet->hMtxCreateOpenDestroy = NIL_RTSEMMUTEX;
6168 }
6169 if (pIntNet->hHtIfs != NIL_RTHANDLETABLE)
6170 {
6171 /** @todo does it make sense to have a deleter here? */
6172 RTHandleTableDestroy(pIntNet->hHtIfs, NULL, NULL);
6173 pIntNet->hHtIfs = NIL_RTHANDLETABLE;
6174 }
6175
6176 RTMemFree(pIntNet);
6177}
6178
6179
6180/**
6181 * Initializes the internal network ring-0 service.
6182 *
6183 * @returns VBox status code.
6184 */
6185INTNETR0DECL(int) IntNetR0Init(void)
6186{
6187 LogFlow(("IntNetR0Init:\n"));
6188 int rc = VERR_NO_MEMORY;
6189 PINTNET pIntNet = (PINTNET)RTMemAllocZ(sizeof(*pIntNet));
6190 if (pIntNet)
6191 {
6192 //pIntNet->pNetworks = NULL;
6193
6194 rc = RTSemMutexCreate(&pIntNet->hMtxCreateOpenDestroy);
6195 if (RT_SUCCESS(rc))
6196 {
6197 rc = RTHandleTableCreateEx(&pIntNet->hHtIfs, RTHANDLETABLE_FLAGS_LOCKED | RTHANDLETABLE_FLAGS_CONTEXT,
6198 UINT32_C(0x8ffe0000), 4096, intnetR0IfRetainHandle, NULL);
6199 if (RT_SUCCESS(rc))
6200 {
6201 pIntNet->u32Magic = INTNET_MAGIC;
6202 g_pIntNet = pIntNet;
6203 LogFlow(("IntNetR0Init: returns VINF_SUCCESS pIntNet=%p\n", pIntNet));
6204 return VINF_SUCCESS;
6205 }
6206
6207 RTSemMutexDestroy(pIntNet->hMtxCreateOpenDestroy);
6208 }
6209 RTMemFree(pIntNet);
6210 }
6211 LogFlow(("IntNetR0Init: returns %Rrc\n", rc));
6212 return rc;
6213}
6214
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette