/* $Id: DevDP8390.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * DevDP8390 - National Semiconductor DP8390-based Ethernet Adapter Emulation. */ /* * Copyright (C) 2022-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /** @page pg_dev_dp8390 NatSemi DP8390-Based Ethernet NIC Emulation. * * This software was written based on the following documents: * * - National Semiconductor DP8390/NS32490 Network Interface Controller, * 1986 * - National Semiconductor DP8390D/NS32490D NIC Network Interface * Controller datasheet, July 1995 * - National Semiconductor Application Note 729, DP839EB-ATN IBM PC-AT * Compatible DP83901 SNIC Serial Network Interface Controller * Evaluation Board, 1993 * - National Semiconductor Application Note 842, The Design and Operation * of a Low Cost, 8-Bit PC-XT Compatible Ethernet Adapter Using * the DP83902, May 1993 * - National Semiconductor Application Note 858, Guide to Loopback Using * the DP8390 Chip Set, October 1992 * - National Semiconductor Application Note 875, DP83905EB-AT AT/LANTIC * Evaluation Board, June 1993 * - Western Digital WD83C584 Bus Interface Controller Device datasheet, * October 29, 1990 * - Western Digital WD83C690 Ethernet LAN Controller datasheet, * November 2, 1990 * - 3Com EtherLink II Adapter Technical Reference Manual, * March 1991 * * This emulation is compatible with drivers for: * - Novell/Eagle/Anthem NE1000 (8-bit) * - Novell/Eagle/Anthem NE2000 (16-bit) * - Western Digital/SMC WD8003E (8-bit) * - Western Digital/SMC WD8013EBT (16-bit) * - 3Com EtherLink II 3C503 (8-bit) * * * The National Semiconductor DP8390 was an early (circa 1986) low-cost * Ethernet controller, typically accompanied by the DP8391 Serial Network * Interface and the DP8392 Coaxial Transceiver Interface. * * Due to its relatively low cost, the DP8390 NIC was chosen for several * very widespread early PC Ethernet designs, namely the Novell NE1000/NE2000, * Western Digital (later SMC) WD8003 EtherCard Plus, and 3Com EtherLink II. * The popularity of these cards, especially the NE2000, in turn spawned * a bevy of compatible chips from National Semiconductor and many others. * * All common DP8390-based cards have onboard memory. The initial WD8003E and * NE1000 cards have one 8Kx8 SRAM; 16-bit cards like WD8013E or NE2000 have * two 8Kx8 SRAMs wired in 8Kx16 configuration to enable 16-bit wide transfers. * The DP8390 can address up to 64K or local memory and uses "Local DMA" * (similar to bus mastering) to access it. Some newer cards had 32K or more * onboard RAM. Note that an NE2000 in 8-bit mode can only address 8K local * memory, effectively reverting to an NE1000. * * The DP8390 uses "Remote DMA" to move data between local memory and the host * system. Remote DMA is quite similar to 8237-style third party DMA, except * the DMA controller is on the DP8390 chip in this case. * * The DP8390 has a control bit (DCR.WTS) which selects whether all DMA (both * Local and Remote) transfers are 8-bit or 16-bit. Word-wide transfers can * generally only be used on a 16-bit card in a 16-bit slot, because only then * can the host drive 16-bit I/O cycles to the data ports. That is why * an NE2000 in an 8-bit slot can only use half of its local RAM -- remote DMA * simply cannot access half of the 8Kx16 SRAM. * * The DP8390 maps its internal registers as sixteen 8-bit wide I/O ports. * There are four register pages, selectable through the Command Register (CR) * which is accessible at offset 0 in all pages. * * The NE1000/NE2000 cards only use I/O and IRQ resources, not memory * or DMA. In contrast, the Western Digital cards use memory-mapped buffers. * Later AT/LANTIC (DP83905) based NE2000-compatible cards can optionally * use memory as well. The 3Com EtherLink II (3C503) uses a custom gate array * in addition to the DP8390 and can use programmed I/O, 8237 DMA, as well * as optional direct memory mapping. * * Address decoding is typically incomplete, which causes the buffer RAM and * possibly PROM to be aliased multiple times in the DP8390's address space. * * Buffer overflow handling is slightly tricky. The DP8390 assumes that if * the receiver is enabled, there is space for at least one page (256 bytes). * Once it fills up the page and advances the CURR pointer, the DP8390 checks * whether CURR equals BNRY and if so, triggers an overflow condition. Note * that after the NIC is initialized, CURR *will* normally equal BNRY, with * both pointing at the beginning of the receive ring (PSTART). An overflow * is only triggered when CURR equals BNRY right after advancing. * * The documentation of the Send Packet command mentions that when CRDA crosses * the PSTOP register, the current remote DMA address (i.e. CRDA) is set to * the PSTART value, which is rather convenient when reading received packets * out of the ring buffer using remote DMA. The documentation does not mention * that the same logic applies for all remote DMA reads, a feature that several * NE1000/NE2000 drivers (packet drivers, Novell ODI) rely on. This is logical, * because reading out of the receive ring buffer address range always implies * reading received packets, and then the PSTOP->PSTART wraparound becomes * desirable. It is unclear whether the same wraparound handling also applies * for remote DMA writes within the receive ring buffer. * * The documentation is not very clear on how the CRDA register is managed. * One might be led to believe that starting remote DMA copies the remote DMA * start address (i.e. RSAR) to the CRDA register. However, the NE1000 ODI * driver for OS/2 1.0 (NE1000.SYS from early 1988) relies on restarting remote * DMA and continuing where it left off. The DP8390D datasheet only mentions * this in a passing fashion at the end of the "Remote Write with High Speed * Buses" section, saying that if a dummy remote read is executed before a * remote write, RSAR can be set up for the dummy read such that the CRDA * register contains the desired value for the following write. * * Conversely, it is not spelled out that writing RSAR also updates CRDA, but * at least Novell's NE2000 ODI driver v2.12 is known to rely on this behavior * and checks that a write to RSAR is reflected in CRDA. * * Loopback operation is limited in the DP8390. Because it is a half-duplex * device, it cannot truly transmit and receive simultaneously. When loopback * is in effect, the received data is *not* written into memory. Only the last * few bytes of the packet are visible in the FIFO. * * Likewise due to its half-duplex nature, the CRC circuitry during loopback * works either only on the transmit side (FCS is generated but not checked) * or the receive side (FCS is checked but not generated). * * The loopback behavior is even stranger when DCR.WTS is set to enabled 16-bit * DMA transfers. Even though the chip reads 16 bits at a time, only 8 bits are * actually transmitted; the DCR.BOS bit determines whether the low or high * 8 bits of each words are transmitted. As a consequence, the programmed length * of the transmit is also halved. * * Because loopback operation is so different from normal send/receive, loopback * packets are not run through the normal receive path and are treated specially * instead. The WD and especially 3C503 diagnostics exercise the loopback * functionality fairly thoroughly. * * * NE1000 and NE2000 * ----------------- * * Common NE1000/NE2000 configurations in Novell drivers: * I/O Base = 300h, IRQ = 3 (default) * I/O Base = 320h, IRQ = 2 * I/O Base = 340h, IRQ = 4 * I/O Base = 360h, IRQ = 5 * The I/O base can be set to 300h/320h/340h/360h; the IRQ to 2, 3, 4, 5. * No memory or DMA is used. * * The NE1000/NE2000 adds a data register and a reset register to the I/O * space. A PROM containing the node address is mapped into the DP8390's local * address space. * * The mapping of the 32x8 PROM on an NE2000 card is quite non-obvious but * fortunately well explained in the AN-729 Application Note. Address lines * A4-A1 of the internal bus are connected to lines A3-A0 of the PROM * (enabling 16 distinct bytes of the 32-byte PROM to be addressed). However, * the negated EN16 signal, which is active when the NE2000 is in a 16-bit * slot, is connected to the PROM's address line A4. That means an NE2000 in * a 16-bit slot reads different PROM bytes than when the same card is in an * 8-bit slot. The PROM is structured such that an NE2000 in an 8-bit slot * reads a 'BB' signature (same as NE1000) at PROM offset 1Eh/1Fh, while * an NE2000 in a 16-bit slot returns a 'WW' signature from PROM offset * 0Eh/0Fh instead. * * The original NE1000 boards Assy. #950-054401 actually only had 6 bytes of * MAC address in the PROM, the rest was unused (0FFh). Software supporting the * NE1000 thus should not examine the PROM contents beyond the first 6 bytes. * * Novell's old OUI was 00:00:D8 but drivers are not known to check for it. * * Newer DP83905 AT/LANTIC based NE2000plus cards were optionally capable of * using shared RAM in a manner very similar to the WD8003/WD8013. * * * WD8003 and WD8013 EtherCard Plus * -------------------------------- * * Common WD8013 configurations: * I/O Base = 280h, IRQ = 3, RAM D000-D3FF (default) * I/O Base = 330h, IRQ = 10, RAM CC00-CFFF * I/O Base = 240h, IRQ/RAM soft-configurable * The I/O base can be set anywhere in the 2xxh-3xxh range in 20h increments. * The IRQs available on a WD8013 are 2, 3, 4, 5, 7, 10, 11, 15. The shared * RAM can be anywhere between 80000h (512K) to FFC000h (16M-16K) in 16K * increments. * * The Western Digital WD8003E appeared at around the same time as Novell's * NE1000 (1987). It is likewise a short 8-bit ISA card with 8Kx8 onboard * SRAM. The major difference is that rather than using remote DMA to move * data between the host and local RAM, the WD8003 directly mapps the onboard * memory to the host's address space (often called shared memory). A later * 16-bit WD8013 model used 8Kx16 SRAM, and there were follow-on WD8003 models * with 16K or 32K local RAM. * * Instead of mapping the PROM into the DP8390's local address space, the * WD8003/WD8013 exposes the node address through the I/O space; the DP8390's * local address space only contains buffer RAM. * * The WD8003 cannot use remote DMA at all; the host must use shared memory. * Remote DMA can be programmed but there is no way to trigger RDMA transfers. * * Western Digital's brand name for WD8003/WD8013 was EtherCard. Circa 1991, * WD sold the networking business to SMC; SMC continued to sell and further * develop the cards under the Elite brand name, also designated as the * SMC8000 series. * * The original WD8003E/EBT/WT uses very simple glue logic around the DP8390 * and must be configured through jumpers. Newer WD8003EB/EP/EW/W/WC uses an * interface chip (WD83C583, WD83C584, or later) with an EEPROM and can be * configured through a software utility. * * Similarly the 16-bit WD8013EBT is configured only though jumpers, while * the newer WD8013EB/W/EW/EWC/WC/EPC are software configurable. * * The "Board ID" byte (at offset 6 in the PROM) is used to distinguish * between the various models. * * Newer WD cards use the WD83C690 controller rather than DP8390. The * WD83C690 is close enough to DP8390 that old WD drivers should work with * it, but it has a number of differences. It has no support for Remote DMA * whatsoever, and does not implement multicast filtering. * * The WD83C690 also handles receive buffer overflows somewhat differently; * the DP8390 never fills the last remaining buffer page, meaning that * CURR=BNRY indicates an empty buffer while CURR=BNRY-1 means buffer full. * The WD83C690 can fill all pages and decides whether it is full or empty * based on whether CURR or BNRY was changed more recently. * * Old Western Digital utilities/drivers may require the card to have WD's * old OUI of 00:00:0C and refuse to recognize the hardware otherwise. * * The emulation passes WD diagnostics with no errors (DIAGNOSE.EXE Ver 1.11, * dated 12/12/1989). * * * 3C503 EtherLink II * ------------------ * * Common 3C503 configurations in Novell drivers: * I/O Base = 300h, IRQ = 3 (default) * The I/O base can be set via jumpers to 2E0h, 2A0h, 280h, 250h, 350h, 330h, * 310h, or 300h (default). The ROM/RAM can be optionally mapped to one of * DC000-DFFFF, D8000-DBFFF, CC000-CFFFF, or C8000-CBFFF, again configured * through jumpers. The available IRQs are 2, 3, 4, or 5, and DRQs 1, 2, or 3, * both soft-configurable (no IRQ/DRQ jumpers). * * Yet another design based on the DP8390 was the 3Com 3C503 EtherLink II, * available sometime in 1988. Unlike Novell and WD, 3Com added a custom * host interface ASIC ("Gate Array") which handles all transfers to and from * the 8Kx8 onboard SRAM. The 3C503 can map the card's local RAM directly * into the host's address space, alternatively software can use either PIO * or 8-bit DMA to transfer data. * * For reasons that are not entirely clear, 3Com decided that the Remote DMA * implementation on the DP3890 (successfully used by the NE1000/NE2000) was * too buggy and the Gate Array essentially duplicates the Remote DMA * functionality, while also adding 8327 style DMA support (like the DP839EB * had) and optional shared RAM. * * Just like the NE1000/NE2000 and WD8003/WD8013, the 3C503 exists in an * 8-bit variant (EtherLink II) and a 16-bit variant (EtherLink II/16), * although both types are called 3C503. * * Since the 3C503 does not require shared RAM to operate, 3Com decided to * use a single memory mapping for both a boot ROM (if present) and shared * RAM. It is possible to boot from the ROM utilizing PIO or DMA for data * transfers, and later switch to shared RAM. However, 3Com needed to add * a hack for warm boot; the Vector Pointer Registers (VPTR0/1/2) contain * a 20-bit address and the Gate Array monitors the ISA bus for a read cycle * to that address. When a read cycle from the VPTR address occurs, the * memory mapping is switched from RAM to ROM. The VPTR registers are meant * to be programmed with the warm boot vector (often F000:FFF0 or FFFF0h). * * Some UNIX 3C503 drivers may require the card to have 3Com's old OUI * of 02:60:8C and refuse to detect the hardware otherwise. Likewise the * 3C503 diagnostics fail if the OUI is not 3Com's. * * The emulation passes 3Com diagnostics with flying colors (3C503.EXE Version * 1.5, dated 11/26/1991). * * * Linux Drivers * * The DP8390 driver (shared by NE1000/NE2000, WD8003/WD8013, and 3C503 drivers) * in Linux has severe bugs in the receive path. The driver clears receive * interrupts *after* going through the receive ring; that causes it to race * against the DP8390 chip and sometimes dismiss receive interrupts without * handling them. The driver also only receives at most 9 packets at a time, * which again can cause already received packets to be "hanging" in the receive * queue without the driver processing them. * In addition, prior to Linux 1.3.47, the driver incorrectly cleared the * overflow warning interrupt after any receive, causing it to potentially * miss overflow interrupts. * * The above bugs cause received packets to be lost or retransmitted by sender, * causing major TCP/IP performance issues when the DP8390 receives packets * very quickly. Other operating systems do not exhibit these bugs. * * * BSD Drivers * * For reasons that are not obvious, BSD drivers have configuration defaults far * off from the hardware defaults. For NE2000 (ne1), it is I/O base 300h and * IRQ 10. For WD8003E (we0), it is I/O base 280h, IRQ 9, memory D0000-D1FFF. * For 3C503 (ec0), it is I/O base 250h, IRQ 9, memory D8000-D9FFF (no DMA). * * The resource assigments are difficult to configure (sometimes impossible on * installation CDs) and the high IRQs may clash with PCI devices. * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_DP8390 #include #include #include #include #include #include #include #include #include #include #ifdef IN_RING3 # include # include # include #endif #include "VBoxDD.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define DPNIC_SAVEDSTATE_VERSION 1 /** Maximum number of times we report a link down to the guest (failure to send frame) */ #define DPNIC_MAX_LINKDOWN_REPORTED 3 /** Maximum number of times we postpone restoring a link that is temporarily down. */ #define DPNIC_MAX_LINKRST_POSTPONED 3 /** Maximum frame size we handle */ #define MAX_FRAME 1536 /* Size of the local RAM. */ #define DPNIC_MEM_SIZE 16384u #define DPNIC_MEM_MASK (DPNIC_MEM_SIZE - 1) /* Although it is a 16-bit adapter, the EtherLink II only supports 8-bit DMA * and therefore DMA channels 1 to 3 are available. */ #define ELNKII_MIN_VALID_DMA 1 #define ELNKII_MAX_VALID_DMA 3 /* EtherLink II Gate Array revision. */ #define ELNKII_GA_REV 1 /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Emulated device types. */ enum DP8390_DEVICE_TYPE { DEV_NE1000 = 0, /* Novell NE1000 compatible (8-bit). */ DEV_NE2000 = 1, /* Novell NE2000 compatible (16-bit). */ DEV_WD8003 = 2, /* Western Digital WD8003 EtherCard Plus compatible (8-bit). */ DEV_WD8013 = 3, /* Western Digital WD8013 EtherCard Plus compatible (16-bit). */ DEV_3C503 = 4 /* 3Com 3C503 EtherLink II compatible. */ }; /** WD8003/WD80013 specific register offsets. */ #define WDR_CTRL1 0 /* Control register 1. */ #define WDR_ATDET 1 /* 16-bit slot detect. */ #define WDR_IOBASE 2 /* I/O base register. */ #define WDR_CTRL2 5 /* Control register 2. */ #define WDR_JP 6 /* Jumper settings. */ #define WDR_PROM 8 /* PROM offset in I/O space. */ /** WD8013 Control Register 1. */ typedef struct WD_CTRL1 { uint8_t A13_18 : 6; /* Shared memory decoding A13-A18. */ uint8_t MEME : 1; /* Enable memory access. */ uint8_t RESET : 1; /* Reset NIC core. */ } WD_CTRL1; AssertCompile(sizeof(WD_CTRL1) == sizeof(uint8_t)); /** WD8013 Control Register 2. */ typedef struct WD_CTRL2 { uint8_t A19_23 : 5; /* Shared memory decoding A19-A23. */ uint8_t res : 1; /* Reserved. */ uint8_t MEMW : 1; /* Memory width (16-bit wide if set). */ uint8_t M16 : 1; /* Allow 16-bit host memory cycles if set. */ } WD_CTRL2; AssertCompile(sizeof(WD_CTRL2) == sizeof(uint8_t)); /** 3C503 EtherLink II specific register offsets. */ #define GAR_PSTR 0 #define GAR_PSPR 1 #define GAR_DQTR 2 #define GAR_R_BCFR 3 #define GAR_R_PCFR 4 #define GAR_GACFR 5 #define GAR_GACR 6 #define GAR_STREG 7 #define GAR_IDCFR 8 #define GAR_DAMSB 9 #define GAR_DALSB 10 #define GAR_VPTR2 11 #define GAR_VPTR1 12 #define GAR_VPTR0 13 #define GAR_RFMSB 14 #define GAR_RFLSB 15 /** 3C503 EtherLink II Gate Array registers. */ /** Gate Array DRQ Timer Register. */ typedef struct EL_DQTR { uint8_t tb : 5; /* Timer bits; should be multiple of 4. */ uint8_t res : 3; /* Reserved. */ } GA_DQTR; AssertCompile(sizeof(GA_DQTR) == sizeof(uint8_t)); /** Gate Array Configuration Register. */ typedef struct EL_GACFR { uint8_t mbs : 3; /* Memory Bank Select. */ uint8_t rsel : 1; /* RAM Select. */ uint8_t test : 1; /* Makes GA counters run at 10 MHz. */ uint8_t ows : 1; /* 0 Wait State for Gate Array. */ uint8_t tcm : 1; /* Terminal Count Mask for DMA (block interrupt if set). */ uint8_t nim : 1; /* NIC Interrupt Mask (block interrupt if set). */ } GA_GACFR; AssertCompile(sizeof(GA_GACFR) == sizeof(uint8_t)); /** Gate Array Configuration Register. */ typedef struct EL_GACR { uint8_t rst : 1; /* Hard reset GA/NIC. */ uint8_t xsel : 1; /* Transceiver Select. */ uint8_t ealo : 1; /* Window low 16 bytes of PROM to I/O space. */ uint8_t eahi : 1; /* Window high 16 bytes of PROM to I/O space. */ uint8_t share : 1; /* Enable interrupt sharing. */ uint8_t dbsel : 1; /* Double Buffer Select for FIFOs. */ uint8_t ddir : 1; /* DMA Direction (1=host to adapter). */ uint8_t start : 1; /* Start Gate Array DMA. */ } GA_GACR; AssertCompile(sizeof(GA_GACR) == sizeof(uint8_t)); /** Gate Array Status Register. */ typedef struct EL_STREG { uint8_t rev : 3; /* Gate Array Revision. */ uint8_t dip : 1; /* DMA In Progress. */ uint8_t dtc : 1; /* DMA Terminal Count. */ uint8_t oflw : 1; /* Data Overflow. */ uint8_t uflw : 1; /* Data Underflow. */ uint8_t dprdy : 1; /* Data Port Ready. */ } GA_STREG; AssertCompile(sizeof(GA_STREG) == sizeof(uint8_t)); /** Gate Array Interrupt/DMA Configuration. */ typedef struct EL_IDCFR { uint8_t drq1 : 1; /* Enable DRQ 1. */ uint8_t drq2 : 1; /* Enable DRQ 2. */ uint8_t drq3 : 1; /* Enable DRQ 3. */ uint8_t res : 1; /* Unused. */ uint8_t irq2 : 1; /* Enable IRQ 2. */ uint8_t irq3 : 1; /* Enable IRQ 3. */ uint8_t irq4 : 1; /* Enable IRQ 4. */ uint8_t irq5 : 1; /* Enable IRQ 5. */ } GA_IDCFR; AssertCompile(sizeof(GA_IDCFR) == sizeof(uint8_t)); /** Current DMA Address. */ typedef struct EL_CDADR { uint8_t cdadr_lsb; /* Current DMA Address LSB. */ uint8_t cdadr_msb; /* Current DMA Address MSB. */ } GA_CDADR; AssertCompile(sizeof(GA_CDADR) == sizeof(uint16_t)); /** 3C503 Gate Array state. */ typedef struct EL_GA_s { uint8_t PSTR; /* Page Start Register. */ uint8_t PSPR; /* Page Stop Register. */ union { uint8_t DQTR; /* DRQ Timer Register. */ GA_DQTR dqtr; }; uint8_t BCFR; /* Base Configuration Register (R/O). */ uint8_t PCFR; /* Boot PROM Configuration Register (R/O). */ union { uint8_t GACFR; GA_GACFR gacfr; /* Gate Array Configuration Register. */ }; union { uint8_t GACR; /* Gate Array Control Register. */ GA_GACR gacr; }; union { uint8_t STREG; /* Gate Array Status Register (R/O). */ GA_STREG streg; }; union { uint8_t IDCFR; /* Interrupt/DMA Configuration Register. */ GA_IDCFR idcfr; }; uint8_t DAMSB; /* DMA Address MSB. */ uint8_t DALSB; /* DMA Address LSB. */ uint8_t VPTR2; /* Vector Pointer 2. */ uint8_t VPTR1; /* Vector Pointer 1. */ uint8_t VPTR0; /* Vector Pointer 0. */ union { uint16_t CDADR; /* Current DMA address (internal state). */ GA_CDADR cdadr; }; bool fGaIrq; /* Gate Array IRQ (internal state). */ } EL_GA, *PEL_GA; /** DP8390 core register offsets. */ #define DPR_CR 0 #define DPR_P0_R_CLDA0 1 #define DPR_P0_W_PSTART 1 #define DPR_P0_R_CLDA1 2 #define DPR_P0_W_PSTOP 2 #define DPR_P0_BNRY 3 #define DPR_P0_R_TSR 4 #define DPR_P0_W_TPSR 4 #define DPR_P0_R_NCR 5 #define DPR_P0_W_TBCR0 5 #define DPR_P0_R_FIFO 6 #define DPR_P0_W_TBCR1 6 #define DPR_P0_ISR 7 #define DPR_P0_R_CRDA0 8 #define DPR_P0_W_RSAR0 8 #define DPR_P0_R_CRDA1 9 #define DPR_P0_W_RSAR1 9 #define DPR_P0_W_RBCR0 10 #define DPR_P0_W_RBCR1 11 #define DPR_P0_R_RSR 12 #define DPR_P0_W_RCR 12 #define DPR_P0_R_CNTR0 13 #define DPR_P0_W_TCR 13 #define DPR_P0_R_CNTR1 14 #define DPR_P0_W_DCR 14 #define DPR_P0_R_CNTR2 15 #define DPR_P0_W_IMR 15 #define DPR_P1_CURR 7 #define DPR_P2_R_PSTART 1 #define DPR_P2_W_CLDA0 1 #define DPR_P2_R_PSTOP 2 #define DPR_P2_W_CLDA1 2 #define DPR_P2_RNXTPP 3 /* Remote Next Packet Pointer. */ #define DPR_P2_R_TPSR 4 #define DPR_P2_LNXTPP 5 /* Local Next Packet Pointer. */ #define DPR_P2_ADRCU 6 /* Address Counter (Upper). */ #define DPR_P2_ADRCL 7 /* Address Counter (Lower). */ #define DPR_P2_R_RCR 12 #define DPR_P2_R_TCR 13 #define DPR_P2_R_DCR 14 #define DPR_P2_R_IMR 15 /** DP8390 Packet Header. */ typedef struct DP_PKT_HDR { uint8_t rcv_stat; /* Receive Status. */ uint8_t next_ptr; /* Next Packet Pointer. */ uint16_t byte_cnt; /* Receive byte count. */ } DP_PKT_HDR; /** Select values for CR.RD field. */ #define DP_CR_RDMA_INVL 0 /* Invalid value. */ #define DP_CR_RDMA_RD 1 /* Remote Read. */ #define DP_CR_RDMA_WR 2 /* Remote Write. */ #define DP_CR_RDMA_SP 3 /* Send Packet. */ #define DP_CR_RDMA_ABRT 4 /* Abort Remote DMA. */ /** DP8390 Command Register (CR). */ typedef struct DP_CR { uint8_t STP : 1; /* Stop. */ uint8_t STA : 1; /* Start. */ uint8_t TXP : 1; /* Transmit Packet. */ uint8_t RD : 3; /* Remote DMA Command. */ uint8_t PS : 2; /* Page Select. */ } DP_CR; AssertCompile(sizeof(DP_CR) == sizeof(uint8_t)); /** DP8390 Interrupt Status Register (ISR). */ typedef struct DP_ISR { uint8_t PRX : 1; /* Packet Received. */ uint8_t PTX : 1; /* Packet Transmitted. */ uint8_t RXE : 1; /* Receive Error. */ uint8_t TXE : 1; /* Transmit Error. */ uint8_t OVW : 1; /* Overwrite Warning (no receive buffers). */ uint8_t CNT : 1; /* Counter Overflow. */ uint8_t RDC : 1; /* Remote DMA Complete. */ uint8_t RST : 1; /* Reset Status. */ } DP_ISR; AssertCompile(sizeof(DP_ISR) == sizeof(uint8_t)); /** DP8390 Interrupt Mask Register (IMR). */ typedef struct DP_IMR { uint8_t PRXE : 1; /* Packet Received Interrupt Enable. */ uint8_t PTXE : 1; /* Packet Transmitted Interrupt Enable. */ uint8_t RXEE : 1; /* Receive Error Interrupt Enable. */ uint8_t TXEE : 1; /* Transmit Error Interrupt Enable. */ uint8_t OVWE : 1; /* Overwrite Warning Interrupt Enable. */ uint8_t CNTE : 1; /* Counter Overflow Interrupt Enable. */ uint8_t RDCE : 1; /* DMA Complete Interrupt Enable. */ uint8_t res : 1; /* Reserved. */ } DP_IMR; AssertCompile(sizeof(DP_IMR) == sizeof(uint8_t)); /** DP8390 Data Configuration Register (DCR). */ typedef struct DP_DCR { uint8_t WTS : 1; /* Word Transfer Select. */ uint8_t BOS : 1; /* Byte Order Select. */ uint8_t LAS : 1; /* Long Address Select. */ uint8_t LS : 1; /* Loopback Select. */ uint8_t ARM : 1; /* Auto-Initialize Remote. */ uint8_t FT : 2; /* Fifo Threshold Select. */ uint8_t res : 1; /* Reserved. */ } DP_DCR; AssertCompile(sizeof(DP_DCR) == sizeof(uint8_t)); /** Transmit Configuration Register (TCR). */ typedef struct DP_TCR { uint8_t CRC : 1; /* Inhibit CRC. */ uint8_t LB : 2; /* Loopback Control. */ uint8_t ATD : 1; /* Auto Transmit Disable. */ uint8_t OFST : 1; /* Collision Offset Enable. */ uint8_t res : 3; /* Reserved. */ } DP_TCR; AssertCompile(sizeof(DP_TCR) == sizeof(uint8_t)); /** Transmit Status Register (TSR). */ typedef struct DP_TSR { uint8_t PTX : 1; /* Packet Transmitted. */ uint8_t DFR : 1; /* Non-Deferred Transmission (reserved in DP83901A). */ uint8_t COL : 1; /* Transmit Collided. */ uint8_t ABT : 1; /* Transmit Aborted. */ uint8_t CRS : 1; /* Carrier Sense Lost. */ uint8_t FU : 1; /* FIFO Underrun. */ uint8_t CDH : 1; /* CD Heartbeat. */ uint8_t OWC : 1; /* Out of Window Collision. */ } DP_TSR; AssertCompile(sizeof(DP_TSR) == sizeof(uint8_t)); /** Receive Configuration Register (RCR). */ typedef struct DP_RCR { uint8_t SEP : 1; /* Save Errored Packets. */ uint8_t AR : 1; /* Accept Runt Packets. */ uint8_t AB : 1; /* Accept Broadcast. */ uint8_t AM : 1; /* Accept Multicast. */ uint8_t PRO : 1; /* Promiscuous Physical. */ uint8_t MON : 1; /* Monitor Mode. */ uint8_t res : 2; /* Reserved. */ } DP_RCR; AssertCompile(sizeof(DP_RCR) == sizeof(uint8_t)); /** Receive Status Register (RSR). */ typedef struct DP_RSR { uint8_t PRX : 1; /* Packet Received Intact. */ uint8_t CRC : 1; /* CRC Error. */ uint8_t FAE : 1; /* Frame Alignment Error. */ uint8_t FO : 1; /* FIFO Overrun. */ uint8_t MPA : 1; /* Missed Packet. */ uint8_t PHY : 1; /* Physical/Multicast Address. */ uint8_t DIS : 1; /* Receiver Disabled. */ uint8_t DFR : 1; /* Deferring. */ } DP_RSR; AssertCompile(sizeof(DP_RSR) == sizeof(uint8_t)); /** Transmit Byte Count Register. */ typedef struct DP_TBCR { uint8_t TBCR0; uint8_t TBCR1; } DP_TBCR; AssertCompile(sizeof(DP_TBCR) == sizeof(uint16_t)); /** Current Local DMA Address. */ typedef struct DP_CLDA { uint8_t CLDA0; uint8_t CLDA1; } DP_CLDA; AssertCompile(sizeof(DP_CLDA) == sizeof(uint16_t)); /** Remote Start Address Register. */ typedef struct DP_RSAR { uint8_t RSAR0; uint8_t RSAR1; } DP_RSAR; AssertCompile(sizeof(DP_RSAR) == sizeof(uint16_t)); /** Remote Byte Count Register. */ typedef struct DP_RBCR { uint8_t RBCR0; uint8_t RBCR1; } DP_RBCR; AssertCompile(sizeof(DP_RBCR) == sizeof(uint16_t)); /** Current Remote DMA Address. */ typedef struct DP_CRDA { uint8_t CRDA0; uint8_t CRDA1; } DP_CRDA; AssertCompile(sizeof(DP_CRDA) == sizeof(uint16_t)); /** Page 1 registers. */ /* All registers read/write without side effects, unlike pages 0/2. */ typedef struct DP_PG1 { uint8_t dummy_cr; uint8_t PAR[6]; /* Physical Address PAR0-PAR5. */ uint8_t dummy_curr; /* Current Page Register. */ uint8_t MAR[8]; /* Multicast Address Register MAR0-MAR7. */ } DP_PG1; AssertCompile(sizeof(DP_PG1) == 16); /** DP8390 FIFO. Not all of the state is explicitly accessible. */ typedef struct DP_FIFO { uint8_t rp; /* Read pointer. */ uint8_t wp; /* Write pointer. */ uint8_t fifo[16]; /* 16 bytes of FIFO. */ } DP_FIFO; /** * Core DP8390 chip state. */ typedef struct DP8390CORE { union { uint8_t CR; /* Command Register. */ DP_CR cr; }; union { uint8_t DCR; /* Data Control Register. */ DP_DCR dcr; }; /* Interrupt control. */ union { uint8_t ISR; /* Interrupt Status Register. */ DP_ISR isr; }; union { uint8_t IMR; /* Interrupt Mask Register. */ DP_IMR imr; }; /* Receive state. */ union { uint8_t RCR; /* Receive Control Register. */ DP_RCR rcr; }; union { uint8_t RSR; /* Receive Status register. */ DP_RSR rsr; }; /* Transmit State. */ union { uint8_t TCR; /* Transmit Control Register. */ DP_TCR tcr; }; union { uint8_t TSR; /* Transmit Status register. */ DP_TSR tsr; }; uint8_t NCR; /* Number of Collisions Register. */ /* Local DMA transmit state. */ uint8_t TPSR; /* Transmit Page Start. */ union { uint16_t TBCR; /* Transmit Byte Count. */ DP_TBCR tbcr; }; /* Local DMA receive state. */ union { uint16_t CLDA; /* Current Local DMA Address. */ DP_CLDA clda; }; uint8_t PSTART; /* Page Start. */ uint8_t PSTOP; /* Page Stop. */ uint8_t CURR; /* Current Page. */ uint8_t BNRY; /* Boundary Page. Also spelled BNDRY. */ /* Remote DMA state. */ union { uint16_t RSAR; /* Remote Start Address Register. */ DP_RSAR rsar; }; union { uint16_t RBCR; /* Remote Byte Count Register. */ DP_RBCR rbcr; }; union { uint16_t CRDA; /* Current Remote DMA Address. */ DP_CRDA crda; }; /* Miscellaneous state. */ uint8_t lnxtpp; /* Local Next Packet Pointer. */ uint8_t rnxtpp; /* Remote Next Packet Pointer. */ /* Tally counters. */ uint8_t CNTR0; /* Frame Alignment Errors. */ uint8_t CNTR1; /* CRC Errors. */ uint8_t CNTR2; /* Missed Packet Errors. */ union { uint8_t PG1[sizeof(DP_PG1)]; DP_PG1 pg1; /* All Page 1 Registers. */ }; DP_FIFO fifo; /* The internal FIFO. */ } DP8390CORE, *PDP8390CORE; /** * DP8390-based card state. */ typedef struct DPNICSTATE { /** Restore timer. * This is used to disconnect and reconnect the link after a restore. */ TMTIMERHANDLE hTimerRestore; /** Transmit signaller. */ PDMTASKHANDLE hXmitTask; /** Receive ready signaller. */ PDMTASKHANDLE hCanRxTask; /** Emulated device type. */ uint8_t uDevType; /** State of the card's interrupt request signal. */ bool fNicIrqActive; /** Core DP8390 chip state. */ DP8390CORE core; /** WD80x3 Control Register 1. */ union { uint8_t CTRL1; WD_CTRL1 ctrl1; }; /** WD80x3 Control Register 2. */ union { uint8_t CTRL2; WD_CTRL2 ctrl2; }; /** 3C503 Gate Array state. */ EL_GA ga; /** The 3C503 soft-configured ISA DMA channel. */ uint8_t uElIsaDma; /** The PROM contents. 32 bytes addressable, R/O. */ uint8_t aPROM[32]; /** Shared RAM base. */ RTGCPHYS MemBase; /** Shared RAM MMIO region handle. */ PGMMMIO2HANDLE hSharedMem; /** Shared RAM size. */ RTGCPHYS cbMemSize; /** Base port of the I/O space region. */ RTIOPORT IOPortBase; /** The configured ISA IRQ. */ uint8_t uIsaIrq; /** The configured ISA DMA channel. */ uint8_t uIsaDma; /** If set the link is currently up. */ bool fLinkUp; /** If set the link is temporarily down because of a saved state load. */ bool fLinkTempDown; /** Number of times we've reported the link down. */ uint16_t cLinkDownReported; /** Number of times we've postponed the link restore. */ uint16_t cLinkRestorePostponed; /** The "hardware" MAC address. */ RTMAC MacConfigured; /** Set if DPNICSTATER3::pDrv is not NULL. */ bool fDriverAttached; /** The LED. */ PDMLED Led; /** Status LUN: The LED ports. */ PDMILEDPORTS ILeds; /** Partner of ILeds. */ R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector; /** Access critical section. */ PDMCRITSECT CritSect; /** Event semaphore for blocking on receive. */ RTSEMEVENT hEventOutOfRxSpace; /** We are waiting/about to start waiting for more receive buffers. */ bool volatile fMaybeOutOfSpace; /* MS to wait before we enable the link. */ uint32_t cMsLinkUpDelay; /** The device instance number (for logging). */ uint32_t iInstance; STAMCOUNTER StatReceiveBytes; STAMCOUNTER StatTransmitBytes; #ifdef VBOX_WITH_STATISTICS STAMPROFILEADV StatIOReadRZ; STAMPROFILEADV StatIOReadR3; STAMPROFILEADV StatIOWriteRZ; STAMPROFILEADV StatIOWriteR3; STAMPROFILEADV StatReceive; STAMPROFILEADV StatTransmitR3; STAMPROFILEADV StatTransmitRZ; STAMPROFILE StatTransmitSendR3; STAMPROFILE StatTransmitSendRZ; STAMPROFILE StatRxOverflow; STAMCOUNTER StatRxOverflowWakeup; STAMCOUNTER StatRxCanReceiveNow; STAMCOUNTER StatRxCannotReceiveNow; STAMPROFILEADV StatInterrupt; STAMCOUNTER StatDropPktMonitor; STAMCOUNTER StatDropPktRcvrDis; STAMCOUNTER StatDropPktVeryShort; STAMCOUNTER StatDropPktVMNotRunning; STAMCOUNTER StatDropPktNoLink; STAMCOUNTER StatDropPktNoMatch; STAMCOUNTER StatDropPktNoBuffer; #endif /* VBOX_WITH_STATISTICS */ /** NIC-specific ISA I/O ports. */ IOMIOPORTHANDLE hIoPortsNic; /** Common DP8390 core I/O ports. */ IOMIOPORTHANDLE hIoPortsCore; /** The runt pad buffer (only really needs 60 bytes). */ uint8_t abRuntBuf[64]; /** The packet buffer. */ uint8_t abLocalRAM[DPNIC_MEM_SIZE]; /** The loopback transmit buffer (avoid stack allocations). */ uint8_t abLoopBuf[DPNIC_MEM_SIZE]; /// @todo Can this be smaller? } DPNICSTATE, *PDPNICSTATE; /** * DP8390 state for ring-3. * * @implements PDMIBASE * @implements PDMINETWORKDOWN * @implements PDMINETWORKCONFIG * @implements PDMILEDPORTS */ typedef struct DPNICSTATER3 { /** Pointer to the device instance. */ PPDMDEVINSR3 pDevIns; /** Pointer to the connector of the attached network driver. */ PPDMINETWORKUPR3 pDrv; /** Pointer to the attached network driver. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** LUN\#0 + status LUN: The base interface. */ PDMIBASE IBase; /** LUN\#0: The network port interface. */ PDMINETWORKDOWN INetworkDown; /** LUN\#0: The network config port interface. */ PDMINETWORKCONFIG INetworkConfig; /** Status LUN: The LED ports. */ PDMILEDPORTS ILeds; /** Partner of ILeds. */ R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector; } DPNICSTATER3; /** Pointer to a DP8390 state structure for ring-3. */ typedef DPNICSTATER3 *PDPNICSTATER3; /** * DP8390 state for ring-0. */ typedef struct DPNICSTATER0 { /** Pointer to the connector of the attached network driver. */ PPDMINETWORKUPR0 pDrv; } DPNICSTATER0; /** Pointer to a DP8390 state structure for ring-0. */ typedef DPNICSTATER0 *PDPNICSTATER0; /** * DP8390 state for raw-mode. */ typedef struct DPNICSTATERC { /** Pointer to the connector of the attached network driver. */ PPDMINETWORKUPRC pDrv; } DPNICSTATERC; /** Pointer to a DP8390 state structure for raw-mode. */ typedef DPNICSTATERC *PDPNICSTATERC; /** The DP8390 state structure for the current context. */ typedef CTX_SUFF(DPNICSTATE) DPNICSTATECC; /** Pointer to a DP8390 state structure for the current * context. */ typedef CTX_SUFF(PDPNICSTATE) PDPNICSTATECC; #ifndef VBOX_DEVICE_STRUCT_TESTCASE /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static int dp8390CoreAsyncXmitLocked(PPDMDEVINS pDevIns, PDPNICSTATE pThis, PDPNICSTATECC pThisCC, bool fOnWorkerThread); /** * Checks if the link is up. * @returns true if the link is up. * @returns false if the link is down. */ DECLINLINE(bool) dp8390IsLinkUp(PDPNICSTATE pThis) { return pThis->fDriverAttached && !pThis->fLinkTempDown && pThis->fLinkUp; } /* Table and macro borrowed from DevPCNet.cpp. */ #define CRC(crc, ch) (crc = (crc >> 8) ^ crctab[(crc ^ (ch)) & 0xff]) /* generated using the AUTODIN II polynomial * x^32 + x^26 + x^23 + x^22 + x^16 + * x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1 */ static const uint32_t crctab[256] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d, }; #ifndef ETHER_IS_MULTICAST /* Net/Open BSD macro it seems */ #define ETHER_IS_MULTICAST(a) ((*(uint8_t *)(a)) & 1) #endif /** * Check if incoming frame matches the station address. */ DECLINLINE(int) padr_match(PDPNICSTATE pThis, const uint8_t *buf) { RTNETETHERHDR *hdr = (RTNETETHERHDR *)buf; int result; /* Checks own address only; always enabled if receiver on. */ result = !memcmp(hdr->DstMac.au8, pThis->core.pg1.PAR, 6); return result; } /** * Check if incoming frame is an accepted broadcast frame. */ DECLINLINE(int) padr_bcast(PDPNICSTATE pThis, const uint8_t *buf) { static uint8_t aBCAST[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; RTNETETHERHDR *hdr = (RTNETETHERHDR *)buf; int result = pThis->core.rcr.AB && !memcmp(hdr->DstMac.au8, aBCAST, 6); return result; } /** * Check if incoming frame is an accepted multicast frame. */ DECLINLINE(int) padr_mcast(PDPNICSTATE pThis, const uint8_t *buf, int *mcast_type) { uint32_t crc = UINT32_MAX; RTNETETHERHDR *hdr = (RTNETETHERHDR *)buf; int result = 0; /* If multicast addresses are enabled, and the destination * address is in fact multicast, the address must be run through * the CRC generator and matched against the multicast filter * array. */ if (pThis->core.rcr.AM && ETHER_IS_MULTICAST(hdr->DstMac.au8)) { unsigned i; const uint8_t *p = buf; unsigned crc_frag, crc_rev; unsigned ma_bit_mask, ma_byte_idx; /* Indicate to caller that the address is a multicast one, regardless * of whether it's accepted or not. */ *mcast_type = 1; for (i = 0; i < sizeof(hdr->DstMac); ++i) CRC(crc, *p++); /* The top 6 bits of the CRC calculated from the destination address * becomes an index into the 64-bit multicast address register. Sadly * our CRC algorithm is bit-reversed (Ethernet shifts bits out MSB first) * so instead of the top 6 bits of the CRC we have to take the bottom 6 * and reverse the bits. */ crc_frag = crc & 63; for (i = 0, crc_rev = 0; i < 6; ++i) crc_rev |= ((crc_frag >> i) & 1) * (0x20 >> i); ma_bit_mask = 1 << (crc_rev & 7); ma_byte_idx = crc_rev / 8; Log3Func(("crc=%08X, crc_frag=%u, crc_rev=%u, ma_byte_idx=%u, ma_bit_mask=%02X\n", crc, crc_frag, crc_rev, ma_byte_idx, ma_bit_mask)); Log3Func(("MAR: %02X:%02X:%02X:%02X %02X:%02X:%02X:%02X\n", pThis->core.pg1.MAR[0], pThis->core.pg1.MAR[1], pThis->core.pg1.MAR[2], pThis->core.pg1.MAR[3], pThis->core.pg1.MAR[4], pThis->core.pg1.MAR[5], pThis->core.pg1.MAR[6], pThis->core.pg1.MAR[7])); /* The multicast filtering logic is fairly extensively * verified by EtherLink II diagnostics (3C503.EXE). */ if (pThis->core.pg1.MAR[ma_byte_idx] & ma_bit_mask) { Log3Func(("Passed multicast filter\n")); result = 1; } } return result; } /** * Check if incoming frame is an accepted promiscuous frame. */ DECLINLINE(int) padr_promi(PDPNICSTATE pThis, const uint8_t *buf) { RTNETETHERHDR *hdr = (RTNETETHERHDR *)buf; int result = pThis->core.rcr.PRO && !ETHER_IS_MULTICAST(hdr->DstMac.au8); return result; } /** * Update the device IRQ line based on internal state. */ static void dp8390CoreUpdateIrq(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { bool fCoreIrqActive = false; bool fNicIrqActive = false; STAM_PROFILE_ADV_START(&pThis->StatInterrupt, a); /* Set the ISR.CNT bit based on the counter state (top counter bits ANDed together). */ pThis->core.isr.CNT = (pThis->core.CNTR0 & pThis->core.CNTR1 & pThis->core.CNTR2) >> 7; /* IRQ is active if a bit is set in ISR and the corresponding bit * is set in IMR. No additional internal state needed. */ Assert(!pThis->core.imr.res); if (pThis->core.ISR & pThis->core.IMR) fCoreIrqActive = true; /* The 3C503 has additional interrupt sources and control. For other device * types, the extras magically work out to be a no-op. */ pThis->ga.fGaIrq = pThis->ga.streg.dtc && !pThis->ga.gacfr.tcm; fNicIrqActive = (fCoreIrqActive && !pThis->ga.gacfr.nim) || (pThis->ga.streg.dtc && !pThis->ga.gacfr.tcm); Log2Func(("#%d set irq fNicIrqActive=%d (fCoreIrqActive=%d, fGaIrq=%d)\n", pThis->iInstance, fNicIrqActive, fCoreIrqActive, pThis->ga.fGaIrq)); /* The IRQ line typically does not change. */ if (RT_UNLIKELY(fNicIrqActive != pThis->fNicIrqActive)) { LogFunc(("#%d IRQ=%d, state=%d\n", pThis->iInstance, pThis->uIsaIrq, fNicIrqActive)); /// @todo Handle IRQ 2/9 elsewhere PDMDevHlpISASetIrq(pDevIns, pThis->uIsaIrq == 2 ? 9 : pThis->uIsaIrq, fNicIrqActive); pThis->fNicIrqActive = fNicIrqActive; } STAM_PROFILE_ADV_STOP(&pThis->StatInterrupt, a); } /** * Perform a software reset of the NIC. */ static void dp8390CoreReset(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { LogFlowFunc(("#%d:\n", pThis->iInstance)); /* DP8390 or DP83901A datasheet, section 11.0. */ pThis->core.cr.TXP = 0; pThis->core.cr.STA = 0; pThis->core.cr.STP = 1; pThis->core.cr.RD = DP_CR_RDMA_ABRT; pThis->core.isr.RST = 1; pThis->core.IMR = 0; pThis->core.dcr.LAS = 0; pThis->core.tcr.LB = 0; /// @todo Check if this really happens on soft reset /* Clear the internal FIFO including r/w pointers. */ memset(&pThis->core.fifo, 0, sizeof(pThis->core.fifo)); /* Make sure the IRQ line us updated. */ dp8390CoreUpdateIrq(pDevIns, pThis); } #ifdef IN_RING3 static DECLCALLBACK(void) dp8390R3WakeupReceive(PPDMDEVINS pDevIns) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); LogFlowFunc(("#%d\n", pThis->iInstance)); STAM_COUNTER_INC(&pThis->StatRxOverflowWakeup); if (pThis->hEventOutOfRxSpace != NIL_RTSEMEVENT) RTSemEventSignal(pThis->hEventOutOfRxSpace); } /** * @callback_method_impl{FNPDMTASKDEV, * Signal to R3 that NIC is ready to receive a packet. */ static DECLCALLBACK(void) dpNicR3CanRxTaskCallback(PPDMDEVINS pDevIns, void *pvUser) { RT_NOREF(pvUser); dp8390R3WakeupReceive(pDevIns); } #endif /* IN_RING3 */ /** * Read up to 256 bytes from a single page of local RAM. */ static void dpLocalRAMReadBuf(PDPNICSTATE pThis, uint16_t addr, unsigned cb, uint8_t *pDst) { if ((RT_LOBYTE(addr) + cb) > 256) { LogFunc(("#%d: addr=%04X, cb=%X, cb!!\n", pThis->iInstance, addr, cb)); cb = 256 - RT_LOBYTE(addr); } /* A single page is always either entirely inside or outside local RAM. */ if (pThis->uDevType == DEV_NE1000) { /* Only 14 bits of address are decoded. */ addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; memcpy(pDst, &pThis->abLocalRAM[addr], cb); } else LogFunc(("#%d: Ignoring read at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else if (pThis->uDevType == DEV_NE2000) { /* Only 15 bits of address are decoded. */ addr &= 0x7fff; if (addr >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ addr -= 0x4000; memcpy(pDst, &pThis->abLocalRAM[addr], cb); } else LogFunc(("#%d: Ignoring read at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { /* Local RAM is mapped starting at address zero. */ addr &= DPNIC_MEM_MASK; if (addr + cb <= DPNIC_MEM_SIZE) memcpy(pDst, &pThis->abLocalRAM[addr], cb); else LogFunc(("#%d: Ignoring read at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else if (pThis->uDevType == DEV_3C503) { /* Only 14 bits of address are decoded. */ /// @todo Is there any internal wrap-around in the 3C503 too? addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; memcpy(pDst, &pThis->abLocalRAM[addr], cb); } else LogFunc(("#%d: Ignoring read at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else { Assert(0); } } #ifdef IN_RING3 /** * Write up to 256 bytes into a single page of local RAM. */ static void dpLocalRAMWriteBuf(PDPNICSTATE pThis, uint16_t addr, unsigned cb, const uint8_t *pSrc) { if ((RT_LOBYTE(addr) + cb) > 256) { LogFunc(("#%d: addr=%04X, cb=%X, cb!!\n", pThis->iInstance, addr, cb)); cb = 256 - RT_LOBYTE(addr); } /* A single page is always either entirely inside or outside local RAM. */ if (pThis->uDevType == DEV_NE1000) { /* Only 14 bits of address are decoded. */ addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; memcpy(&pThis->abLocalRAM[addr], pSrc, cb); } else LogFunc(("#%d: Ignoring write at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else if (pThis->uDevType == DEV_NE2000) { /* Only 14 bits of address are decoded. */ addr &= 0x7fff; if (addr >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ addr -= 0x4000; memcpy(&pThis->abLocalRAM[addr], pSrc, cb); } else LogFunc(("#%d: Ignoring write at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { /* Local RAM is mapped starting at address zero. */ addr &= DPNIC_MEM_MASK; if (addr + cb <= DPNIC_MEM_SIZE) memcpy(&pThis->abLocalRAM[addr], pSrc, cb); else LogFunc(("#%d: Ignoring write at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else if (pThis->uDevType == DEV_3C503) { /* Only 14 bits of address are decoded. */ /// @todo Is there any internal wrap-around in the 3C503 too? addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; memcpy(&pThis->abLocalRAM[addr], pSrc, cb); } else LogFunc(("#%d: Ignoring write at addr=%04X cb=%u!\n", pThis->iInstance, addr, cb)); } else { Assert(0); } } /** * Receive an arbitrarily long buffer into the receive ring starting at CLDA. * Update RSR, CLDA, and other state in the process. */ static void dp8390CoreReceiveBuf(PDPNICSTATE pThis, DP_RSR *pRsr, const uint8_t *src, unsigned cbLeft, bool fLast) { LogFlow(("#%d: Initial CURR=%02X00 CLDA=%04X\n", pThis->iInstance, pThis->core.CURR, pThis->core.CLDA)); while (cbLeft) { unsigned cbWrite; unsigned cbPage; /* Write at most up to the end of a page. */ cbPage = cbWrite = 256 - pThis->core.clda.CLDA0; if (cbWrite > cbLeft) cbWrite = cbLeft; Log2Func(("#%d: cbLeft=%d CURR=%02X00 CLDA=%04X\n", pThis->iInstance, cbLeft, pThis->core.CURR, pThis->core.CLDA)); dpLocalRAMWriteBuf(pThis, pThis->core.CLDA, cbWrite, src); src += cbWrite; /* If this is the last fragment of a received frame, we need to * round CLDA up to the next page boundary to correctly evaluate * buffer overflows and the next pointer. Otherwise we just * add however much data we had so that we can continue writing * at the CLDA position. */ if (fLast && (cbWrite == cbLeft)) { Log3Func(("#%d: Round up: CLDA=%04X cbPage=%X\n", pThis->iInstance, pThis->core.CLDA, cbPage)); pThis->core.CLDA += cbPage; } else pThis->core.CLDA += cbWrite; Log3Func(("#%d: Final CURR=%02X00 CLDA=%04X\n", pThis->iInstance, pThis->core.CURR, pThis->core.CLDA)); /* If at end of ring, wrap around. */ if (pThis->core.clda.CLDA1 == pThis->core.PSTOP) pThis->core.clda.CLDA1 = pThis->core.PSTART; /* Check for buffer overflow. */ if (pThis->core.clda.CLDA1 == pThis->core.BNRY) { pThis->core.isr.OVW = 1; pThis->core.isr.RST = 1; pRsr->MPA = 1; /* Indicates to caller that receive was aborted. */ STAM_COUNTER_INC(&pThis->StatDropPktNoBuffer); Log3Func(("#%d: PSTART=%02X00 PSTOP=%02X00 BNRY=%02X00 CURR=%02X00 -- overflow!\n", pThis->iInstance, pThis->core.PSTART, pThis->core.PSTOP, pThis->core.BNRY, pThis->core.CURR)); break; } cbLeft -= cbWrite; } } /** * Write incoming data into the packet buffer. */ static void dp8390CoreReceiveLocked(PPDMDEVINS pDevIns, PDPNICSTATE pThis, const uint8_t *src, size_t cbToRecv) { int is_padr = 0, is_bcast = 0, is_mcast = 0, is_prom = 0; int mc_type = 0; /* * Drop all packets if the VM is not running yet/anymore. */ VMSTATE enmVMState = PDMDevHlpVMState(pDevIns); if ( enmVMState != VMSTATE_RUNNING && enmVMState != VMSTATE_RUNNING_LS) { STAM_COUNTER_INC(&pThis->StatDropPktVMNotRunning); return; } /* * Drop all packets if the cable is not connected. */ if (RT_UNLIKELY(!dp8390IsLinkUp(pThis))) { STAM_COUNTER_INC(&pThis->StatDropPktNoLink); return; } /* * Drop everything if NIC is not started or in reset. */ if (RT_UNLIKELY(!pThis->core.cr.STA || pThis->core.cr.STP)) { STAM_COUNTER_INC(&pThis->StatDropPktRcvrDis); return; } /* Drop impossibly short packets. The DP8390 requires a packet to have * at least 8 bytes to even qualify as a runt. We can also assume that * there is a complete destination address at that point. */ if (RT_UNLIKELY(cbToRecv < 8)) { STAM_COUNTER_INC(&pThis->StatDropPktVeryShort); return; } LogFlowFunc(("#%d: size on wire=%d\n", pThis->iInstance, cbToRecv)); /* * Perform address matching. Packets which do not pass any address * matching logic are ignored. */ if ( (is_padr = padr_match(pThis, src)) || (is_bcast = padr_bcast(pThis, src)) || (is_mcast = padr_mcast(pThis, src, &mc_type)) || (is_prom = padr_promi(pThis, src))) { union { uint8_t nRSR; DP_RSR nRsr; }; uint32_t fcs = 0; nRSR = 0; Log2Func(("#%d Packet passed address filter (is_padr=%d, is_bcast=%d, is_mcast=%d, is_prom=%d), size=%d\n", pThis->iInstance, is_padr, is_bcast, is_mcast, is_prom, cbToRecv)); if (is_bcast || mc_type) nRsr.PHY = 1; /* In Monitor Mode, just increment the tally counter. */ if (RT_UNLIKELY(pThis->core.rcr.MON)) { STAM_COUNTER_INC(&pThis->StatDropPktMonitor); nRsr.MPA = 1; if (pThis->core.CNTR2 <= 192) pThis->core.CNTR2++; /* Relies on UpdateIrq to be run. */ } else { /* Error detection: FCS and frame alignment errors cannot happen, * likewise FIFO overruns can't. * Runts are padded up to the required minimum. Note that the DP8390 * documentation considers packets smaller than 64 bytes to be runts, * but that includes 32 bits of FCS. */ /* See if we need to pad, and how much. Note that if there's any * room left in the receive buffers, a runt will fit even after padding. */ if (RT_UNLIKELY(cbToRecv < 60)) { /// @todo This really is kind of stupid. We shouldn't be doing any /// padding here, it should be done by the sending side! memset(pThis->abRuntBuf, 0, sizeof(pThis->abRuntBuf)); memcpy(pThis->abRuntBuf, src, cbToRecv); cbToRecv = 60; src = pThis->abRuntBuf; } LogFlowFunc(("#%d: PSTART=%02X00 PSTOP=%02X00 BNRY=%02X00 CURR=%02X00\n", pThis->iInstance, pThis->core.PSTART, pThis->core.PSTOP, pThis->core.BNRY, pThis->core.CURR)); /* All packets that passed the address filter are copied to local RAM. * Since the DP8390 does not know how long the frame is until it detects * end of frame, it can only detect an out-of-buffer condition after * filling up all available space. It then reports an error and rewinds * back to where it was before. * * We do not limit the incoming frame size except by available buffer space. /// @todo Except we do?? */ STAM_REL_COUNTER_ADD(&pThis->StatReceiveBytes, cbToRecv); /* Copy incoming data to the packet buffer. Start by setting CLDA * to CURR + 4, leaving room for header. */ pThis->core.CLDA = RT_MAKE_U16(4, pThis->core.CURR); /* Receive the incoming frame. */ Assert(cbToRecv < MAX_FRAME); /// @todo Can we actually do bigger? dp8390CoreReceiveBuf(pThis, &nRsr, src, (unsigned)cbToRecv, false); /// @todo Use the same method for runt padding? /* If there was no overflow, add the FCS. */ if (!nRsr.MPA) { fcs = 0xBADF00D; // Just fake it, does anyone care? dp8390CoreReceiveBuf(pThis, &nRsr, (uint8_t *)&fcs, sizeof(fcs), true); } /* Error-free packets are considered intact. */ if (!nRsr.CRC && !nRsr.FAE && !nRsr.FO && !nRsr.MPA) { nRsr.PRX = 1; pThis->core.isr.PRX = 1; } else pThis->core.isr.RXE = 1; /* For 'intact' packets, write the packet header. */ if (nRsr.PRX) { DP_PKT_HDR header; /* Round up CLDA to the next page. */ if (pThis->core.clda.CLDA0) pThis->core.CLDA = RT_MAKE_U16(0, pThis->core.clda.CLDA1 + 1); /* If entire frame was successfully received, write the packet header at the old CURR. */ header.rcv_stat = nRSR; header.next_ptr = pThis->core.clda.CLDA1; /// @todo big endian (WTS) header.byte_cnt = (uint16_t)cbToRecv + sizeof(fcs); pThis->core.CLDA = RT_MAKE_U16(0, pThis->core.CURR); dpLocalRAMWriteBuf(pThis, pThis->core.CLDA, sizeof(header), (uint8_t *)&header); pThis->core.CLDA += sizeof(header); pThis->core.CURR = header.next_ptr; } } pThis->core.RSR = nRSR; Log2Func(("Receive completed, size=%d, CURR=%02X00, RSR=%02X, ISR=%02X\n", cbToRecv, pThis->core.CURR, pThis->core.RSR, pThis->core.ISR)); dp8390CoreUpdateIrq(pDevIns, pThis); } else { Log3Func(("#%d Packet did not pass address filter, size=%d\n", pThis->iInstance, cbToRecv)); STAM_COUNTER_INC(&pThis->StatDropPktNoMatch); } } #endif /* IN_RING3 */ /** * Transmit a packet from local memory. * * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy. * * @param pDevIns The device instance data. * @param pThis The device state data. * @param fOnWorkerThread Whether we're on a worker thread or on an EMT. */ static int dp8390CoreXmitPacket(PPDMDEVINS pDevIns, PDPNICSTATE pThis, bool fOnWorkerThread) { PDPNICSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDPNICSTATECC); RT_NOREF_PV(fOnWorkerThread); int rc; /* * Grab the xmit lock of the driver as well as the DP8390 device state. */ PPDMINETWORKUP pDrv = pThisCC->pDrv; if (pDrv) { rc = pDrv->pfnBeginXmit(pDrv, false /*fOnWorkerThread*/); if (RT_FAILURE(rc)) return rc; } rc = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); if (RT_SUCCESS(rc)) { /* * Do the transmitting. */ int rc2 = dp8390CoreAsyncXmitLocked(pDevIns, pThis, pThisCC, false /*fOnWorkerThread*/); AssertReleaseRC(rc2); /* * Release the locks. */ PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); } else AssertLogRelRC(rc); if (pDrv) pDrv->pfnEndXmit(pDrv); return rc; } #ifdef IN_RING3 /** * @callback_method_impl{FNPDMTASKDEV, * This is just a very simple way of delaying sending to R3. */ static DECLCALLBACK(void) dpNicR3XmitTaskCallback(PPDMDEVINS pDevIns, void *pvUser) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); NOREF(pvUser); /* * Transmit if we can. */ dp8390CoreXmitPacket(pDevIns, pThis, true /*fOnWorkerThread*/); } #endif /* IN_RING3 */ /** * Allocates a scatter/gather buffer for a transfer. * * @returns See PPDMINETWORKUP::pfnAllocBuf. * @param pThis The device instance. * @param pThisCC The device state for current context. * @param cbMin The minimum buffer size. * @param fLoopback Set if we're in loopback mode. * @param pSgLoop Pointer to stack storage for the loopback SG. * @param ppSgBuf Where to return the SG buffer descriptor on success. * Always set. */ DECLINLINE(int) dp8390XmitAllocBuf(PDPNICSTATE pThis, PDPNICSTATECC pThisCC, size_t cbMin, bool fLoopback, PPDMSCATTERGATHER pSgLoop, PPPDMSCATTERGATHER ppSgBuf) { int rc; if (!fLoopback) { PPDMINETWORKUP pDrv = pThisCC->pDrv; if (RT_LIKELY(pDrv)) { rc = pDrv->pfnAllocBuf(pDrv, cbMin, NULL /*pGso*/, ppSgBuf); AssertMsg(rc == VINF_SUCCESS || rc == VERR_TRY_AGAIN || rc == VERR_NET_DOWN || rc == VERR_NO_MEMORY, ("%Rrc\n", rc)); if (RT_FAILURE(rc)) *ppSgBuf = NULL; } else { rc = VERR_NET_DOWN; *ppSgBuf = NULL; } } else { /* Fake loopback allocator. */ pSgLoop->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_1; pSgLoop->cbUsed = 0; pSgLoop->cbAvailable = sizeof(pThis->abLoopBuf); pSgLoop->pvAllocator = pThis; pSgLoop->pvUser = NULL; pSgLoop->cSegs = 1; pSgLoop->aSegs[0].cbSeg = sizeof(pThis->abLoopBuf); pSgLoop->aSegs[0].pvSeg = pThis->abLoopBuf; *ppSgBuf = pSgLoop; rc = VINF_SUCCESS; } return rc; } /** * Sends the scatter/gather buffer. * * Wrapper around PDMINETWORKUP::pfnSendBuf, so check it out for the fine print. * * @returns See PDMINETWORKUP::pfnSendBuf. * @param pDevIns The device instance. * @param pThisCC The current context device state. * @param fLoopback Set if we're in loopback mode. * @param pSgBuf The SG to send. * @param fOnWorkerThread Set if we're being called on a work thread. Clear * if an EMT. */ DECLINLINE(int) dp8390CoreXmitSendBuf(PPDMDEVINS pDevIns, PDPNICSTATECC pThisCC, bool fLoopback, PPDMSCATTERGATHER pSgBuf, bool fOnWorkerThread) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc; STAM_REL_COUNTER_ADD(&pThis->StatTransmitBytes, pSgBuf->cbUsed); if (!fLoopback) { STAM_PROFILE_START(&pThis->CTX_SUFF_Z(StatTransmitSend), a); if (pSgBuf->cbUsed > 70) /* unqualified guess */ pThis->Led.Asserted.s.fWriting = pThis->Led.Actual.s.fWriting = 1; PPDMINETWORKUP pDrv = pThisCC->pDrv; if (RT_LIKELY(pDrv)) { rc = pDrv->pfnSendBuf(pDrv, pSgBuf, fOnWorkerThread); AssertMsg(rc == VINF_SUCCESS || rc == VERR_NET_DOWN || rc == VERR_NET_NO_BUFFER_SPACE, ("%Rrc\n", rc)); } else rc = VERR_NET_DOWN; pThis->Led.Actual.s.fWriting = 0; STAM_PROFILE_STOP(&pThis->CTX_SUFF_Z(StatTransmitSend), a); } else { PDP8390CORE pCore = &pThis->core; union { uint8_t nRSR; DP_RSR nRsr; }; unsigned ofs; uint32_t fcs = UINT32_MAX; nRSR = 0; /* Loopback on the DP8390 is so strange that it must be handled specially. */ Assert(pSgBuf->pvAllocator == (void *)pThis); pThis->Led.Asserted.s.fReading = pThis->Led.Actual.s.fReading = 1; LogFlowFunc(("#%d: loopback (DCR=%02X LB=%u TCR=%02X RCR=%02X, %u bytes)\n", pThis->iInstance, pCore->DCR, pCore->tcr.LB, pCore->TCR, pCore->RCR, pSgBuf->cbUsed)); for (ofs = 0; ofs < pSgBuf->cbUsed; ofs += 16) Log((" %04X: %.*Rhxs\n", ofs, ofs + 16 < pSgBuf->cbUsed ? 16 : pSgBuf->cbUsed - ofs, &pThis->abLoopBuf[ofs])); /* A packet shorter than 8 bytes is ignored by the receiving side. */ if (pSgBuf->cbUsed < 8) return VINF_SUCCESS; /* The loopback mode affects transmit status bits. */ switch (pCore->tcr.LB) { case 1: /* Internal loopback within DP8390. */ pCore->tsr.CDH = 1; pCore->tsr.CRS = 1; break; case 2: /* Loopback through serializer. */ pCore->tsr.CDH = 1; break; case 3: /* External loopback. Requires a cable. */ break; default: Assert(0); } /* The CRC Inhibit controls whether transmit or receive path uses the * CRC circuitry. If transmit side uses CRC, receive always fails. * We always need to calculate the FCS because either the sending or * the receiving side uses it. */ uint8_t *p; uint8_t *pktbuf = pThis->abLoopBuf; /// @todo Point into sgbuf instead? uint16_t pktlen = (uint16_t)pSgBuf->cbUsed; uint16_t fcslen = pktlen; uint8_t abFcs[4]; bool fAddrMatched = true; /* If the receiver side is calculating FCS, it needs to skip the last * bytes (which are the transmit-side FCS). */ if (pCore->tcr.CRC && (pktlen > 4)) fcslen -= 4; p = pktbuf; while (p != &pktbuf[fcslen]) CRC(fcs, *p++); fcs = ~fcs; Log3Func(("FCS: %08X\n", fcs)); for (ofs = 0; ofs < sizeof(abFcs); ++ofs) { abFcs[ofs] = (uint8_t)fcs; fcs >>= 8; } /* The FIFO write pointer gets zeroed on each receive, * but the read pointer does not. */ pCore->fifo.wp = 0; if (pCore->tcr.CRC) { bool fGoodFcs = true; int is_padr = 0, is_bcast = 0, is_mcast = 0, is_prom = 0; int mc_type = 0; /* Always put the first 8 bytes of the packet in the FIFO. */ for (ofs = 0; ofs < 8; ++ofs) pCore->fifo.fifo[pCore->fifo.wp++ & 7] = pktbuf[ofs]; /* If the receiving side uses the CRC circuitry, it also performs * destination address matching. */ if ( (is_padr = padr_match(pThis, pktbuf)) || (is_bcast = padr_bcast(pThis, pktbuf)) || (is_mcast = padr_mcast(pThis, pktbuf, &mc_type)) || (is_prom = padr_promi(pThis, pktbuf))) { /* Receiving side checks the FCS. */ fGoodFcs = !memcmp(&pktbuf[pktlen - 4], abFcs, sizeof(abFcs)); Log2Func(("#%d: Address matched (is_padr=%d, is_bcast=%d, is_mcast=%d, is_prom=%d), checking FCS (fGoodFcs=%RTbool)\n", pThis->iInstance, is_padr, is_bcast, is_mcast, is_prom, fGoodFcs)); /* Now we have to update the FIFO. Since only 8 bytes are visible * in the FIFO after a receive, we can skip most of it. */ for ( ; ofs < pktlen; ++ofs) pCore->fifo.fifo[pCore->fifo.wp++ & 7] = pktbuf[ofs]; } else { nRsr.PRX = 1; /* Weird but true, for non-matching address only! */ fAddrMatched = false; Log3Func(("#%d: Address NOT matched, ignoring FCS errors.\n", pThis->iInstance)); } /* The PHY bit is set when when an enabled broadcast packet is accepted, * but also when an enabled multicast packet arrives regardless of whether * it passes the MAR filter or not. */ if (is_bcast || mc_type) nRsr.PHY = 1; if (!fGoodFcs) nRsr.CRC = 1; } else { nRsr.CRC = 1; /* Always report CRC error if receiver isn't checking. */ /* Now we have to update the FIFO. Since only 8 bytes are visible * in the FIFO after a receive, we can skip most of it. */ for (ofs = 0; ofs < pktlen; ++ofs) pCore->fifo.fifo[pCore->fifo.wp++ & 7] = pktbuf[ofs]; /* Stuff the generated FCS in the FIFO. */ for (ofs = 0; ofs < sizeof(abFcs); ++ofs) pCore->fifo.fifo[pCore->fifo.wp++ & 7] = abFcs[ofs]; } /* And now put the packet length in the FIFO. */ if (fAddrMatched || 1) { pCore->fifo.fifo[pCore->fifo.wp++ & 7] = RT_LOBYTE(pktlen); pCore->fifo.fifo[pCore->fifo.wp++ & 7] = RT_HIBYTE(pktlen); pCore->fifo.fifo[pCore->fifo.wp++ & 7] = RT_HIBYTE(pktlen); /* Yes, written twice! */ } Log(("FIFO: rp=%u, wp=%u\n", pCore->fifo.rp & 7, pCore->fifo.wp & 7)); Log((" %Rhxs\n", &pCore->fifo.fifo)); if (nRsr.CRC) pCore->isr.RXE = 1; pCore->RSR = nRSR; pThis->Led.Actual.s.fReading = 0; /* Return success so that caller sets TSR.PTX and ISR.PTX. */ rc = VINF_SUCCESS; } return rc; } /** * Reads the entire frame into the scatter gather buffer. */ DECLINLINE(void) dp8390CoreXmitRead(PPDMDEVINS pDevIns, const unsigned uLocalAddr, const unsigned cbFrame, PPDMSCATTERGATHER pSgBuf, bool fLoopback) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); unsigned uOfs = 0; Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); Assert(pSgBuf->cbAvailable >= cbFrame); pSgBuf->cbUsed = cbFrame; LogFlowFunc(("#%d: uLocalAddr=%04X cbFrame=%d\n", pThis->iInstance, uLocalAddr, cbFrame)); /* Have to figure out where the address is in local RAM. */ if (pThis->uDevType == DEV_NE1000) { /* Only 14 bits of address are decoded. */ uOfs = uLocalAddr & 0x3fff; if (uOfs >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ uOfs -= 0x2000; } else { /// @todo What are we supposed to do?! LogFunc(("#%d: uOfs=%u, don't know what to do!!\n", pThis->iInstance, uOfs)); } } else if (pThis->uDevType == DEV_NE2000) { /* Only 15 bits of address are decoded. */ uOfs = uLocalAddr & 0x7fff; if (uOfs >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ uOfs -= 0x4000; } else { /// @todo What are we supposed to do?! LogFunc(("#%d: uOfs=%u, don't know what to do!!\n", pThis->iInstance, uOfs)); } } else if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { /* Not much to do, WD was nice enough to put the RAM at the start of DP8390's address space. */ uOfs = uLocalAddr & DPNIC_MEM_MASK; } else if (pThis->uDevType == DEV_3C503) { /* Only 14 bits of address are decoded. */ uOfs = uLocalAddr & 0x3fff; if (uOfs >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ uOfs -= 0x2000; } else { /// @todo What are we supposed to do?! LogFunc(("#%d: uOfs=%u, don't know what to do!!\n", pThis->iInstance, uOfs)); } } else { Assert(0); } if (!fLoopback) { /* Fast path for normal transmit, ignores DCR.WTS. */ if (uOfs + cbFrame <= sizeof(pThis->abLocalRAM)) memcpy(pSgBuf->aSegs[0].pvSeg, &pThis->abLocalRAM[uOfs], cbFrame); else memset(pSgBuf->aSegs[0].pvSeg, 0xEE, cbFrame); } else { /* If DCR.WTS is set, only every other byte actually goes through loopback. */ const uint8_t *src = &pThis->abLocalRAM[uOfs]; uint8_t *dst = (uint8_t *)pSgBuf->aSegs[0].pvSeg; int cbDst = cbFrame; int step = 1 << pThis->core.dcr.WTS; /* Depending on DCR.BOS, take either odd or even bytes when DCR.WTS is set. */ if (pThis->core.dcr.WTS && !pThis->core.dcr.BOS) ++src; while (cbDst-- && (src <= &pThis->abLocalRAM[DPNIC_MEM_SIZE])) { *dst++ = *src; src += step; } /* The address should perhaps wrap around -- depends on card design. */ if (cbDst != -1) { while (cbDst--) *dst++ = 0xEE; } Assert(cbDst == -1); } } /** * Try to transmit a frame. */ static void dp8390CoreStartTransmit(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { /* * Transmit the packet if possible, defer it if we cannot do it * in the current context. */ pThis->core.TSR = 0; /* Clear transmit status. */ pThis->core.NCR = 0; /* Clear collision counter. */ #if defined(IN_RING0) || defined(IN_RC) PDPNICSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDPNICSTATECC); if (!pThisCC->pDrv) { int rc = PDMDevHlpTaskTrigger(pDevIns, pThis->hXmitTask); AssertRC(rc); } else #endif { int rc = dp8390CoreXmitPacket(pDevIns, pThis, false /*fOnWorkerThread*/); if (rc == VERR_TRY_AGAIN) rc = VINF_SUCCESS; AssertRC(rc); } } /** * If a packet is waiting, poke the receiving machinery. * * @threads EMT. */ static void dp8390CoreKickReceive(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { if (pThis->fMaybeOutOfSpace) { LogFlow(("Poking receive thread.\n")); #ifdef IN_RING3 dp8390R3WakeupReceive(pDevIns); #else int rc = PDMDevHlpTaskTrigger(pDevIns, pThis->hCanRxTask); AssertRC(rc); #endif } } /** * Try transmitting a frame. * * @threads TX or EMT. */ static int dp8390CoreAsyncXmitLocked(PPDMDEVINS pDevIns, PDPNICSTATE pThis, PDPNICSTATECC pThisCC, bool fOnWorkerThread) { Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); /* * Just drop it if not transmitting. Can happen with delayed transmits * if transmit was disabled in the meantime. */ if (RT_UNLIKELY(!pThis->core.cr.TXP)) { LogFunc(("#%d: Nope, CR.TXP is off (fOnWorkerThread=%RTbool)\n", pThis->iInstance, fOnWorkerThread)); return VINF_SUCCESS; } /* * Blast out data from the packet buffer. */ int rc; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a); do { /* Don't send anything when the link is down. */ if (RT_UNLIKELY( !dp8390IsLinkUp(pThis) && pThis->cLinkDownReported > DPNIC_MAX_LINKDOWN_REPORTED) ) break; bool const fLoopback = pThis->core.tcr.LB != 0; PDMSCATTERGATHER SgLoop; PPDMSCATTERGATHER pSgBuf; /* * Sending is easy peasy, there is by definition always * a complete packet on hand. */ unsigned cb = pThis->core.TBCR; /* Packet size. */ const int adr = RT_MAKE_U16(0, pThis->core.TPSR); LogFunc(("#%d: cb=%d, adr=%04X\n", pThis->iInstance, cb, adr)); if (RT_LIKELY(dp8390IsLinkUp(pThis) || fLoopback)) { if (RT_LIKELY(cb <= MAX_FRAME)) { /* Loopback fun! */ if (RT_UNLIKELY(fLoopback && pThis->core.dcr.WTS)) { cb /= 2; Log(("Loopback with DCR.WTS set -> cb=%d\n", cb)); } rc = dp8390XmitAllocBuf(pThis, pThisCC, cb, fLoopback, &SgLoop, &pSgBuf); if (RT_SUCCESS(rc)) { dp8390CoreXmitRead(pDevIns, adr, cb, pSgBuf, fLoopback); rc = dp8390CoreXmitSendBuf(pDevIns, pThisCC, fLoopback, pSgBuf, fOnWorkerThread); Log2Func(("#%d: rc=%Rrc\n", pThis->iInstance, rc)); } else if (rc == VERR_TRY_AGAIN) { STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); LogFunc(("#%d: rc=%Rrc\n", pThis->iInstance, rc)); return VINF_SUCCESS; } if (RT_SUCCESS(rc)) { pThis->core.tsr.PTX = 1; pThis->core.isr.PTX = 1; } else { pThis->core.tsr.COL = 1; /* Pretend there was a collision. */ pThis->core.isr.TXE = 1; } } else { /* Signal error, as this violates the Ethernet specs. Note that the DP8390 * hardware does *not* limit the packet length. */ LogRel(("DPNIC#%d: Attempt to transmit illegal giant frame (%u bytes) -> signaling error\n", pThis->iInstance, cb)); pThis->core.tsr.OWC = 1; /* Pretend there was an out-of-window collision. */ pThis->core.isr.TXE = 1; } } else { /* Signal a transmit error pretending there was a collision. */ pThis->core.tsr.COL = 1; pThis->core.isr.TXE = 1; pThis->cLinkDownReported++; } /* Transmit officially done, update register state. */ pThis->core.cr.TXP = 0; pThis->core.TBCR = 0; LogFlowFunc(("#%d: TSR=%02X, ISR=%02X\n", pThis->iInstance, pThis->core.TSR, pThis->core.ISR)); } while (0); /* No loop, because there isn't ever more than one packet to transmit. */ dp8390CoreUpdateIrq(pDevIns, pThis); /* If there's anything waiting, this should be a good time to recheck. */ dp8390CoreKickReceive(pDevIns, pThis); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); return VINF_SUCCESS; } /* -=-=-=-=-=- I/O Port access -=-=-=-=-=- */ static uint32_t dp8390CoreRead(PPDMDEVINS pDevIns, PDPNICSTATE pThis, int ofs) { uint8_t val; /* The 3C503 can read the PROM instead of the DP8390 registers. */ if (pThis->ga.gacr.ealo) return pThis->aPROM[ofs % 0xf]; else if (pThis->ga.gacr.eahi) return pThis->aPROM[16 + (ofs % 0xf)]; /* Command Register exists in all pages. */ if (ofs == DPR_CR) return pThis->core.CR; if (pThis->core.cr.PS == 0) { switch (ofs) { case DPR_P0_R_CLDA0: return pThis->core.clda.CLDA0; case DPR_P0_R_CLDA1: return pThis->core.clda.CLDA1; case DPR_P0_BNRY: return pThis->core.BNRY; case DPR_P0_R_TSR: return pThis->core.TSR; case DPR_P0_R_NCR: return pThis->core.NCR; case DPR_P0_R_FIFO: return pThis->core.fifo.fifo[pThis->core.fifo.rp++ & 7]; /// @todo Abstract the mask somehow? case DPR_P0_ISR: return pThis->core.ISR; case DPR_P0_R_CRDA0: return pThis->core.crda.CRDA0; case DPR_P0_R_CRDA1: return pThis->core.crda.CRDA1; case DPR_P0_R_RSR: return pThis->core.RSR; case DPR_P0_R_CNTR0: val = pThis->core.CNTR0; pThis->core.CNTR0 = 0; /* Cleared by reading. */ dp8390CoreUpdateIrq(pDevIns, pThis); return val; case DPR_P0_R_CNTR1: val = pThis->core.CNTR1; pThis->core.CNTR1 = 0; /* Cleared by reading. */ dp8390CoreUpdateIrq(pDevIns, pThis); return val; case DPR_P0_R_CNTR2: val = pThis->core.CNTR2; pThis->core.CNTR2 = 0; /* Cleared by reading. */ dp8390CoreUpdateIrq(pDevIns, pThis); return val; default: return 0; /// @todo or 0xFF? or something else? } } else if (pThis->core.cr.PS == 1) { /* Page 1 is easy, most registers are stored directly. */ if (ofs == DPR_P1_CURR) return pThis->core.CURR; else return pThis->core.PG1[ofs]; } else if (pThis->core.cr.PS == 2) { /* Page 2 is for diagnostics. Reads many registers that * are write-only in Page 0. */ switch (ofs) { case DPR_P2_R_PSTART: return pThis->core.PSTART; case DPR_P2_R_PSTOP: return pThis->core.PSTOP; case DPR_P2_RNXTPP: return pThis->core.rnxtpp; case DPR_P2_R_TPSR: return pThis->core.TPSR; case DPR_P2_LNXTPP: return pThis->core.lnxtpp; case DPR_P2_ADRCU: case DPR_P2_ADRCL: return 0; /// @todo What's this? case DPR_P2_R_RCR: return pThis->core.RCR; case DPR_P2_R_TCR: return pThis->core.TCR; case DPR_P2_R_DCR: return pThis->core.DCR; case DPR_P2_R_IMR: return pThis->core.IMR; default: return 0; /// @todo Or 0xFF? Or something else? } } else { /* Page 3 is undocumented and unimplemented. */ LogFunc(("Reading page 3 register: ofs=%X!\n", ofs)); return 0; } } static int dp8390CoreWriteCR(PPDMDEVINS pDevIns, PDPNICSTATE pThis, uint32_t val) { union { uint8_t nCR; DP_CR nCr; }; nCR = val; LogFlow(("val=%02X, old=%02X\n", val, pThis->core.CR)); if (nCr.STP != pThis->core.cr.STP) { if (nCr.STP) { /* Stop the engine -- software reset. */ pThis->core.cr.STP = 1; pThis->core.isr.RST = 1; } else { /* Clear the stop condition. */ pThis->core.cr.STP = 0; /* And possibly start up right away. */ if (nCr.STA) pThis->core.cr.STA = 1; /* The STA bit may have been set all along. */ if (pThis->core.cr.STA) pThis->core.isr.RST = 0; } /* Unblock receive thread if necessary, possibly drop any packets. */ dp8390CoreKickReceive(pDevIns, pThis); } if (nCr.STA && !pThis->core.cr.STA) { /* Start the engine. It is not clearly documented but the STA bit is * sticky, and once it's set only a hard reset can clear it. Setting the * STP bit doesn't clear it. */ pThis->core.cr.STA = 1; pThis->core.isr.RST = 0; /* Unblock receive thread. */ dp8390CoreKickReceive(pDevIns, pThis); } if (nCr.TXP && !pThis->core.cr.TXP) { /* Kick off a transmit. */ pThis->core.cr.TXP = 1; /* Indicate transmit in progress. */ dp8390CoreStartTransmit(pDevIns, pThis); } /* It is not possible to write a zero (invalid value) to the RD bits. */ if (nCr.RD == DP_CR_RDMA_INVL) nCr.RD = DP_CR_RDMA_ABRT; if (nCr.RD != pThis->core.cr.RD) { /* Remote DMA state change. */ if (nCr.RD & DP_CR_RDMA_ABRT) { /* Abort. */ LogFunc(("RDMA Abort! RD=%d RSAR=%04X RBCR=%04X CRDA=%04X\n", nCr.RD, pThis->core.RSAR, pThis->core.RBCR, pThis->core.CRDA)); } else if (nCr.RD == DP_CR_RDMA_SP) { DP_PKT_HDR header; /* Read a packet header from memory at BNRY. */ dpLocalRAMReadBuf(pThis, pThis->core.BNRY, sizeof(header), (uint8_t*)&header); pThis->core.CRDA = RT_MAKE_U16(0, pThis->core.BNRY); pThis->core.RBCR = header.byte_cnt; LogFunc(("RDMA SP: RD=%d RSAR=%04X RBCR=%04X CRDA=%04X\n", nCr.RD, pThis->core.RSAR, pThis->core.RBCR, pThis->core.CRDA)); } else { /* Starting remote DMA read or write. */ LogFunc(("RDMA: RD=%d RSAR=%04X RBCR=%04X\n", nCr.RD, pThis->core.RSAR, pThis->core.RBCR)); } pThis->core.cr.RD = nCr.RD; /* NB: The current DMA address (CRDA) is not modified here. */ } /* Set the page select bits. */ pThis->core.cr.PS = nCr.PS; return VINF_SUCCESS; } static int dp8390CoreWrite(PPDMDEVINS pDevIns, PDPNICSTATE pThis, int ofs, uint32_t val) { int rc = VINF_SUCCESS; bool fUpdateIRQ = false; Log2Func(("#%d: page=%d reg=%X val=%02X\n", pThis->iInstance, pThis->core.cr.PS, ofs, val)); /* Command Register exists in all pages. */ if (ofs == DPR_CR) { rc = dp8390CoreWriteCR(pDevIns, pThis, val); } else if (pThis->core.cr.PS == 0) { switch (ofs) { case DPR_P0_W_PSTART: pThis->core.PSTART = val; pThis->core.CURR = val; break; case DPR_P0_W_PSTOP: pThis->core.PSTOP = val; break; case DPR_P0_BNRY: if (pThis->core.BNRY != val) { pThis->core.BNRY = val; /* Probably made more room in receive ring. */ dp8390CoreKickReceive(pDevIns, pThis); } break; case DPR_P0_W_TPSR: pThis->core.TPSR = val; break; case DPR_P0_W_TBCR0: pThis->core.tbcr.TBCR0 = val; break; case DPR_P0_W_TBCR1: pThis->core.tbcr.TBCR1 = val; break; case DPR_P0_ISR: /* Bits are cleared by writing 1 to them, except for bit 7 (RST). */ pThis->core.ISR &= ~val | RT_BIT(7); fUpdateIRQ = true; break; case DPR_P0_W_RSAR0: /* NE2000 ODI driver v2.12 detects card presence by writing RSAR0 * and checking if CRDA0 changes to the same value. */ pThis->core.rsar.RSAR0 = val; pThis->core.crda.CRDA0 = val; break; case DPR_P0_W_RSAR1: pThis->core.rsar.RSAR1 = val; pThis->core.crda.CRDA1 = val; break; case DPR_P0_W_RBCR0: pThis->core.rbcr.RBCR0 = val; break; case DPR_P0_W_RBCR1: pThis->core.rbcr.RBCR1 = val; break; case DPR_P0_W_RCR: pThis->core.RCR = val; pThis->core.rsr.DIS = pThis->core.rcr.MON; break; case DPR_P0_W_TCR: pThis->core.TCR = val; break; case DPR_P0_W_DCR: pThis->core.DCR = val; break; case DPR_P0_W_IMR: pThis->core.IMR = val & 0x7f; /* Don't let the high bit get set. */ fUpdateIRQ = true; break; default: Assert(0); break; } } else if (pThis->core.cr.PS == 1) { /* Page 1 is easy, most registers are stored directly. */ if (ofs == DPR_P1_CURR) { pThis->core.CURR = val; } else pThis->core.PG1[ofs] = val; } else if (pThis->core.cr.PS == 2) { switch (ofs) { case DPR_P2_W_CLDA0: pThis->core.clda.CLDA0 = val; break; case DPR_P2_W_CLDA1: pThis->core.clda.CLDA1 = val; break; case DPR_P2_RNXTPP: pThis->core.rnxtpp = val; break; case DPR_P2_LNXTPP: pThis->core.lnxtpp = val; break; case DPR_P2_ADRCU: case DPR_P2_ADRCL: /// @todo What are these? break; default: LogFunc(("Writing unimplemented register: Page 2, offset=%d, val=%02X!\n", ofs, val)); break; } } else { /* Page 3 is undocumented and unimplemented. */ LogFunc(("Writing page 3 register: offset=%d, val=%02X!\n", ofs, val)); } if (fUpdateIRQ) dp8390CoreUpdateIrq(pDevIns, pThis); return rc; } static void neLocalRAMWrite8(PDPNICSTATE pThis, uint16_t addr, uint8_t val) { if (pThis->uDevType == DEV_NE1000) { /* Only 14 bits of address are decoded. */ addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; pThis->abLocalRAM[addr] = val; } } else if (pThis->uDevType == DEV_NE2000) { /* Only 15 bits of address are decoded. */ addr &= 0x7fff; if (addr >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ addr -= 0x4000; pThis->abLocalRAM[addr] = val; } } else { Assert(0); } } static void neLocalRAMWrite16(PDPNICSTATE pThis, uint16_t addr, uint16_t val) { if (pThis->uDevType == DEV_NE2000) { /* Only 14 bits of address are decoded, word aligned. */ addr &= 0x7ffe; if (addr >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ addr -= 0x4000; pThis->abLocalRAM[addr+0] = RT_LOBYTE(val); pThis->abLocalRAM[addr+1] = RT_HIBYTE(val); } } else { Assert(0); } } static uint8_t neLocalRAMRead8(PDPNICSTATE pThis, uint16_t addr) { uint8_t val = 0xff; if (pThis->uDevType == DEV_NE1000) { /* Only 14 bits of address are decoded. */ addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; val = pThis->abLocalRAM[addr]; } else { /* The PROM is mapped below 2000h, effectively only 4 bits decoded. * NE1000 emulation uses top 16 bytes of the PROM. */ val = pThis->aPROM[(addr & 0x0f) + 16]; /// @todo Use a constant } } else if (pThis->uDevType == DEV_NE2000) { /* Only 15 bits of address are decoded. */ addr &= 0x7fff; if (addr >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ addr -= 0x4000; val = pThis->abLocalRAM[addr]; } else { /* The PROM is mapped below 4000h, effectively only 4 bits decoded. * Address bits 1:4 from the bus are connected to address pins 0:3 * on the PROM. */ val = pThis->aPROM[(addr & 0x1f) >> 1]; /// @todo use a constant } } else { Assert(0); } return val; } static uint16_t neLocalRAMRead16(PDPNICSTATE pThis, uint16_t addr) { uint16_t val = 0xffff; if (pThis->uDevType == DEV_NE2000) { /* Only 14 bits of address are decoded, word aligned. */ addr &= 0x7ffe; if (addr >= 0x4000) { /* Local RAM is mapped at 4000h-7FFFh. */ addr -= 0x4000; val = RT_MAKE_U16(pThis->abLocalRAM[addr], pThis->abLocalRAM[addr+1]); } else { uint8_t uPromByte; /* The PROM is mapped below 4000h, effectively only 4 bits decoded. * Address bits 1:4 from the bus are connected to address pins 0:3 * on the PROM. */ uPromByte = pThis->aPROM[(addr & 0x1f) >> 1]; val = RT_MAKE_U16(uPromByte, uPromByte); } } else { Assert(0); } return val; } static int neDataPortWrite(PPDMDEVINS pDevIns, PDPNICSTATE pThis, uint16_t val) { /* Remote Write; ignored if Remote DMA command is not 'Write'. */ if (pThis->core.cr.RD == DP_CR_RDMA_WR) { /// @todo Also do nothing if DCR.LAS set? if (pThis->core.dcr.WTS) { Log3Func(("RDMA16 write %04X to local addr %04X\n", val, pThis->core.CRDA)); neLocalRAMWrite16(pThis, pThis->core.CRDA, val); } else { Log3Func(("RDMA8 write %02X to local addr %04X\n", val, pThis->core.CRDA)); neLocalRAMWrite8(pThis, pThis->core.CRDA, val); } pThis->core.CRDA += 1 << pThis->core.dcr.WTS; if ((pThis->core.crda.CRDA1 == pThis->core.PSTOP) && (pThis->core.PSTOP != pThis->core.PSTART)) { LogFunc(("RDMA wrap / write!! (CRDA=%04X PSTOP=%02X00 PSTART=%02X00)\n", pThis->core.CRDA, pThis->core.PSTOP, pThis->core.PSTART)); Assert(!pThis->core.crda.CRDA0); /// @todo Can misalignment actually happen? pThis->core.crda.CRDA1 = pThis->core.PSTART; } pThis->core.RBCR -= 1; /* Carefully decrement if WTS set so we don't overshoot and miss EOP. */ if (pThis->core.dcr.WTS && pThis->core.RBCR) pThis->core.RBCR -= 1; if (!pThis->core.RBCR) { LogFunc(("RDMA EOP / write\n")); pThis->core.isr.RDC = 1; pThis->core.cr.RD = 0; dp8390CoreUpdateIrq(pDevIns, pThis); } } return VINF_SUCCESS; } static uint16_t neDataPortRead(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { uint16_t val = 0x1234; /* Remote Read; ignored if Remote DMA command is not 'Read'. */ if (pThis->core.cr.RD == DP_CR_RDMA_RD) { /// @todo Also do nothing if DCR.LAS set? if (pThis->core.dcr.WTS) { val = neLocalRAMRead16(pThis, pThis->core.CRDA); Log3Func(("RDMA16 read from local addr %04X: %04X\n", pThis->core.CRDA, val)); } else { val = neLocalRAMRead8(pThis, pThis->core.CRDA); Log3Func(("RDMA8 read from local addr %04X: %02X\n", pThis->core.CRDA, val)); } pThis->core.CRDA += 1 << pThis->core.dcr.WTS; /// @todo explain that PSTOP=PSTART check is only to reduce logging/busywork if ((pThis->core.crda.CRDA1 == pThis->core.PSTOP) && (pThis->core.PSTOP != pThis->core.PSTART)) { Log3Func(("RDMA wrap / read (CRDA=%04X PSTOP=%02X00 PSTART=%02X00)\n", pThis->core.CRDA, pThis->core.PSTOP, pThis->core.PSTART)); Assert(!pThis->core.crda.CRDA0); /// @todo can misalignment happen? pThis->core.crda.CRDA1 = pThis->core.PSTART; } pThis->core.RBCR -= 1; /* Carefully decrement if WTS set so we don't overshoot and miss EOP. */ if (pThis->core.dcr.WTS && pThis->core.RBCR) pThis->core.RBCR -= 1; if (!pThis->core.RBCR) { LogFunc(("RDMA EOP / read\n")); pThis->core.isr.RDC = 1; pThis->core.cr.RD = 0; dp8390CoreUpdateIrq(pDevIns, pThis); } } return val; } static int neResetPortWrite(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { LogFlowFunc(("\n")); dp8390CoreReset(pDevIns, pThis); return VINF_SUCCESS; } static int dpNeIoWrite(PPDMDEVINS pDevIns, PDPNICSTATE pThis, uint32_t addr, uint32_t val) { int reg = addr & 0x0f; int rc = VINF_SUCCESS; Log2Func(("#%d: addr=%#06x val=%#04x\n", pThis->iInstance, addr, val & 0xff)); /* The NE2000 has 8 bytes of data port followed by 8 bytes of reset port. * In contrast, the NE1000 has 4 bytes of data port followed by 4 bytes * of reset port, aliased twice within the 16-byte range. */ if (pThis->uDevType == DEV_NE2000) reg >>= 1; if (reg & 0x04) rc = neResetPortWrite(pDevIns, pThis); else rc = neDataPortWrite(pDevIns, pThis, val); return rc; } static uint32_t neIoRead(PPDMDEVINS pDevIns, PDPNICSTATE pThis, uint32_t addr) { uint32_t val = UINT32_MAX; int reg = addr & 0x0f; /* The NE2000 has 8 bytes of data port followed by 8 bytes of reset port. * In contrast, the NE1000 has 4 bytes of data port followed by 4 bytes * of reset port, aliased twice within the 16-byte range. */ if (pThis->uDevType == DEV_NE2000) reg >>= 1; if (reg & 0x04) val = 0x52; /// @todo Check what really happens else val = neDataPortRead(pDevIns, pThis); Log2Func(("#%d: addr=%#06x val=%#04x\n", pThis->iInstance, addr, val & 0xff)); return val; } static int wdIoWrite(PPDMDEVINS pDevIns, PDPNICSTATE pThis, uint32_t addr, uint32_t val) { int reg = addr & 0xf; int rc = VINF_SUCCESS; union { uint8_t nCTRL1; WD_CTRL1 nCtrl1; }; union { uint8_t nCTRL2; WD_CTRL2 nCtrl2; }; Log2Func(("#%d: addr=%#06x val=%#04x\n", pThis->iInstance, addr, val & 0xff)); switch (reg) { case WDR_CTRL1: nCTRL1 = val; if (nCtrl1.MEME != pThis->ctrl1.MEME) { LogFunc(("CTRL1.MEME=%u\n", nCtrl1.MEME)); pThis->ctrl1.MEME = nCtrl1.MEME; } if (nCtrl1.RESET) { dp8390CoreReset(pDevIns, pThis); pThis->CTRL1 = 0; } break; case WDR_CTRL2: /* NYI. */ nCTRL2 = val; if (nCTRL2 != pThis->CTRL2) { LogFunc(("CTRL2=%02X, new=%02X\n", pThis->CTRL2, nCTRL2)); pThis->CTRL2 = nCTRL2; } break; default: /* Most of the WD registers are read-only. */ break; } return rc; } static uint32_t wdIoRead(PDPNICSTATE pThis, uint32_t addr) { uint32_t val = UINT32_MAX; int reg = addr & 0x0f; if (reg >= WDR_PROM) { val = pThis->aPROM[reg & 7]; } else { if (pThis->uDevType == DEV_WD8013) { switch (reg) { case WDR_CTRL1: val = pThis->CTRL1; break; case WDR_ATDET: val = pThis->uDevType == DEV_WD8013 ? 1 : 0; break; case WDR_IOBASE: val = pThis->aPROM[WDR_IOBASE]; //val = pThis->IOPortBase >> 5; break; case WDR_CTRL2: val = pThis->CTRL2; break; case WDR_JP: val = 0xa0; break; default: val = 0x00; /// @todo What should it be really? break; } } else { /* Old WD adapters (including 8003E) aliased the PROM for * unimplemented control register reads. */ switch (reg) { case WDR_CTRL2: val = 1; //pThis->CTRL2; break; case WDR_JP: val = 0xa0; break; default: val = pThis->aPROM[reg & 7]; break; } } } Log2Func(("#%d: addr=%#06x val=%#04x\n", pThis->iInstance, addr, val & 0xff)); return val; } static uint8_t elGetIrqFromIdcfr(uint8_t val) { union { uint8_t IDCFR; EL_IDCFR idcfr; }; uint8_t irq = 0; IDCFR = val; /* Lowest set IRQ bit wins (might not match hardware). * NB: It is valid to not enable any IRQ line! */ if (idcfr.irq2) irq = 2; else if (idcfr.irq3) irq = 3; else if (idcfr.irq4) irq = 4; else if (idcfr.irq5) irq = 5; return irq; } static uint8_t elGetDrqFromIdcfr(uint8_t val) { union { uint8_t IDCFR; EL_IDCFR idcfr; }; uint8_t drq = 0; IDCFR = val; /* Lowest set DRQ bit wins; it is valid to not set any. */ if (idcfr.drq1) drq = 1; else if (idcfr.drq2) drq = 2; else if (idcfr.drq3) drq = 3; return drq; } static void elWriteIdcfr(PPDMDEVINS pDevIns, PDPNICSTATE pThis, PEL_GA pGa, uint8_t val) { uint8_t uOldIrq = pThis->uIsaIrq; uint8_t uNewIrq; uint8_t uOldDrq = pThis->uElIsaDma; uint8_t uNewDrq; /* If the IRQ is currently active, have to switch it. */ uNewIrq = elGetIrqFromIdcfr(val); if (uOldIrq != uNewIrq) { LogFunc(("#%d Switching IRQ=%d -> IRQ=%d\n", pThis->iInstance, uOldIrq, uNewIrq)); if (pThis->fNicIrqActive) { /* This probably isn't supposed to happen. */ LogFunc(("#%d Moving active IRQ!\n", pThis->iInstance)); if (uOldIrq) PDMDevHlpISASetIrq(pDevIns, uOldIrq, 0); if (uNewIrq) PDMDevHlpISASetIrq(pDevIns, uNewIrq, 1); } pThis->uIsaIrq = uNewIrq; } /* And now the same dance for DMA. */ uNewDrq = elGetDrqFromIdcfr(val); if (uOldDrq != uNewDrq) { /// @todo We can't really move the DRQ, what can we do? LogFunc(("#%d Switching DRQ=%d -> DRQ=%d\n", pThis->iInstance, uOldDrq, uNewDrq)); pThis->uElIsaDma = uNewDrq; } pGa->IDCFR = val; } static void elWriteGacfr(PPDMDEVINS pDevIns, PDPNICSTATE pThis, PEL_GA pGa, uint8_t val) { union { uint8_t nGACFR; GA_GACFR nGacfr; }; nGACFR = val; if (nGacfr.nim != pGa->gacfr.nim) { /// @todo Should we just run UpdateInterrupts? if (pThis->fNicIrqActive && !nGacfr.nim) { LogFunc(("#%d: Unmasking active IRQ!\n", pThis->iInstance)); PDMDevHlpISASetIrq(pDevIns, pThis->uIsaIrq, 1); } else if (pThis->fNicIrqActive && nGacfr.nim) { LogFunc(("#%d: Masking active IRQ\n", pThis->iInstance)); PDMDevHlpISASetIrq(pDevIns, pThis->uIsaIrq, 0); } } /// @todo rsel/mbs bit change? if (nGacfr.rsel != pGa->gacfr.rsel) { LogFunc(("#%d: rsel=%u mbs=%u\n", pThis->iInstance, nGacfr.rsel, nGacfr.mbs)); } pGa->GACFR = nGACFR; } static void elSoftReset(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { PEL_GA pGa = &pThis->ga; LogFlow(("Resetting ASIC GA\n")); /* Most GA registers are zeroed. */ pGa->PSTR = pGa->PSPR = 0; pGa->DQTR = 0; elWriteGacfr(pDevIns, pThis, pGa, 0); pGa->STREG = ELNKII_GA_REV; pGa->VPTR0 = pGa->VPTR1 = pGa->VPTR2 = 0; pGa->DALSB = pGa->DAMSB = 0; elWriteIdcfr(pDevIns, pThis, pGa, 0); pGa->GACR = 0x0B; /* Low bit set = in reset state. */ pGa->fGaIrq = false; /* Reset the NIC core. */ dp8390CoreReset(pDevIns, pThis); } static int elWriteGacr(PPDMDEVINS pDevIns, PDPNICSTATE pThis, PEL_GA pGa, uint8_t val) { union { uint8_t nGACR; GA_GACR nGacr; }; nGACR = val; if (nGacr.rst != pGa->gacr.rst) { /* When going out of reset, only clear the rst bit. 3C503 diagnostics checks for this. */ if (nGacr.rst) elSoftReset(pDevIns, pThis); else pGa->gacr.rst = 0; } else { #ifdef IN_RING0 /* Force a trip to R3. */ if (pThis->uElIsaDma == pThis->uIsaDma) return VINF_IOM_R3_IOPORT_WRITE; #endif /* Make the data registers "ready" as long as transfers are started. */ if (nGacr.start) { pGa->cdadr.cdadr_lsb = pGa->DALSB; pGa->cdadr.cdadr_msb = pGa->DAMSB; LogFunc(("DMA started, ddir=%u, cdadr=%04X\n", pGa->gacr.ddir, pGa->CDADR)); pGa->streg.dprdy = 1; pGa->streg.dip = 1; pGa->streg.dtc = 0; } else { pGa->streg.dprdy = 0; pGa->streg.dip = 0; } /* Only do anything if the software configured DMA channel matches the emulation config. */ if (pThis->uElIsaDma == pThis->uIsaDma) { #ifdef IN_RING3 PDMDevHlpDMASetDREQ(pDevIns, pThis->uIsaDma, pGa->streg.dprdy); if (pGa->streg.dprdy) PDMDevHlpDMASchedule(pDevIns); LogFunc(("#%d: DREQ for channel %u set to %u\n", pThis->iInstance, pThis->uIsaDma, pGa->streg.dprdy)); #else /* Must not get here. */ Assert(0); #endif } pGa->GACR = nGACR; LogFunc(("GACR=%02X ealo=%u eahi=%u\n", pGa->GACR, pGa->gacr.ealo, pGa->gacr.eahi)); } return VINF_SUCCESS; } static int elGaDataWrite(PDPNICSTATE pThis, PEL_GA pGa, uint16_t val) { /* Data write; ignored if not started and in "download" mode. */ if (pGa->gacr.start && pGa->gacr.ddir) { uint16_t addr = pGa->CDADR; addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; pThis->abLocalRAM[addr] = val; } pGa->CDADR++; /// @todo Does this really apply to writes or only reads? if ((pGa->cdadr.cdadr_msb == pGa->PSPR) && (pGa->PSPR != pGa->PSTR)) { LogFunc(("GA DMA wrap / write!! (cdadr=%04X PSPR=%02X00 PSTR=%02X00)\n", pGa->CDADR, pGa->PSPR, pGa->PSTR)); pGa->cdadr.cdadr_msb = pGa->PSTR; } } return VINF_SUCCESS; } static uint8_t elGaDataRead(PDPNICSTATE pThis, PEL_GA pGa) { uint8_t val = 0xcd; /* Data read; ignored if not started and in "upload" mode. */ if (pGa->gacr.start && !pGa->gacr.ddir) { uint16_t addr = pGa->CDADR; addr &= 0x3fff; if (addr >= 0x2000) { /* Local RAM is mapped at 2000h-3FFFh. */ addr -= 0x2000; val = pThis->abLocalRAM[addr]; } pGa->CDADR++; if ((pGa->cdadr.cdadr_msb == pGa->PSPR) && (pGa->PSPR != pGa->PSTR)) { LogFunc(("GA DMA wrap / read!! (cdadr=%04X PSPR=%02X00 PSTR=%02X00)\n", pGa->CDADR, pGa->PSPR, pGa->PSTR)); pGa->cdadr.cdadr_msb = pGa->PSTR; } } return val; } static int elGaIoWrite(PPDMDEVINS pDevIns, PDPNICSTATE pThis, uint32_t addr, uint32_t val) { int reg = addr & 0xf; int rc = VINF_SUCCESS; PEL_GA pGa = &pThis->ga; Log2Func(("#%d: addr=%#06x val=%#04x\n", pThis->iInstance, addr, val & 0xff)); switch (reg) { case GAR_PSTR: pGa->PSTR = val; break; case GAR_PSPR: pGa->PSPR = val; break; case GAR_DQTR: pGa->DQTR = val; break; case GAR_GACFR: elWriteGacfr(pDevIns, pThis, pGa, val); break; case GAR_GACR: rc = elWriteGacr(pDevIns, pThis, pGa, val); break; case GAR_STREG: /* Writing anything to STREG clears ASIC interrupt. */ pThis->ga.streg.dtc = 0; pThis->ga.fGaIrq = false; dp8390CoreUpdateIrq(pDevIns, pThis); break; case GAR_IDCFR: elWriteIdcfr(pDevIns, pThis, pGa, val); break; case GAR_DAMSB: pGa->DAMSB = val; break; case GAR_DALSB: pGa->DALSB = val; break; case GAR_VPTR2: pGa->VPTR2 = val; break; case GAR_VPTR1: pGa->VPTR1 = val; break; case GAR_VPTR0: pGa->VPTR0 = val; break; case GAR_RFMSB: case GAR_RFLSB: elGaDataWrite(pThis, pGa, val); break; case GAR_R_BCFR: case GAR_R_PCFR: /* Read-only registers, ignored. */ break; default: Assert(0); break; } return rc; } static uint32_t elGaIoRead(PDPNICSTATE pThis, uint32_t addr) { uint32_t val = UINT32_MAX; int reg = addr & 0x0f; PEL_GA pGa = &pThis->ga; switch (reg) { case GAR_PSTR: val = pGa->PSTR; break; case GAR_PSPR: val = pGa->PSPR; break; case GAR_DQTR: val = pGa->DQTR; break; case GAR_R_BCFR: val = pGa->BCFR; break; case GAR_R_PCFR: val = pGa->PCFR; break; case GAR_GACFR: val = pGa->GACFR; break; case GAR_GACR: val = pGa->GACR; break; case GAR_STREG: val = pGa->STREG; break; case GAR_IDCFR: val = pGa->IDCFR; break; case GAR_DAMSB: val = pGa->DAMSB; break; case GAR_DALSB: val = pGa->DALSB; break; case GAR_VPTR2: val = pGa->VPTR2; break; case GAR_VPTR1: val = pGa->VPTR1; break; case GAR_VPTR0: val = pGa->VPTR0; break; case GAR_RFMSB: case GAR_RFLSB: val = elGaDataRead(pThis, pGa); break; default: Assert(0); break; } Log2Func(("#%d: addr=%#06x val=%#04x\n", pThis->iInstance, addr, val & 0xff)); return val; } /** * @callback_method_impl{FNIOMIOPORTIN} */ static DECLCALLBACK(VBOXSTRICTRC) neIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; uint8_t u8Lo, u8Hi = 0; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: *pu32 = neIoRead(pDevIns, pThis, reg); break; case 2: /* Manually split word access if necessary if it's an NE1000. Perhaps overkill. */ if (pThis->uDevType == DEV_NE1000) { u8Lo = neIoRead(pDevIns, pThis, reg); if (reg < 0xf) // This logic is not entirely accurate (wraparound). u8Hi = neIoRead(pDevIns, pThis, reg + 1); *pu32 = RT_MAKE_U16(u8Lo, u8Hi); } else *pu32 = neIoRead(pDevIns, pThis, reg); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "neIOPortRead: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: NE Port=%RTiop *pu32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, *pu32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTIN} */ static DECLCALLBACK(VBOXSTRICTRC) wdIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; uint8_t u8Lo, u8Hi = 0; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: *pu32 = wdIoRead(pThis, reg); break; case 2: /* Manually split word access. */ u8Lo = wdIoRead(pThis, reg); if (reg < 0xf) // This logic is not entirely accurate (wraparound). u8Hi = wdIoRead(pThis, reg + 1); *pu32 = RT_MAKE_U16(u8Lo, u8Hi); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "wdIOPortRead: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: WD Port=%RTiop *pu32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, *pu32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTIN} */ static DECLCALLBACK(VBOXSTRICTRC) elIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; uint8_t u8Lo, u8Hi = 0; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: *pu32 = elGaIoRead(pThis, reg); break; case 2: /* Manually split word access. */ u8Lo = elGaIoRead(pThis, reg); if (reg < 0xf) // This logic is not entirely accurate (wraparound). u8Hi = elGaIoRead(pThis, reg + 1); *pu32 = RT_MAKE_U16(u8Lo, u8Hi); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "elIOPortRead: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: EL Port=%RTiop *pu32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, *pu32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTIN} */ static DECLCALLBACK(VBOXSTRICTRC) dp8390CoreIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; uint8_t u8Lo, u8Hi; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: *pu32 = dp8390CoreRead(pDevIns, pThis, reg); break; case 2: /* Manually split word access. */ u8Lo = dp8390CoreRead(pDevIns, pThis, reg + 0); /* This logic is not entirely accurate. */ if (reg < 0xf) u8Hi = dp8390CoreRead(pDevIns, pThis, reg + 1); else u8Hi = 0; *pu32 = RT_MAKE_U16(u8Lo, u8Hi); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "dp8390CoreIOPortRead: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: Port=%RTiop *pu32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, *pu32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT} */ static DECLCALLBACK(VBOXSTRICTRC) neIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: rc = dpNeIoWrite(pDevIns, pThis, Port, RT_LOBYTE(u32)); break; case 2: /* Manually split word access if necessary. */ if (pThis->uDevType == DEV_NE2000) { rc = dpNeIoWrite(pDevIns, pThis, Port, RT_LOWORD(u32)); } else { rc = dpNeIoWrite(pDevIns, pThis, reg + 0, RT_LOBYTE(u32)); if (RT_SUCCESS(rc) && (reg < 0xf)) rc = dpNeIoWrite(pDevIns, pThis, reg + 1, RT_HIBYTE(u32)); } break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "neIOPortWrite: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: NE Port=%RTiop u32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, u32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT} */ static DECLCALLBACK(VBOXSTRICTRC) wdIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: rc = wdIoWrite(pDevIns, pThis, Port, RT_LOBYTE(u32)); break; case 2: /* Manually split word access. */ rc = wdIoWrite(pDevIns, pThis, reg + 0, RT_LOBYTE(u32)); if (RT_SUCCESS(rc) && (reg < 0xf)) rc = wdIoWrite(pDevIns, pThis, reg + 1, RT_HIBYTE(u32)); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "wdIOPortWrite: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: WD Port=%RTiop u32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, u32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT} */ static DECLCALLBACK(VBOXSTRICTRC) elIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: rc = elGaIoWrite(pDevIns, pThis, Port, RT_LOBYTE(u32)); break; case 2: /* Manually split word access. */ rc = elGaIoWrite(pDevIns, pThis, reg + 0, RT_LOBYTE(u32)); if (RT_SUCCESS(rc) && (reg < 0xf)) rc = elGaIoWrite(pDevIns, pThis, reg + 1, RT_HIBYTE(u32)); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "elIOPortWrite: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: EL Port=%RTiop u32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, u32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTOUT} */ static DECLCALLBACK(VBOXSTRICTRC) dp8390CoreIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = VINF_SUCCESS; int reg = Port & 0xf; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); RT_NOREF_PV(pvUser); switch (cb) { case 1: rc = dp8390CoreWrite(pDevIns, pThis, reg, RT_LOBYTE(u32)); break; case 2: /* Manually split word access. */ rc = dp8390CoreWrite(pDevIns, pThis, reg + 0, RT_LOBYTE(u32)); if (!RT_SUCCESS(rc)) break; rc = dp8390CoreWrite(pDevIns, pThis, reg + 1, RT_HIBYTE(u32)); break; default: rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "dp8390CoreIOPortWrite: unsupported operation size: offset=%#10x cb=%u\n", Port, cb); } Log2Func(("#%d: Port=%RTiop u32=%#RX32 cb=%d rc=%Rrc\n", pThis->iInstance, Port, u32, cb, rc)); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a); return rc; } #if 0 /** * @callback_method_impl{FNIOMMMIONEWFILL, * Local RAM write hook\, to be called from IOM. This is the advanced version of * wdMemWrite function.} */ static DECLCALLBACK(VBOXSTRICTRC) dpWdMmioFill(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, uint32_t u32Item, unsigned cbItem, unsigned cItems) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); Assert(PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); !! return VINF_SUCCESS } #endif /** * @callback_method_impl{FNIOMMMIONEWREAD, * Local RAM read hook\, to be called from IOM.} */ static DECLCALLBACK(VBOXSTRICTRC) wdMemRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); uint8_t *pbData = (uint8_t *)pv; NOREF(pvUser); // STAM_PROFILE_START(&pThis->CTX_MID_Z(Stat,MemoryRead), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); if (pThis->ctrl1.MEME) { Log3Func(("#%d: Reading %u bytes from address %X: [%.*Rhxs]\n", pThis->iInstance, cb, off, cb, &pThis->abLocalRAM[off & DPNIC_MEM_MASK])); while (cb-- > 0) *pbData++ = pThis->abLocalRAM[off++ & DPNIC_MEM_MASK]; } else memset(pv, 0xff, cb); // STAM_PROFILE_STOP(&pThis->CTX_MID_Z(Stat,MemoryRead), a); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMMMIONEWWRITE, * Local RAM write hook\, to be called from IOM.} */ static DECLCALLBACK(VBOXSTRICTRC) wdMemWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); uint8_t const *pbSrc = (uint8_t const *)pv; NOREF(pvUser); // STAM_PROFILE_START(&pThis->CTX_MID_Z(Stat,MemoryWrite), a); Assert(PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); if (pThis->ctrl1.MEME) { Log3Func(("#%d: Writing %u bytes to address %X: [%.*Rhxs]\n", pThis->iInstance, cb, off, cb, pbSrc)); while (cb-- > 0) pThis->abLocalRAM[off++ & DPNIC_MEM_MASK] = *pbSrc++; } // STAM_PROFILE_STOP(&pThis->CTX_MID_Z(Stat,MemoryWrite), a); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMMMIONEWREAD, * Local RAM read hook\, to be called from IOM.} */ static DECLCALLBACK(VBOXSTRICTRC) elMemRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); uint8_t *pbData = (uint8_t *)pv; NOREF(pvUser); Assert(PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); if (pThis->ga.gacfr.rsel) { Log3Func(("#%d: Reading %u bytes from address %X\n", pThis->iInstance, cb, off)); while (cb-- > 0) *pbData++ = pThis->abLocalRAM[off++ & DPNIC_MEM_MASK]; } else { Log3Func(("#%d: Ignoring read of %u bytes from address %X\n", pThis->iInstance, cb, off)); memset(pv, 0xff, cb); } return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMMMIONEWWRITE, * Local RAM write hook\, to be called from IOM.} */ static DECLCALLBACK(VBOXSTRICTRC) elMemWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); uint8_t const *pbSrc = (uint8_t const *)pv; NOREF(pvUser); Assert(PDMDevHlpCritSectIsOwner(pDevIns, pDevIns->CTX_SUFF(pCritSectRo))); if (pThis->ga.gacfr.rsel) { Log3Func(("#%d: Writing %u bytes to address %X\n", pThis->iInstance, cb, off)); while (cb-- > 0) pThis->abLocalRAM[off++ & DPNIC_MEM_MASK] = *pbSrc++; } else { Log3Func(("#%d: Ignoring write of %u bytes to address %X\n", pThis->iInstance, cb, off)); } return VINF_SUCCESS; } #ifdef IN_RING3 /* Shamelessly stolen from DevDMA.cpp */ /* Test the decrement bit of mode register. */ #define IS_MODE_DEC(c) ((c) & 0x20) /* Test the auto-init bit of mode register. */ #define IS_MODE_AI(c) ((c) & 0x10) /* Extract the transfer type bits of mode register. */ #define GET_MODE_XTYP(c) (((c) & 0x0c) >> 2) /* DMA transfer modes. */ enum { DMODE_DEMAND, /* Demand transfer mode. */ DMODE_SINGLE, /* Single transfer mode. */ DMODE_BLOCK, /* Block transfer mode. */ DMODE_CASCADE /* Cascade mode. */ }; /* DMA transfer types. */ enum { DTYPE_VERIFY, /* Verify transfer type. */ DTYPE_WRITE, /* Write transfer type. */ DTYPE_READ, /* Read transfer type. */ DTYPE_ILLEGAL /* Undefined. */ }; static DECLCALLBACK(uint32_t) elnk3R3DMAXferHandler(PPDMDEVINS pDevIns, void *opaque, unsigned nchan, uint32_t dma_pos, uint32_t dma_len) { PDPNICSTATE pThis = (PDPNICSTATE)opaque; int dma_mode; int dma_type; uint16_t cbToXfer; uint32_t cbXferred = 0; uint16_t uDmaAddr; int rc; /* * The 3C503 EtherLink II uses DMA as an alternative to shared RAM * or PIO. The Gate Array tracks its own current DMA address within * the adapter's local address space. */ dma_mode = PDMDevHlpDMAGetChannelMode(pDevIns, pThis->uIsaDma); dma_type = GET_MODE_XTYP(dma_mode); uDmaAddr = pThis->ga.CDADR; cbToXfer = dma_len; LogFlowFunc(("dma_mode=%d, dma_type=%d, dma_pos=%u, dma_len=%u, cdadr=%04X\n", dma_mode, dma_type, dma_pos, dma_len, uDmaAddr)); /* Skip any accesses below local memory start. */ if ((0x2000 > 0) && (uDmaAddr < 0x2000)) /// @todo Should keep track in variables { uint16_t cbToSkip = 0x2000 - uDmaAddr; uDmaAddr += cbToSkip; /// @todo Should this write junk to host memory when reading from device? if (cbToSkip < cbToXfer) { cbToXfer -= cbToSkip; Assert(uDmaAddr == 0x2000); LogFunc(("DMA skipping %u bytes!\n", cbToSkip)); } else { cbToXfer = 0; /* Transfer entirely below valid address range. */ LogFunc(("DMA below valid address range!\n")); } } if (cbToXfer) { uint16_t cbToSkip = 0; /* Clip transfer size so it falls within local RAM. */ if ((uDmaAddr - 0x2000 + cbToXfer) > (int)sizeof(pThis->abLocalRAM)) { /* Calculate how much to skip anything at the end. */ cbToSkip = sizeof(pThis->abLocalRAM) - (0x2000 - uDmaAddr + cbToXfer); LogFunc(("DMA above valid address range uDmaAddr=%04X cbToXfer=%u cbToSkip=%u!\n", uDmaAddr, cbToXfer, cbToSkip)); cbToXfer -= cbToSkip; } if (dma_type == DTYPE_WRITE) { /* Write transfer type. Reading from device, writing to memory. */ if (!pThis->ga.gacr.ddir) { Log2Func(("DMAWriteMemory uDmaAddr=%04X cbToXfer=%u\n", uDmaAddr, cbToXfer)); rc = PDMDevHlpDMAWriteMemory(pDevIns, nchan, &pThis->abLocalRAM[uDmaAddr - 0x2000], dma_pos, cbToXfer, &cbXferred); AssertMsgRC(rc, ("DMAWriteMemory -> %Rrc\n", rc)); } else { // Do nothing, direction does not match. /// @todo Bug in DevDMA? LogFunc(("DTYPE_WRITE but GACR.ddir set, do nothing!\n")); } } else { /* Read of Verify transfer type. Reading from memory, writing to device. */ if (pThis->ga.gacr.ddir) { Log2Func(("DMAReadMemory uDmaAddr=%04X cbToXfer=%u\n", uDmaAddr, cbToXfer)); rc = PDMDevHlpDMAReadMemory(pDevIns, nchan, &pThis->abLocalRAM[uDmaAddr - 0x2000], dma_pos, cbToXfer, &cbXferred); AssertMsgRC(rc, ("DMAReadMemory -> %Rrc\n", rc)); } else { // Do nothing, direction does not match. /// @todo Bug in DevDMA? LogFunc(("DTYPE_READ but GACR.ddir clear, do nothing!\n")); } } /* NB: This might wrap. In theory it might wrap back to valid * memory but... just no. */ /// @todo Actually... what would really happen? uDmaAddr += cbToXfer + cbToSkip; } Log2Func(("After DMA transfer: uDmaAddr=%04X, cbXferred=%u\n", uDmaAddr, cbXferred)); /* Advance the DMA address and see if transfer completed (it almost certainly did). */ if (1) { Log2Func(("DMA completed\n")); PDMDevHlpDMASetDREQ(pDevIns, pThis->uIsaDma, 0); pThis->ga.streg.dtc = 1; pThis->ga.fGaIrq = true; dp8390CoreUpdateIrq(pDevIns, pThis); } else { LogFunc(("DMA continuing: uDmaAddr=%04X, cbXferred=%u\n", uDmaAddr, cbXferred)); PDMDevHlpDMASchedule(pDevIns); } /* Returns the updated transfer count. */ return dma_pos + dma_len; } /* -=-=-=-=-=- Timer Callbacks -=-=-=-=-=- */ /** * @callback_method_impl{FNTMTIMERDEV, Restore timer callback} * * This is only called when we restore a saved state and temporarily * disconnected the network link to inform the guest that network connections * should be considered lost. */ static DECLCALLBACK(void) dpNicR3TimerRestore(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { RT_NOREF(pvUser); PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); AssertReleaseRC(rc); rc = VERR_GENERAL_FAILURE; /* The DP8390 based cards have no concept of link state. Reporting collisions on all transmits * is the best approximation of a disconnected cable that we can do. Some drivers (3C503) warn * of possible disconnected cable, some don't. Many cards with DP8390 chips had permanently * attached cables (AUI or BNC) and their drivers do not expect cables to be disconnected and * re-connected at runtime. Guests which are waiting for a receive have no way to notice any * problem, therefore we only postpone restoring a link a couple of times, and then reconnect * regardless of whether the guest noticed anything or not. */ if ( (pThis->cLinkDownReported <= DPNIC_MAX_LINKDOWN_REPORTED) && (pThis->cLinkRestorePostponed <= DPNIC_MAX_LINKRST_POSTPONED)) rc = PDMDevHlpTimerSetMillies(pDevIns, hTimer, 1500); if (RT_FAILURE(rc)) { pThis->fLinkTempDown = false; if (pThis->fLinkUp) { LogRel(("DPNIC#%d: The link is back up again after the restore.\n", pThis->iInstance)); LogFunc(("#%d: cLinkDownReported=%d\n", pThis->iInstance, pThis->cLinkDownReported)); pThis->Led.Actual.s.fError = 0; } } else { LogFunc(("#%d: cLinkDownReported=%d, cLinkRestorePostponed=%d, wait another 1500ms...\n", pThis->iInstance, pThis->cLinkDownReported, pThis->cLinkRestorePostponed)); pThis->cLinkRestorePostponed++; } PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); } /* -=-=-=-=-=- Debug Info Handler -=-=-=-=-=- */ /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) dpNicR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); bool fRecvBuffer = false; bool fSendBuffer = false; unsigned uFreePages; DP8390CORE *pCore = &pThis->core; const char *aszModels[] = {"NE1000", "NE2000", "WD8003E", "WD8013E", "3C503"}; /* * Parse args. */ if (pszArgs) { fRecvBuffer = strstr(pszArgs, "verbose") || strstr(pszArgs, "recvbuf"); fSendBuffer = strstr(pszArgs, "verbose") || strstr(pszArgs, "sendbuf"); } /* * Show device information. */ pHlp->pfnPrintf(pHlp, "DPNIC #%d: %s port=%RTiop IRQ=%u", pThis->iInstance, aszModels[pThis->uDevType], pThis->IOPortBase, pThis->uIsaIrq); if (pThis->MemBase) pHlp->pfnPrintf(pHlp, " mem=%05X-%05X", pThis->MemBase, pThis->MemBase + pThis->cbMemSize - 1); if (pThis->uIsaDma) pHlp->pfnPrintf(pHlp, " DMA=%u", pThis->uIsaDma); pHlp->pfnPrintf(pHlp, " mac-cfg=%RTmac%s %s\n", &pThis->MacConfigured, pDevIns->fR0Enabled ? " RZ" : "", pThis->fDriverAttached ? "attached" : "unattached!"); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_INTERNAL_ERROR); /* Take it here so we know why we're hanging... */ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &pThis->CritSect, rcLock); pHlp->pfnPrintf(pHlp, "\nDP3890 NIC Core\n"); pHlp->pfnPrintf(pHlp, " CR=%02X: %s%s%s RD=%d PS=%d\n", pCore->CR, pCore->cr.STP ? "STP " : "", pCore->cr.STA ? "STA " : "", pCore->cr.TXP ? "TXP " : "", pCore->cr.RD, pCore->cr.PS); pHlp->pfnPrintf(pHlp, " ISR=%02X: %s%s%s%s%s%s%s%s\n", pCore->ISR, pCore->isr.PRX ? "PRX " : "", pCore->isr.PTX ? "PTX " : "", pCore->isr.RXE ? "RXE " : "", pCore->isr.TXE ? "TXE " : "", pCore->isr.OVW ? "OVW " : "", pCore->isr.CNT ? "CNT " : "", pCore->isr.RDC ? "RDC " : "", pCore->isr.RST ? "RST " : ""); pHlp->pfnPrintf(pHlp, " IMR=%02X: %s%s%s%s%s%s%s%s\n", pCore->IMR, pCore->imr.PRXE ? "PRXE " : "", pCore->imr.PTXE ? "PTXE " : "", pCore->imr.RXEE ? "RXEE " : "", pCore->imr.TXEE ? "TXEE " : "", pCore->imr.OVWE ? "OVWE " : "", pCore->imr.CNTE ? "CNTE " : "", pCore->imr.RDCE ? "RDCE " : "", pCore->imr.res ? "Reserved bit set!!" : ""); pHlp->pfnPrintf(pHlp, " DCR=%02X: %s%s%s%s%sFT=%d %s\n", pCore->DCR, pCore->dcr.WTS ? "WTS " : "", pCore->dcr.BOS ? "BOS " : "", pCore->dcr.LAS ? "LAS " : "", pCore->dcr.LS ? "LS " : "", pCore->dcr.ARM ? "ARM " : "", pCore->dcr.FT, pCore->dcr.res ? "Reserved bit set!!" : ""); pHlp->pfnPrintf(pHlp, " TCR=%02X: %sLB=%d %s%s\n", pCore->TCR, pCore->tcr.CRC ? "CRC " : "", pCore->tcr.LB, pCore->tcr.ATD ? "ATD " : "", pCore->tcr.OFST ? "OFST" : ""); pHlp->pfnPrintf(pHlp, " TSR=%02X: %s%s%s%s%s%s%s%s\n", pCore->TSR, pCore->tsr.PTX ? "PTX " : "", pCore->tsr.DFR ? "DFR " : "", pCore->tsr.COL ? "COL " : "", pCore->tsr.ABT ? "ABT " : "", pCore->tsr.CRS ? "CRS " : "", pCore->tsr.FU ? "FU " : "", pCore->tsr.CDH ? "CDH " : "", pCore->tsr.OWC ? "OWC " : ""); pHlp->pfnPrintf(pHlp, " RCR=%02X: %s%s%s%s%s%s\n", pCore->RCR, pCore->rcr.SEP ? "SEP " : "", pCore->rcr.AR ? "AR " : "", pCore->rcr.AB ? "AB " : "", pCore->rcr.AM ? "AM " : "", pCore->rcr.PRO ? "PRO " : "", pCore->rcr.MON ? "MON " : ""); pHlp->pfnPrintf(pHlp, " RSR=%02X: %s%s%s%s%s%s%s%s\n", pCore->RSR, pCore->rsr.PRX ? "PRX " : "", pCore->rsr.CRC ? "CRC " : "", pCore->rsr.FAE ? "FAE " : "", pCore->rsr.FO ? "FO " : "", pCore->rsr.MPA ? "MPA " : "", pCore->rsr.PHY ? "PHY " : "", pCore->rsr.DIS ? "DIS " : "", pCore->rsr.DFR ? "DFR " : ""); pHlp->pfnPrintf(pHlp, " ActIntSrc: %02X\n", pCore->ISR & pCore->IMR); pHlp->pfnPrintf(pHlp, " Receiving: %s%s%s%s%s%s\n", pCore->rcr.AB ? "Broadcast " : "", pCore->rcr.AM ? "Multicast " : "", pCore->rcr.PRO ? "Promiscuous " : "", pCore->rcr.MON ? "Monitor " : "", pCore->cr.STA ? "Started " : "Not started ", pCore->isr.RST ? "Reset!" : ""); /* Dump the currently programmed station address. */ pHlp->pfnPrintf(pHlp, " MAC Addr : %RTmac\n", &pCore->pg1.PAR); /* Dump the currently programmed multicast filter. */ pHlp->pfnPrintf(pHlp, " Multicast: %02X:%02X:%02X:%02X %02X:%02X:%02X:%02X\n", pCore->pg1.MAR[0], pCore->pg1.MAR[1], pCore->pg1.MAR[2], pCore->pg1.MAR[3], pCore->pg1.MAR[4], pCore->pg1.MAR[5], pCore->pg1.MAR[6], pCore->pg1.MAR[7]); /* Dump the DMA state. */ pHlp->pfnPrintf(pHlp, " Local DMA : TPSR=%02X00 TBCR=%04X CLDA=%04X\n", pCore->TPSR, pCore->TBCR, pCore->CLDA); pHlp->pfnPrintf(pHlp, " : PSTART=%02X00 PSTOP=%02X00 CURR=%02X00 BNRY=%02X00\n", pCore->PSTART, pCore->PSTOP, pCore->CURR, pCore->BNRY); pHlp->pfnPrintf(pHlp, " Remote DMA: RSAR=%04X RBCR=%04X CRDA=%04X\n", pCore->RSAR, pCore->RBCR, pCore->CRDA); /* Try to figure out how much available space there is in the receive ring. */ if (pCore->BNRY <= pCore->CURR) uFreePages = pCore->PSTOP - pCore->PSTART - (pCore->CURR - pCore->BNRY); else uFreePages = pCore->BNRY - pCore->CURR; pHlp->pfnPrintf(pHlp, " Estimated %u free pages (%u bytes) in receive ring\n", uFreePages, uFreePages * 256); if (pThis->fMaybeOutOfSpace) pHlp->pfnPrintf(pHlp, " Waiting for receive space\n"); if (pThis->fLinkTempDown) { pHlp->pfnPrintf(pHlp, " Link down count %d\n", pThis->cLinkDownReported); pHlp->pfnPrintf(pHlp, " Postpone count %d\n", pThis->cLinkRestorePostponed); } if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { /* Dump the WD specific registers. */ pHlp->pfnPrintf(pHlp, "\nWD80x3 Control Registers\n"); pHlp->pfnPrintf(pHlp, " CTRL1=%02X: %s%s A18-A13=%02X\n", pThis->CTRL1, pThis->ctrl1.RESET ? "RESET " : "", pThis->ctrl1.MEME ? "MEME " : "", pThis->ctrl1.A13_18); pHlp->pfnPrintf(pHlp, " CTRL2=%02X: %s%s A23-A19=%02X\n", pThis->CTRL2, pThis->ctrl2.M16 ? "M16 " : "", pThis->ctrl2.MEMW ? "MEMW " : "", pThis->ctrl2.A19_23); } if (pThis->uDevType == DEV_3C503) { PEL_GA pGa = &pThis->ga; /* Dump the Gate Array state. */ pHlp->pfnPrintf(pHlp, "\n3C503 ASIC Gate Array\n"); pHlp->pfnPrintf(pHlp, " PSTR=%02X00 PSPR=%02X00 cdadr=%04X\n", pGa->PSTR, pGa->PSTR, pGa->CDADR); pHlp->pfnPrintf(pHlp, " DQTR=%02X: tb=%d\n", pGa->DQTR, pGa->dqtr.tb); pHlp->pfnPrintf(pHlp, " BCFR=%02X PCFR=%02X\n", pGa->BCFR, pGa->PCFR); pHlp->pfnPrintf(pHlp, " GACFR=%02X: mbs=%d %s%s%s%s%s\n", pGa->GACFR, pGa->gacfr.mbs, pGa->gacfr.rsel ? "rsel " : "", pGa->gacfr.test ? "test " : "", pGa->gacfr.ows ? "ows " : "", pGa->gacfr.tcm ? "tcm " : "", pGa->gacfr.nim ? "nim " : ""); pHlp->pfnPrintf(pHlp, " GACR=%02X: %s%s%s%s%s%s%s%s\n", pGa->GACR, pGa->gacr.rst ? "rst " : "", pGa->gacr.xsel ? "xsel " : "", pGa->gacr.ealo ? "ealo " : "", pGa->gacr.eahi ? "eahi " : "", pGa->gacr.share ? "share " : "", pGa->gacr.dbsel ? "dbsel " : "", pGa->gacr.ddir ? "ddir " : "", pGa->gacr.start ? "start " : ""); pHlp->pfnPrintf(pHlp, " STREG=%02X: rev=%d %s%s%s%s%s\n", pGa->STREG, pGa->streg.rev, pGa->streg.dip ? "dip " : "", pGa->streg.dtc ? "dtc " : "", pGa->streg.oflw ? "oflw " : "", pGa->streg.uflw ? "uflw " : "", pGa->streg.dprdy ? "dprdy " : ""); pHlp->pfnPrintf(pHlp, " IDCFR=%02X: %s%s%s%s%s%s%s\n", pGa->IDCFR, pGa->idcfr.drq1 ? "drq1 " : "", pGa->idcfr.drq2 ? "drq2 " : "", pGa->idcfr.drq3 ? "drq3 " : "", pGa->idcfr.irq2 ? "irq2 " : "", pGa->idcfr.irq3 ? "irq3 " : "", pGa->idcfr.irq4 ? "irq4 " : "", pGa->idcfr.irq5 ? "irq5 " : ""); pHlp->pfnPrintf(pHlp, " DALSB=%02X DAMSB=%02X addr=%04X\n", pGa->DALSB, pGa->DAMSB, RT_MAKE_U16(pGa->DALSB, pGa->DAMSB)); pHlp->pfnPrintf(pHlp, " VPTR0=%02X VPTR1=%02X VPTR2=%02X, VPTR=%X\n", pGa->VPTR0, pGa->VPTR1, pGa->VPTR2, (pGa->VPTR2 << 12) | (pGa->VPTR1 << 4) | (pGa->VPTR0 >> 4)); } /* Dump the beginning of the send buffer. */ if (fSendBuffer) { pHlp->pfnPrintf(pHlp, "Send buffer (start at %u):\n", 0); unsigned dump_end = RT_MIN(0 + 64, sizeof(pThis->abLocalRAM) - 16); for (unsigned ofs = 0; ofs < dump_end; ofs += 16) pHlp->pfnPrintf(pHlp, " %04X: %Rhxs\n", ofs, &pThis->abLocalRAM[ofs]); } PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); } /* -=-=-=-=-=- Helper(s) -=-=-=-=-=- */ static void dpNicR3HardReset(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { LogFlowFunc(("#%d:\n", pThis->iInstance)); /* Initialize the PROM. Covers both NE1000 and NE2000. */ Assert(sizeof(pThis->MacConfigured) == 6); memset(pThis->aPROM, 0, sizeof(pThis->aPROM)); /* The first 6 bytes of PROM always contain the configured MAC address. */ memcpy(&pThis->aPROM[0x00], &pThis->MacConfigured, sizeof(pThis->MacConfigured)); if ((pThis->uDevType == DEV_NE1000) || (pThis->uDevType == DEV_NE2000)) { /* The NE1000/NE2000 repeats the MAC address and also includes BB/WW signature. */ memcpy(&pThis->aPROM[0x10], &pThis->MacConfigured, sizeof(pThis->MacConfigured)); pThis->aPROM[0x0E] = pThis->aPROM[0x0F] = 'W'; /* Word-wide. */ pThis->aPROM[0x1E] = pThis->aPROM[0x1F] = 'B'; /* Byte-wide. */ } else if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { /* The WD8003/WD8013 only uses 8 bytes of the PROM. The 7th byte * contains a board ID and the last byte is a checksum calculated * such that a two's complement sum of the 8 bytes equals FFh. */ int i; uint8_t sum; /* The board ID is 2 for 8003S, 3 for 8003E, 4 for 8003WT, 5 for 8013EBT. */ pThis->aPROM[0x06] = 3; if (pThis->uDevType == DEV_WD8013) pThis->aPROM[0x06] = 5; for (i = 0, sum = 0; i < 7; ++i) sum += pThis->aPROM[i]; pThis->aPROM[0x07] = 0xff - sum; } else if (pThis->uDevType == DEV_3C503) { const uint16_t el_io_bases[] = { 0x2E0, 0x2A0, 0x280, 0x250, 0x350, 0x330, 0x310, 0x300, 0 }; const uint32_t el_mem_bases[] = { 0xDC000, 0xD8000, 0xCC000, 0xC8000, 0 }; int i; /* Zap the Gate Array state. */ memset(&pThis->ga, 0, sizeof(pThis->ga)); /* Find the BCFR value. */ for (i = 0; el_io_bases[i]; ++i) { if (pThis->IOPortBase == el_io_bases[i]) break; } /// @todo Make sure we somehow disallow values that a 3C503 can't do if (i < 8) pThis->ga.BCFR = 1 << i; /* Find the PCFR value. */ for (i = 0; el_mem_bases[i]; ++i) { if (pThis->MemBase == el_mem_bases[i]) break; } /// @todo Make sure we somehow disallow values that a 3C503 can't do if (i < 4) pThis->ga.PCFR = RT_BIT(7) >> i; } /* Clear the local RAM. */ memset(pThis->abLocalRAM, 0, sizeof(pThis->abLocalRAM)); /* Wipe out all of the DP8390 core state. */ memset(&pThis->core, 0, sizeof(pThis->core)); dp8390CoreReset(pDevIns, pThis); } /** * Takes down the link temporarily if it's current status is up. * * This is used during restore and when replumbing the network link. * * The temporary link outage is supposed to indicate to the OS that all network * connections have been lost and that it for instance is appropriate to * renegotiate any DHCP lease. * * @param pDevIns The device instance data. * @param pThis The device state. */ static void dp8390TempLinkDown(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { if (pThis->fLinkUp) { pThis->fLinkTempDown = true; pThis->cLinkDownReported = 0; pThis->cLinkRestorePostponed = 0; pThis->Led.Asserted.s.fError = pThis->Led.Actual.s.fError = 1; int rc = PDMDevHlpTimerSetMillies(pDevIns, pThis->hTimerRestore, pThis->cMsLinkUpDelay); AssertRC(rc); } } /* -=-=-=-=-=- Saved State -=-=-=-=-=- */ /** * @callback_method_impl{FNSSMDEVLIVEEXEC, Pass 0 only.} */ static DECLCALLBACK(int) dpNicLiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass) { RT_NOREF(uPass); PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); pDevIns->pHlpR3->pfnSSMPutMem(pSSM, &pThis->MacConfigured, sizeof(pThis->MacConfigured)); return VINF_SSM_DONT_CALL_AGAIN; } /** * @callback_method_impl{FNSSMDEVSAVEPREP, * Serializes the receive thread, it may be working inside the critsect.} */ static DECLCALLBACK(int) dpNicSavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { RT_NOREF(pSSM); PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); AssertRC(rc); PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) dpNicSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; /* Start with saving the generic bits. */ pHlp->pfnSSMPutBool(pSSM, pThis->fLinkUp); pHlp->pfnSSMPutBool(pSSM, pThis->fNicIrqActive); /* Continue with DP8390 core. */ pHlp->pfnSSMPutU8(pSSM, pThis->core.CR); pHlp->pfnSSMPutU8(pSSM, pThis->core.DCR); pHlp->pfnSSMPutU8(pSSM, pThis->core.ISR); pHlp->pfnSSMPutU8(pSSM, pThis->core.IMR); pHlp->pfnSSMPutU8(pSSM, pThis->core.RCR); pHlp->pfnSSMPutU8(pSSM, pThis->core.RSR); pHlp->pfnSSMPutU8(pSSM, pThis->core.TCR); pHlp->pfnSSMPutU8(pSSM, pThis->core.TSR); pHlp->pfnSSMPutU8(pSSM, pThis->core.NCR); pHlp->pfnSSMPutU8(pSSM, pThis->core.TPSR); pHlp->pfnSSMPutU16(pSSM, pThis->core.TBCR); pHlp->pfnSSMPutU16(pSSM, pThis->core.CLDA); pHlp->pfnSSMPutU8(pSSM, pThis->core.PSTART); pHlp->pfnSSMPutU8(pSSM, pThis->core.PSTOP); pHlp->pfnSSMPutU8(pSSM, pThis->core.CURR); pHlp->pfnSSMPutU8(pSSM, pThis->core.BNRY); pHlp->pfnSSMPutU16(pSSM, pThis->core.RSAR); pHlp->pfnSSMPutU16(pSSM, pThis->core.RBCR); pHlp->pfnSSMPutU16(pSSM, pThis->core.CRDA); pHlp->pfnSSMPutU8(pSSM, pThis->core.lnxtpp); pHlp->pfnSSMPutU8(pSSM, pThis->core.rnxtpp); pHlp->pfnSSMPutU8(pSSM, pThis->core.CNTR0); pHlp->pfnSSMPutU8(pSSM, pThis->core.CNTR1); pHlp->pfnSSMPutU8(pSSM, pThis->core.CNTR2); pHlp->pfnSSMPutMem(pSSM, &pThis->core.pg1.PAR, sizeof(pThis->core.pg1.PAR)); pHlp->pfnSSMPutMem(pSSM, &pThis->core.pg1.MAR, sizeof(pThis->core.pg1.MAR)); pHlp->pfnSSMPutU8(pSSM, pThis->core.fifo.rp); pHlp->pfnSSMPutU8(pSSM, pThis->core.fifo.wp); pHlp->pfnSSMPutMem(pSSM, &pThis->core.fifo.fifo, sizeof(pThis->core.fifo.fifo)); /* Now the WD80x3 state. */ pHlp->pfnSSMPutU8(pSSM, pThis->CTRL1); pHlp->pfnSSMPutU8(pSSM, pThis->CTRL2); /* Finally the 3C503-specific state. */ pHlp->pfnSSMPutU8(pSSM, pThis->ga.PSTR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.PSPR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.DQTR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.BCFR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.PCFR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.GACFR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.GACR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.STREG); pHlp->pfnSSMPutU8(pSSM, pThis->ga.IDCFR); pHlp->pfnSSMPutU8(pSSM, pThis->ga.DAMSB); pHlp->pfnSSMPutU8(pSSM, pThis->ga.DALSB); pHlp->pfnSSMPutU8(pSSM, pThis->ga.VPTR2); pHlp->pfnSSMPutU8(pSSM, pThis->ga.VPTR1); pHlp->pfnSSMPutU8(pSSM, pThis->ga.VPTR0); pHlp->pfnSSMPutU16(pSSM, pThis->ga.CDADR); pHlp->pfnSSMPutBool(pSSM, pThis->ga.fGaIrq); /* Save the configured MAC address. */ pHlp->pfnSSMPutMem(pSSM, &pThis->MacConfigured, sizeof(pThis->MacConfigured)); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADPREP}, * Serializes the receive thread, it may be working inside the critsect.} */ static DECLCALLBACK(int) dpNicLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); RT_NOREF(pSSM); int rc = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); AssertRC(rc); PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); return rc; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) dpNicLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); PDPNICSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDPNICSTATECC); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; if (SSM_VERSION_MAJOR_CHANGED(uVersion, DPNIC_SAVEDSTATE_VERSION)) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; if (uPass == SSM_PASS_FINAL) { /* Restore data, first the generic bits. */ pHlp->pfnSSMGetBool(pSSM, &pThis->fLinkUp); pHlp->pfnSSMGetBool(pSSM, &pThis->fNicIrqActive); /* Now the DP8390 core. */ pHlp->pfnSSMGetU8(pSSM, &pThis->core.CR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.DCR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.ISR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.IMR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.RCR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.RSR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.TCR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.TSR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.NCR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.TPSR); pHlp->pfnSSMGetU16(pSSM, &pThis->core.TBCR); pHlp->pfnSSMGetU16(pSSM, &pThis->core.CLDA); pHlp->pfnSSMGetU8(pSSM, &pThis->core.PSTART); pHlp->pfnSSMGetU8(pSSM, &pThis->core.PSTOP); pHlp->pfnSSMGetU8(pSSM, &pThis->core.CURR); pHlp->pfnSSMGetU8(pSSM, &pThis->core.BNRY); pHlp->pfnSSMGetU16(pSSM, &pThis->core.RSAR); pHlp->pfnSSMGetU16(pSSM, &pThis->core.RBCR); pHlp->pfnSSMGetU16(pSSM, &pThis->core.CRDA); pHlp->pfnSSMGetU8(pSSM, &pThis->core.lnxtpp); pHlp->pfnSSMGetU8(pSSM, &pThis->core.rnxtpp); pHlp->pfnSSMGetU8(pSSM, &pThis->core.CNTR0); pHlp->pfnSSMGetU8(pSSM, &pThis->core.CNTR1); pHlp->pfnSSMGetU8(pSSM, &pThis->core.CNTR2); pHlp->pfnSSMGetMem(pSSM, &pThis->core.pg1.PAR, sizeof(pThis->core.pg1.PAR)); pHlp->pfnSSMGetMem(pSSM, &pThis->core.pg1.MAR, sizeof(pThis->core.pg1.MAR)); pHlp->pfnSSMGetU8(pSSM, &pThis->core.fifo.rp); pHlp->pfnSSMGetU8(pSSM, &pThis->core.fifo.wp); pHlp->pfnSSMGetMem(pSSM, &pThis->core.fifo.fifo, sizeof(pThis->core.fifo.fifo)); /* WD80x3-specific state. */ pHlp->pfnSSMGetU8(pSSM, &pThis->CTRL1); pHlp->pfnSSMGetU8(pSSM, &pThis->CTRL2); /* 3C503-specific state. */ pHlp->pfnSSMGetU8(pSSM, &pThis->ga.PSTR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.PSPR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.DQTR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.BCFR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.PCFR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.GACFR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.GACR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.STREG); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.IDCFR); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.DAMSB); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.DALSB); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.VPTR2); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.VPTR1); pHlp->pfnSSMGetU8(pSSM, &pThis->ga.VPTR0); pHlp->pfnSSMGetU16(pSSM, &pThis->ga.CDADR); pHlp->pfnSSMGetBool(pSSM, &pThis->ga.fGaIrq); /* Set IRQ and DMA based on IDCFR if this is a 3C503. */ if (pThis->uDevType == DEV_3C503) { pThis->uIsaIrq = elGetIrqFromIdcfr(pThis->ga.IDCFR); pThis->uElIsaDma = elGetDrqFromIdcfr(pThis->ga.IDCFR); } } /* check config */ RTMAC Mac; int rc = pHlp->pfnSSMGetMem(pSSM, &Mac, sizeof(Mac)); AssertRCReturn(rc, rc); if ( memcmp(&Mac, &pThis->MacConfigured, sizeof(Mac)) && (uPass == 0 || !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)) ) LogRel(("DPNIC#%u: The mac address differs: config=%RTmac saved=%RTmac\n", pThis->iInstance, &pThis->MacConfigured, &Mac)); if (uPass == SSM_PASS_FINAL) { /* update promiscuous mode. */ if (pThisCC->pDrv) pThisCC->pDrv->pfnSetPromiscuousMode(pThisCC->pDrv, 0 /* promiscuous enabled */); /* Indicate link down to the guest OS that all network connections have been lost, unless we've been teleported here. */ if (!PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)) dp8390TempLinkDown(pDevIns, pThis); } return VINF_SUCCESS; } /* -=-=-=-=-=- DPNICSTATE::INetworkDown -=-=-=-=-=- */ /** * Check if the device/driver can receive data now. * * Worker for dpNicNet_WaitReceiveAvail(). This must be called before * the pfnRecieve() method is called. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThis The device instance data. */ static int dp8390CanReceive(PPDMDEVINS pDevIns, PDPNICSTATE pThis) { DP8390CORE *pCore = &pThis->core; int rc = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); AssertReleaseRC(rc); rc = VINF_SUCCESS; /* * The card has typically room for several full-size Ethernet frames but * the buffers can overflow. We cheat a bit and try to hold off when it * looks like there is temporarily not enough buffer spave. * * If the receiver is disabled, accept packets and drop them to avoid * pile-ups. If the receiver is enabled, take a closer look. */ if (pCore->cr.STA && !pCore->cr.STP) { /* Receiver is enabled. Find out if we're low on buffer space. * But if the receive buffer isn't at least 4K big (16 pages), * don't bother. Typically there will be 5K or more in the * receive buffer. */ if (pCore->PSTART + 16 <= pCore->PSTOP) { uint16_t free_pages; /* Free space is between BNRY (host's read pointer) and CURR * (NIC's write pointer). */ if (pCore->BNRY <= pCore->CURR) { /* Free space wraps around. This might technically give * the wrong answer if the buffer is empty (BNRY = CURR) * but in that case there's plenty of room anyway. */ free_pages = pCore->PSTOP - pCore->PSTART - (pCore->CURR - pCore->BNRY); } else { /* Free space does not wrap. */ free_pages = pCore->BNRY - pCore->CURR; } Log2Func(("#%d: %u free pages (%u bytes)\n", pThis->iInstance, free_pages, free_pages * 256)); /* Six pages (1,536 bytes) is enough for the longest standard Ethernet frame * (1522 bytes including FCS) plus packet header (4 bytes). */ if (free_pages < 6) { rc = VERR_NET_NO_BUFFER_SPACE; Log2Func(("#%d: Buffer space low, returning %Rrc!\n", pThis->iInstance, rc)); } } } PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); return rc; } /** * @interface_method_impl{PDMINETWORKDOWN,pfnWaitReceiveAvail} */ static DECLCALLBACK(int) dpNicNet_WaitReceiveAvail(PPDMINETWORKDOWN pInterface, RTMSINTERVAL cMillies) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, INetworkDown); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc = dp8390CanReceive(pDevIns, pThis); if (RT_SUCCESS(rc)) { STAM_COUNTER_INC(&pThis->StatRxCanReceiveNow); return VINF_SUCCESS; } if (RT_UNLIKELY(cMillies == 0)) { STAM_COUNTER_INC(&pThis->StatRxCannotReceiveNow); return VINF_SUCCESS; //VERR_NET_NO_BUFFER_SPACE; } rc = VERR_INTERRUPTED; ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, true); STAM_PROFILE_START(&pThis->StatRxOverflow, a); VMSTATE enmVMState; while (RT_LIKELY( (enmVMState = PDMDevHlpVMState(pDevIns)) == VMSTATE_RUNNING || enmVMState == VMSTATE_RUNNING_LS)) { int rc2 = dp8390CanReceive(pDevIns, pThis); if (RT_SUCCESS(rc2)) { rc = VINF_SUCCESS; break; } if (cMillies > 666) cMillies = 666; LogFlowFunc(("Waiting cMillies=%u...\n", cMillies)); rc2 = RTSemEventWait(pThis->hEventOutOfRxSpace, cMillies); //LogRelFunc(("RTSemEventWait: rc=%Rrc\n", rc2)); // if (rc2 == VERR_TIMEOUT) // break; } STAM_PROFILE_STOP(&pThis->StatRxOverflow, a); ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, false); return rc; } /** * @interface_method_impl{PDMINETWORKDOWN,pfnReceive} */ static DECLCALLBACK(int) dpNicNet_Receive(PPDMINETWORKDOWN pInterface, const void *pvBuf, size_t cb) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, INetworkDown); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); int rc; STAM_PROFILE_ADV_START(&pThis->StatReceive, a); rc = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); AssertReleaseRC(rc); if (cb > 50) /* unqualified guess */ pThis->Led.Asserted.s.fReading = pThis->Led.Actual.s.fReading = 1; dp8390CoreReceiveLocked(pDevIns, pThis, (const uint8_t *)pvBuf, cb); pThis->Led.Actual.s.fReading = 0; PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); STAM_PROFILE_ADV_STOP(&pThis->StatReceive, a); return VINF_SUCCESS; } /** * @interface_method_impl{PDMINETWORKDOWN,pfnXmitPending} */ static DECLCALLBACK(void) dpNicNet_XmitPending(PPDMINETWORKDOWN pInterface) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, INetworkDown); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); dp8390CoreXmitPacket(pDevIns, pThis, true /*fOnWorkerThread*/); } /* -=-=-=-=-=- DPNICSTATE::INetworkConfig -=-=-=-=-=- */ /** * @interface_method_impl{PDMINETWORKCONFIG,pfnGetMac} */ static DECLCALLBACK(int) dpNicGetMac(PPDMINETWORKCONFIG pInterface, PRTMAC pMac) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, INetworkConfig); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); LogFlowFunc(("#%d\n", pThis->iInstance)); /// @todo This is broken!! We can't properly get the MAC address set by the guest #if 0 memcpy(pMac, pThis->core.pg1.PAR, sizeof(*pMac)); #else memcpy(pMac, pThis->aPROM, sizeof(*pMac)); #endif return VINF_SUCCESS; } /** * @interface_method_impl{PDMINETWORKCONFIG,pfnGetLinkState} */ static DECLCALLBACK(PDMNETWORKLINKSTATE) dpNicGetLinkState(PPDMINETWORKCONFIG pInterface) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, INetworkConfig); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); if (pThis->fLinkUp && !pThis->fLinkTempDown) return PDMNETWORKLINKSTATE_UP; if (!pThis->fLinkUp) return PDMNETWORKLINKSTATE_DOWN; if (pThis->fLinkTempDown) return PDMNETWORKLINKSTATE_DOWN_RESUME; AssertMsgFailed(("Invalid link state!\n")); return PDMNETWORKLINKSTATE_INVALID; } /** * @interface_method_impl{PDMINETWORKCONFIG,pfnSetLinkState} */ static DECLCALLBACK(int) dpNicSetLinkState(PPDMINETWORKCONFIG pInterface, PDMNETWORKLINKSTATE enmState) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, INetworkConfig); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); bool fLinkUp; LogFlowFunc(("#%d\n", pThis->iInstance)); AssertMsgReturn(enmState > PDMNETWORKLINKSTATE_INVALID && enmState <= PDMNETWORKLINKSTATE_DOWN_RESUME, ("Invalid link state: enmState=%d\n", enmState), VERR_INVALID_PARAMETER); if (enmState == PDMNETWORKLINKSTATE_DOWN_RESUME) { dp8390TempLinkDown(pDevIns, pThis); /* * Note that we do not notify the driver about the link state change because * the change is only temporary and can be disregarded from the driver's * point of view (see @bugref{7057}). */ return VINF_SUCCESS; } /* has the state changed? */ fLinkUp = enmState == PDMNETWORKLINKSTATE_UP; if (pThis->fLinkUp != fLinkUp) { pThis->fLinkUp = fLinkUp; if (fLinkUp) { /* Connect with a configured delay. */ pThis->fLinkTempDown = true; pThis->cLinkDownReported = 0; pThis->cLinkRestorePostponed = 0; pThis->Led.Asserted.s.fError = pThis->Led.Actual.s.fError = 1; int rc = PDMDevHlpTimerSetMillies(pDevIns, pThis->hTimerRestore, pThis->cMsLinkUpDelay); AssertRC(rc); } else { /* Disconnect. */ pThis->cLinkDownReported = 0; pThis->cLinkRestorePostponed = 0; pThis->Led.Asserted.s.fError = pThis->Led.Actual.s.fError = 1; } Assert(!PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect)); if (pThisCC->pDrv) pThisCC->pDrv->pfnNotifyLinkChanged(pThisCC->pDrv, enmState); } return VINF_SUCCESS; } /* -=-=-=-=-=- DPNICSTATE::ILeds (LUN#0) -=-=-=-=-=- */ /** * @interface_method_impl{PDMILEDPORTS,pfnQueryStatusLed} */ static DECLCALLBACK(int) dpNicQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, ILeds); PPDMDEVINS pDevIns = pThisCC->pDevIns; PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); if (iLUN == 0) { *ppLed = &pThis->Led; return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /* -=-=-=-=-=- DPNICSTATE::IBase (LUN#0) -=-=-=-=-=- */ /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) dpNicQueryInterface(struct PDMIBASE *pInterface, const char *pszIID) { PDPNICSTATECC pThisCC = RT_FROM_MEMBER(pInterface, DPNICSTATECC, IBase); Assert(&pThisCC->IBase == pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThisCC->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKDOWN, &pThisCC->INetworkDown); PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKCONFIG, &pThisCC->INetworkConfig); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThisCC->ILeds); return NULL; } /* -=-=-=-=-=- PDMDEVREG -=-=-=-=-=- */ /** * @interface_method_impl{PDMDEVREG,pfnPowerOff} */ static DECLCALLBACK(void) dpNicR3PowerOff(PPDMDEVINS pDevIns) { /* Poke thread waiting for buffer space. */ dp8390R3WakeupReceive(pDevIns); } /** * @interface_method_impl{PDMDEVREG,pfnDetach} * * One port on the network card has been disconnected from the network. */ static DECLCALLBACK(void) dpNicR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); PDPNICSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDPNICSTATECC); RT_NOREF(fFlags); LogFlowFunc(("#%d\n", pThis->iInstance)); AssertLogRelReturnVoid(iLUN == 0); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &pThis->CritSect, rcLock); /* * Zero some important members. */ pThis->fDriverAttached = false; pThisCC->pDrvBase = NULL; pThisCC->pDrv = NULL; PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); } /** * @interface_method_impl{PDMDEVREG,pfnAttach} * One port on the network card has been connected to a network. */ static DECLCALLBACK(int) dpNicR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); PDPNICSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDPNICSTATECC); RT_NOREF(fFlags); LogFlowFunc(("#%d\n", pThis->iInstance)); AssertLogRelReturn(iLUN == 0, VERR_PDM_NO_SUCH_LUN); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &pThis->CritSect, VERR_SEM_BUSY); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &pThis->CritSect, rcLock); /* * Attach the driver. */ int rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThisCC->IBase, &pThisCC->pDrvBase, "Network Port"); if (RT_SUCCESS(rc)) { pThisCC->pDrv = PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMINETWORKUP); AssertMsgStmt(pThisCC->pDrv, ("Failed to obtain the PDMINETWORKUP interface!\n"), rc = VERR_PDM_MISSING_INTERFACE_BELOW); pThis->fDriverAttached = true; } else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME) { /* This should never happen because this function is not called * if there is no driver to attach! */ LogFunc(("#%d No attached driver!\n", pThis->iInstance)); } /* * Temporarily drop the link if it was up so that the guest * will know that we have changed the configuration of the * network card */ if (RT_SUCCESS(rc)) dp8390TempLinkDown(pDevIns, pThis); PDMDevHlpCritSectLeave(pDevIns, &pThis->CritSect); return rc; } /** * @interface_method_impl{PDMDEVREG,pfnSuspend} */ static DECLCALLBACK(void) dpNicR3Suspend(PPDMDEVINS pDevIns) { /* Poke thread waiting for buffer space. */ dp8390R3WakeupReceive(pDevIns); } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) dpNicR3Reset(PPDMDEVINS pDevIns) { PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); LogFlowFunc(("#%d\n", pThis->iInstance)); if (pThis->fLinkTempDown) { pThis->cLinkDownReported = 0x1000; pThis->cLinkRestorePostponed = 0x1000; PDMDevHlpTimerStop(pDevIns, pThis->hTimerRestore); dpNicR3TimerRestore(pDevIns, pThis->hTimerRestore, pThis); } dpNicR3HardReset(pDevIns, pThis); } /** * @interface_method_impl{PDMDEVREG,pfnRelocate} */ static DECLCALLBACK(void) dpNicR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { PDPNICSTATERC pThisRC = PDMINS_2_DATA_RC(pDevIns, PDPNICSTATERC); pThisRC->pDrv += offDelta; } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) dpNicR3Destruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); if (PDMDevHlpCritSectIsInitialized(pDevIns, &pThis->CritSect)) { RTSemEventSignal(pThis->hEventOutOfRxSpace); RTSemEventDestroy(pThis->hEventOutOfRxSpace); pThis->hEventOutOfRxSpace = NIL_RTSEMEVENT; PDMDevHlpCritSectDelete(pDevIns, &pThis->CritSect); } return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) dpNicR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); PDPNICSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDPNICSTATECC); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; PPDMIBASE pBase; char szTmp[128]; int rc; /* * Init what's required to make the destructor safe. */ pThis->iInstance = iInstance; pThis->hEventOutOfRxSpace = NIL_RTSEMEVENT; pThis->hIoPortsNic = NIL_IOMIOPORTHANDLE; pThis->hIoPortsCore = NIL_IOMIOPORTHANDLE; pThisCC->pDevIns = pDevIns; /* * Validate configuration. */ PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "MAC|CableConnected|Port|MemBase|IRQ|DMA|DeviceType|LinkUpDelay|LineSpeed", ""); /* * Read the configuration. */ rc = pHlp->pfnCFGMQueryBytes(pCfg, "MAC", &pThis->MacConfigured, sizeof(pThis->MacConfigured)); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"MAC\" value")); rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "CableConnected", &pThis->fLinkUp, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"CableConnected\" value")); /* * Determine the model. */ char szDeviceType[16]; rc = pHlp->pfnCFGMQueryStringDef(pCfg, "DeviceType", &szDeviceType[0], sizeof(szDeviceType), "NE2000"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Querying \"ChipType\" as string failed")); if (!strcmp(szDeviceType, "NE1000")) pThis->uDevType = DEV_NE1000; /* Novell NE1000. */ else if (!strcmp(szDeviceType, "NE2000")) pThis->uDevType = DEV_NE2000; /* Novell NE2000. */ else if (!strcmp(szDeviceType, "WD8003")) pThis->uDevType = DEV_WD8003; /* WD EtherCard Plus. */ else if (!strcmp(szDeviceType, "WD8013")) pThis->uDevType = DEV_WD8013; /* WD EtherCard Plus 16. */ else if (!strcmp(szDeviceType, "3C503")) pThis->uDevType = DEV_3C503; /* 3Com 3C503 EtherLink II. */ else return PDMDevHlpVMSetError(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, RT_SRC_POS, N_("Configuration error: The \"DeviceType\" value \"%s\" is unsupported"), szDeviceType); /* * Default resource assignments depend on the device type. */ unsigned uDefIoPort = 0; /* To be overridden. */ unsigned uDefIrq = 0; unsigned uDefDma = 0; /* Default to no DMA. */ unsigned uDefMemBase = 0; /* Default to no shared memory. */ if ((pThis->uDevType == DEV_NE1000) || (pThis->uDevType == DEV_NE2000)) { uDefIoPort = 0x300; uDefIrq = 3; } else if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { uDefIoPort = 0x280; uDefIrq = 3; uDefMemBase = 0xd0000; pThis->cbMemSize = _8K; if (pThis->uDevType == DEV_WD8013) pThis->cbMemSize = _16K; } else if (pThis->uDevType == DEV_3C503) { uDefIoPort = 0x300; uDefIrq = 3; uDefDma = 1; uDefMemBase = 0xdc000; pThis->cbMemSize = _8K; } /* * Process ISA configuration options. */ rc = pHlp->pfnCFGMQueryPortDef(pCfg, "Port", &pThis->IOPortBase, uDefIoPort); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"Port\" value")); rc = pHlp->pfnCFGMQueryU8Def(pCfg, "IRQ", &pThis->uIsaIrq, uDefIrq); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"IRQ\" value")); rc = pHlp->pfnCFGMQueryU8Def(pCfg, "DMA", &pThis->uIsaDma, uDefDma); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"DMA\" value")); rc = pHlp->pfnCFGMQueryGCPtrDef(pCfg, "MemBase", &pThis->MemBase, uDefMemBase); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"MemBase\" value")); rc = pHlp->pfnCFGMQueryU32Def(pCfg, "LinkUpDelay", (uint32_t*)&pThis->cMsLinkUpDelay, 5000); /* ms */ if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'LinkUpDelay'")); Assert(pThis->cMsLinkUpDelay <= 300000); /* less than 5 minutes */ if (pThis->cMsLinkUpDelay > 5000 || pThis->cMsLinkUpDelay < 100) { LogRel(("DPNIC#%d WARNING! Link up delay is set to %u seconds!\n", iInstance, pThis->cMsLinkUpDelay / 1000)); } LogFunc(("#%d Link up delay is set to %u seconds\n", iInstance, pThis->cMsLinkUpDelay / 1000)); /* * Initialize data (most of it anyway). */ pThis->Led.u32Magic = PDMLED_MAGIC; /* IBase */ pThisCC->IBase.pfnQueryInterface = dpNicQueryInterface; /* INetworkPort */ pThisCC->INetworkDown.pfnWaitReceiveAvail = dpNicNet_WaitReceiveAvail; pThisCC->INetworkDown.pfnReceive = dpNicNet_Receive; pThisCC->INetworkDown.pfnXmitPending = dpNicNet_XmitPending; /* INetworkConfig */ pThisCC->INetworkConfig.pfnGetMac = dpNicGetMac; pThisCC->INetworkConfig.pfnGetLinkState = dpNicGetLinkState; pThisCC->INetworkConfig.pfnSetLinkState = dpNicSetLinkState; /* ILeds */ pThisCC->ILeds.pfnQueryStatusLed = dpNicQueryStatusLed; pThis->hIoPortsCore = NIL_IOMIOPORTHANDLE; pThis->hIoPortsNic = NIL_IOMIOPORTHANDLE; pThis->hSharedMem = NIL_IOMMMIOHANDLE; /* * We use our own critical section (historical reasons). */ rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "DPNIC#%u", iInstance); AssertRCReturn(rc, rc); rc = PDMDevHlpSetDeviceCritSect(pDevIns, &pThis->CritSect); AssertRCReturn(rc, rc); rc = RTSemEventCreate(&pThis->hEventOutOfRxSpace); AssertRCReturn(rc, rc); /* * Register ISA I/O ranges. This depends on the device type. */ if ((pThis->uDevType == DEV_NE1000) || (pThis->uDevType == DEV_NE2000)) { /* The NE1000 and NE2000 map the DP8390 at the beginning of the port range, * followed by the data/reset ports. */ rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->IOPortBase, 0x10 /*cPorts*/, dp8390CoreIOPortWrite, dp8390CoreIOPortRead, "DP8390-Core", NULL /*paExtDesc*/, &pThis->hIoPortsCore); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->IOPortBase + 0x10, 0x10 /*cPorts*/, neIOPortWrite, neIOPortRead, "DPNIC-NE", NULL /*paExtDesc*/, &pThis->hIoPortsNic); if (RT_FAILURE(rc)) return rc; } else if ((pThis->uDevType == DEV_WD8003) || (pThis->uDevType == DEV_WD8013)) { /* The WD8003 and WD8013 map the DP8390 at the end of the port range * (16 bytes into it). The first 8 bytes of the range are largely unused * while the second 8 bytes map the PROM. */ rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->IOPortBase, 0x10 /*cPorts*/, wdIOPortWrite, wdIOPortRead, "DPNIC-WD", NULL /*paExtDesc*/, &pThis->hIoPortsNic); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->IOPortBase + 0x10, 0x10 /*cPorts*/, dp8390CoreIOPortWrite, dp8390CoreIOPortRead, "DP8390-Core", NULL /*paExtDesc*/, &pThis->hIoPortsCore); if (RT_FAILURE(rc)) return rc; /* * Shared memory MMIO area. This is rather lame. */ rc = PDMDevHlpMmioCreateExAndMap(pDevIns, pThis->MemBase, pThis->cbMemSize, IOMMMIO_FLAGS_READ_PASSTHRU | IOMMMIO_FLAGS_WRITE_PASSTHRU | IOMMMIO_FLAGS_ABS, NULL /*pPciDev*/, UINT32_MAX /*iPciRegion*/, wdMemWrite, wdMemRead, NULL /*wdMmioFill*/, NULL /*pvUser*/, "DPNIC - WD Shared RAM", &pThis->hSharedMem); AssertRCReturn(rc, rc); /* Hack to make WD drivers happy. */ memcpy(&pThis->MacConfigured, "\x00\x00\xC0", 3); } else if (pThis->uDevType == DEV_3C503) { /* The 3C503 maps the DP8390 at the base I/O address, except the first * or second 16 bytes of PROM can be mapped into the same space. The * custom Gate Array is mapped at I/O base + 400h. */ rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->IOPortBase, 0x10 /*cPorts*/, dp8390CoreIOPortWrite, dp8390CoreIOPortRead, "DP8390-Core", NULL /*paExtDesc*/, &pThis->hIoPortsCore); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->IOPortBase + 0x400, 0x10 /*cPorts*/, elIOPortWrite, elIOPortRead, "DPNIC-EL", NULL /*paExtDesc*/, &pThis->hIoPortsNic); if (RT_FAILURE(rc)) return rc; /* * Shared memory MMIO area. The same lame thing. */ rc = PDMDevHlpMmioCreateExAndMap(pDevIns, pThis->MemBase, pThis->cbMemSize, IOMMMIO_FLAGS_READ_PASSTHRU | IOMMMIO_FLAGS_WRITE_PASSTHRU | IOMMMIO_FLAGS_ABS, NULL /*pPciDev*/, UINT32_MAX /*iPciRegion*/, elMemWrite, elMemRead, NULL /*elMmioFill*/, NULL /*pvUser*/, "DPNIC - 3C503 Shared RAM", &pThis->hSharedMem); AssertRCReturn(rc, rc); /* * Register DMA channel. */ if ((pThis->uIsaDma >= ELNKII_MIN_VALID_DMA) && (pThis->uIsaDma <= ELNKII_MAX_VALID_DMA)) { rc = PDMDevHlpDMARegister(pDevIns, pThis->uIsaDma, elnk3R3DMAXferHandler, pThis); if (RT_FAILURE(rc)) return rc; LogRel(("DPNIC#%d: Enabling 3C503 DMA channel %u\n", iInstance, pThis->uIsaDma)); } else LogRel(("DPNIC#%d: Disabling 3C503 DMA\n", iInstance)); /* Hack to make 3C503 diagnostics happy. */ memcpy(&pThis->MacConfigured, "\x02\x60\x8C", 3); } rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, dpNicR3TimerRestore, NULL, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0, "DPNIC Link Restore Timer", &pThis->hTimerRestore); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpSSMRegisterEx(pDevIns, DPNIC_SAVEDSTATE_VERSION, sizeof(*pThis), NULL, NULL, dpNicLiveExec, NULL, dpNicSavePrep, dpNicSaveExec, NULL, dpNicLoadPrep, dpNicLoadExec, NULL); if (RT_FAILURE(rc)) return rc; /* * Create the transmit notifier signaller. */ rc = PDMDevHlpTaskCreate(pDevIns, PDMTASK_F_RZ, "DPNIC-Xmit", dpNicR3XmitTaskCallback, NULL /*pvUser*/, &pThis->hXmitTask); if (RT_FAILURE(rc)) return rc; /* * Create the RX notifier signaller. */ rc = PDMDevHlpTaskCreate(pDevIns, PDMTASK_F_RZ, "DPNIC-Rcv", dpNicR3CanRxTaskCallback, NULL /*pvUser*/, &pThis->hCanRxTask); if (RT_FAILURE(rc)) return rc; /* * Register the info item. */ RTStrPrintf(szTmp, sizeof(szTmp), "dpnic%d", pThis->iInstance); PDMDevHlpDBGFInfoRegister(pDevIns, szTmp, "dpnic info", dpNicR3Info); /* * Attach status driver (optional). */ rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThisCC->IBase, &pBase, "Status Port"); if (RT_SUCCESS(rc)) pThisCC->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); else if ( rc != VERR_PDM_NO_ATTACHED_DRIVER && rc != VERR_PDM_CFG_MISSING_DRIVER_NAME) { AssertMsgFailed(("Failed to attach to status driver. rc=%Rrc\n", rc)); return rc; } /* * Attach driver. */ rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThisCC->IBase, &pThisCC->pDrvBase, "Network Port"); if (RT_SUCCESS(rc)) { pThisCC->pDrv = PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMINETWORKUP); AssertMsgReturn(pThisCC->pDrv, ("Failed to obtain the PDMINETWORKUP interface!\n"), VERR_PDM_MISSING_INTERFACE_BELOW); pThis->fDriverAttached = true; } else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME) { /* No error! */ LogFunc(("No attached driver!\n")); } else return rc; /* * Reset the device state. (Do after attaching.) */ dpNicR3HardReset(pDevIns, pThis); /* * Register statistics counters. */ PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Public/Net/DPNIC%u/BytesReceived", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Public/Net/DPNIC%u/BytesTransmitted", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Devices/DPNIC%d/ReceiveBytes", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Devices/DPNIC%d/TransmitBytes", iInstance); #ifdef VBOX_WITH_STATISTICS PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOReadRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in RZ", "/Devices/DPNIC%d/IO/ReadRZ", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOReadR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in R3", "/Devices/DPNIC%d/IO/ReadR3", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOWriteRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in RZ", "/Devices/DPNIC%d/IO/WriteRZ", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatIOWriteR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in R3", "/Devices/DPNIC%d/IO/WriteR3", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceive, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling receive", "/Devices/DPNIC%d/Receive", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatRxOverflow, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_OCCURENCE, "Profiling RX overflows", "/Devices/DPNIC%d/RxOverflow", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatRxOverflowWakeup, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES , "Nr of RX overflow wakeups", "/Devices/DPNIC%d/RxOverflowWakeup", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatRxCanReceiveNow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES , "Can receive immediately", "/Devices/DPNIC%d/RxCanReceiveNow", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatRxCannotReceiveNow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES , "Cannot receive, not waiting", "/Devices/DPNIC%d/RxCannotReceiveNow", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in RZ", "/Devices/DPNIC%d/Transmit/TotalRZ", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling transmits in R3", "/Devices/DPNIC%d/Transmit/TotalR3", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitSendRZ, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in RZ", "/Devices/DPNIC%d/Transmit/SendRZ", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitSendR3, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in R3", "/Devices/DPNIC%d/Transmit/SendR3", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatInterrupt, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling interrupt checks", "/Devices/DPNIC%d/UpdateIRQ", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktMonitor, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet, monitor mode", "/Devices/DPNIC%d/DropPktMonitor", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktRcvrDis, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet, receiver not enabled", "/Devices/DPNIC%d/DropPktRcvrDis", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktVeryShort, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet less than 8 bytes long", "/Devices/DPNIC%d/DropPktVeryShort", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktVMNotRunning,STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet, VM not running", "/Devices/DPNIC%d/DropPktVMNotRunning", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktNoLink, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet, no link", "/Devices/DPNIC%d/DropPktNoLink", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktNoMatch, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet, address match reject", "/Devices/DPNIC%d/DropPktNoMatch", iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatDropPktNoBuffer, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Dropped packet, DP8390 buffer overflow", "/Devices/DPNIC%d/DropPktNoBuffer", iInstance); #endif /* VBOX_WITH_STATISTICS */ return VINF_SUCCESS; } #else /** * @callback_method_impl{PDMDEVREGR0,pfnConstruct} */ static DECLCALLBACK(int) dpNicRZConstruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PDPNICSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PDPNICSTATE); /* Critical section setup: */ int rc = PDMDevHlpSetDeviceCritSect(pDevIns, &pThis->CritSect); AssertRCReturn(rc, rc); /* NIC-specific ISA I/O ports: */ if (pThis->hIoPortsNic != NIL_IOMIOPORTHANDLE) { switch (pThis->uDevType) { case DEV_NE1000: case DEV_NE2000: rc = PDMDevHlpIoPortSetUpContext(pDevIns, pThis->hIoPortsNic, neIOPortWrite, neIOPortRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); break; case DEV_WD8003: case DEV_WD8013: rc = PDMDevHlpIoPortSetUpContext(pDevIns, pThis->hIoPortsNic, wdIOPortWrite, wdIOPortRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); break; case DEV_3C503: rc = PDMDevHlpIoPortSetUpContext(pDevIns, pThis->hIoPortsNic, elIOPortWrite, elIOPortRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); break; default: /* Must not happen. */ return VERR_INTERNAL_ERROR; } } /* Common DP8390 core I/O ports: */ if (pThis->hIoPortsCore != NIL_IOMIOPORTHANDLE) { rc = PDMDevHlpIoPortSetUpContext(pDevIns, pThis->hIoPortsCore, dp8390CoreIOPortWrite, dp8390CoreIOPortRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); } /* Shared RAM, if used: */ if (pThis->hSharedMem != NIL_IOMMMIOHANDLE) { AssertRCReturn(rc, rc); switch (pThis->uDevType) { case DEV_WD8003: case DEV_WD8013: rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hSharedMem, wdMemWrite, wdMemRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); break; case DEV_3C503: rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hSharedMem, elMemWrite, elMemRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); break; case DEV_NE1000: case DEV_NE2000: default: /* Must not happen. */ return VERR_INTERNAL_ERROR; } } return VINF_SUCCESS; } #endif /* IN_RING3 */ /** * The device registration structure. */ const PDMDEVREG g_DeviceDP8390 = { /* .u32Version = */ PDM_DEVREG_VERSION, /* .uReserved0 = */ 0, /* .szName = */ "dp8390", /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE, /* .fClass = */ PDM_DEVREG_CLASS_NETWORK, /* .cMaxInstances = */ ~0U, /* .uSharedVersion = */ 42, /* .cbInstanceShared = */ sizeof(DPNICSTATE), /* .cbInstanceCC = */ sizeof(DPNICSTATECC), /* .cbInstanceRC = */ sizeof(DPNICSTATERC), /* .cMaxPciDevices = */ 0, /* .cMaxMsixVectors = */ 0, /* .pszDescription = */ "National Semiconductor DP8390 based adapter.\n", #if defined(IN_RING3) /* .pszRCMod = */ "VBoxDDRC.rc", /* .pszR0Mod = */ "VBoxDDR0.r0", /* .pfnConstruct = */ dpNicR3Construct, /* .pfnDestruct = */ dpNicR3Destruct, /* .pfnRelocate = */ dpNicR3Relocate, /* .pfnMemSetup = */ NULL, /* .pfnPowerOn = */ NULL, /* .pfnReset = */ dpNicR3Reset, /* .pfnSuspend = */ dpNicR3Suspend, /* .pfnResume = */ NULL, /* .pfnAttach = */ dpNicR3Attach, /* .pfnDetach = */ dpNicR3Detach, /* .pfnQueryInterface = */ NULL, /* .pfnInitComplete = */ NULL, /* .pfnPowerOff = */ dpNicR3PowerOff, /* .pfnSoftReset = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RING0) /* .pfnEarlyConstruct = */ NULL, /* .pfnConstruct = */ dpNicRZConstruct, /* .pfnDestruct = */ NULL, /* .pfnFinalDestruct = */ NULL, /* .pfnRequest = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RC) /* .pfnConstruct = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #else # error "Not in IN_RING3, IN_RING0 or IN_RC!" #endif /* .u32VersionEnd = */ PDM_DEVREG_VERSION }; #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */